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ABSTRACT 

In the essence of the Industrial Internet of Things is data gathering. Data is time 

and event-based and hence time series data is key concept in the Industrial 

Internet of Things, and specific time series database is required to process and 

store the data. Solution development and choosing the right time series database 

for Industrial Internet of Things solution can be difficult. Inefficient 

comparison of time series databases can lead to wrong choices and consequently 

to delays and financial losses. This thesis is improving the tools to compare 

different time series databases in context of the Industrial Internet of Things. In 

addition, the thesis identifies the functional and non-functional requirements of 

time series database in Industrial Internet of Things and designs and 

implements a performance test bench. A practical example of how time series 

databases can be compared with identified requirements and developed test 

bench is also provided. The example is used to examine how selected time series 

databases fulfill these requirements. 

Eight functional requirements and eight non-functional requirements were 

identified. Functional requirements included, e.g., aggregation support, 

information models, and hierarchical configurations. Non-functional 

requirements included, e.g., scalability, performance, and lifecycle. Developed 

test bench took Industrial Internet of Things point of view by testing the 

database in three scenarios: write heavy, read heavy, and concurrent write and 

read operations. In the practical example, ABB’s cpmPlus History, InfluxDB, 

and TimescaleDB were evaluated.  

Both requirement evaluation and performance testing resulted that cpmPlus 

History performed best, InfluxDB second best, and TimescaleDB the worst. 

cpmPlus History showed extensive support for the requirements and best 

performance in all performance test cases. InfluxDB showed high performance 

for data writing while TimescaleDB showed better performance for data 

reading.  
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Martinviita M. (2018) Aikasarjatietokanta teollisuuden esineiden internetissä ja 

sen testipenkki. Oulun yliopisto, tietotekniikan tutkinto-ohjelma. Diplomityö, 62 s. 

TIIVISTELMÄ 

Teollisuuden esineiden internetin ytimessä on tiedon keruu. Tieto on aika ja 

tapahtuma pohjaista ja sen vuoksi aikasarjatieto on teollisuuden esineiden 

internetin avainkäsitteitä. Prosessoidakseen tällaista tietoa tarvitaan erityinen 

aikasarjatietokanta. Sovelluskehitys ja oikean aikasarjatietokannan 

valitseminen teollisuuden esineiden internetin ratkaisuun voi olla vaikeaa. 

Tehoton aikasarjatietokantojen vertailu voi johtaa vääriin valintoihin ja siten 

viiveisiin sekä taloudellisiin tappioihin. Tässä diplomityössä kehitetään 

työkaluja, joilla eri aikasarjatietokantoja teollisuuden esineiden internetin 

ympäristössä voidaan vertailla. Diplomityössä tunnistetaan toiminnalliset ja ei-

toiminnalliset vaatimukset aikasarjatietokannalle teollisuuden esineiden 

internetissä ja suunnitellaan ja toteutetaan suorituskykytestipenkki 

aikasarjatietokannoille. Työ tarjoaa myös käytännön esimerkin kuinka 

aikasarjatietokantoja voidaan vertailla tunnistetuilla vaatimuksilla ja 

kehitetyllä testipenkillä. Esimerkkiä hyödynnetään tutkimuksessa, jossa 

selvitetään kuinka nykyiset aikasarjatietokannat täyttävät tunnistetut 

vaatimukset.  

Diplomityössä tunnistettiin kahdeksan toiminnallista ja kahdeksan ei-

toiminnallista vaatimusta. Toiminnallisiin vaatimuksiin sisältyi mm. 

aggregoinnin tukeminen, informaatiomallit ja hierarkkiset konfiguraatiot. Ei-

toiminnallisiin vaatimuksiin sisältyi mm. skaalautuvuus, suorituskyky ja 

elinkaari. Kehitetty testipenkki otti teollisuuden esineiden internetin 

näkökulman kolmella eri testiskenaariolla: kirjoituspainoitteinen, 

lukemispainoitteinen ja yhtäaikaiset kirjoitus- ja lukemisoperaatiot. Käytännön 

esimerkissä ABB:n cpmPlus History, InfluxDB ja TimescaleDB tietokannat 

olivat arvioitavina.  

Sekä vaatimusten arviointi että suorituskykytestit osoittivat cpmPlus 

History:n suoriutuvan parhaiten, InfluxDB:n toiseksi parhaiten ja 

TimescaleDB:n huonoiten. cpmPlus History tuki tunnistettuja vaatimuksia 

laajimmin ja tarjosi parhaan suorituskyvyn kaikissa testiskenaarioissa. 

InfluxDB antoi hyvän suorituskyvyn tiedon kirjoittamiselle, kun vastaavasti 

TimescaleDB osoitti parempaa suorituskykyä tiedon lukemisessa.  

 

Avainsanat: aikasarja tietokanta, teollisuuden esineiden internet, suorituskyvyn 

mittaus, testipenkki 
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AI Artificial intelligence 

 

API Application Programming Interface 
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BDR Bi-directional replication 

 

BLOB Binary Large Object 
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DCS Distributed Control System 

 

DIRAC Distributed Infrastructure with Remote Agent Control 

 

HMI Human-machine interface 

 

HTTP Hypertext Transfer Protocol 

 

IoT Internet of Things 

 

IIoT Industrial Internet of Things 
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JBDC Java Database Connectivity 

 

JSON JavaScript Object Notation 

 

LDAP Lightweight Directory Access Protocol 

 

M2M Machine to machine 

 

MQTT Message Queuing Telemetry Transport  

 

OBDC Open database connectivity 

 

OPC DA/HDA OPC Data Access / Historical Data Access 

 

OPC UA OPC Unified Architecture 

 

OS Operating System 

 

PIMS Production Information Management System 

 

RAM Random Access Memory 



 

 

REST Representational State Transfer 

 

SCADA Supervisory Control and Data Acquisition 

 

SQL Structured Query Language 

 

SSD Solid-state drive 
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UDP User Datagram Protocol 

 

UTC Coordinated Universal Time 

 

UUID Universally unique identifier 
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X Data point 

 

t Timestamp 
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1. INTRODUCTION 
 

Manufacturing companies have taken the first steps towards realizing their Industrial 

Internet of Things (IIoT) solutions. In the essence of IIoT is data gathering smart 

factories which is argued to be the future of factories. For data gathering purposes 

use case specific database is required in the IIoT solution.  

IIoT solution can differ depending on the deployment context. Solutions still have 

in common enormous amount of data, large number of connected clients, and fast 

data processing. In industrial context, system liability and security are important 

factors.  

Data gathering is heavily sensor and device based and the produced data is time 

and event-based. Time series data management is therefore an essential part of the 

IIoT solutions. Time series data requires specific data management and processing 

that is beyond the capabilities of traditional relational databases. As time series data 

can be used for multiple different kinds of purposes and in variety of environments, 

there are many different kinds of time series databases on the market. 

Time series processing is highly essential part of systems and platforms for 

developing solutions for industrial internet of things. Different platforms offer a 

variety of possibilities to process time series data, and there are also independent 

components which can be integrated into a broader solution as a time series 

processor. Comparing these different solutions can be extremely difficult using only 

the public documentation, and it can lead quickly to wrong decisions. On the other 

hand, solution developers do not often know their requirements for their time series 

processing. This ignorance leads to wrong decisions and unusable solutions, or it can 

create long delays in product development projects when components and 

architecture need to be changed during the deployment phase.  
Current literature includes some research around time series databases and their 

comparison. Most of the comparison is done without including certain usage context 

and hence lacking the IIoT point of view in their comparisons. There is also lack of 

clear requirements for time series databases in the IIoT and what are the key 

functional and non-functional features that the database should have in that context. 

Some performance benchmarking tools have been developed earlier but they all lack 

the IIoT point of view and use cases used for the testing does not reflect the IIoT 

usage.  

The thesis responds to the problem of inefficient comparison and fragile 

knowledge of time series databases in the Industrial Internet of Things context. This 

thesis is to find the functional and non-functional requirements of time series 

database in the Industrial Internet of Things environment and improve time series 

database comparison methods. Knowing the requirements eases the solution 

development and comparison of possible database products. To help with the 

comparison, a performance benchmark test bench that is targeted for IIoT context is 

needed to be designed and implemented.  

1.1. Research questions and objectives 

The research questions of this thesis are the following: 

  What are the functional and non-functional requirements of a time series 

database in IIoT environment? 
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  How do current time series databases fulfill these requirements? 

 

Also, the research objectives are the following:  

  Design and develop a test bench to measure the performance of a time 

series database 

  Apply the test bench to different time series database to find out their 

strengths and weaknesses 

1.2. Overview of the thesis 

The structure of the thesis is following. First, all necessary concepts are defined, and 

the knowledge gap is identified in Chapter 2 and 3. The example uses cases on time 

series databases in IIoT are presented pointing out the critical factors for each use 

case in Chapter 4. Then the requirements for the time series database is constructed 

and identified based on related literature and interviews of ABB's employees in 

Chapter 5. That is followed by a design and implementation of a performance test 

bench for time series databases in Chapter 6. Lastly, current time series database 

products are evaluated based on the identified requirements and test bench is used for 

more precise performance comparison of three specific databases in Chapter 7. In 

Chapter 8 combining discussion about the previous evaluation and the evaluation of 

thesis objectives is provided. Conclusion of the thesis is in Chapter 9.  
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2. BACKGROUND 
 

In this chapter, necessary concepts and definitions of the thesis are introduced. These 

include IIoT concept, time series data, time series databases with example products 

and lastly benchmarking. Current time series database benchmarks are introduced 

and evaluated for this thesis.  

2.1. Industrial Internet of Things 

As the thesis focuses specifically on the Industrial Internet of Things (IIoT), it is 

good to take a closer look at what is meant by it. In this sub-section concept is first 

defined and its characteristics identified. Then closer look why IIoT is raising 

awareness in the sense of benefits and challenges. Lastly, the current state of IIoT is 

inspected.  

