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ABSTRACT 

Propagation of radio waves is interrupted while traveling through different 

materials. The architectural beautification and complexity by using various 

building materials cause attenuation of the signal via: indoor, outdoor to indoor 

and vice versa wireless communications. It has been found that feeding more 

power to the transmitter or increasing sensitivity of the receiver is one of the 

solutions to overcome weak connectivity. However, this approach is not cost 

effective. Another concern is the ability to amplify the wireless signal, especially 

in WLAN operation. WLAN is one of the most popular ways of establishing a 

wireless communication network to connect our daily used devices such as 

mobile phone, laptop, IP camera etc. Path loss, attenuation by materials and the 

delivered power from the transceiver are the variables to determine the 

efficiency of this communication network. 

A passive repeating method has been discussed in this thesis which addresses 

the mentioned concerns. It is cost effective and in a case of power consumption, 

does not need any energy outside the system. On the other hand, there are few 

maintenance costs, if any, for this kind of system. To achieve this, a back-to-

back antenna approach has been tested in this study. In a back-to-back system, 

two antennas are connected by a short waveguide connection to decrease 

attenuation e.g. a wall. The main challenge concerning the effectiveness of this 

method was to design and fabricate efficient antennas, which are connected with 

a coaxial cable. 

There are multiple frequency bands available for WLAN communication. In 

this thesis, a frequency of 2.43 GHz is considered. Computer simulation of 

antennas, fabrication, individual measurement and full passive repeating system 

measurement has been presented. A prototype of a circular patch antenna is 

built with a 4.63 dB gain and a return loss of 15.18 dB. The passive repeating 

system is built by using a commercially available dipole antenna at the other 

end of the coaxial cable. In various cases, there was an observable improvement 

of the signal of between 2 dB to 6 dB. 

Required background and theoretical studies are presented along with the 

output of the simulated and measured prototype comparison. It is clear from 

this study that the passive repeating system can be used in some specific indoor 

areas. 

 

Keywords: WLAN, passive repeater, path loss, attenuation, indoor 

communication. 

 

  



 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................. 2 

TABLE OF CONTENTS ............................................................................................. 3 

FOREWORD ................................................................................................................ 5 

LIST OF ABBREVIATIONS AND SYMBOLS ......................................................... 6 

1. INTRODUCTION .............................................................................................. 9 

1.1. Objective .................................................................................................... 9 

1.2. Limitations ............................................................................................... 10 

1.3. Related Research ..................................................................................... 10 

1.3.1. Directional Antennas ................................................................... 10 

1.3.2. Omnidirectional Antennas ........................................................... 12 

1.3.3. Coaxial Cable............................................................................... 13 

1.3.4. Earlier works on passive signal repeating ................................... 14 

2. THEORETICAL BACKGROUND .................................................................. 15 

2.1. Definitions and Concepts ........................................................................ 15 

2.1.1. Antennas ...................................................................................... 15 

2.1.2. Radiation Properties..................................................................... 15 

2.1.3. Near Field and Far Field .............................................................. 17 

2.1.4. Path Loss ...................................................................................... 19 

2.1.5. Link Budget ................................................................................. 20 

2.1.6. Link budget equation ................................................................... 21 

2.2. Parameters of Antennas ........................................................................... 21 

2.2.1. Radiation Pattern ......................................................................... 22 

2.2.2. Beam width .................................................................................. 23 

2.2.3. Radiation Intensity ....................................................................... 23 

2.2.4. Directivity .................................................................................... 24 

2.2.5. Antenna Efficiency and Gain....................................................... 25 

2.2.6. Polarization .................................................................................. 26 

2.2.7. Bandwidth .................................................................................... 27 

2.2.8. Antenna Input Impedance ............................................................ 28 

2.2.9. Reflection Coefficient .................................................................. 28 

3. STUDY OF USED WLAN ANTENNA TYPES ............................................. 30 

3.1. Patch Antennas ........................................................................................ 30 

3.1.1. Feeding techniques ...................................................................... 30 

3.1.2. Circular patch antenna ................................................................. 32 

3.1.3. Circular patch modeling .............................................................. 33 

3.2. Dipole Antennas ...................................................................................... 34 

3.2.1. Dipole model ............................................................................... 35 

3.2.2. Study of Repeaters ....................................................................... 36 

3.3. Active Repeaters ...................................................................................... 36 

3.4. Passive Repeaters .................................................................................... 37 

3.4.1. Plane Reflector............................................................................. 38 



 

3.4.2. Back-to-back Antenna ................................................................. 39 

4. MEASUREMENTS .......................................................................................... 40 

4.1. Antenna Measurements ........................................................................... 40 

4.1.1. Vector Network Analyzing .......................................................... 40 

4.1.2. Satimo StarLab Measurements .................................................... 41 

4.2. Measuring by Mobile Applications ......................................................... 43 

5. RESULTS ......................................................................................................... 45 

5.1. Simulation results .................................................................................... 45 

5.2. Practical Measurement ............................................................................ 48 

5.2.1. Network Analyzer Measurement ................................................. 48 

5.2.2. Radiation Pattern Measurements ................................................. 50 

5.3. Full Repeater System Measurements ...................................................... 53 

5.3.1. Case 1........................................................................................... 55 

5.3.2. Case 2........................................................................................... 56 

6. DISCUSSION ................................................................................................... 57 

7. SUMMARY ...................................................................................................... 59 

8. REFERENCES ................................................................................................. 60 

  



 

FOREWORD 

This thesis has been carried out as a partial requirement for the completion of the 

degree towards the Master’s Degree Program in Wireless Communication 

Engineering, at the Center for Wireless Communication (CWC), University of Oulu, 

Finland. 

I am thankful to my supervisors Professor Aarno Pärssinen, DSc (Tech) Marko 

Sonkki and DSc (Tech) Marko Tuhkala for guiding me for not only on the theoretical 

studies, but also for the technical support. Their suggestions and comments were 

required for me to complete this thesis. For theoretical guideline Marko Sonkki made 

me clear about the related topics to understand. Marko Tuhkala provided me the 

technical support during several tests for this thesis. I would like to thank my parents 

for their continuous inspiration for my studies. I am also thankful to all of my 

friends, especially Shahriar Shahabuddin, Julias Francis Gomes, Sanaul Haque and 

Joseph Bentley for their moral support. 

I dedicate this thesis to my parents for their wonderful support throughout my life 

and never ending love.  

 

“I do not know what I may appear to the world, but to myself I seem to have been 

only like a boy playing on the seashore, and diverting myself in now and then finding 

a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth 

lay all undiscovered before me.” 

- Sir Isaac Newton 

 

 

 

 

Oulu, May, 2018 

 

 

Sadiqur Rahaman 



 

LIST OF ABBREVIATIONS AND SYMBOLS 

CST Computer Simulations Technologies 

dB Decibel 

dBm Decibel Referenced to Milliwatt 

dBi Decibel Referenced to Isotropic Radiator 

FNBW First Null Beam Width 

FM Frequency Modulation 

FSL Free Space Loss 

GPS Global Positioning System 

GHz Gigahertz 

HGA High Gain Antenna 

HPBW Half Power Beam Width 

IL Insertion Loss 

IP Internet Protocol 

IoT Internet of Things 

LHCP Left Hand Circular Polarization 

LOS Line of Sight 

MIMO Multiple Input Multiple Output 

PCB Printed Circuit Board 

RBER Residual Bit Error Rate 

RFID Radio-Frequency Identification 

RHCP Right Hand Circular Polarization 

VNA Vector Network Analyzer 

VSWR Voltage Standing Wave Ratio 

WiMAX Worldwide Interoperability for Microwave Access, Inc 

WLAN Wireless Local Area Network 

 

𝐴 Surface area 

𝐴𝑒 Antenna gain 

𝐷 Largest dimension of antenna 

𝐷𝜃 Partial directivity of elevation plane 

𝐷𝜙 Partial directivity of Azimuth angle 

𝐸 Electric field 

𝐹 Frequency 

𝐹𝐶 Center frequency 

𝐹𝐿 Lower frequency 

𝐹𝑈 Upper frequency 

𝐺 Gain of reflector 

𝐺𝑇𝑋 Transmitted antenna gain 

𝐺𝑅𝑋 Receiver antenna gain 

𝐻 Magnetic field 

𝐼𝑖𝑛 Input current 



 

𝐼𝑧 Density of current 

𝐽𝑧 Density of current 

𝐿 Length of antenna 

𝐿𝑝 Miscellaneous signal propagation loss 

𝐿𝑇𝑋 Transmitter feeder and associated loss 

𝐿𝐹𝑆 Free space path loss 

𝑃𝑖𝑛 Input power 

𝑃𝑟 Radiated power 

𝑃𝑅𝑋 Received power 

𝑃𝑇𝑋 Transmitted power 

𝑃𝑟𝑎𝑑 Radiated power 

𝑇 Time per cycle of a wave 

𝑄 Total charge 

𝑅 Reactive near-field 

𝑅𝑎 Total resistance of antenna 

𝑅𝑟 Radiation resistance of antenna 

𝑅𝐿 Internal resistance of antenna 

𝑅𝑙 Loss resistance of antenna 

𝑉 Volume 

𝑈 Radiation intensity 

𝑈0 Radiation intensity for isotropic case 

𝑈𝑚𝑎𝑥 Maximum radiation intensity 

𝑃 Phase 

𝑉𝑖𝑛 Input voltage 

𝑊𝑟𝑎𝑑 Radiation density 

𝑋𝑎 Frequency dependent reactance 

𝑍𝑎 Input impedance 

𝑍0 Characteristic impedance of the transmission line 

 

𝑎 Radius of the patch 

𝑎𝑒 Effective radius of the patch 

𝑎𝑧 Acceleration of the current 

𝑐 Speed of light 

𝑒 Total efficiency 

𝑒𝑟𝑎𝑑 Radiation efficiency 

𝑒𝑟𝑒𝑓 Reflection efficiency 

𝑓 Frequency 

𝑓𝑟 Resonance frequency 

ℎ Substrate height 

𝑖 Source port of VNA 

𝑗 Destination port of VNA 

𝑙 Length of wire 



 

𝑞𝑙 Charge of thin wire per unit length 

𝑞𝑣 Density of electric volume charge 

𝑟 Radius 

𝑣𝑧 Velocity of charge 

𝑣0 Velocity of light 

 

Ω Resistance 

𝜖𝑟 Dielectric constant 

 Elevation angle 

 Azimuth angle 

𝜋 Pi (constant) 

Γ Voltage reflection coefficient 

𝜆 Wavelength 

𝜔 Angular frequency 

𝛾 Propagation constant 

 



9 

 

1. INTRODUCTION 

In the near future all electronic devices will be connected to several other electronic 

devices and this phenomenon is known as “Internet of Things” (IoT). These devices 

can be connected to internet directly through cellular network, Wi-Fi or indirectly via 

Bluetooth technology. Connectedness through wireless medium is the solution to the 

mobility of those devices. On the other hand, availability of the network by which 

that wireless connection will be made, is a greater challenge because it is not 

convenient in terms of overhead cost to make sure that the whole area is under the 

communication network. The modern architecture of bigger office spaces is designed 

by various materials which tend to attenuate the signal of Wireless Local Area 

Network (WLAN). Repetition of signal is required to the indoor area to keep the 

wireless communication uninterrupted. Because the frequency band is limited for 

WLAN and also the cost of power consumption of those devices is a factor to 

mitigate, passive repeating of the signal can be a solution in some cases to overcome 

these problems. This thesis addresses one of the probable solutions. 