2.1.1. Definition and characteristics 

Industrial Internet of Things is a field of IoT technology in which applications and 

solutions are targeted for the manufacturing industry. The industrial Internet 

Consortium [1] defines IIoT as an internet of things, machines, computers, and 

people, enabling intelligent industrial operations using advanced data analytics for 

transformational business outcomes by A more practical definition can be as a new 

industrial ecosystem that combines intelligent and autonomous machines, advanced 

predictive analytics, and machine-human collaboration to improve productivity, 

efficiency, and reliability. The target of IIoT is to connect embedded systems and 

products to create larger operational systems. [2] 

IIoT and Industry 4.0 are often used together when describing the future of the 

industrial and manufactory field. Industry 4.0 is a broader viewpoint to the industrial 

field as it describes a new industrial revolution which focuses on automation, data, 

innovation, cyber-physical systems, processes, and people [3]. IIoT is in the core of 

this new revolution as it allows new communication infrastructure to the connected 

devices.  

Similarly, as in the IoT, a central concept in IIoT is the connected devices. The 

main difference is that in IIoT communication is used for command and control of 

mission-critical information and responses. Reliability, availability, and accuracy are 

critical for IIoT applications. [4] Even though security is essential to consumer-based 

IoT, for IIoT it is a core component. Disruption to the production because of weak 

security can lead to loss of millions of dollars for the company. Advanced security is 

needed to keep the system secure and stable.  

As IIoT solutions are going to be built on top of existing automation and monitor 

systems, there is a requirement that IIoT solutions support legacy protocols and 

technologies, e.g., SCADA and M2M protocols. Respectively the number of 

connected devices in a factory is multiple times more than in smart home which 

means that scalability is a key characteristic in IIoT. When there are more connected 

devices, there are also more data processed in the system. The developed system 

must be able to scale when in need. [5]  
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 By having multiple different systems which are targeted for a different level of 
usage in the same factory, it makes the whole system hierarchical. Figure 1 presents 
an example scenario of an IIoT factory and shows the different level of systems that 
the factory has. Example scenario shows how there are multiple different devices and 
control systems connected to the edge node, where the time series database would be 
deployed. There can also be multiple edge nodes which can have a hierarchical 
relationship with each other. As stated earlier there are multiple legacy systems and 
protocols still in use, and many of these are not designed with current security 
principles and the control network is typically isolated as separate security zone with 
limited external connectivity. Edge nodes in IIoT need to provide secure 
communication so that the system and the factory are secure when connected to 
external endpoints, e.g., cloud.  

 

 
Figure 1. Hierarchical industrial system [6]. 

 
From figure 1 can also be seen that the data source is always some device, e.g., a 

motor, a protection relay, a robot, or a drive. A device can produce multiple values 
that represent different properties of the device. Semantics of the data that comes 
from these devices is typically known by the device manufacturer or process owner. 
For that reason, most of the data is structural, and information models are needed to 
represent these relationships in the data. Often IoT is associated with unstructured 
data, but it refers IoT data schematic which cannot be inserted into a traditional 
relational database with SQL format [7]. The data still has some structure as it has a 
relationship with the producing device. In the next chapter reason for why knowing 
the source device of the data is essential for IIoT is discussed.  

Information models are data models which represent the concepts, relationships, 
constraints, rules, and operations of specific data for the chosen domain [8]. 
Information models are used to unify the system making different applications able 
to communicate with each other. Information models are also used to model logical 
entities, structure larger pieces of equipment and systems, and enable model specific 
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analytics without detailed information about the actual physical device. One essential 

information model in the industrial field is time series data which represents the 

relationship between the measured value and the time of the measurement. One 

approach to information models in IIoT comes from the usage of OPC UA 

communication protocol which uses information models in its implementation [9]. 

As the IIoT has special characteristics, it creates special requirements for the 

systems that operate in it. Knowing these requirements when choosing or designing 

the system for industrial use is essential. The core of this thesis is to find these 

requirements for time series databases.  

2.1.2. Benefits and challenges 

As seen from the definition the primary goal of IIoT is to connect devices and enable 

digital applications and services based on the connectivity and data from the device 

or process it is part of. These, of course, requires successful application integration to 

the environment and accurate data collection and analyzing. 

In more detail, IIoT may help at preventive maintenance. Adapting Big Data 

analytics and machine learning with the IIoT system allows users to gain more 

detailed data insights and predictions. Knowing the status of each component of a 

production line may allow detection of possible component failure before it actually 

happens which saves time and money for the company. [10 p.8-9] Planned 

component maintenance and replacement are cheaper than unscheduled maintenance 

because of unexpected component breakdown. Currently, 60% of performed 

maintenance is done unscheduled. [11] Similarly as the status of each component of 

the production line is known, possible bottlenecks of the production line can be 

identified. Optimizing the production by removing bottlenecks and keeping the 

system up allows the company to be more productive and efficient.  

IIoT also allows companies to create new hybrid business models and find new 

technologies to increase innovation. As IIoT enables remote monitoring, service 

offerings are increasing business model for manufacturers. With more detailed 

knowledge of the current performance of the company, business leaders can make 

better decisions regarding the future of the company. In addition to production line 

efficiency, the logistics of the warehouse can also be enhanced. Autonomous 

conveyors, robots, and forklifts can be optimized and monitored with AI and 

machine learning. More detailed information about the production can also be used 

to minimize the production emissions. [12] 

Even though IIoT has lots of benefits, there are still some challenges to be faced. 

The key challenge is to transform collected data to actual business value. Mining the 

right insights from the collected data so that it creates value for the user and the 

customer might not be as straightforward as it seems especially when the amount of 

collected data is enormous. Another challenge concerns the collected data and its 

security. As seen from past couple of years cyber-attacks against industrial systems 

have been rising. From the customer's point of view knowing that data is secured and 

who manages it is extremely valuable. These requirements create challenges even in 

architectural level for the developers of IIoT applications. [2] Another challenge for 

IIoT is the extensive use of different protocols, devices, and architectures. For 

efficient usage and ability to connect different devices to work together, some 

common protocols or middleware is needed. As the industry distributes to multiple 
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different fields with their unique business scenarios, devices, protocols, and 

architectures finding this common ground can be challenging. A solution for this 

challenge has been tried to find through open-source development.  

Another challenge for IIoT is also the cost of the IIoT solution. The 

implementation of an IIoT solution should decrease the cost of the production not 

increase it with expensive remote monitoring. The monitoring functionality itself 

does not provide a return for the company. [13] 

2.1.3. Current state 

Many of the big industrial companies have introduced their own IIoT solutions and 

approaches. There are also a couple of real IIoT solutions implemented and already 

in use. The implementation of the field theories is still in the beginning, and the field 

is going to grow enormously in the next couple years. According to research done in 

June 2016 by IndustryARC, the IIoT market will grow to $123,89 Billion by 2021 

[14].  

 ABB offers their IIoT solution: ABB Ability, which was launched in March 

2017. ABB Ability offers a unified cross-industry digital platform for devices, 

systems, solutions, and services. There are implementations in multiple fields, e.g., 

oil, gas, mining, manufacturing, microgrids, transport, and data centers including 

over 210 IIoT solutions.  [15]  

GE has, like ABB Ability, an IIoT platform Predix. Predix provides a scalable 

asset-centric platform which is secure and has machine learning and external 

application development support. GE started their digitalization already in 2012. [16] 

There are multiple actual implementations of the platform usage. One use case is 

with wind power company Exelon which uses the Predix platform for optimizing the 

wind predicting accuracy [17].  

Bosch offers IoT Suite which is their offering for IIoT platform. IoT Suite is not 

just for IIoT usage but also for more general IoT usage. Currently, there are 6 million 

devices connected to the platform. The platform has couple use cases including use 

cases for factory, forklifts, and trains. [18] Other similar IIoT platforms are 

Condence [19], MindSphere by Siemens [20], and Watson IoT Platform by IBM 

[21].  

A core component of these IoT platforms and IoT itself is cloud computing. Two 

main cloud computing providers are Microsoft Azure and Amazon Web Services 

(AWS). Azure provides specific support for IoT with its IoT Hub and IoT Edge 

products. On AWS IoT support is provided with AWS IoT Core and AWS 

Greengrass which implements the local edge functionality. [22] 

After Hannover Messe 2018 Microsoft stated that: “IIoT has reached the 

mainstream.” [23] More manufacturers are interested in using Azure to digitalize 

their business. Microsoft also stated that they are going to invest $5 billion in IoT 

during the next four years because of the high demand for their services [23]. Based 

on the feedback Microsoft received from manufactories at the Hannover Messe 2018 

they started to develop new features to the Azure that fits better to the IIoT need. For 

example, some new features are OPC UA support, IoT Hub on-premise management, 

and new time series database. [24] The active development and discussion with 

manufactories indicate ongoing progress and deployment of IIoT. 
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Audi and Ericsson did public steps towards smart factory as they announced 5G 

connected smart factory trial where they start to test 5G connected wireless smart 

manufacturing. [25] Implementation is huge step forward especially for 5G 

communication, and the success of the testing can push other companies to 

implement their smart factory systems faster.     

In summary, there are multiple solutions provided by leading industrial 

companies. There are also couple successful implementations to actual production 

plants. IIoT is in good progress for more widespread implementation over multiple 

fields.   

2.2. Time series data 

Structural data and usage of information models were typical in industrial systems 

and devices. One structural information model is time series data point which is a 

combination of a timestamp value(t), the actual value (v), and quality (q). Time series 

data point X can be present as in Equation (1). 
 

X = (t, v, q)                                                     (1) 

 

The quality factor, for example, can indicate the reliability of the value. Data point 

usually has also some defining names and tags that are used to group the data points. 

Time series data is then a sequence of these data points creating a continues data 

stream. Time series data has some unique characteristics. Most of the time every data 

point is handled as a new entry instead of as an update for already saved data entry. 

This sort of handling means that the amount of time series data in the database is 

always growing. Another characteristic is that time series data usually is in time 

order when it arrives. There are exceptions for this characteristic as there can be user 

entered values and application calculated values. The third characteristic is time 

indexed data, making time the primary axis for the data. By having the time 

dimension in the data, it can be used to measure change over time which is the main 

reason to use time series data [26, 27]. Time series data is usually presented as a 

trend as it is the most natural interpretation of time-based data. An example of a time 

series data trend presentation can be seen in figure 2.   

 

 
Figure 2. Time series data trend. 
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Time series data is used to describe the surrounding environment and for this 

purpose knowing the context and understanding the meaning of the time series data 

is essential. To make the data more easily interpretable for the user time series data 

usually has some metadata with it. This metadata allows more specific queries and 

gives a richer description of the measured source environment. Using detailed 

metadata creates a challenge for the data processing and data managing as the size of 

each data point increases. As time series data can have extreme velocity, meaning 

new data is received multiple times in a second, the size of the handled data is 

enormous. [28] 

One of the most used fields for time series data has been the financial sector. 

Knowing the exact time of events is critical for banks and stock exchange when 

doing transactions. The Chicago Mercantile Exchange has around 100 million live 

contracts, and the derivative exchange handles around 14 million contracts per day. 

That amount of data produces around 1.5 to 2 million time series data points per day. 

[29 p.187] In industrial field data per day can grow even larger. For example, in a 

smart factory unit with 100 devices or sensors that produce one time series data point 

each second. That kind of environment produces 8.6 million time series data points 

per day. Another real-life example could be a situation where the quality of the 

electricity (voltage, current) is measured with 20 kHz sampling rate and in a single 

active component such as a protection relay which may contain, e.g., 10 such signals 

which result in 200 000 values per second. In an electricity distribution station, there 

can be 100 of such components which results in 17.28 billion values per day.  

2.3. Time series databases on the market  

As mentioned in chapter 2.2 time series data grows fast, because of its new entry and 

velocity characteristics. For this purpose, traditional relational databases are not 

suitable to handle time series data in an efficient way. Traditional relational 

databases are designed by the set theory where the order of the elements does not 

matter. For time series data the order is a key factor. Time series databases give 

priority for the timestamp which allows them to scale quickly as the data amount 

grows. Time series databases also allow multiple timestamp inserts under same key 

element when in relation database each timestamp insert would need a new key 

element. These databases also have some built-in functions for time series data, e.g., 

size management, online aggregation, and continuous queries. [27] Time series data 

has properties that differ it from other data workloads. These properties are data 

lifecycle management, summarization, and large range queries. To efficiently 

process time series data the database must support these properties. [30] Time series 

data can also be in many different unstructured forms which creates a requirement 

for the database to support semi-structured and unstructured schemas [29 p.187].  

The benefits of time series databases are that they are incredibly scalable, and they 

have high performance as they are optimized for time series data. Time series 

databases also reduce operational downtime and improve business decisions as they 

provide data analyzes in real time. [31] Time series databases have gained popularity 

during the last couple of years and are one of the most trending database types in use 

[32]. Next couple of time series databases are introduced in more detail.  
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cpmPlus History 

 

cpmPlus History is ABB’s own time series database engine written in C++ and 

C#. cpmPlus History is targeted for process history data gathering and analytics. It is 

a highly scalable software platform which is targeted for products and system for 

manufacturing process industries and utilities. The core of the cpmPlus History is 

RTDB which is a relational database. RTDB is designed and optimized for time 

series data management by having built-in columnar features. cpmPlus History is 

currently on version 5.1, and it is part of multiple ABB solutions e.g., 

  Process information and reporting systems 

  Energy management systems 

  Long term history embedded in control systems 

  Power plant information and condition monitoring systems. 

 

cpmPlus History provides the standard data models for process information, 

events/alarms, and equipment model, all with granular role-based access control. The 

engine also provides stream processing, alarm detection, and online aggregation. 

Equipment model is user-defined data model which allows the creation of application 

specific data models. Database engine also implements data acquisition, redundant 

data storage, hierarchical system structure, calculation tools, public interfaces 

including e.g. OPC UA and SQL, and visualization.  

 

InfluxDB 

 

Lately, an open-source time series database InfluxDB has gained popularity. 

InfluxDB is a relatively new database product as its development started 2013 and it 

is currently on version 1.6. It is written in Go and targeted for collecting, storing, 

monitoring, visualizing, and alerting of time series data. InfluxDB has two versions; 

free open-source and paid enterprise version. The enterprise version brings 

clustering, manageability and security features on top of the open-source version. 

The database offers interfaces for Chronograf, Kapacitor, and Telegraf for the 

interface, stream processing, and metrics and event collecting. There is also a 

possibility to run InfluxDB on the cloud which is hosted by InfluxData.  

Data schema in InfluxDB consists of a timestamp and set of key-value pairs. Key-

value pairs have value fields and tags, and the possible value types are strings, floats, 

integers, and Booleans. The only restriction in data schema is that data point must 

have timestamp and at least one field key-value pair. Data are grouped into so-called 

‘measurements’ which act like an SQL database table. The database has built-in 

functions for aggregation, selection, transforming, and prediction. InfluxDB does not 

support native SQL for querying, but it has SQL-like query language InfluxQL. 

API’s for InfluxDB that are provided by InfluxData are only HTTP API and Go API 

library. Other language API’s are external open-source API’s. Hardware 

recommendations scale based on the load. In a single node solution for low load 

hardware recommendations are 2-4 CPU cores, 2-4 GB RAM, and 500 IOPS when in 

contrast for the high load they are 8+ CPU cores, 32+ GB RAM, and 1000+ IOPS. 

[33] 

 

Microsoft Time Series Insight 
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Microsoft Time Series Insight is time series database in Microsoft’s Azure cloud 

computing platform. It was released on April 2017. Time series Insight contains 

functionality for analytics, storage, and visualization. The database has functionality 

for SQL-like filtering and aggregating, and the ability to construct, visualize, 

compare, and overlay time series patterns. There are two versions of the database: 

smaller limit of storage (30 GB) per unit and daily ingress (1 GB) version which cost 

around $100 per month and expanded version with a storage limit of (300 GB) per 

unit and daily ingress (10 GB) which costs over $1000 per month. Time Series 

Insight provides REST API to access the database. Data is sent in JSON format, and 

the database’s data schema is configurable. The timestamp is the only mandatory 

item for the schema and produced data items. [34, 35]  

 

Vertica Analytics Platform 

 

Vertica Analytics Platform is a commercial solution designed for Big Data 

analytics. Vertica company was founded 2005 and platform is currently on version 

9.0. The platform has column-oriented storage which is capable of handling time 

series data. Data schema uses traditional SQL based table format. The database has 

built-in machine learning functionality which allows outline detection, missing 

values, normalizing, sampling, clustering, and classification. There are also built-in 

time series analysis functions, e.g., missing values, interpolation, and filtering. The 

platform can be self-hosted or run on third-party platforms, e.g., Microsoft Azure, 

Amazon Web Services, or Hadoop. There are two editions of Vertica where the 

extended premium version allows, e.g., machine learning and advanced time series 

analytics. Data can be accessed through SQL, ODBC, JDBC, and ADO.NET [36].  

 

OpenTSDB 

 

OpenTSDB is a time series daemon which works on top of HBase database. 

OpenTSDB is open source, written in Java, and it was released in 2010. Currently, 

OpenTSDB in on version 2.3. The data schema is optimized for fast aggregations of 

similar data to minimize the used storage space. Data point consist of the metric 

name, timestamp, actual value, and tags. Value can be a 64-bit integer or single-

precision floating point or JSON formatted event. OpenTSDB provides telnet-style 

protocol data queries and HTTP API. As OpenTSDB is built on top of HBase, the 

time series database supports scalability and replication. [37, 38] 

 

KairosDB 

 

KairosDB is an open source time series database written in Java on top of 

Cassandra database. Development started 2013, and it is currently on version 1.2.1. 

Data is accessed through Telnet or REST API. Data point consists of the metric 

name, timestamp, type, value, and tags. Value can be either long or double type. 

KairosDB has multiple built-in functions for aggregating, grouping, and filtering. 

There is also roll-up functionality support which allows creating new aggregated data 

value points based on existing data points. As KairosDB uses Cassandra database, it 

also supports replication and distribution.  [39] 
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Elasticsearch 

 

Another open source solution is Elasticsearch which is distributed search and 

analytics engine. It is built on Apache Lucene. Development of Elasticsearch started 

in 2010, and it is currently on version 6.2.4. Elasticsearch support near real-time 

reading which allows it to be used as NoSQL database. Elasticsearch uses JSON 

formatted documents as it datatypes which allow users to create their own data 

schema. As Elasticsearch is mainly a search and analytics engine, it has support for 

extended querying with multiple aggregating, filtering, and indexing functions. Data 

can be accessed through the REST API. Elasticsearch support scalability to multiple 

nodes and replication. The solution can be self-hosted or external cloud service, e.g., 

Amazon Web Services can be used. [40, 41] 

 

TimescaleDB 

 

TimescaleDB is also an open source time series database. It is re-engineered from 

PostgreSQL and by that support full SQL. TimescaleDB still supports NoSQL-like 

vertical and horizontal scalability. The first release of TimescaleDB was on April 

2017, and it is currently on version 0.9.2. The data model in TimescaleDB is wide-

column based which is the traditional relational database type. Data model consists 

of hypertables which are sets of smaller tables called chunks. Data is accessed only 

through the SQL interface. Standard SQL analytical functions are supported but also 

time series specific first, last, and histogram functions are provided. [42, 43]  

 

CrateDB 

 

CrateDB is a distributed SQL database which is targeted for storing and analyzing 

large amounts of machine data. CrateDB employs NoSQL storage and indexing 

under its SQL database engine. CrateDB is written on Java and it is currently on 

version 3.1.1. CrateDB is owned by Crate.io and it has community and enterprise 

editions. CrateDB has document-oriented approach and dynamic data schemas. It has 

interfaces for example ANSI SQL, ODBC/JDBC, and HTTP. There are also custom 

plugins for, e.g., Grafana and Apache Kafka. For data analysis CrateDB offers 

standard aggregation functions, geospatial queries, data and location mapping, SQL 

joins, user-defined queries, and anomaly detection. Automatic data retention and size 

management functionality is not implemented on the 3.1.1 version. [44] 

2.4. Benchmarking 

In this sub-chapter, benchmarking, in general, is discussed in more detail. 