A back-to-back antenna passive repeating system, where two antennas are 

connected with a short waveguide, has been used to figure out the variation or 

improvement of the indoor signal from a single source (e.g. Base Transceiver Station 

(BTS)) to the wirelessly connected device (mobile phone, laptop, IP camera etc.). A 

prototype of an antenna has been built for the WLAN frequency range which is 2.43 

GHz and CST Microwave Studio has been used to simulate beforehand. For the real 

time measurement the Vector Network Analyzer and Satimo StarLab have been used 

to determine the performance of those antennas and cables used for the measurement. 

A free version mobile application has been used for the final test setup of the passive 

repeating system to measure signal levels. 

A coaxial cable of 50Ω impedance has been used as a waveguide to make the 

physical connection between the two antennas in the back-to-back antenna model. As 

the whole system is passive, the goal is to keep the gain performance of the antennas 

as much as possible. The concept is to capture the microwave energy from a BTS, 

guide the energy through a coaxial cable and radiate the captured signals on the other 

end by using another antenna to improve the signal level in that area. 

Theoretical background has been discussed at the beginning of the thesis along 

with the discussion of some previous relevant works which one need to study in 

order to clarify the concept and approach of this thesis. The simulation results, 

individual measurement results and the measurement results, and the main goal of 

this thesis have been presented on the result chapter. 

 

1.1. Objective 

Objective of this thesis is to build a passive repeating system for the indoor 

wireless communication. The targeted is to increase the coverage in places where the 

signal strength is poor because of the distance from the base transceiver, or the huge 

attenuation caused by building materials. For instance, thick walls, glass walls or 

different architectural obstacles can attenuate the signal for several tens of dBs. 
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1.2. Limitations 

The objectives have been initiated by using the simulation software which can 

provide the tentative results of the real objects, more specifically of an antenna which 

has been built and used later on. The software does not take into consideration of 

some practical factors such as surface roughness of the materials and purity of 

components which are not unique in terms of real-life cases. In the measurement 

section there is another limitation of the mobile application which has been used for 

the main repeating system. The sensitivity of the received signal depends on the 

efficiency of the mobile device. It might vary from device to device. To reduce the 

error rate, the output of that mobile application has been averaged after several 

measurements. 

 

1.3. Related Research 

In consideration of building designs in the Nordic countries, the materials used 

have a higher thermal resistance. Many insulation materials are also used to make the 

indoor temperature comfortable for the human being. These materials determine the 

properties of radio waves received from the transmission station. Some materials 

have high attenuation for the radio wave which is frequency dependent. For example, 

Celotex thermal insulation causes around 50 dB of RF attenuation for Wi-Fi 

frequency [1]. Because of the complexity of the system design sometimes, it is 

required to improve the signal strength in a certain areas of the building. Installation 

of passive repeating systems is much more convenient rather than placing any active 

repeater on that niche area. No electrical power and least maintenance are the key 

features of this approach. 

So far, many researchers have been conducted with different kinds of antennas and 

also using passive repeating methods to measure the improvement of signal strength 

tested in various cases. In this literature review part, the discussion has been made by 

dividing it into following four major parts. 

 

1.3.1. Directional Antennas 

The directional antenna is also known as a beam antenna as its radiation pattern is 

pointed in a certain direction for increased performance and low interference. High 

gain is another important feature of this antenna. In the case of receiving and 

transmitting signal, this high gain antenna (HGA) captures and radiates respectively 

more of the signal with higher signal strength compared to an isotropic antenna. On 

the other hand, it will not be effective on the other direction rather than the directed 

angle. The operation is similar to the flashlight mechanism. Instead of spreading the 

light in every direction, the light is focused in a narrow projection angle by using a 

reflector. Similar things are done here for example using large ground plane (which 

helps to reflect the signal in certain direction like flash light) or directing the wave 

guide through a cone. In this way the direction of propagation can be determined. In 

Figure 1 a typical horn antenna is shown. It is one of the widely used directional 

antennas. Different kinds of directional antenna and their features are discussed 

below. 
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Figure 1. Horn antenna is an example of directional antenna. 

 

In 2016 Li Guo et al. proposed a dual frequency band tunable patch antenna [2]. 

For creating the second resonance frequency, a mender shaped metallic parasitic loop 

has been used in this case. The resonance frequencies are 2.34 GHz and 2.45 GHz 

with -10 dB relative bandwidths of 1.2% and 0.8%, respectively. The gains are 

7.48 dBi and 6.25 dBi respectively where the radiation efficiencies are 85% and 

72%. For dual band operational purpose this antenna could be used because of its 

radiation pattern is quite directive. 

Array of antennas to increase the gain is presented in the conference paper of 

IEEE in 2016 Galih Mustiko et al [3]. Total 16 antennas in 4x4 arrangements have 

been used in this design. It has higher bandwidth of 130 MHz in the resonance 

frequency with Voltage Standing Wave Ratio (VSWR) of 1.24. The main feature is 

its gain which is 15.59 dB with return loss of 19.52 dB. 

Triple band improved gain microstrip patch antenna with gain of 2.4 dB and 

2.76 dB by using superstrate and without superstrate respectively, implemented for 

the WLAN purpose which is 2.45 GHz, is proposed by Pragati et al in 2016 [4]. 

Other frequency bands are 3.5 GHz for WiMAX and 4.65 GHz for fixed mobile 

frequency band. In terms of directivity and radiation pattern the performance for 

2.45 GHz was quite satisfactory compared to the other two frequency bands. 

In a paper of Fei Yu, patch antenna with mono-pulse patterns with 345 MHz at 

10 dB bandwidth has been focused. It has two symmetric probes feed with a 

180 degree directional coupler [5]. Mono-pulse antennas are used in radars and in 

that kind of communication systems where rapid direction finding is required. This 

proposed antenna can operate in the frequency range of 2.11 GHz to 2.45 GHz. Two 

different slots are used for the patch, which is adopted to compensate the probe 

inductance. Additional sum-difference comparator, power divider and slot sub-arrays 

are required to make it operate for the desired communication systems. 

Six series-fed patch antennas operating at 2.4 GHz with suppressed side lobe has 

been developed by Haris Hadzic et al [6]. To minimize the interference, reduction of 

sidelobes is effective. This antenna configuration has comparatively lower bandwidth 

of 18.7 MHz at -10 dB impedance matching. Kaise-Bessel amplitude coefficient 

implementation was another main feature of this design consideration to suppress the 

side lobes. 

Shape based performance analysis for microstrip patch has been showed by Rajan 

Fotedar et al [7]. Wireless communication was the main focus of operation and for 

that they varied the shapes while the resonant frequency was kept constant at 

2.4 GHz. Mainly a rectangular, a triangular and a circular patch has been analyzed in 
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their work. Among those the directivity of the circular patch was the highest while, 

the maximum return loss was found for the rectangular patch antenna. 

Double layer rectangular microstrip patch antenna of operating frequency of 

2.45 GHz which was achieved by using H-slot [8]. The return loss of this 

configuration was 19.69 dB. Higher bandwidth has been observed in their work and 

it is about 110 MHz while the simulation showed only 88.56 MHz. The size of this 

design is suitable for using as RFID in smaller devices. 

 

1.3.2. Omnidirectional Antennas 

An omnidirectional antenna can radiate the radio waves uniformly in all direction of 

a certain plane. Decreasing tendency of radiation power is observed with the 

elevation angle above and below the plane. The radiation pattern is thus like 

doughnut shaped. This type of radiation characteristic is suitable as receiving antenna 

radio broadcasting, cell phones, wireless computer network and many more. An 

image of outdoor omnidirectional antenna is given in Figure 2. 

 

 
 

Figure 2. Outdoor omnidirectional (monopole) antenna. 

 

Omnidirectional antennas can be categorized into two groups, high gain and low 

gain antennas. Among the low gain antennas there are dipole antennas, discone 

antennas, mast radiator, horizontal loop antennas, halo antennas etc. Array of the 

above antennas can be used to achieve the higher gain by combining the radiated 

field in a certain direction. Besides microstrip antenna this type of antenna is also 

considered in the group of high gain antenna. There are some recent work on the 

omnidirectional antenna has been discussed shortly below. 

Multiband dual-polarized omnidirectional antenna has been proposed in a study of 

Da Guo et al [9]. Here horizontal polarization and vertical polarization both were 

used by introducing different structures of the printed circular antennas. The overall 

frequency bands were quite vast e.g. from 690 MHz to 1.03 GHz and 1.67 GHz to 

3.21 GHz. Because of the wider range of bands this can be used in MIMO 

communication for indoor operation. 
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Using circularly polarized array a metamaterial-based omnidirectional antenna has 

been proposed for WLAN application [10]. The radiation pattern was quite 

uniformly distributed in x-y plane. The advantage of circularly polarized antenna is 

the suppression properties of multipath reflections of waves caused by surroundings. 

The radiators were designed by using Rogers RO4003C substrate. Return loss on the 

2.4 GHz was more than 30 dB. 

For multiband operational purpose a small planar monopole antenna with a short 

parasitic inverted L shaped wire fed microstrip fed line has been studied by Jen-Yea 

Jan et al [11]. The proposed antenna is small and easy to construct. In PCB board 

along with other circuit this antenna can be printable on the same board. It has a high 

impedance bandwidth of 188 MHz which is very suitable for WLAN band. 

Saou-Wen Su et al have conducted a study of monopole and dipole antennas for 

WLAN access point [12]. Two antennas are arranged in collinear structure to achieve 

the 2.4 GHz monopole and 5 GHz dipole antenna for access point application. This 

antenna was designed for industrial usages and that is why the dimension is 

optimized to fit into those devices like laptop. The radiation efficiency for both cases 

is around 80%. 

Another microstrip T-shaped monopole antenna with gain more than 4 dB has 

been proposed by Yogesh Kumar Choukiker et al [13]. The design was very simple 

but good return loss was achieved which is more than 30 dB. In the simulation, the 

return loss value is higher. The radiation pattern found omnidirectional. Most 

importantly the bandwidth found for this design is quite wide and it is 431 MHz. 

Switchable polarization for a single fed printed monopole antenna was developed 

by M.H. Amini et al [14]. There are two radiating element in the form of two 

monopole rectangular patches which are fed by a single microstrip line. The 

dimension of the total design is 26×19 mm
2
. A pin diode has been introduced 

between the two L shaped slots to make confirm dual polarization. The return loss 

and bandwidth both are satisfactory for WLAN operation. 

 

1.3.3. Coaxial Cable 

For the purpose of radio frequency transmission, coaxial cables are used, e.g. in 

antenna, computer network, cable television signals and digital audio. It is made with 

the purpose of not being interrupted by external electromagnetic signals. As the 

purpose of this thesis is to setup passive repeater using back-to-back antenna, this 

cable will be useful to guide the receive signal from receiving end to the transmitting 

end and vice versa, and the main concern is to keep those signals uninterrupted as 

much as possible as there is no active element to amplify the signal. The details of 

this cable with their construction and characteristics will be discussed in the theory 

part. 
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Figure 3. Structure of Coaxial cable. 

 

In Figure 3 the structure of typical coaxial cable is shown. This cable helps to 

keep the carrying electromagnetic field in the space between the inner and outer 

conductors. It also provides the protection of the signal from the external 

electromagnetic interference. 

 

1.3.4. Earlier works on passive signal repeating 

Passive repeating system is being used in many places but mostly in outdoor 

operation. Low maintenance, no power requirements, installation ability in remote 

area has increased the popularity of it. Mostly in the rural area it is used where the 

users are less but somehow required to reach the signals. To keep this 

communication flawless inside the big buildings it is necessary to spread the radio 

signals in every corner of that building. As power consumption is also a big issue to 

establish such kind of environment, passive repeater can be the solution for this 

scenario. For indoor signal improvement purpose some research work will be 

discussed here. 