Characteristics of benchmarking metrics and quality measures for the used metrics 

are described. Also, current time series database benchmarks are provided. 

As one of the objects of this thesis is to evaluate and compare the performance of 

time series databases, it is required to conduct some statistical measured comparison. 

This act of measuring is called benchmarking. Benchmark program is a specific 

program to measure performance metrics of some other program. [45 p.111] 

Benchmarking consist of an initial set of values and set of queries. Benchmarking 
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should also happen in a closed controllable environment where test results can be 

replicated. This way result comparability is ensured.  

As Lilja [45 p.9] states in his book, the core of benchmarking are the used 

performance metrics that are measured. When measuring the performance of a 

computer or a program usually is measured: a count of some events, duration of 

some specific time interval, or the size of a parameter. From measuring these 

characteristics, the actual describing so-called performance metric can be derived. As 

there can be variance and uncertainty during the benchmarking, some performance 

metrics can give different results when repeated. To evade this error, there are some 

characteristics of which determine a good performance metric. The used metric 

should be linear as if the performance of the system under test changes on some ratio 

the value of the metric should change on the same ratio. The metric should also be 

reliable as if the metric shows that A is better than B this relation should remain 

overall tests. As stated earlier, the benchmarking and therefore the metric should be 

repeatable. With the same experiment for the same system, the result should be every 

time the same.  

As the benchmarking operation should be easy to perform the used metric 

similarly should be easy to measure. If the value is hard to measure it can indicate 

that it is not interesting and valuable for the users. The metric should also be 

consistent, so the produced results are comparable over different systems and tested 

programs. Alongside with consistency, the metric should be independent. No 

external influencer should be able to influence how the metric performs. [45 p.9-12]  

2.4.1. Test bench design 

In this thesis benchmarking is done as a simulation type where the testing 

environment is close to the real-world scenario. That includes all real-life scenario 

system configurations, e.g., cybersecurity measures are enabled during the testing. 

For this purpose, a test bench is needed which is used for performing the simulation. 

In figure 3 general database test bench design is presented [46].  

 

 
 

Figure 3. General database testing design. 

 

The test bench should consist of data generator which creates and inserts the test data 

to the database, data reader who queries the inserted data from the database, and 

resource monitor which observes the resource usage of the database during the 
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testing. Business application is simulating separate user or application that can be 

used to test user experience during the test run. [46] 

For comparable results, the data write and data read operations must be able to use 

some fixed parameter that ensures that same amount of data is handled during each 

test with same paraments. For example, when testing data reading each time, the 

same amount of data must be returned from the database. Similarly, as the test bench 

should be a simulation type, all the test parameters should be configurable so that 

different simulation scenarios can be produced.  

2.4.2. Current TSDB benchmarks 

TPC consortium defined benchmarks are in practice the standard in evaluation and 

comparison of the performance of database systems. TPC has many benchmarks for 

databases including TPC-C, TPC-DI, TPC-E, TPC-H, and TPC-VMS. Benchmarks 

are not especially for time series databases but databases in general. The TPC-C 

benchmark is an On-line Transaction Processing (OLTP) Benchmark. Benchmark 

uses wholesale supplier specific data and is measured in transactions per minute. [47] 

The TPC-DI benchmark is for Data Integration and its used for a situation where data 

is combined from multiple sources to one database [47]. The TPC-E is also an On-

line Transaction Processing (OLTP) Benchmark. It has more complex transaction 

types and execution structure. The benchmark uses stock brokerage data as an initial 

set of data. [47] The TPC-H is a decision support benchmark. The benchmark gives 

results as to how the database performs queries against its size or prize. [47] The 

TPC-VMS is a combination of TPC-C, TPC-E, TPC-H, and TPC-DS benchmarks 

and it is targeted for virtualized databases [47].  

These benchmarks are good in the sense of extensive documentation and open-

source implementation of most of them. As seen in chapters 2.1 and 2.3, in the 

industrial point of view scalability and acting in different kind of scenarios are the 

core of the characteristics. These benchmarks implement only a single scenario type 

of benchmarking and are therefore not good enough for this thesis.  

Yahoo researchers have developed YCSB (Yahoo! Cloud Serving Benchmark) 

benchmarking framework which is targeted for NoSQL databases. The framework 

includes a set of workloads that have, e.g., a different mix of read and write 

operations, data sizes, and request distributions. The architecture of the framework 

consists of three components: a client, a data generator, and a core measurer. As the 

framework is open-source, it is highly extendable and modifiable. [48] As the 

framework is not targeted for time series data Bader extended the framework to 

YCSB-TS. As the YCSB uses delete and update queries and most of the time series 

databases do not support those, they were changed to SCAN, AVG, SUM, COUNT 

queries. Also, a timestamp column was added to the data schema. [49] As the YCSB 

was already seen fitting for time series database benchmarking and it was modified 

to fit especially to time series data YCSB-TS can be taken as design and 

benchmarking reference for this thesis.  

There is STAC-M3 benchmark suite which is targeted for solutions with high-

speed analytics in time series data. As the benchmark suite is closed source code and 

only members of the STACK Benchmark Council have access to it and its detailed 

test specification, it is not suitable for this thesis. [50]   
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3. RELATED WORK 
 

In this chapter, relevant projects and papers for this topic are presented. The scope of 

the topic is limited to time series database and in general database comparison and 

benchmarking. This chapter is used to identify the scientific knowledge gap that this 

thesis tries to fulfill. 

  Schemakeit [51] has created a test bench for time series databases was developed 

in 2017. The test bench had a building energy management system's point of view on 

the topic. The test bench was developed on top of Docker, and it was a combination 

of benchmarking time series database and MQTT broker. Test bench had only 

writing speed, CPU time, memory, and pricing as a measurement metrics. Metrics 

were decided based on the building energy management system's viewpoint. In the 

thesis, the test bench was used to compare InfluxDB, KairosDB, and OpenTSDB. 

The results were that InfluxDB and KairosDB outperformed OpenTSDB. [51] As the 

thesis and the development test bench lacks the viewpoint and requirements of IIoT, 

it cannot be used for this thesis' purpose. In the implementation of the test bench the 

main lacking components are reading speed and the disk size of the database. It is 

also noticeable that all tested databases have released new versions of their product 

since the publication of the thesis.   

Bader [49] developed another test bench, TSDBBench, in 2016 which was 

targeted for time series databases. Test bench uses two metrics in comparison: query 

latency and space consumption. The test bench is scenario-based which means that 

benchmarking is performed in two scenarios where each scenario has five different 

sub-scenarios differencing by replication factors and cluster size. Two main 

scenarios are differencing on query types. The first scenario was 1000 read queries 

and second scenario 250 scan, avg, sum, and count queries. The test bench was used 

against InfluxDB, OpenTSDB, Druid, Rhombus, MonetDB, Blueflood, and 

KairosDB. Results showed that tested databases performed very differently under 

different scenarios. When looking over all scenarios, Druid performed the best. [49] 

Developed test bench provides relevant metrics and scenario-based support for time 

series database benchmarking, but it lacks the IIoT point of view. The 

implementation and design are useful and can be used as a design reference in this 

thesis.   

Only a feature-based comparison of time series databases was made by 

Wlodarczyk in 2012 [52]. Four database products: Chukwa, OpenTSDB, TempoDB, 

and Squwk were under comparison. The concerned features were: storage 

infrastructure, data acquisition, GUI, and support for advanced analysis. For 

advanced analysis purposes, OpenTSDB seemed to be the best solution. If full IT 

support is lacking and the solution is wanted to be self-hosted TempoDB seemed to 

be better for that situation. [52] These findings compensate Bader's findings that 

databases perform differently on different situations. As databases have different 

features, knowing what features there should be in IIoT is the core of this thesis. 

Goldschmidt et al. [53] took the industrial point of view on their time series 

database benchmarking. Benchmarked databases were OpenTSDB, KairosDB, and 

Databus.  Instead of just benchmarking multiple databases the target of the authors 

was to prove if these databases can linearly scale, handle the industrial workload, 

tolerate crashes, and have independent read and write performance. The 

benchmarking was done by having two different kinds of workloads and different 
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cluster sizes. The results showed that KairosDB was the only one that fulfilled the 

hypotheses. KairosDB could handle a workload of 6 million smart meters with a 

cluster size of 24. [53] For this thesis research showed that when having the 

industrial point of view in benchmarking the time series databases, the benchmarking 

workload needs to mimic real-world environment as the performance depends on the 

test data.  