In 2014 a passive system was tested for cellular coverage within energy efficient 

buildings by J.M. Rigelsford et al [15]. In energy efficient building the radio 

frequency is attenuated by the materials used in the buildings. For example, in their 

case the attenuation for the external wall is 20 dB and for the internal wall 3 dB. 

After implementing the passive system the comparison was done and they found that 

the total signal coverage was increased by 30 dB. As an external antenna they used a 

directional antenna of 20 dBi and for the internal usage an isotropic antenna of 0 dBi 

were used. 

Through-wall passive repeater is another option for increasing the indoor signal. 

Hristo D. Hristov et al [16]  has numerically showed the possible improvement of the 

indoor signal after using the passive repeaters. It was totally theoretical approach and 

the authors claimed that by this setup improvement of signal strength is possible but 

not for wide range. In case of practical implementation the overall cost would be less 

than installing any active elements for the same purpose. 

Using multiple through-wall repeater similar idea was proposed by Yi Huang et al 

in 2004 [17]. Their proposal showed that by their repeater implementation MIMO 

systems get more efficient because of antenna diversity. 
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2. THEORETICAL BACKGROUND 

2.1. Definitions and Concepts 

Designing a passive repeating system requires the use of various components. In this 

paper some elements are designed according to the well-established theories and 

formulas. To understand the procedure, some theoretical explanations are perquisite. 

In this section some basic components and theories are described. 

 

2.1.1. Antennas 

The transmission of electrical signals can happen in two different ways, either 

through the conductors or via the empty space. Transmission lines are made of 

electrical conductors so the electrical signals can travel from a higher potential 

region to the lower potential area. Any electrical signal within a circuit works by this 

principal that the signals are confined within the transmission line and the circuit as 

well. When the electrical signals are required to transfer information to a distant 

location through an empty space then a metallic device is required to produce the 

electromagnetic wave, which can propagate without any medium, like the sun 

radiates light to earth at a distance of 150 million of kilometers. An antenna 

generates power densities that can be detected from a greater distance. In general, the 

Webster’s dictionary defines the antenna as “a usually metallic device (as a rod of 

wire) for radiating or receiving radio waves”. By the definition of IEEE an antenna 

is “that part of a transmitting or receiving system that is designed to radiate or to 

receive electromagnetic waves” [18]. 

An antenna generates electromagnetic waves where the electrical and magnetic 

waves propagate with the same frequency and amplitude, but their orientation is 

perpendicular to each other. In the next subsection the mechanism of radiation will 

be discussed briefly. 

The propagation velocity of radio waves is equal to the speed of light, both being 

electromagnetic waves. When an electrical signal needs to be transferred from one 

place to another it is required to be analyzed many variables like the frequency of the 

signal, distance of the transmitted and received signals, losses of signals, expenses, 

mobility issues of the transmitter and receivers, etc. For the lower frequency of 

signals it is convenient to transmit through solid transmission line. On the other hand 

the higher frequency has a wider bandwidth but the total cost increases through the 

solid transmission medium because of the distance and transmission loss. 

 

2.1.2. Radiation Properties 

An antenna is designed in a way that the source of the time varying current of an 

antenna makes the disturbance of electromagnetic field. Because of this disturbance 

the electromagnetic field can propagate away from the source by the principle of 

keeping the total power constant [19]. This phenomenon can be understood by 

explaining some basic sources of radiation; the radiation of single wire, two wire and 

dipole will be discussed in this section for better understanding the mechanism of 

radiation. 
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In single conducting wire the current flow is the motion of electric charges. The 

density of electric volume charge is expressed by coulombs per cubic meter and 

denoted by 𝑞𝑣. The cross sectional area of a circular-shaped wire is denoted by using 

𝐴 and volume 𝑉. If the total charge of the wire is 𝑄 with the moving velocity 𝑣𝑧 

(m/s) then the density of current is 𝐼𝑧 = 𝑞𝑣𝑣𝑧. For thin wire where the radius is 

considered zero then the equation becomes 𝐼𝑧 = 𝑞𝑙𝑣𝑧, where the charge of the thin 

wire per unit length is 𝑞𝑙. So the derivative of the current can be written as [21] 

 𝑑𝐼𝑧

𝑑𝑡
= 𝑞𝑙

𝑑𝑣𝑧

𝑑𝑡
= 𝑞𝑙𝑎𝑧 (2.1) 

where 𝑎𝑧 is the acceleration of the current. For the total length of the wire 𝑙, the 

equation 2.1 can be written as 

 
𝑙

𝑑𝐼𝑧

𝑑𝑡
= 𝑙𝑞𝑙

𝑑𝑣𝑧

𝑑𝑡
= 𝑙𝑞𝑙𝑎𝑧 (2.2) 

Equation 2.2 is a basic relation of current and charge which is the major relation 

of electromagnetic radiation. The equation says that for creating radiation a time 

varying current is needed. In other words acceleration or deceleration of the charge is 

necessary for the radiation of the energy. 

From the above mathematical explanation, it can be concluded that if the charge 

in a conductor is steady or moving with a certain velocity there will be no 

electromagnetic radiation. Although with a constant velocity of charges, the radiation 

can be created if the wire is curved, bent, terminated or discontinuous in shape. If 

there are any oscillations of charges then there will be no need of shape distortion of 

the wire [21]. 

Now we will consider a voltage source applied between two conductors with 

alternating current and an antenna is attached to the end of the wires, the figure is 

depicted in Figure 4. Due to the existing voltage difference, two conductors will 

create the electric field, which starts from positive charge and ends to negative 

charge. According to the Maxwell’s electromagnetic equation the applied alternating 

current creates the magnetic field. As there is no such thing as magnetic charges, the 

magnetic field lines form closed loops of magnetic waves encircling the conductors.  

 
Figure 4. Electromagnetic wave generation in two wires [19]. 

 

In Figure 4, the straight line represents the electric filed with its respective 

direction, and the dotted line represents the magnetic field. The time varying 

electromagnetic wave enters the antenna from the wire, and the end of the antenna it 

begins radiating. These free space magnetic waves maintain the constant phase. The 
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first phase is represented as 𝑃0, which continues to move every half wave length as 

𝑃1, then 𝑃2, and so on. The generation of electromagnetic waves continues as long as 

there is the variation in the velocity of electric charges in the wires.  

 

 
 

(a) 

 

 
 

(b) 

 
 

 

(c) 

Figure 5. Radiation of Dipole [19]. 

 

The radiation mechanism can be easily understood from the type of dipole 

antennas. If a small dipole antenna attached to an electrical source of alternating 

current with the time period of 𝑇, it is known that the maximum amplitude of current 

is found in 𝑃/4 and 3𝑇/4. In Figure 5 three different stages of charges and their 

corresponding free space waves are illustrated. During the first 𝑇/4 the charge has 

reached its maximum. Then the free space wave travel through the positive charges 

to the negative charges of the dipole. Here the radial distance is covered by the wave 

is /4, shown in (a). In (b) when the time period of the signal is from 𝑇/4 to 𝑇/2 

opposite line of free space wave is generated with the same distance covering /4 

and counting the previous distance the total distance of the generated electromagnetic 

waves become /2. Then due to the equal but opposite charges than the previous time 

period the total density of charges diminish which leads to the neutralization. At the 

time period 𝑇/2 there is no charge exists on the antenna. In that situation those lines 

created up to the period 𝑇/2 are forced to detach themselves from the conductors. 

Because of the opposite direction of the waves in two different time period those 

form a closed loops forms to unite them together, as shown in (c), and they are able 

to travel at the speed of light in free space. This process continues even after 𝑇/2. 

 

 

2.1.3. Near Field and Far Field 

The field surrounding the antenna is divided into near-filed and far-field. The near-

field is categorized in reactive near-field and radiating near-field regions. These 

regions help to understand the field structure of different antennas. Although these 

different boundaries vary for different cases but there are some common established 

criteria to identify the boundaries. 
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Reactive near-field: It exists very close to the antenna. The calculation of electric 

field (𝐸) and magnetic field (𝐻) is complex in this area. One of those 𝐸 and 𝐻 field 

dominates one after another in that region. That is why the power density 

measurement is problematic, because for calculating the total power, the phase 

relationship between 𝐸 and 𝐻 field and the angle between those field vectors which 

are not possible to measure because of their inconsistency [20]. For most of the 

antennas, the boundary of this region is measured at a distance 𝑅 < 0.62√𝐷3

𝜆⁄  from 

the surface of the antenna. D represents the largest dimension of the antenna and 𝜆 is 

the wavelength [21].  

Radiative near-field: The region between the reactive near-field and the far field 

is called radiative near-field which is also sometimes referred as Fresnel region. In 

this region the radiation fields start to dominate and unlike the reactive near-field the 

angular field distribution can be determined based on the distance from the antenna. 

This region is valid if the maximum dimension of the antenna is less than the 

operating wavelength. The inner boundary which is just beyond the reactive near-

field is 

𝑅 ≥ 0.62√𝐷3

𝜆⁄  to the distance 𝑅 < 2𝐷2/𝜆 [21]. 

Far-field: The radiation pattern remains constant in this region unlike the near-

filed region. It does not change the shape of radiation with the distance. Far field 

region started after the distance of 2𝐷2/𝜆 to the infinity where D is the overall 

dimension and 𝜆 being the wavelength. The 𝐸-fields and 𝐻-fields remain orthogonal 

to each other. The far-field region can be calculated by the distance |𝛾|𝐷2/2 from the 

antenna, where 𝛾 is the propagation constant of the medium. The far-field of antenna 

focusing in infinity is also known as Fraunhofer region. 

 

 
 

Figure 6. Antenna amplitude pattern in different regions [21]. 

 

In Figure 6, the different amplitude pattern of those fields is depicted. Due to the 

variation of phase and magnitude those fields shows different amplitude patterns 

with distance. For a typical shape of an antenna with largest dimension D, the 

reactive near-field amplitude pattern is spread with slight variation which is nearly 

uniform. In the Fresnel region the pattern started being smooth and also started to 

form lobes. In the far-field or Fraunhofer region the well-formed amplitude pattern is 

seen which has one major lobe and might have few minor lobes. Lobes are discussed 

in details in the section of beam-width. 
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2.1.4. Path Loss 

Path loss is an important element for designing any radio communications system. It 

determines the transmitter power, antenna gain, height and location of the antennas 

in the radio communications system. Path loss is used to calculate the signal strength 

in different locations. In case of installing the wireless local area network (WLAN) 

systems in the large indoor area e.g. office, university, shopping mall etc. the path 

loss is vital due to the presence of signal obstacles and complex design of the 

buildings. 

Path loss is the reduction of signal strength as it travels through the space or any 

other medium. There are several reasons for this loss. Those reasons and the 

calculation of path loss will be discussed in this section. 

Free space loss: Due to the spreading of the signals in the open space the power 

density reduced for increased distance from the source or transmitter. If we consider 

the signals are spreading in an increasing sphere then by the law of conservation of 

energy it is clear that energy of the signal will be reduced for an increased area or in 

other words with increased distances. 

Absorption loss: When the radio signals penetrate through different medium 

other than free space then the signal power is absorbed with a quantity depending on 

the strength of the signal and also the material the radio wave passing through. 

Multipath: The radio signals can reach a certain destination using multiple paths. 

As the radio waves have their different phases, it causes addition or subtraction of 

signals due to the presence of multiple signals in a certain position. It causes loss of 

the signal. 