InfluxData [54] has published four technical papers of their implemented database 

comparisons. They have compared their database against OpenTSDB, Elasticsearch, 

MongoDB, and Cassandra. The comparison has been made with write throughput, 

disk storage, and query performance metrics. In each comparison, InfluxDB is shown 

to be better. [54] For example, InfluxDB seemed to have five times faster write 

throughput, 16.5 times less disk usage, and 3.65 times faster query performance than 

OpenTSDB [38]. Results should be taken with caution as they are used for marketing 

and the benchmarking scenarios might have favored InfluxDB. Also, for the write 

speed test, they used bulk load write method which is not a practical way of writing 

in IIoT scenario. The used dataset had 10 000 unique values where each value had a 

new measurement in 10s intervals. This dataset does not represent the typical 

scenario for an industrial environment. It is still good to have some reference values 

that can be used to evaluate the correctness of the implemented test bench.  

Mathe et al. [55] have made time series database comparison from the DIRAC 

system point of view. In their comparison, OpenTSDB and Elasticsearch databases 

were used. The benchmarking was done by having three different scenarios 10, 50, 

and 100 clients that performed database queries which had 1-day, 3-day, 7-day, or 

30-day intervals. The performance was measured with the average response time and 

query throughput. Results showed that Elasticsearch performed better when the 

query interval increased. Similarly, when the number of clients increased in the test, 

the performance of the OpenTSDB decreased. [55] As mentioned in chapter 2.1 one 

essential characteristic of IIoT is scalability. The database should be able to scale 

without severe performance impact. Knowing that this might be an issue for some 

databases the test bench should include a test for that scenario.   

Rudolf [56] evaluated different databases for Smart Spaces. The author argued 

three hard requirements: time series data support, available API, and ACID support. 

Also, five soft requirements were argued: versioning, replication and partitioning, 

access control, encryption, and a messaging system. The author also conducted 

performance benchmarking for the databases with insert, read, and delete queries. 

The author suggested PostgreSQL, Redis, and InfluxDB databases for Smart Spaces. 

[56] The research paper conducted good performance benchmarking and feature-

based comparison. As the point of view is targeted for general Smart Spaces and not 

specifically for IIoT the paper does not provide an answer to this thesis’ questions. 

Lautenschlager et al. [57] conducted time series database comparison as a part of 

introducing their database implementation.  The evaluation included the author’s 

own Chronix database, Graphite, InfluxDB, and OpenTSDB. The comparison was 

made with write throughput, storage efficiency, and query performance as metrics. 

The results showed that Chronix had 4-33 times faster write throughput, 5-171 times 

more efficient disk usage, and 26-85% faster query times.  The evaluation had three 

different scenarios in the sense of data writing and queries had four different query 

intervals. [57]  
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In summary, previous related work showed that there had not been implemented 

an extensive time series benchmarking test bench and feature-based comparison 

which would have the industrial point of view. Previous test bench implementations 

did not use all relative metrics in their performance evaluation or the used test cases 

does not reflect on IIoT use cases. Goldschmidt et al. benchmarked the time series 

databases on cloud with large node count. Their focus was also more on database 

scalability than overall performance. For example, their evaluation did not evaluate 

how the requested timespan affects on the database’s read performance. It hence 

leaves a knowledge gap on how databases perform as a single node solution and in 

more detail. Regardless previous implementations showed good design practices for 

the test bench and benchmarking. Designed testbench should have scenario-based 

testing and use at least query latency and space consumption metrics. Test cases 

should also include test case for scalability.  
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4. USE CASES OF A TSDB IN IIOT 
 

In this chapter, different use cases for time series database in IIoT are presented and 

argued what is required from the time series database in those use cases. Presented 

use cases are: write heavy scenario solution, read heavy scenario solution, concurrent 

write and read operations scenario solution, and hierarchical solution. Use cases 

show how the critical factors for the database differ based on the business scenario. 

In a single node solution, the system consists of only one database. The database 

can act as a data collector where the database is located on-premise near the data 

producing devices. The database is under heavy write operations. In this use case the 

write throughput, write scalability, database size management, and data aggregation 

are critical features. The motivation for this solution is just to gather the on-premise 

data without hectic data usage. Example use case of this kind of solution is on-

premise IoT solution with IoT gateway which presented in figure 4. Data is collected 

from the devices to the database and only aggregated values are forwarded with the 

IoT gateway to, e.g., a cloud for more detailed and processing with a more extended 

history length.  

 

 
Figure 4. Write heavy data collector solution. 

 

 Another use case is where the database acts on more data analysis purposes, and 

that way is more under heavy read operations. In this scenario the database’s read 

throughput, analytical features, e.g., data processing and predictions, and data 

modeling features are critical. Example use case of this kind of solution is plant 

information management system (PIMS) or cloud-based database which is presented 

in figure 5. PIMS collects and integrates data from multiple sources and offers that 

data for different business levels. PIMS system is used for analyzing plant-wide data 

for business decisions. With IIoT PIMS type of systems can be deployed on the 

cloud. Data can have multiple different users, e.g., process managers, business 

controllers, buyers, and chief executives.  As the collected data consists of a large 

area which has multiple sub-areas and devices, data modeling becomes critical for 
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efficient usage. Custom and hierarchical data models are necessary for subclass type 

of data.   

  

 
Figure 5. Read heavy PIMS solution. 

 

A third use case can be supervisory control and data acquisition (SCADA) system 

where data is concurrently written and read for monitoring and control functions. 

SCADA is an old system concept, and it is not specific to IIoT. IIoT allows more 

control and monitoring type of functionality to be done and hence SCADA like 

control and monitoring system is used as an IIoT use case example. SCADA system 

consists of the underlying devices, central control server, database, and human-

machine interface (HMI) which is used by the process operator to control and 

monitor the connected devices. The architecture of a SCADA system is presented in 

figure 6. In SCADA like system scenario the database is required to handle 

concurrent write and read operations without extensive impact to each other. For the 

control purposes ability to send commands back to the device based on the received 

measurement from the device is functionality that is expected from the database.    
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Figure 6. SCADA monitor solution. 

 

A fourth use case can be a hierarchical solution where multiple databases are 

connected to each other from different levels and working as one single system as 

presented in figure 6. In a factory environment this scenario is typical where the 

production line consists of multiple parts which all can have their own database for, 

e.g., SCADA system and these databases forward their aggregated data to an upper-

level database which holds the whole production line wide data for, e.g., PIMS 

systems. This kind of solution relays on the database’s hierarchical configuration and 

functionality to co-operate with other databases.  

As reliability is an important factor in industrial field databases usually are 

replicated to allows data availability all the time. In a replicated system data database 

consists of two database nodes which have the same data and this way allow the data 

to be accessible and writable even if one of the database nodes malfunctions. For 

SCADA like control systems, data availability is critical as the monitored device 

needs to be able to be controlled.  
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5. REQUIREMENTS FOR A TSDB IN IIOT 
 

The core of this thesis is to identify the requirements that the time series database has 

in the IIoT environment. The identification is made by reviewing the IIoT literature, 

derived from earlier use case scenarios and IIoT characteristics, and interviewing 

employees of ABB who have the practical knowledge of manufactory customers’ 

demand and behavior of their usage context. The interview was a group interview 

where five ABB employs who have been working with time series databases in 

industrial environment over 10 years and are part of time series database developing 

team. Interview was unstructured interview were identification of the requirements 

were done by going though different real client use cases and key characteristics in 

them. The literature review was targeted for IIoT solutions and databases in 

industrial usage. Used keywords included: IIoT, IIoT on premise, IIoT challenges, 

time series database, IIoT forecasting, smart factory, control systems, SCADA, and 

PIMS. Literature review included over 30 papers from journal databases and subject 

specific websites. Based on literature and interview findings the requirements are 

divided into functional and non-functional requirements. Functional requirements 

define what the database should do and have while non-functional requirements 

define how to database should perform.   

5.1. Functional requirements 

Based on the related literature and interviews the following functional requirements 

were identified: 

  Deployment/platform support 

  Time series support 

  Datatype support 

  Aggregation support 

  API’s 

  Information models 

  Hierarchical systems 

  Write-to-device support. 

 

Next, each of the requirements is described and reasoned in more detail. 

Even though cloud computing is a core component of IIoT, Edge computing is as 

an essential component for interfacing the devices, especially in the case of an old 

installed base. Also many manufacturers want and need local data processing and 

management for privacy, cybersecurity, application functionality, and performance 

reasons. The platform may be selected in the Cloud according to the database 

requirements, but in on-premise Edge the installation platform is frequently defined 

by other requirements than the database, especially in the case when it is embedded 

in the device itself.  

The most popular platforms for on-premise are Windows, Linux, or Docker. 

Especially lately Docker has gained popularity as a deployment platform [58]. 

Docker’s easy way to produce multiple similar environments with one docker image 

is valuable as there can be multiple deployments of the database on the same smart 

factory.  
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As the focus is on time series databases the database needs to have support for 

time series data. The database should have a built-in data model which implements 

Equation (1) from chapter 2.2. The database should present the current value of the 

data point efficiently for supporting real-time data visualization and other monitoring 

applications. For fast data processing and visualization, the database should have 

specific storage for aggregated values which contains pre-aggregated values, e.g., 

average of the last hour.  

As shown in chapter 2.2 the number of data points per day can grow in enormous 

sizes. When processing data over multiple days or weeks the processing can be 

extremely slow if it is done only with the raw values. The database should have pre-

aggregation functionality so that it can calculate the pre-aggregated values for the 

incoming data. Pre-processing functions, e.g., alarm limit detection, data validation, 

and value unit converting are valuable for accurate and efficient data processing. 

Alarm limit detection functionality is necessary in process information management 

use cases. Data validation would validate that the received value is in a reasonable 

range and by that improving data reliability and facilitating application development. 

As e.g. the USA and Europe use different units for some metrics, unit converting is 

valuable so that the same database product and data can be used across the different 

locations. The database should also have specific storage for events and alarms as 

they are key concepts in an industrial system. In the industrial context, events could 

be, e.g., too low oil level of a motor or if the motor’s RPM is abnormal.   