Diffraction: The radio signals are diffracted by the objects of its propagation 

path. The rounded objects cause more diffraction of signals than the sharp edged 

objects. 

Buildings and vegetation: Buildings are constructed with different materials 

which causes absorption of signals depending on the material and the complexity of 

the design. Also the trees between the line of sight of radio transmitter and the 

receiver cause attenuation of the signals. 

Atmosphere: The layers of gases are surrounding the earth which causes the 

reflection of the radio signals. Depending on the frequency range of the radio waves, 

those are reflected or refracted by different layers of gas sphere which causes 

multipath and losses of signals. 

The attenuation or path loss amount varies materials to materials. Here the 

calculation of free space path loss will be discussed. When the radio wave propagates 

through the air without being diffracted then this calculation is valid. The free-space 

path loss depends on the distance between the transmitter and the receiver [22]. If the 

receiver is 𝑑 meters apart from the transmitter which has frequency of 𝑓 hertz and 

corresponding wavelength 𝜆 then the equation of free-space path loss (FSPL) is as 

follow. 

 𝐹𝑆𝑃𝐿 = (4𝜋𝑑
𝜆⁄ )2 (2.3) 

 

As 𝜆 = 𝑐/𝑓 where c is the velocity of light the equation can also be written in 

logarithmic scale (in terms of decibels, dB) as 
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𝐹𝑆𝑃𝐿 = 10 log10 ((
4𝜋𝑑𝑓

𝑐⁄ )

2

) 

(2.4) 

  

Simplified equation 𝐹𝑆𝑃𝐿 = 20 log10(𝑑) + 20 log10(𝑓) − 147.55 

(2.5) 

 

The path loss is usually calculated in decibels along with the gain of transmitter 

and receiver to ease the total calculation process. In the next section it will be 

discussed briefly. 

 

2.1.5.  Link Budget 

Link budget is a method of theoretical assessment of radio link’s visibility. Here the 

calculations provide the theoretical approximation only, and those are not 

accountable for the real world variables that can affect system performance. To avoid 

the difference between the theoretical and observed measurements, all the link 

budgets should be verified before installing the communication systems. 

 
 

Figure 7. Link budget calculations. 

 

In Figure 7, a typical link budget for WLAN communication system has been 

showed. The received power of 802.11 or WLAN link is determined by three factors. 

Those are transmitting power and gain of antenna. The straight lines represent the 

stable or increment of signal power where the dotted lines represent the loss due to 

various cases. This scenario is applicable when both the transmitter and the receiver 

are active. In the passive signal strengthening system there are no input and output 

power, so no antenna gain will be taken into calculation. At the receiver end the 

received power must be above the minimum sensitivity level of the receiver. This is 

known as margin. Usually the margin is kept at least 10 dB or more. In this way the 

specification of the transmitter, receiver and the system is designed. It gives us the 
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overall idea about the probable power usages in the both ends of communication 

link. 

 

2.1.6. Link budget equation 

Link budget is the calculation of all the gains and losses from the transmitter and 

propagation medium to the receiver in a communication system. It takes 

consideration of attenuation of the transmitted signal, antenna gains, feeding losses 

of the components. The basic form of link budget calculation can be written as 

follows 

Received power (dBm) = Transmitted power (dBm) + Gains (dB) – Losses (dB). 

This calculation is quite straight forward where it is a matter of accounting for all 

the different losses and gains between the receiver and the transmitter. After 

considering all the probable losses and gains of each link the typical link budget 

equation is given on equation (2.6). 

 𝑃𝑅𝑋 = 𝑃𝑇𝑋 + 𝐺𝑇𝑋 + 𝐺𝑅𝑋 − 𝐿𝑇𝑋 − 𝐿𝐹𝑆 − 𝐿𝑝 − 𝐿𝑅𝑋 (2.6) 

Where, 

𝑃𝑅𝑋 = Received power (dBm) 

𝑃𝑇𝑋 = Transmitted power (dBm) 

𝐺𝑇𝑋 = Transmitter antenna gain (dBi) 

𝐺𝑅𝑋 = Receiver antenna gain (dBi) 

𝐿𝑇𝑋 = Transmitter feeder and associated loss (dB) 

𝐿𝐹𝑆 = Free space path loss (dB) 

 𝐿𝑝 = Miscellaneous signal propagation losses (dB) 

𝐿𝑅𝑋 = Receiver feeder and associated loss (dB) 

 

In the basic link budget equation, there is no consideration of antenna gain, as it is 

assumed that the power spreads out equally in all directions from the source. It is 

considered that the antenna is an isotropic source, radiating equally in all directions. 

This assumption is good for theoretical calculations, but in reality all antennas 

radiate more in some directions rather than in all direction. In addition to this it is 

often necessary to use antennas with gain to enable interference from other directions 

to be reduced at the receiver, and at the transmitter to focus the available transmitter 

power in the required direction. As our system is passive, the gain of the antennas 

will be omitted [23]. 

Link budget calculations are an essential step in the design of a radio 

communications system. The link budget calculation enables the losses and gains to 

be seen, and devising a link budget enables the apportionment of losses, gains and 

power levels. Only by performing a link budget analysis this is possible. 

 

 

2.2. Parameters of Antennas 

As there are no active elements present in the passive system, the designing of 

antenna is that’s why very important to get the highest performance from the system. 

This section describes the parameters of antenna. For designing the antenna and the 

purpose of usages these parameters must be considered beforehand. 
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2.2.1. Radiation Pattern 

Radiation pattern of an antenna is the graphical representation or mathematical 

function in three dimensional space coordinates. It is usually measured in far-field 

region. This radiation property is consisted of directivity 𝐷 and intensity 𝑈 which is 

measured in watts/units solid angle. In Figure 8, the spherical coordinates are 

illustrated [21]. Power and field patterns are used to characterize the radiated power 

in the far-field region. The antenna’s field pattern is plotted in electric and magnetic 

field which is a function of angle at a fixed distance. The power pattern of the 

antenna is plotted by the square of electric field which is also a function of angle at a 

constant radius [21] [24]. 

Based on radiation pattern, the antennas are grouped into three major sections. 

Those are isotropic, directional and omnidirectional antennas. Isotropic antenna 

exists theoretically where it can radiate power uniformly in all direction. It is used to 

make reference for other antennas so the radiation in a particular direction of that 

antenna can be compared. For the directional antenna it is beneficial if the radiation 

pattern is directed through a certain direction rather than in every direction. In the 

omni-directional cases, those have the radiation pattern in the vertical and horizontal 

plane. 

 
 

Figure 8. Radiation pattern coordinate system [21][24]. 

 

In this spherical coordinates system there are two principal planes known as 

azimuth plane and elevation plane. In Figure 8, the x-y plane where 𝜃 = 90° is the 

azimuth plane or sometimes mentioned as ‘the horizon’ and the y-z (or x-z) plane 

where 𝜙 = 90° (or 𝜙 = 0°) is called elevation plane also known as ‘the vertical’ 

plane. The pattern of azimuth plane is measured when the measurement is done 

traversing the entire x-y plane around the antenna. On the other hand the elevation 

plane is orthogonal to the azimuth plane and made traversing the entire y-z plane. 

This radiation pattern provides an illustration to visualize the radiation direction in 

three dimension space [25]. 
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The portions of the radiation patterns are called lobes. Depending on the level of 

power of those lobes, those are categorized as main lobe, side lobes and back lobe. 

The main lobe has the greatest field strength. The side lobes are the unwanted result 

of radiation mechanism. The lobe which is totally opposite of the main lobe is the 

back lobe. For the directional antennas, the objective is to emit the radio waves in a 

certain direction. The lobe of that direction is designed to have maximum field 

strength than the other lobes. 

 

2.2.2. Beam width 

Beam width is the aperture angle from where an antenna can radiate most of its 

power. There are two main considerations of beam width. Those are Half Power 

Beam Width (HPBW) and Full Null Beam width (FNBW). 

 
 

Figure 9. Two dimensional power pattern [26]. 

 

Figure 9 demonstrates the various points of main lobe. HPBW is the angle where 

the relative power of effective radiated are is than half of the peak power. The 

HPBW is defined as the angular separation where the magnitude of the radiation 

pattern decreased by 50% or -3 dB from the peak of the main beam. The angular 

separation between the first nulls of the pattern is referred as FNBW. The beam 

width determines the merit and trade-off between the main lobe and the side lobes. It 

is because when the main lobe decreases the side lobes are increased and vice versa. 

The determination capacity of an antenna is to recognize two sources equal to half of 

the FNBW, which is approximately equal to HPBW [26]. 

 

2.2.3. Radiation Intensity 

Radiation intensity is measured in a given direction, which is the power radiated 

from an antenna corresponding unit solid angle. It is dependent on the radiation 

density and the square of the distance from the antenna. The mathematical equation 

of radiation intensity (𝑈) is, 𝑈 = 𝑟2𝑊𝑟𝑎𝑑, where 𝑟 is the distance from the antenna 
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and 𝑊𝑟𝑎𝑑 is the radiation density. The radiation density is defined as the 

multiplication of electric field and magnetic field vector 𝐸 × 𝐻. It is measured in 

watt per square meter. 

The total radiating power (𝑃𝑟𝑎𝑑) can be obtained by integrating the radiation 

intensity over the entire solid angle 4𝜋. 

 

 
𝑃𝑟𝑎𝑑 = ∫ ∫ 𝑈 sin 𝜃 𝑑𝜃𝑑𝜙

𝜋

0

2𝜋

0

 (2.6) 

 

If the source is considered isotropic (theoretically) then the radiation intensity will 

not depend on the azimuth and elevation angles 𝜃 and 𝜙. So then the total radiated 

power will be as follows. 

 

 
𝑃𝑟𝑎𝑑 = ∯ 𝑈0 sin 𝜃 𝑑𝜃𝑑𝜙

2𝜋 𝜋

0 0

= 4𝜋𝑈0 (2.7) 

 

𝑈0 is used for isotropic case. 

By the radiation intensity it is possible to realize how much power is being 

radiated in a specific far-field direction, because the radiated power varies in 

magnitude. This variation depends on the direction of observation and also the 

distance from the antenna in far-field. To get the distance independent radiation 

intensity it is required to normalize the electromagnetic power in calculation [26]. 

 

2.2.4. Directivity 

Directivity of an antenna makes the realization of radiation intensity compared to the 

radiation intensity of an isotropic antenna. So the ratio of radiation intensity of an 

antenna to a particular direction and the radiation intensity of an isotropic antenna is 

defined as the directivity of that antenna. The higher the ratio, the more directive the 

antenna is. The directivity (𝐷) is thus, 

 

 𝐷 = 𝑈
𝑈0

⁄  (2.8) 

 

By replacing the value of 𝑈0 in eq. (2.8) from eq. (2.7) we get, 

 𝐷 = 4𝜋𝑈
𝑃𝑟𝑎𝑑

⁄  (2.9) 

 

Sometimes the direction of the antenna is not specified and, in that case, the 

dimensionless directivity is measured considering the maximum radiation intensity 

(𝑈𝑚𝑎𝑥) and then it is called maximum directivity (𝐷𝑚𝑎𝑥). 

 𝐷𝑚𝑎𝑥 =
𝑈𝑚𝑎𝑥

𝑈0
⁄        (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠) (2.10) 

 

Polarization of antenna affects the calculation of the directivity. Polarization has 

been discussed in section 2.2.6. In case of orthogonal polarization the directivity 
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measured partially and by combining those, the total directivity is found. For 

example the partial directivity of 𝜃 and 𝜙 direction is expressed as 𝐷𝜃 and 𝐷𝜙 

respectively. And the total directivity equation becomes 𝐷0 = 𝐷𝜃 + 𝐷𝜙, where 𝐷0 

represent the total directivity [21]. Also the partial directivity is dependent on the 

partial radiation intensities of the corresponding field component (azimuth and 

elevation angles). 

For the isotropic antenna the directivity is unity as it radiates in all direction 

equally, but for all other antennas the directivity is greater than unity. It gives the 

idea about the amount of directivity of an antenna. While designing an antenna 

considering the directivity, it can be controlled by varying the size of the radiating 

source. For example the antennas small in size (from quarter wavelength to half 

wavelength) are poorly directive. If the antenna is several wavelengths long then it 

shows more directivity. That is why the dish antenna is more directional compared to 

the half wavelength dipole antenna. 

 

2.2.5. Antenna Efficiency and Gain 

Antenna efficiency indicates the difference between the supplied power to the 

antenna and radiated power from the antenna. For calculating the total efficiency, it 

is required to consider all kinds of losses of the input terminals and within the 

structure of the antenna. So in considering the design procedure, it is required to 

make sure that the antenna will transmit the input power efficiently. 

The total efficiency of an antenna is consisted of two types of efficiency. One is 

reflection efficiency, which is also known as matching efficiency and another is 

radiation efficiency. Radiation efficiency is the ratio of total received power to the 

total transmitted power of the antenna [18]. It takes account of structural losses for 

both conducting and dielectric part of the antenna. 

 

𝑒𝑟𝑎𝑑 = Radiation efficiency 

𝑃𝑟 = Radiated power 

𝑃𝑖𝑛 = Input power of antenna 

𝑅𝑟 = Radiation resistance 

𝑅𝐿 = Internal resistance of antenna 

The equation of reflection efficiency as follows. 

 𝑒𝑟𝑒𝑓 = (1 − |Γ|2) (2.12) 

 Thus the total efficiency becomes 𝑒 =  𝑒𝑟𝑎𝑑𝑒𝑟𝑒𝑓 (2.13) 

 

The ratio of radiation intensity in a particular direction of an antenna to the 

radiation intensity of isotropic antenna at some constant distance from the radiation 

point is known as Gain. Higher gain of an antenna is comparatively more directive. 

In general the equation of gain is expressed as 

 

 
𝐺𝑎𝑖𝑛 = 4𝜋

𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟
 

(2.14) 

 𝑒𝑟𝑎𝑑 =
𝑃𝑟

𝑃𝑖𝑛
⁄ =

𝑅𝑟
𝑅𝑖𝑛

⁄ =
𝑅𝑟

𝑅𝑟 + 𝑅𝐿
⁄  (2.11) 
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The total efficiency is also related to the gain and written as 𝐺 = 𝑒𝐷. Here 𝐷 is 

the directivity. The amount of input power conversion into radio waves and vice 

versa is determined by the gain of an antenna. 

 

2.2.6. Polarization 

Polarization of antenna is the polarization of the radiated wave. It is measured in the 

line of propagation. In the far field of the antenna, the electric and magnetic 

components are perpendicular to each other. The phase of those two components 

might vary for different types of antenna. Depending on the phase, the antennas are 

mainly categorized into three polarization classes. These are Linear, Circular and 

Elliptical polarization illustrated on Figure 10. 

 
 

Figure 10. Different classes of polarizations [28]. 

 

As the electromagnetic wave is the resultant wave of the both 𝐸 and 𝐻 

component, the propagation of that electromagnetic wave changes because of phase 

variation or no phase difference. Linear polarization happens when there is no phase 

difference between the 𝐸 and 𝐻 fields, then the electromagnetic wave propagates in 

same straight line, although the magnitude of that wave varies within that line of 

propagation. It is because when the both electric and magnetic component has zero 

magnitude then the resultant electromagnetic wave also has zero value. In case of 

maximum magnitude of those two components the resultant wave reaches to the 

maximum which is shown in the first picture of Figure 10. The linear polarization is 

subcategorized into vertical and horizontal linear polarization. It depends on the 

orientation of the radiating elements. In horizontal polarization the electric field’s 

traces follows a horizontal line while it is vertical for vertical linear polarization [28]. 

If any of the 𝐸 and 𝐻 component has a 90° phase shift, then the resultant 

electromagnetic wave gets constant amplitude but rotating around the line of 

propagation. On the second part of the Figure 10 causes circular polarization because 

of their 90 degree phase difference between the electric and magnetic component. It 

is also separated into two classes, right hand and left hand circular polarization. If the 

rotation of the constant magnitude electromagnetic wave is clock-wise in the 

direction of propagation then it is defined as right hand circular polarization (RHCP). 

For anti-clock-wise case it is left hand circular polarization (LHCP) [24]. 
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The elliptical polarization occurs when there will be a phase difference but which 

is not a quarter wave or 90 degree. In this case the resultant electromagnetic wave 

propagates in elliptical orientation. By varying the phase of 𝐸 and 𝐻 component 

different shapes of ellipses can be made. It has been showed in the third part of the 

Figure 10. The right and left hand elliptical polarization happens according to the 

clock-wise and anti-clock-wise rules as before [24]. 

In practical application for non-identical polarization in transmitting and receiving 

ends, there will be loss of signal strength. For example linearly and circular polarized 

antenna can work on the two ends of the communication systems but there will be at 

least 3 dB signal strength loss compared to the same polarized antennas [28]. 

2.2.7. Bandwidth 

In general bandwidth means the ranges of frequencies used. For an antenna, 

bandwidth indicates the frequency ranges of transmitting and receiving energy. 

According to the ranges the antennas are classified into broadband and narrowband 

antennas. Broadband antennas have wider ranges of operating frequencies where the 

narrowband antennas have lower ranges. In both cases the upper frequency (𝐹𝑈) is 

the end most operating frequency and the lower frequency (𝐹𝐿) is the minimum 

operating frequency. As the difference between the 𝐹𝑈 and 𝐹𝐿 is higher in case of 

broadband, the ratio of those two frequencies is represented, example is shown in 

Figure 11. For example 10:1 broadband antenna means the higher frequency is 10 

times than the lower frequency. On the other hand the bandwidth of narrowband 

antennas is represented in the percentage form of (𝐹𝐿 − 𝐹𝑈)/𝐹𝐶 × 100 where 𝐹𝐶 is 

the center frequency [21]. 

 
 

Figure 11. Antenna bandwidth [21]. 

 

The bandwidth of an antenna can be found by measuring the S-parameter curve. 

S-parameter curve depicts the reflected power from the antenna input port because of 

the impedance mismatching. In general, the return loss of 10 dB is the threshold 

point of measuring the operating bandwidth. For example, in WLAN operation the 

10 dB impedance bandwidth should be 40 MHz, keeping the center frequency at 

2.43 GHz [29]. 
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2.2.8. Antenna Input Impedance 

Input impedance of an antenna is the ratio of voltage to current in the input terminal 

of the antenna [21]. The value of input impedance of the antenna indicates the 

amount of power accepted from the transmitter or delivered to the receiver. In design 

consideration this parameter has great impact as the antenna is operated along with 

the other circuits and transmission line. So the maximum performance from that 

antenna can be found only when the impedance is well matched with the other parts 

of the main circuit. 

 𝑍𝑎(𝜔) =
𝑉𝑖𝑛

𝐼𝑖𝑛
⁄ = 𝑅𝑎(𝜔) + 𝐽𝑋𝑎(𝜔) (2.15) 

 

The equation 2.14 represents the mathematical expression of input impedance. 

Here 𝑉𝑖𝑛 and 𝐼𝑖𝑛 are the voltage and current respectively, provided to the input 

terminal of the antenna. 𝑅𝑎 is the total resistance of the of the antenna which is 

frequency dependent. 𝑋𝑎 is the frequency dependent reactance. 𝜔 is the angular 

frequency which is equivalent to 2𝜋𝑓 where 𝑓 is the operating frequency of the 

antenna. The equivalent circuit of the antenna can be drawn as Figure 12. 

 
 

Figure 12. Equivalent circuit of an antenna [30]. 

 

𝑅𝑎 is the combination of radiation resistance 𝑅𝑟 and loss resistance 𝑅𝑙 or can be 

written as 𝑅𝑎(𝜔) = 𝑅𝑎(𝜔) +𝑅𝑙(𝜔). The radiation resistance is measured by 

calculating the total height of the antenna where the loss resistance is dependent on 

the dielectric and conductive characteristics of the material of the antenna [30]. 

 

2.2.9. Reflection Coefficient 

Reflection coefficient of an antenna is an important parameter for quantitative 

evaluation of the performance of that antenna. The value of reflection coefficient 

shows the effectiveness of a load for instance antenna is matched with the 

transmission line. The calculation of input impedance is as equation (2.16). 

 

Γ = Voltage reflection coefficient. 

𝑆11 = Single element obtained from scattering parameter matrix of single port 

network. 

 Γ = |𝑆11| =
𝑍𝑎 − 𝑍0

𝑍𝑎 + 𝑧0
⁄  (2.16) 
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𝑍𝑎 = Impedance of the antenna. 

𝑍0 = Characteristic impedance of the transmission line. 

 

An important goal of antenna designing is to minimize the reflection coefficient as 

much as possible to the antenna port, at the desired operating frequency. The value of 

reflection coefficient zero means the antenna is matched perfectly which also 

indicates that the impedance of the antenna and the characteristic impedance of 

transmission line are matched equally. The value of Γ varies from -1 to +1 in 

different cases. The value -1 represents complete negative reflection in short-

circuited line case and +1 is for positive reflection. It happens when the line is open-

circuited [30]. 
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3. STUDY OF USED WLAN ANTENNA TYPES 

3.1. Patch Antennas 

Patch antenna is a low profile radio antenna which can be easily mounted on a flat 

surface. When a flat metal sheet which is known as patch is placed over another 

larger metal sheet which works as ground and there is a layer of dielectric materials 

then it is called a patch antenna. The main advantage of patch antenna is the 

directivity properties and it costs low for fabrication, forming array of antennas is 

easier and light weight. Although there are few disadvantages like it has limited 

relative bandwidth for instance 1% to 5% with low power handling capability [31]. 

The size of the patch antenna is frequency dependent. The size of the patch is 

inversely proportional to its frequency and thus why it is not suitable for low 

frequency radio communication. For example for frequency modulation (FM) radio 

communication if a patch antenna is used then the size of the patch would be 1 meter 

long, which is not feasible for practical usages. So for high frequency application like 

WLAN in 2.4 GHz or 5 GHz the size of the antenna becomes very small [32].  

 
Figure 13. Cross section of the patch antenna [31]. 

 

The cross section of a typical patch antenna is shown in the Figure 13. The center 

conductor of a coaxial cable serves as the feed probe. It couples the electromagnetic 

energy in and out of the patch. The feed can also be made by mictostrip line which is 

convenient for installing the antenna along the printed circuit board with other RF 

parts of the device [31]. 

 

3.1.1. Feeding techniques 

There are mainly four methods practiced to feed the patch antenna. Those are coaxial 

probe, microstrip line, aperture coupling and proximity coupling. Figure 14 shows 

different feeding techniques. 
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(a) Microstrip line feed                      (b) Probe feed 

 
(c) Aperture-coupled feed 

 

 
(d) Proximity-coupled feed 

 

Figure 14. Different feeding methods of patch antenna [21]. 
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In coaxial fed patch, the inner conductor is connected to the radiating patch and 

the outer conductor to the ground plane. The good spurious response and easier 

matching are the brighter side of this modeling, where the disadvantage is narrow 

bandwidth. It is also difficult to model with thin substrate height [21]. 