As with any database, the broader the database’s data type support is, the more 

useful it is in various scenarios. In an industrial environment, these data types could 

be different lengths of integers, enumerations, doubles, floats, strings, timestamps, 

UUIDs, arrays of previous, and BLOBs. Broad datatype support is part of efficient 

data processing. It should also be noted that some of the values can vary in length, 

and the database should be able to handle varying length data efficiently.  

In industrial systems knowing how the system performs under critical scenarios, 

for example under maximum load, is crucial. A database that is integrated into 

performance critical system should provide support for simulations where these 

scenarios can be tested without modifying the actual data. Simulation enables the 

investigation of phenomena when actual observed data is not available. Fields, where 

this simulation functionality is used, are especially oil, gas, and energy management. 

[59] From the analytical side, the database should provide some support for 

prediction and forecasting functionality. This functionality is required e.g. in 

preventive maintenance use case. The analytical side of the database is also valuable 

for the user to achieve more detailed data insights.  

As seen in chapter 2.1, in IIoT there can be multiple different protocols and 

technologies in use. The database should provide the necessary API’s for data 

injection, data acquisition, and querying. Especially in an industrial environment, 

OPC UA is a standard communication protocol for data acquisition as well as 

retrieving to applications. Having the possibility to use OPC UA protocol from the 

device to inject data into the database or the database to subscribe the data from the 

device would enable various use cases. [60] Other relevant data injection API’s could 

be ODBC/JDBC, HTTP, or WebSocket. In the industrial environment, SCADA 

systems are common data acquisition systems and the database should support 

communication with them [61 p.9]. With the installed base it is essential that the 

database provides protocol master services (active client that subscribes the data 
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from devices) and supports older generation protocols such as classic OPC and 

Modbus. The database should also have a subscription type messaging system 

between different nodes or the database and a client. Subscription functionality 

would be used for example when the monitoring system wants to subscribe just to 

critical failure events. Publish-subscribe pattern reduces database and network load 

as the client does not need to make read queries at constant intervals. 

In IIoT, the data comes from some device and produced values are mapped to 

some specific device or equipment ID in the database. For better usability of the data 

in various kinds of applications, the database should support information models or 

so-called digital twins. Information models help to make the raw measurements more 

understandable for the end users and enable model-based applications and data 

visualization. [62, 63] The data should be able to access through a model which 

combines all the relevant data. A database should also support external applications 

and protocols which use an information model, e.g., OPC UA. Database’s data 

acquisition services should be configurable with the created information models 

keeping the data modeling uniform.  

In chapter 2.1 scalability, failure-tolerance, and hierarchy were listed as critical 

characteristics for IIoT. By having multiple nodes, measured data is not lost in case 

of database failure. In large plants and factories distributed hierarchical control 

systems are standard. This base system hierarchy also creates a requirement for the 

database to support hierarchical system configurations. An example hierarchical 

solution with four database nodes is presented in figure 7. Especially in control 

systems, the database with its analytics features should be able to write the desired 

setpoints back to the control system. The database therefore should have write-to-

device support which allows secure bidirectional communication between the 

database and the connected device. Plant level applications are typically run against 

the upper level database and the write to device shall be supported over the 

hierarchical configuration.    

 

 
 

Figure 7. Hierarchical system. 
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5.2. Non-functional requirements 

Based on the related literature and interviews the following non-functional 

requirements were identified to relate to: 

  Scalability  

  Security 

  Availability 

  Performance 

  Resource usage 

  Costs 

  Engineering experience 

  Lifecycle. 

 

Next, each of the non-functional requirements are described and reasoned in more 

detail. 

In chapter 2.1 scalability is identified as one key characteristic of the IIoT. The 

database should be scalable from small few signals data logger to plant wide or 

Cloud based central system. In this context, scalability contains many viewpoints. As 

the idea of the IIoT is to connect multiple (thousands of) devices which each may 

produce up to hundreds of frequently changing time series signals, the database 

should be scalable to handle this vast amount of time series data and clients. As the 

amount of data grows in the database as the time passes, the database should also 

scale by managing the size of itself ensuring the database does not grow over the disk 

size or some other predefined limit.  

If the system is configured for high availability, there should be a load balancing 

functionality which allows multiple databases to serve the same data efficiently. 

Database nodes may also support federations that makes them seem as one database 

and provide horizontal scalability. Scalability can also be addressed with hierarchical 

systems where the detailed raw data is collected in lower level nodes and aggregated 

values transferred to central higher-level system.   

In industrial context, the data may include sensitive business information which 

must not leak outside the operating context. The database should implement basic 

AAA-principles and the fundamental information security CIA-model [64, 65]. Data 

in transit must be secured in device to database, database to database, and database to 

clients communications. Users and clients should be authenticated, and data access 

authorized. There are multiple ways to implement the authentication, e.g., certificate-

based or supported by ID management system. Authorization should provide role-

based access control which enforces the object of keeping the data available only for 

the authorized operating context in corporate wide deployments. In a situation of 

multi-tenancy, the database should provide a secure and private environment for each 

tenant. The database should also keep audit log for security and fault-tolerance 

reasons. Changes should be trackable to a specific user, and in case of failure, the 

database should be able to recover without data loss.  

One characteristic of IIoT systems is demand for high availability to enable 

continuous data collection and service for the clients. This may be achieved in 

different ways, but typically it is implemented with multinode architecture where 

data is replicated to multiple nodes as presented in figure 8. Data replication allows 

data to be accessible even if one of the nodes suffers from a failure. The database 

should also have a backfill support which allows filling missing values if there are, 
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e.g., network failure in the system. If the database fails, there should be a backup and 

restore functionality allowing database restoring. Possible data loss can mean 

significant financial loss for the company and the risk should be minimized with 

described methods.  

 

 

 
Figure 8. Architecture for high availability system. 

 

As many of the tasks in IIoT are time-critical the performance of the database is 

critical for successful implementation. In this context, the performance consists of 

data injections speed, data retrieval speed, and latencies between the client and the 

database. As the amount of data may be enormous in IIoT, the database should 

handle even tens of thousands of values per second as continuous load. That kind of 

performance requirement, especially as continuous load, is not typically met by the 

regular databases.  

Resource consumption is related to performance as it shows the cost of the gained 

performance. Resource management consists of CPU, RAM, networking and disk 

space usage. As the time series databases typically compress the data when its saved 

on the disk, the smaller the disk space usage is, the better compress performance the 

database has, but there must not be any significant loss in the data accuracy – this 

means that reducing the amount of data samples is not the preferred way for 

compressing data. 

From the financial point of view, the cost of the database is also significant. 

Primarily if the database is deployed on the cloud service, there is pay-as-you-go 

type pricing where the price is bound with the level of usage. If the solution is 

deployed on-premise, there can also be costs on software licenses and the hardware. 
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The database which is chosen should give the optimal price-performance ratio. In 

multimode solution the overall price of the system can grow fast which gives more 

value for the price requirement. Price should also be examined in other features that 

it holds, e.g., dedicated support and related own development costs.  

From the user’s point of view, the usability of the database is critical. The 

usability can be measured in the level of engineering experience and work required 

to install, configure, and maintain the database. The configuration consists of 

configuring info models, instances, signals, data acquisition, and role-based access 

control. The amount of documentation and its quality also affect to the usability of 

the database.  

Availability of usage support, and its quality in the sense of response time and 

location, for the database affects on the usability of the product. Nowadays online 

support service is relatively standard, and it eases the support availability. Even an 

on-premise support person can create significant value for the manufactory customer.  

In addition, the database’s lifecycle and product support availability are essential 

in the industrial use. For example, for many industrial devices the lifetime and 

support for maintenance can be over 15 years [66]. The services based on the 

database should have as long life-cycle expectation and support available for updates 

and upgrades for the installed solutions.  
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6. TEST BENCH DESIGN AND IMPLEMENTATION 
 
One research objective of this thesis was to design and implement performance test 
bench for time series databases. In this chapter, the developed test bench’ design and 
implementation are presented. First, the overall architecture of the system is 
examined. Then the main components of the system: data production, data 
consumption, and telemetry recording are presented in more detail.   

6.1. System architectural overview 

The test bench is written on C#, and it has a configuration file that is used to control 
the test parameters. A tested database is deployed on a virtual machine as a single 
node solution. The test bench does not automate virtual machine deployment or 
database configuration that must be done before the test bench is run. As it was seen 
in the previous chapters and related work, the test bench should support different 
scenarios. The test bench has three different test cases which try to simulate three 
common IIoT use cases which are: 

 On-premise IoT, heavy data insertion with random reads 
 PIMS/cloud-based, random inserts with heavy reading 
 Monitoring, concurrent data insertion, and reading 

 
With these use cases, the test bench tries to take IIoT point-of-view to the 

performance measuring. On-premise IoT scenario is a smart factory type scenario 
where the raw data is sent to a local database, and from there more aggregated values 
are sent in batches to another database. In this scenario database load is more data 
write-oriented and the write performance of the database is more critical. 
PIMS/cloud-based scenario would be another database where the aggregated values 
are sent from the premise. The database is under heavy read-type load as the data is 
used for more analytical tasks and the read performance of the database is more 
critical in this scenario. The third scenario simulates on-premise monitoring scenario 
where the raw data is under real-time monitoring and the combined performance of 
read and write operations of the database is crucial. Figure 9 presents the overall 
architecture of the system. The architecture inherits the normal database testing 
system architecture from chapter 2.4.1.     
  

 
Figure 9. System architecture. 
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Test bench manager maintains the test runs and spawns the necessary data producer 

and clients who read the data. Test bench manager also spawns the telemetry 

monitoring to the virtual machine that holds the database under the test.  