The fabrication of microstrip line fed patch is comparatively easier, also matching 

with other component can be found easily by varying the inset position of the 

microstrip line. The limitations of this feeding method are the increment of spurious 

feed radiation and surface waves. This limits the bandwidth to 2% to 5% [21]. 

In aperture coupling method there are two substrate layers separated by the 

ground plane where typically a higher dielectric material is used for bottom substrate 

and the lower dielectric material on the upper substrate. In the bottom substrate layer 

there is a microstrip feed line from where the energy is coupled through a slot on the 

ground plane which separates the two substrates. The matching is done by 

controlling the width of the feed line and by varying the length of the slot [19] [21]. 

The proximity-coupled fed patch antenna higher bandwidth compared to the other 

feeding methods. Here multiple substrate layers are also used and the microstrip line 

is used for feeding which is inserted between the two substrate layers. There is no 

slot like aperture coupling method. The modelling of proximity-coupled feed patch 

antenna is easier but difficult to fabricate. The width and feeding stub is used to 

control the matching characteristics. 

 

3.1.2. Circular patch antenna 

The circular patch is one of the most popular configurations of the patch antennas. 

This configuration works on both for single and array operation. The degree of 

freedom for designing the circular patch antenna is the radius of the patch only. By 

varying the radius of the patch, the resonant frequency of the antenna can be 

achieved. The calculation of radius can be found by the following formula [33]. 

 

 
𝑎 =

𝐹

{1 +
2ℎ

𝜋𝜖𝑟𝐹 [ln (
𝜋𝐹
2ℎ

) + 1.7726]}
1/2

 (3.1) 

where 

 
𝐹 =

8.791 × 109

𝑓𝑟√𝜖𝑟

 
(3.2) 

Where 

𝑎 = Patch radius (cm) 

𝐹 = Operating frequency (Hz) 

ℎ = Substrate height (cm) 

𝜖𝑟 = Dielectric constant 

𝑓𝑟 = Resonance frequency (Hz) 

 

At the edge of the patch antenna the electric flux line bends, which is shown in 

Figure 13. This is known as fringing effect. Due to this bending of the electric flux, 

electrically the patch becomes larger. So the effective radius is slightly different from 

the theoretical one, and the formula for the effective radius is given in equation 3.3. 
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𝑎𝑒 = 𝑎 {1 +

2ℎ

𝜋𝜖𝑟𝐹
[ln (

𝜋𝑎

2ℎ
) + 1.7726]}

1/2

 (3.3) 

 

where 𝑎𝑒 represents the effective radius of the patch and hence the resonant 

frequency (𝑓𝑟) equation changes accordingly. The equation 3.4 shows the dominant 

transverse magnetic mode where 𝑣0 is the velocity of light in free space [33]. 

 

 
𝑓𝑟 =

1.8412𝑣0

2𝜋𝑎𝑒√𝜖𝑟

 (3.4) 

 

These are basic design formulas for the circular patch antenna. 

 

3.1.3. Circular patch modeling 

Due to relatively good directional capabilities, the circular patch antenna has been 

chosen for the receiving purpose on the passive system. The connection between the 

two antennas is made by the coaxial cable, so the patch antenna is chosen as pin fed 

circular patch [32]. 

According to the calculation represented on section 3.1.2 the theoretical operating 

frequency of the patch antenna is 

 

 
𝐹 =

8.791 × 109

2.4 × 109√4.3
= 1.7664 

 

 

The radius can be found by using the equation 3.1 which is 1.6959 cm. 

 

𝑎 =
1.7664

{1 +
2 × 0.24

𝜋 × 4.3 × 1.7664
[ln (

𝜋 × 1.7664
2 × 0.24

) + 1.7726]}
1/2

 

             

                     = 1.6959 𝑐𝑚 
 

Due to the fringing effect the effective radius is increased and by the equation 3.3, 

it is found that for the WLAN operation, the effective radius of the patch will be 

1.77 cm. 

𝑎𝑒 = 1.6959 {1 +
2 × 0.24

𝜋 × 4.3 × 1.7664
[ln (

𝜋 × 1.6959

2 × 0.24
) + 1.7726]}

1/2

 

             

             = 1.7658 𝑐𝑚 

 

In the above calculation, the substrate height ℎ = 2.4 𝑚𝑚 has been used of FR-4 

substrate which dielectric constant, 𝜖𝑟 = 4.3. So the theoretical diameter of the patch 

will be 3.5316 cm or 35.316 mm, and the diameter used in the prototype antenna is 

33 mm. 
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Figure 15. Fabricated patch antenna. 

 

According to the equation presented above and considering the simulation model 

the fabricated patch antenna was built which is presented in the Figure 15. 

 

3.2. Dipole Antennas 

In telecommunications a dipole antenna is the most widely used antenna. It is built 

by using two identical conductive elements. For a dipole antenna of length 𝐿 

centered along with the z-axis the current flows according to the following functions. 

 

𝐼(𝑧) = {
𝐼0 sin [𝑘 (

𝐿

2
− 𝑧)] , 0 ≤ 𝑧 ≤

𝐿

2

𝐼0 sin [𝑘 (
𝐿

2
+ 𝑧)] , −

𝐿

2
≤ 𝑧 ≤ 0

 

 

This current oscillates in the time domain at frequency 𝑓 sinusoidally. For the 

quarter wave and full wavelength, the current distribution is shown in Figure 16. 

 

 
 

Figure 16. Current distribution for finite length dipole antennas [23][24]. 
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The far field of the dipole antenna can be constructed by the equation 3.5 and 3.6. 

 

 

𝐸𝜃 =
𝑗𝜂𝐼0𝑒−𝑗𝑘𝑟

2𝜋𝑟
[
cos (

𝑘𝐿
2 cos 𝜃) − cos (

𝑘𝐿
2 )

sin 𝜃
] 

𝐻𝜙 =
𝐸𝜃

𝜂
 

 

(3.5) 

 

 

(3.6) 

 

In case of directivity, the full-wavelength dipole antennas are more directional 

than the shorter wavelength antennas. The radiation pattern is symmetrical while it is 

viewed azimuthally. It is not dependent on the azimuth angle 𝜙. This characteristic 

made the dipole antenna omnidirectional. Two dimensional radiation pattern of the 

half-wavelength dipole antenna is illustrated on Figure 17 [21][24]. 

 
Figure 17. Horizontal (E-field) radiation pattern of half a wavelength dipole 

antenna [24]. 

 

3.2.1. Dipole model 

In this study an omnidirectional rubber duck antenna has been used. Figure 15 

depicts the outlook of that antenna. The length of thin wire whip protruding from the 

top of the metal casing is approximately 26 mm, and the length of the metal casing is 

approximately 24 mm, with a total length of 50 mm. The rubber ducky antenna is 

also commonly referred to as a rubber duck antenna, or a rubber ducky antenna [34]. 
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Figure 18. Dipole omnidirectional rubber duck antenna [34]. 

 

The inside of these antenna elements with a balun is presented on the Figure 18. 

The cutaway view reveals that it is just a half-wave dipole antenna, with one half of 

the dipole comprising of the metal casing, and the other half comprising the whip 

extending from the top of the casing.  

The bottom end of this antenna contains a plastic spacer, and its sole purpose is to 

keep the coax centrally located inside the metal casing. The coax extends from the 

rpTNC (Threaded Neill–Concelman) connector at the base of the antenna, up 

through the metal casing, and the top end of the casing has been crimped onto the 

coax braid, to provide a solid electrical and mechanical join. The center core of the 

coax extends through this crimped join, and becomes the whip at the top of the 

antenna [34]. 

Each half of the dipole is a 1/4 wavelength, with the length corrected based on the 

velocity of the coax being used. For the center frequency for 802.11b of 2.44 GHz, a 

1/4 wavelength in free space is 30.7 mm. 

 

3.2.2. Study of Repeaters 

A repeater is simply a device that receives incoming signal and retransmits the signal 

either adding power or around an obstruction. Unlike a mobile phone tower, a 

repeater does not interpret the signal in any way and hence any incoming signal on 

the repeaters frequency will also be retransmitted for instance, noise. 

According to the signal amplification characteristics the repeaters are divided into 

two categories. If there is any signal amplification is done by using electrical power 

and other components then it is called active repeater. When the repeater does not 

consume any electrical power, it is known as passive repeater. More details will be 

discussed on the following sections [35]. 

 

3.3. Active Repeaters 

Using an active wireless repeater provides the most effective solution for non-

line-of-sight cases. When two microwave radio units are directly connected back-to-

back, there is minimal signal loss and almost no additional latency added to the 
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network. An example of this would be to have a wireless point to point link from a 

building to a rooftop of another building (whether a building used by a client’s 

organization or a leased rooftop access) and then another point to point wireless link 

from that rooftop to the other building needing wireless connectivity [35]. 

 
Figure 19. Roof top active repeating system [35]. 

 

In Figure 19 a system has been shown where for covering the greater region of 

communication, the roof top active repeating system is built. The distance of a point 

to point microwave link depends on the wireless frequency, antenna size, and output 

power used. In general point to point microwave communication can go upwards of 

50 miles. In some cases a client may need to create a wireless backhaul greater than 

that. In this case using an active wireless repeater will allow a wireless link to be 

expanded over large distances. In a typical example of this solution is using 

microwave communication towers as a wireless repeater site. There are thousands of 

wireless communication towers that allow for clients to lease space off of completing 

their wireless backhaul networks. 

 

3.4. Passive Repeaters 

Passive repeating systems do not need any on-site electric power. In these types of 

systems therefore, less maintenance is required to keep the system working. It is also 

very simple compared to the active repeater, for instance there is no need to occupy 

space for any other equipment, for instance, no power supply unit or remote 

monitoring devices. This is environment friendly and also no regular road access is 

required. 

A passive site can also be used to simplify the active repeater requirements. In 

other words, instead of building a tall tower with a long access road, a passive site 

can be used to redirect the signal to a more practical site with a short tower and short 

access road. This reduces the cost and improves the environmental impact of the site. 

Since passive repeaters can be built in high areas not normally suitable for an active 

site, there is more flexibility to get the site to blend in with the environment [35]. 

According to the used component, the passive repeater is divided in to two 

categories. One is reflector type and another is antenna to antenna connected with 

coaxial cable. Those will be described on the next subsections. 
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3.4.1. Plane Reflector 

Plane reflectors essentially consist of a large, flat "drive-in screen" type aluminum 

plate that serves to reflect the signal and redirect it around the offending obstruction. 

This results in no signal distortion, because a flat conductive surface is linear. It can 

also support any frequency band because it is a wideband device. Being flat, large, 

and highly conductive also means it is 100% efficient compared to parabolic dishes 

that are typically only 55% efficient. They can achieve impressive gain figures due to 

their efficiency and the fact that they can be built to huge dimensions. Reflectors 

which are big as 12m by 18m are readily available. The gain of passive repeaters 

increases with the size of it. The larger the reflector plane is, the greater the capture 

area and the greater the gain (or the less the real passive insertion loss). In order to 

determine the size of the reflector it is required to work on path power budget and 

determine the required fade margin. The required system gain should be obtained by 

a combination of increasing passive gain and the gain of the two antennas at the end 

of the link, until the fade margin objective is met. Practical considerations and cost 

should balance an increase of antenna size and passive reflector size [35]. The 

insertion loss can be calculated as 

 

 𝐼𝐿 = 𝐹𝑆𝐿 − (𝐹𝑆𝐿1 + 𝐹𝑆𝐿2) + 𝐺 (4.1) 

 

here 𝐹𝑆𝐿 denotes the total free space loss, where 𝐹𝑆𝐿1 is the free space loss of the 

distance from site 1 to the passive site and 𝐹𝑆𝐿2 is the free space loss of the passive 

site to the site 2, shown in Figure 20. 𝐺 is the reflector gain in dBi. It is expressed as 

 

 𝐺 = 42.8 + 40 log 𝑓 (𝐺𝐻𝑧) + 20 log 𝐴𝑎 (𝑚2) + 20 log(cos 𝜃/2) (4.2) 

 

where 𝜃 is the true angle between the paths. 

 
Figure 20. Reflector geometry is showing how two NLOS site are transmitting 

and receiving the signal by using a reflector [35]. 

 

The refection geometry of a reflector is represented on Figure 20. Here the two 

NLOS site communication is enhanced in terms of signal strength where the 

connecting path is making an angle of 𝜃. 
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3.4.2. Back-to-back Antenna 

Back-to-back antenna systems can be considered for short paths where there is a 

physical obstruction blocking the LOS. Two antennas connected by a short 

waveguide connection are positioned at a point where there is full LOS between each 

passive antenna and the respective end sites. The concept is to capture the microwave 

energy, concentrate it using the passive antennas, and retransmit it around the 

obstruction. A fundamental concept to understand when designing these systems is 

that the insertion loss is huge. Although one speaks of passive gain, the passive site 

always introduces considerable loss [35]. 

For the plane reflector passive sites, if the repeater is in the far-field of the two 

end-site antennas, the FSL is the product of the two FSLs rather than the summation. 

The two decibel losses must therefore be added together. This results in a very high 

overall FSL that must be overcome by the two back-to-back antenna gains. This 

limits the application to very short paths. Back-to-back antenna systems are less 

effective than plane parabolic passives because they are limited by the physical size 

of commercially available antennas and, being parabolic, are only 55% efficient. 

Since the path lengths tend to be very short, the main design consideration is just to 

achieve a useable receive signal with a minimum fade margin to ensure an adequate 

residual bit error ratio (RBER), which quantify the accuracy of the received data. The 

insertion loss (IL) of back-to-back antenna can be calculated by the equation 4.3. 

Here the gain 𝐺 is replaced by the antenna gain 𝐴𝑒. 

 

 𝐼𝐿 = 𝐹𝑆𝐿 − (𝐹𝑆𝐿1 + 𝐹𝑆𝐿2) + 2𝐴𝑒  (4.3) 

 

Where FSL denotes the overall free space loss, FSL1 is the free space loss of the hop 

from site A to the passive site, FSL2 is the free space loss of the hop from the passive 

site to site B, and Ae is the antenna gain (dBi) of each passive antenna. 
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4. MEASUREMENTS 

The effect of the passive repeating system can be realized by taking the related 

measurements. To get the full picture from every aspect of the components of the 

systems, three measurement tools are used and these are Vector Network Analyzer 

(VNA), SATIMO StarLab and Wi-Fi analyzer. The basic working principle is 

discussed in this chapter and also those measured data are presented from different 

perspectives. 

 

4.1. Antenna Measurements 

The used antennas for the passive repeating system are firstly measured separately by 

which the performances parameters are found of each antenna. To get those data both 

the VNA and SATIMO StarLab were required for different parameters. For VNA 

measurement, a coaxial cable is needed. Before starting the measurement it needs to 

be calibrated to get the accurate data. The calibration method is open, short and 

through method to determine the optimum reference level for that coaxial cable. The 

commercial VNA of Anritsu is used for this measurement. The VNA used is of two 

port where only one port is needed to measure the antenna parameters. For SATIMO 

StarLab measurement, another coaxial cable is used. A horn antenna which is 

provided by that SATIMO manufacturer is used for the calibration the measurement 

device. Details of these steps are discussed on the following sections. 

 

4.1.1. Vector Network Analyzing 

A vector network analyzer is an instrument which can measure the network 

parameters of electrical networks for instance S-parameters as in case of high 

frequency operation the reflection and transmission of electrical network is easier to 

measure. The characteristic impedance and the position on the smith chart have been 

observed by this network analyzer. Other important parameters like VSWR, 

attenuation of the used coaxial cable and dielectric properties has been observed 

accurately by using this system. 

The S-parameters represent the complex number in the form of magnitude and 

phase of the incident wave changed by the network [36]. In a multiport system the 

S-parameters are represented in a matrix which is called scattering matrix. For a 

2-port network analyzer the scattering matrix can be written as the Figure 21. 

 
Figure 21. Scattering matrix for 2-port network. 
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Here ‘𝑎’ and ‘𝑏’ is for input and output port respectively, which can be either 

voltage, current or power travelling from one port to another port. With respect to 

incoming and outgoing signals the S-parameters can be defined as follows. 

 

[𝑏] = [𝑆][𝑎] 

𝑏1 = 𝑆11𝑎1 + 𝑆12𝑎2 

𝑏2 = 𝑆21𝑎1 + 𝑆22𝑎2 

 

In general the scattering parameter to a destination port (𝑗) from a source port (𝑖) 
is written as 𝑆𝑖𝑗 and expressed as 

 

𝑆𝑗𝑖 =
𝑏𝑗

𝑎𝑖
⁄  

and 

𝑆𝑖𝑗 =
𝑏𝑖

𝑎𝑗
⁄  

 

𝑆𝑖𝑖 and 𝑆𝑗𝑗 is also known as reflection coefficient or return loss. In this study a 

2-port VNA is used for the measurement. Thus 2 × 2 S-parameter matrix is obtained 

where each S-parameter containing amplitude and phase. For an N-port network the 

scattering matrix is given below. 

[

𝑆11 … 𝑆1𝑁

.             .

.             .
𝑆𝑁1 … 𝑆𝑁𝑁

] 

 

VNA is useful item of RF test equipment. It enables RF devices and networks to 

analyze the characteristics of the design and thus why it is being used widely even 

though they tend to be expensive. 

 

4.1.2. Satimo StarLab Measurements 

There are different systems available for measuring the radiation pattern, gain, 

efficiency and other related parameters. In this study, the measurement of the 

antennas is done by using the Satimo StarLab systems. The Figure 22 shows the 

chamber where the antenna is placed, which is surrounded by probe array to measure 

the radiation from various angles, which gives the idea about the three-dimensional 

radiation pattern. 
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Figure 22. Satimo StarLab measurement system [37]. 

 

It is equipped with the vector network analyzer, active switching unit, radio 

communication tester, amplification unit and a control unit. The function of the 

switching unit is to switch between the probes. Vector network analyzer performs the 

antenna measurements. To rotate the antenna during the measurement, the control 

unit drives the two positioning motors. In case of active measurement, the test needs 

to be performed through a multi-protocol Radio Communication Tester. There is an 

amplification unit for both TX and RX chains [37]. A basic functional block diagram 

of the measurement systems is shown in Figure 23. 

The main features of this measurement system are as follows. 

 Gain, directivity, 3D radiation pattern, beam-width, cross polar 

discrimination, side lobes levels measurement. 

 Radiation pattern in any polarization, linear or circular and the antenna 

efficiency. 
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Figure 23. Functional blocks of Satimo StarLab measurement systems [37]. 

 

The separation of the probe array is 22.5° from each other and can be reduced to 

7.5° by rotating the probe array. This system is designed for measuring the smaller 

shaped antennas with radius less than 20 cm enclosing the antenna. 

 

4.2. Measuring by Mobile Applications 

As the operating frequency of this passive repeating system is 2.4 GHz and on the 

smart phone has the same frequency band transmission and receiving system for 

WLAN, by using this sensor with the help of mobile application the strength of the 

signals was measured. This measurement has done for various cases e.g. before and 

after applying the repeating system and also the strength of different location of the 

applied area. In this study the android free application named “WiFi Analyzer” has 

been used. There are also other commercial tools available in the market. One of the 

most popular applications is Nemo Handy by Keysight Technologies. It is suitable 

for both indoor and outdoor measurement. It also provides the real time visualization 

of the test area. 
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Figure 24. Signal strength measurement by mobile application. 

 

In the Figure 24 the sample screen shots showing the strength of the WiFi signal 

of different available network within the range. The result from a WiFi network 

might vary over different handset receiving sensitivity but as the study is based on 

the comparison of the signal strength improvement considering before and after the 

implementation of the passive repeater, the difference of the values of the decibel of 

the power is needed. 
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5. RESULTS 

5.1. Simulation results 

 

 
 

(a) Front view 
 

(b) Side view 

 

(c) Back view 

Figure 25. Front, side and back view of simulated patch antenna. 

 

Table 1. Physical specification of the patch antenna. 

Parameter Value (mm) 

Diameter of the patch (D) 33 

Fed pin diameter (SMA connector) (k) 1.28 

Fed pin distance from the center (d) 4 

Ground plane length (l)  85 

Ground plane height (w) 85 

Ground plane width (h) 2.4 

Thickness of copper of patch (t) 0.035 

 

The simulated structure from different angle is represented on Figure 25. 

According to the equation represented on the section 3.1.2 the theoretical diameter of 

the patch was around 35 mm but during the simulation of the antenna it was found 

the maximum return loss and efficiency for the desired frequency is 33 mm. By using 

this specification, the return loss is found -27.6 dB at 2.43 GHz of frequency, which 

is shown in Figure 27. The characteristic impedance of the antenna was nicely 

matched with the 50-ohm system which is around 48.2 ohms, shown in Figure 28.  

Radiation pattern of the antenna shows a 6.62 dB gain in Figure 26 which is quite 

directive 
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Figure 26. The pattern of radiation with the gain value. 

 

 
Figure 27. S11 of the simulated patch antenna. 

 

S11 or return loss value indicates the amount of power reflected on a particular 

frequency. The higher return loss means more power is transmitted. 
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Figure 28.  Reference impedance of the simulated patch antenna. 

 

The characteristic impedance or reference impedance is kept close 50-ohm so that 

it can match with other 50-ohm equipment of the system without using any matching 

circuit to achieve that. In practice most of the cases; the RF network is designed with 

this impedance value. 

 

 
Figure 29. Radiation and total efficiency of the simulated patch antenna. 

 

The importance of efficiency is discussed on the section 2.2.5. It is required to get 

as much efficiency as possible especially when the system is passive. In this case the 

total efficiency is found as -0.2 dB which is around 95%. This is quite efficient 

antenna output. 
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Figure 30. Simulated gain of the patch antenna at 2.439 GHz. 

 

The maximum lobe magnitude is found in the angle 0° with a 3 dB beamwidth of 

86.9°. From the radiation pattern shown in the Figure 30, it is seen that there is a 

main lobe and a small back lobe which ensures that the antenna is directive enough 

for the desired operation. 

 

5.2. Practical Measurement 

Vector network analyzer can measure the port to port isolation, transmission and the 

return losses of the several ports. As the antenna contains one port only, on this 

measurement chapter the single port measurement data are shown in this section. 

 

5.2.1. Network Analyzer Measurement 

The return loss of the patch antenna is -15.82 dB at the frequency of 2.44 GHz is 

shown in the Figure 31. The -10 dB impedance bandwidth is found 45.9 MHz. 
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Figure 31. S11 of the fabricated patch antenna at 2.44 GHz. 

 

On the following Figure 32 the dipole antenna return loss is shown where at the 

-10 dB impedance bandwidth is 209.5 MHz. The resonance frequency is 26 MHz 

higher than the operating frequency. It shows with the maximum return loss of 

-32.14 dB. 

 
Figure 32. S11 of dipole (rubber ducky) antenna. 
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Figure 33. S11 of industrial patch antenna. 