The first test case tests the write performance of the database with measurements as 

the number of data points to write per second and the delay of when the written data 

is available for queries. The second test case tests the read performance of the 

database with measuring the time it takes to complete the query. Testcase has three 

different subcases where timespan, the number of variables, and the number of 

connected clients is increased. The third case tests the effect of reading the 

concurrently written data and how it affects on write and read performance of the 

database. All test cases can be run separately or in sequence. From the earlier 

identified requirements, the test bench is targeted for scalability, performance, 

resource consumption, and lifecycle. Other requirements (e.g., redundancy, API 

support, cost) are evaluated based on documentation as they are hard or impossible to 

measure in the test bench.  

As the database’s performance might differ over time because of disk saturation, 

the test bench is designed to support long test cases. In these long test runs, test 

bench writes data to the database and starts to measure the database’s performance 

after a given time, e.g., one week. This way the real performance of the database can 

be measured. Also, the lifecycle management that was one requirement for the 

database can be tested with longer test runs.  

The test bench is modular enabling testing of a new database by only implementing 

the read and write functions that are typically vendor specific. Also, the virtual 

machine that has the database should be created. 

In chapter 2.4.1 was stated that for simulation purposes the test bench should be 

configurable for different simulation types. Hence as the number of variables to write 

and write frequency, number of variables and timespan to read can all be modified 

for different workload scenarios, the test bench allows the user to run the test bench 

for user’s specific scenario. This design differs from earlier implementations which 

use some specific dataset, and it could not be modified.  

Test bench saves all collected measurements on own text files which use tab 

separation format. Each test, subtest, and telemetry collection measurements have 

their own recording file. Test bench doesn’t implement result processing, but it is left 

for dedicated programs, e.g., Microsoft Excel.  

6.2. Data production 

Data production is done by using vendor-specific API and especially the API that is 

recommended for best performance. Produced data is time series type of data which 

was presented in chapter 2.3 where the datapoint has time, value, and status. 

Produced data also has a variable name which represents a measurement, e.g., the 

rotation speed of a motor. Hence the produced datapoint has four columns as 

 

X = (timestamp, variable_name, status, value),   (2) 

 

where datatypes are timestamp, text, text, and integer. Data is written into a single 

table or another similar type of data structure to keep the databases comparable as 
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their data structure can vary. In the write performance test case the number of 

variables is increased after configurated iterations. Iterations define how many 

measurements of write performance is taken with one variable count. During each 

iteration, a new random value is inserted for variables. The frequency of write 

operations can be configurated for different types of write-loads. Write performance 

is measured as an average time it took to write the specified number of data points. 

Depending on the write operator’s behavior the execution time is either the write 

operation(s) duration or the read-back duration with a threshold value. As the default 

write frequency is one per second, the number of written variables is equal to the 

number of written datapoints. The most recent written value in each write iteration is 

read back to verify a successful write operation. Value is also read back to measure 

the delay that the data has until it is available for reading once it has been written. 

Each iteration duration is fixed for one second. If the write frequency is more than 

once per second, only the last write operation of that iteration is verified. Hence write 

is verified only once per second. Data production can be configurated with initial 

iterations where data is written to the database without performance measuring to fill 

the database. By filling the database with initial data, the average on-production 

performance can be measured.  

Measured metrics, write operation duration and duration to read the value back, 

are standard and hence valid benchmarking metrics. Metrics are dependable only on 

the number of written values and used communication protocol. As some databases 

only offer one interface to it the used communication protocol and part of databases 

overall performance. Duration to write the same number of values should also be 

repeatable. If the values differ then it shows that the database’s performance is not 

static. Duration should also be linear when the number of written values is changed 

linearly.  

6.3. Data consumption 

Data read test case has three different subcases where timespan of one variable, 

number of variables, or number of connected clients are varied. The timespan 

variations measure the read performance of the database over time field, and it 

measures how many data points can be read from the database per second. Testcase 

measures how time increase in timespan and hence the number of queried datapoints 

affects on query completion time. As the key query in time series databases is against 

time field of the datapoint, this performance is key read performance type of the 

database. The second subcase measures how the database performs when multiple 

variables are read from the database. As in the IIoT environment, one device can 

send multiple measurements which correspond to multiple variables, read 

performance over multiple variables can be important for cases that kind of devices 

are monitored.  In this test case, the timespan of each variable is static and can be 

configurated. The third subcase measures how the number of reading clients affect 

on query competition time of one client. In this test case, other clients query a 

configurable number of random variables on given timespan. As seen in the 

requirements the database should be scalable as there can be multiple devices trying 

to write and read to the database. Hence the performance of multiple connections 

should be measured. 

Read query tries to read all datapoint fields and the search query is targeted with 

variable name and time fields. Figure 10 presents an example search query of 
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multiple variables, but the query can differ because of database own query 

languages. The result of read queries is also verified that all queried data was 

received, and the correct amount of data points was retrieved. To be sure of the 

amount of data that the database has before read tests, data is written to the database 

with fixed timestamps and data is queried against those timestamps.  

 

 Select * from data where variable_name in 

(‘testinstance_1’,’testinstance_2’) and time > now() – interval ‘5 min’;  

 

Figure 10. Example search query.  

 

As measured metrics are time-based, they are also valid performance metrics. Read 

operation duration can differ based on how the used drive is fragmented. 

Fragmentation can be compensated with long test runs. Also, the more static the 

duration is, the better performance the database has. Hence the linearity of the metric 

indicates worse performance for the database. When comparing different databases, 

results should be comparable then same hardware and number of values are used.  

6.4. Telemetry recording on resource consumption 

Telemetry recording measures the resource consumption of the database. Measured 

metrics are CPU usage, RAM usage, Disk usage, Disk space, and Network usage. As 

the virtual machines are Microsoft Hyper-V virtual machines, the telemetry 

recording is done via Powershell. Powershell gives access to Hyper-V statistics 

which record the resource usage of each virtual machine. In the write test, resource 

consumption statistics are saved before each variable increment so the effect of write 

load increment to the resource consumption can be examined.  

Similarly in the write test, before each increment in timespan, variable count or 

client count the resource consumption statistics are saved. As the disk space of the 

virtual machine is measured before and after the test case, the compression of the 

database can be evaluated with the difference of those measurements. Network usage 

can also be crucial in some situations and measuring that gives insights how network 

depended the database is.  
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7. EVALUATION 
 

In this chapter, the second research objective of this thesis is conducted. The test 

bench is applied to three time series databases: cpmPlus History, InfluxDB, and 

TimescaleDB. Databases are first evaluated with the identified requirement from 

chapter 4. As the test bench evaluates only the performance aspect of the database, 

the evaluation for most requirements is done via the database’s documentation. 

Lastly, the test bench is applied to these three databases, and the results of the tests 

are presented. The analysis of the evaluation is done in chapter 8. 

7.1. Selected TSDBs for evaluation 

For practical evaluation and demonstration of the test bench, three time series 

databases are chosen. ABB’s time series database cpmPlus History is chosen as it 

represents business product which is dedicated for industrial field within ABB. 

InfluxDB is chosen as it has gained much popularity during the past few years and 

having reputation to provide good performance. InfluxDB is also a mixture of 

opensource and commercial closed-source product as the main core of the database is 

free. TimescaleDB is chosen as it is fully open-source and built on top of 

PostgreSQL. TimescaleDB is also popular within time series databases, and there 

was a practical case where a company used InfluxDB first but switched to 

TimescaleDB for better performance in their use case [67]. 

 

cpmPlus History 

 

cpmPlus History is ABB’s own time series database that is provided as part of 

ABB Ability
TM

 platform common components. cpmPlus History is developed and 

maintained by Digital ABB and free to be used and sold by ABB business units. 

Outside ABB only paid edition is available. Windows is currently the major 

deployment platform, though there is Linux version available, and Docker version 

coming soon.  cpmPlus History supports high availability with online replication 

between two full functional nodes. Data is replicated in real-time between both nodes 

and they are also capable to provide full functional services the clients and data 

acquisition concurrently and designed to be always available if one of the nodes goes 

down. cpmPlus History has built-in data retention component that keeps the database 

in its configured size by deleting the old data when it is older than the defined life 

time. 

For security requirement, cpmPlus History has user authentication and 

authorization, and secure communication protocols. cpmPlus History can use 

Windows domain or workgroup, Linux PAM, LDAP supported ID management, and 

Azure federated ID management for user authentication. User permissions on data 

can be set on three levels: classes (like a table), properties (like a column), and 

instances (like a row). For each of these levels user permission can be defined for 

five actions: read, write, execute, create, and delete. Data access permissions can also 

be set to some specific time range. For improving the engineering experience access 

control definitions support inheritance in information model structures that reduces 

the number of required definitions significantly.  
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 Based on setting up the database for the performance testing and integrating it 

into the test bench cpmPlus History doesn’t require extensive engineering work. 

Installation of the database was the most straightforward of the three databases as all 

the tables were automatically created. The only configuration before actual usage 

was to set the hardware bonded configurations, e.g., maximum database size and 

cache usage. Database installation comes with a tool that can be used to set those 

configurations. cpmPlus History as a database has relational data model, but through 

the public APIs it exposes higher-level object-oriented information models (class, 

property, instance) and especially for time series management so called equipment 

model. Understanding these concepts and how to use them on the database can create 

some extra work. However, as the database is targeted for industrial field actual data 

is more natural to model on these concepts than on relational data model with tables, 

columns, and rows.  

cpmPlus History is currently on version 5.1, and its first release was in 1999. 

Products long lifetime and dedicated development team indicate long lifecycle and 

support for the product. cpmPlus History’s version 4.5 which is five years old is still 

under maintenance and bug fixing support.  

cpmPlus History support timestamps on 100 ns resolution. cpmPlus History 

implements by default the time series data point structure which was presented in 

chapter 2.2. Supported data types for the value field are Boolean, enumerated 

binaries, integers, floats, text, arrays, and blobs. There is also support for events and 

alarms. For data aggregation and processing, cpmPlus History provides 

preprocessing, alarm/event detection, validity and substitute handling, online 

aggregation, and data recording for high-frequency signals. Aggregation functions 

contain, e.g., time average, sum, std, min/max, time integral, and operating time. 