 

Beside the fabricated patch antenna there is another industrially available patch 

antenna is used in this study to observe some comparison. The return loss of the 

industrial patch antenna has two notches. One is found in 2.44 GHz and another is at 

2.49 GHz. The loss values are under -19 dB. Figure 33 is found from the 

measurement of that patch antenna. 

Compared to the fabricated and commercial patch antenna, it is seen that the 

commercial antenna has lower bandwidth at 10 dB impedance and which is 

187 MHz. Both patch antennas meet this bandwidth specification which is described 

in the section 2.2.7 of bandwidth requirements. 

 

5.2.2. Radiation Pattern Measurements 

In the section 5.1.2 the description of the Satimo StarLAB was presented by which 

the radiation pattern measurement has been done. In Figure 34 the radiation pattern 

of the fabricated patch antenna has been shown. The gain at the operating frequency 

was found 4.63 dB. The radiation pattern is quite similar to the simulated one, 

although the simulation results show little more gain in this case. 
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Figure 34. Measured realized gain of fabricated patch antenna at 2.43 GHz. 

 

The coordinate system is similar to the simulated Azimuthal diagram shown in the 

Figure 26 which is 𝜙 = 90°. 

 
Figure 35. Measured realized gain of industrial patch antenna at 2.43 GHz. 
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The Figure 35 represents the radiation pattern of the dipole antenna. The gain 

found for this antenna at 2.43 GHz is 2.04 dB. This figure has also been taken at 

𝜙 = 90° angle. The realized gain of main lobe is very close to the operating 

frequency. There is a difference between the fabricated and commercial patch 

antenna. It is seen that there are a couple of side lobes and also the number of back 

lobes is more than one, where in fabricated patch antenna there is no side lobes and 

only one back lobe. It means most of the power is directed to one direction in case of 

fabricated patch antenna where some power is dissipated also in the two sides of the 

antenna in case of commercial patch antenna. 

 
Figure 36. Measured gain of dipole antenna at 2.43 GHz. 

 

Efficiencies have also been measured for the used antennas. The efficiency found 

for the patch antenna was -2.43 dB in Figure 37 which is 75.59% efficient for 

WLAN operation. The system is passive and in that sense the efficiency of the used 

elements needs to be of higher efficiency. The more the efficiency is, the higher 

performance of the system can be expected. 
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Figure 37. Measured efficiency of the fabricated patch antenna at 2.43 GHz. 

 

For the dipole antenna the measured efficiency was 96.9% which is -0.27 dB 

shown in by the green color line. 

In case of efficiency of the commercial patch antenna, the measured efficiency 

was almost same compared to the fabricated patch antenna. In this case it was -

2.43 dB which is 75.59%. It means that it can radiate 75% of the input power on that 

2.43 GHz. 

 

5.3. Full Repeater System Measurements 

Three different test environments is considered for performance measurement of the 

repeating system. Those environments have been considered by the presence of other 

signal sources and the length of the coaxial cable. Results were varying according to 

those factors like attenuation of the cable and the noise from other signals. The 

output from the system has been taken from three different measurement points 

which are near to the dipole antenna where it was supposed to get the strongest 

signal, in the middle of the room and in the corner of the room. For final test setup 

the fabricated patch antenna was used near to the reference base transceiver and the 

on the other end the dipole antenna was used as its radiation pattern is omni-

directional to cover more area. Those results will be discussed on this section.  
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Figure 38. Measurement setup and measurement points for case 1. 

 

The Figure 38 is the illustration of test setup of the repeating system for case 1 

and the different measurement point taken into consideration. 

  
Figure 39. Measurement setup and measurement points for case 2. 

 

The main difference between the test case 1 and the test case 2 is the room size, 

which is much bigger in case 2 represented on Figure 39. 
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5.3.1. Case 1 

In the first case the fabricated patch antenna was installed near to the transceiver in 

the second floor of the University of Oulu and by using a long coaxial cable the 

dipole antenna was attached on the other end of the cable. As the cable was long 

which is around 6 meters there was a presence of high attenuation of the signal. The 

attenuation curve is shown on the Figure 40. 

 

 
Figure 40. Attenuation of the coaxial cable used in the repeater system. 

 

At 2.43 GHz the loss is found 3.17 dB, which is quite high, especially any passive 

repeating operation. This is the path loss of the system from the receiving end to the 

transmitting end. 

The results of Wi-Fi signal strength is presented on the Table 2. This is done by 

the mobile application Wi-Fi analyzer. 

 

Table 2. Case 1 results. 

Measurement points Without repeater With repeater Improvement 

Close to the dipole antenna -74 dBm -68 dBm 6 dB 

Middle of the room -82 dBm -77 dBm 5 dB 

Corner of the room -86 dBm -86 dBm 0 dB 

 

From the Table 2 it is clear that there were improvement of signals near to the 

antenna and also in the second measurement point which is in the middle of the 

room. Even the size of the room was not big enough and also the room was not fully 

noise free from the other sources and reference, the base transceiver system still 

shows 6 dB improvements of the received signals. It decreased in the middle of the 

room and no improvement found on the corner end or third measurement point. 
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5.3.2. Case 2 

In the second case the receiving end environment was noise free which means there 

were no incoming signals from any other sources. Also the coaxial cable was short in 

length with less attenuation characteristics. For example the used cable was around 

1 meter long with the attenuation to the operation frequency was only 0.13 dB. So 

the gain found on the transmitting was comparatively higher than the previous case. 

Figure 41 represents the attenuation curve of the used coaxial cable. 

 
Figure 41. Attenuation of coaxial cable for case 2. 

 

Table 3. Case 2 results. 

Measurement points Without repeater With repeater Improvement 

Close to the dipole antenna -80 dBm -75 dBm 5 dB 

Middle of the room -86 dBm -83 dBm 3 dB 

Corner of the room -94 dBm -92 dBm 2 dB 

 

The results of case 2 measurement are presented on Table 3. In this test case the 

improvements were little bit lower than the test case 1. As the room was completely 

noise proof it is seen that from the first measurement point is much lower than the 

first measurement point of the test case 1. Another significant thing is that on the 

third measurement point there was also improvement of signals which is around 2 dB 

although the distance of this measurement point was higher compared to the test 

case 1. 
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6. DISCUSSION 

WLAN is one of the most popular data transmission systems, which is being used 

worldwide. Compared to data transmission speed it is faster than the 3
rd

 generation 

cellular network. The cost of the system setup is also cheaper. Due to the modern 

building structure and materials used for decoration cause huge amount of signal 

attenuation and thus why the actual range of the transceiver cannot be achieved 

sometimes. To mitigate this problem the easiest solution is to use redundant amount 

of base transceiver indoor. This solution is costly in terms of power usages. This 

study is based on a possible solution which is cost effective and maintenance free. 

This goal can be achieved by designing highly efficient antennas to build a passive 

repeating system. It will have no power consumption at all and so there will be no 

chances of interferences with other active devices. 

Designing the antenna for this passive operation was the main goal of this thesis. 

To achieve the secondary goal which was to set up the whole repeating system and 

measuring the variation of signal strength before and after using the repeating 

system. In the designing part, CST Microwave Studio simulation software was used 

for analyzing various antennas considering the radiation pattern, return loss, 

efficiency, characteristic impedance etc. It’s very user friendly software which is 

helpful for getting the idea of electromagnetic output of the designed item. It is easy 

to define the ports as required for the antenna. It is possible to use any kind of 

materials which are generally used for designing. To change those materials from the 

various parts of the device is easier to make sure about the best component for 

specific purpose. 

To get the results of the primary goal the vector network analyzer (VNA) and 

Satimo StarLab were used. Here a two port network analyzer was used. As the 

antenna has only one port, one port measurement was done for finding out the 

parameters of those used antennas. In case of finding out the attenuation of the used 

coaxial cable the two ports has to be used. Usually the network analyzer contains 

minimum of two ports. 

A free version mobile application was used to find out the signal strength 

variation. There are many applications available for different operating systems of 

mobile phones. In this part an android operating system mobile device was used. The 

application which is used is named ‘WiFi Analyzer’. It can detect the signal strength 

and displays the results in dBm for a particular active WiFi channel.  

For the secondary goal it was needed to make the prototype and also collecting 

some industry built antennas which are used in practical operations. The prototype of 

the patch antenna was built in the fabrication lab of the university. As it was a 

circular patch antenna, there were several attempts taken to get the cut off frequency 

desired for the WLAN operation. 

After testing several antennas in total two antennas were primarily chosen for real 

time measurement. The simulated and real time measured data were analyzed. There 

were deviations among the results found during the simulations and real 

measurements. It happened because the simulation software does not take 

consideration of all the factors like surface roughness of the copper and purity of the 

dielectric materials of the antenna.  

In the final measurement the whole passive repeating system was set up in two 

different environments. Both of those cases in one end, the fabricated patch antenna 
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was used as a directive antenna for receiving the signal purpose and on the other end 

industry standard dipole antenna was used for its bi-directional radiation pattern to 

cover more area for transmitting the data. The result found before and after the 

system is presented on Chapter 6. In both cases there was improvement of signal 

after using the repeating system. The variation found on the signal strength is not so 

high, but it is clear that the signal level can be increased significantly if more loss 

free coaxial cable and more efficient antenna could be used. Further study can be 

done for designing the directive antenna with higher efficiency for this passive 

system. 
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7. SUMMARY 

This thesis focused on the improvement of indoor WLAN signal by using the passive 

repeating system. The system requirements have been studied on the first chapter. 

There are many researches around the world which are focused on the individual 

element improvement for this system, and those were presented in the literature 

review. One of the probable solutions which are used in this thesis is to use a 

directional antenna and an omnidirectional or bi-directional antenna to build this 

simple but effective passive repeating system. Those elements were scrutinized on 

this literature review section to get the idea of efficient elements for the system. 

Summary of several scientific papers has been done. 

Theoretical background studies which are required to understand for the 

implementation of the system have been provided in Chapter 1. It contains the details 

of technical terms with basic figures and equations. Those descriptions have been 

taken after studying several relevant books and references. Chapter 2 started from the 

definition of antenna, their radiation pattern, beam width, radiation intensity, and 

efficiency of those antennas, polarization and other behavior to make the theoretical 

concept crystallize. 

Chapter 3 is about the antenna part of the repeating system. Here more detail 

mathematical equation for the selected antennas and their characteristics has been 

provided. More specifically the patch antenna and the dipole antenna model has been 

shown on this section. Couple of industrial standard antennas and a fabricated 

antenna has been discussed as examples. 

Different types of repeating system is included on Chapter 4. Here the idea how 

the repeating system works, their advantages and drawbacks. After discussing those 

different systems the back-to-back antenna model is selected for the further analysis. 

The measurement procedure and the required equipment has been described on 

Chapter 5. The vector network analyzer and the basic in electromagnetic 

measurement have been presented. These were required to measure the 

characteristics described on the theoretical chapter for the antenna. Another part of 

the measurements chapter is the procedure of measuring the whole repeating system 

by using a mobile application. 

The Chapter 6 is the core of this thesis where the result found from both the 

simulation part and the actual measurement part has been shown for the elements 

used in the system. Chapter 6 also contains the two different types of case studies 

where the back-to-back antenna repeating system was installed. The test scenario for 

both cases along with the outcome of the actual improvement found by the whole 

repeating system is presented. 

Based on these studies it can be concluded that as there is a clear improvement 

found from the repeating system, the efficiency can be improved by further studies 

focusing on the highly efficient antenna. This is discussed in Chapter 7. The 

bandwidth on -10 dB for the directive antenna can be improved to get the better 

results by the system. Another approach can be tested by combining the methods of 

plane reflector and the passive repeater by considering the structural area of indoor 

coverage. 
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