There is also support for simulations and what-if situation processing. 

As public API’s, cpmPlus History supports OPC DA/HDA, OPC UA, .NET, 

ODBC, C++, MQ, REST, WebSocket, and for data acquisition, e.g., Modbus 

interface. cpmPlus History implements a publish-subscribe pattern allowing, e.g., 

clients to subscribe to some specific variable. cpmPlus History also allows users own 

data models as it has data abstraction layer on top of the database.   

cpmPlus History support hierarchical system configurations where there are lower 

level data collector nodes which can be connected to the higher master node. 

cpmPlus History also support bi-directional interfaces for SCADA and DCS 

implementing write-to-device support. 

 

InfluxDB 

 

The second evaluated database is InfluxDB. As InfluxDB was briefly introduced 

in chapter 2.3, it is a relatively new database. For cost requirement, InfluxDB can be 

free as it has TICK-stack product collection which is open-source under MIT license 

and one product under AGPL license. TICK-stack is a single-node solution, and it 

has all the main components. InfluxDB has an enterprise edition which gives 

clustering functionality which gives high availability and scalability, more tailored 

security, advanced backup and restore functionality, and complete support. From the 

industrial point of view clustering and security functionality can be mandatory. 

Pricing for an on-premise solution is done based on nodes.   

For deployment and platform support requirement InfluxDB supports Linux, OS 

X, and Docker. InfluxDB also has binaries for Windows, but it is currently on 
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experimental phase. InfluxDB can also be deployed on AWS. For hardware, 

InfluxDB has one soft limitation as it is designed for SSDs. The database can be used 

with normal hard drives also, but it is not recommended for production purposes as 

the database does not perform as well on it.   

    As stated in pricing InfluxDB supports scalability and high availability only in 

the enterprise edition. High availability is achieved with data replication. Clustering 

is done with meta and data nodes where meta nodes have the cluster management 

and data location information, and data nodes have the actual data. Data is distributed 

and replicated by shard files which are time divide set of the actual data. Scalability, 

when data grows, is handled with retention policies concept which allows data 

deletion after a certain period of time. There can be multiple retention policies on the 

database allowing a different length of histories for the data. For the security 

requirement free version of InfluxDB has only authentication and authorization, and 

database level read and write permissions. Enterprise edition adds fine-grained 

authorization which allows measurement, series and tag level permissions where 

measurement equals table, series equals variable, and tag equals column. For cluster 

management, there are also 16 different permissions. Permissions include managing 

nodes, managing databases, managing users, and monitoring the cluster.  

Based on setting up the database for the performance testing and integrating it into 

the test bench InfluxDB doesn’t require extensive engineering experience. Installing 

the database is exceptionally straightforward, and documentation for setting up the 

database is clear. The configuration of the database is done via one configuration file. 

Because of InfluxDB has built own data schema, efficient data management might 

require an extensive understanding of the use case’s data layout from the user.  

As InfluxDB is relatively new, its lifecycle and future support should be secured. 

The database has had one big architectural change during its lifetime that divides the 

product support in half. The database is currently on version 1.6.1 and during last 

one-year timespan is has had 13 version updates. As the main core database and its 

other add-ins (Telegraf, Chronograf, and Kapacitor) are open-source, support and 

bug fixing is not bonded to a limited amount of developers. The more the customers 

and users take part in the product’s development the more support they get. With 

enterprise edition there comes also dedicated support team from InfluxData.  

InfluxDB has broad support for time series data. If no timestamp is given when 

writing the data, InfluxDB uses server’s locale nanosecond UTC timestamp for the 

written data point. The database engine uses the timestamp for managing and 

locating the data. InfluxDB does not have specific concepts or storage for current 

value or events and alarms. For datatype support, InfluxDB supports strings, floats, 

integers, and Booleans. InfluxDB has built-in functions for basic data aggregation 

(sum, mean, median, stdev, and others), querying data with sampling and filling, and 

data prediction with the Holt-Winters method. More complex functions are left for 

the user to build from those simple functions. InfluxDB has continues query concept 

which allows, e.g., automatic aggregation calculations, value limit detection, and 

data transfers for different measurement tables. For events, alarms and data 

processing there is another TICK-stack component, Kapacitor. With Kapacitor user 

can create alerts, events, and custom data pre- and post-processing functions. 

InfluxDB does not have support for simulations.  

For API’s InfluxDB supports HTTP as the main write and read interface. There is 

also support for UDP, but as it is connectionless, it is not meant for data writing. 

InfluxDB has also support for CollectD, Graphite, OpenTSDB, and Prometheus. 
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There is a subscription type of messaging support, but it is used only with Kapacitor. 

Kapacitor is implemented with publish-subscribe pattern and expands supported 

API’s as it has an interface for example for MQTT. As the InfluxDB’s data schema 

was briefly introduced in chapter 2.3, the data schema is flexible in some constraints. 

There is no support for information models or user’s data models, but data must be 

modeled in terms of InfluxDB’s concepts: measurements, tags, and fields. 

Hierarchical data models are not supported.  

There is no support for hierarchical systems in InfluxDB. In clustered solution all 

databases are equal. InfluxDB itself does not have write-to-device functionality, but 

it can be achieved with Kapacitor. The remaining limitation is that the device and 

Kapacitor should be able to communicate with each other.  

 

TimescaleDB 

 

The third evaluated database is TimescaleDB which is fully open-source database 

and hence has no costs. It is built on top of PostgreSQL which is also open-source 

database. TimescaleDB is under Apache 2.0 license and PostgreSQL under its own 

PostgreSQL license. For deployment and platform support requirement TimescaleDB 

supports Linux, OS X, Windows, and Docker. TimescaleDB is also able to be 

deployed on AWS and Azure. There is also TimescaleDB Enterprise edition which is 

paid edition. Enterprise edition adds deployment support, proprietary features and 

functionality, and SLA level support. More detailed description of proprietary 

features and functionality is not publicly told.   

TimescaleDB has replication functionality which allows high availability. 

Replication is done by mirroring the primary database’s data to another node. 

Replication is done by streaming the WAL file to standby nodes.  The database can 

also scale horizontally by making the replica nodes read-only nodes, allowing them 

to be used for read queries. TimescaleDB does not have built-in automatic size 

management or old data deletion. Functionality can be created, but it will run as a 

scheduled job by the OS.  Data retention policies can be created for each hypertable. 

By PostgreSQL, TimescaleDB also supports backup and restore functionality. For 

TimescaleDB security functionality support comes from PostgreSQL. PostgreSQL 

allows user authentication, access control which includes a database, table, column, 

row level of permissions. Different roles and user groups can also be created.  

Based on setting up the database for the performance testing and integrating it into 

the test bench TimescaleDB itself does not require extensive engineering experience 

but it is highly dependable from PostgreSQL. Working effectively with 

TimescaleDB knowledge of PostgreSQL is required as most of the functionality and 

syntax is supported by that. Installation and documentation for TimescaleDB are 

straightforward and clear but compact.   

As TimescaleDB and PostgreSQL are both fully open-source lifecycle and support 

are dependable of the activity of the product’s community and users. The database 

has Timescale company managing the product which gives some static support and a 

static element for the product. TimescaleDB was released in 2017, and hence there 

are not much data of lifecycle support. The product is currently on version 0.11, and 

it has some public deployments with other companies. The backbone of the database, 

PostgreSQL, is nearly 20 years old and currently on version 10.5 which indicates 

long lifetime support for the TimescaleDB.   
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TimescaleDB creates the time series data support for PostgreSQL database. 

TimescaleDB implements wide-column data model allowing multiple values 

associated with one timestamp instead of creating a unique time series data point for 

each value which has the same timestamp. Data consists of chunks which are time 

partitioned individual tables. Chunks are integrated into one big table, hypertable. 

Smallest supported time unit is a microsecond. As the hypertable consists of time 

partitioned chucks, the table is indexed by time on default. Supported data types are 

charm char, varchar, text, integers, floats, Boolean, UUID, arrays, JSON, and 

JSONB. From PostgreSQL TimescaleDB supports full SQL functions. TimescaleDB 

adds time series specific functions like time bucketing, first and last values, 

histogram, and data filling. TimescaleDB also supports data backfilling. Predictions 

can be made by combining time series specific functions and PostgreSQL functions. 

Currently, TimescaleDB does not support alerts or events. There is support for 

triggers which can be used for data validation. Specific built-in processing or 

aggregating functions are not implemented, but full SQL support offers basic 

arithmetic aggregation functions. Automated queries or jobs, e.g., automated data 

aggregation is not currently supported.  

As Timescale is built on top of PostgreSQL and supports SQL, TimescaleDB 

supports the same APIs as PostgreSQL. These are, e.g., OBDC, JDBC, ADO.NET, 

and REST API. There is also a specific adapter for Prometheus which is metric 

collecting tool. Because of open-source background, there are multiple different 

plugins created for PostgreSQL including MQTT adapter. Correctness and stable 

function of these plugins can of course vary. PostgreSQL allows custom data types, 

composite types, and views which can be used for user’s information modeling.  

There is BDR plugin for PostgreSQL which allows multi-master replication which 

would allow hierarchical system configurations with selective replication. Making 

BDR compatible with TimescaleDB hypertable format requires still some work. A 

built-in solution for hierarchical systems and write-to-device is not implemented on 

TimescaleDB or PostgreSQL.  

Summary of how each database fulfilled the functional and non-functional 

requirements is presented on table 1. Each database is graded with scale of zero to 

two how extensively it supports the requirement where 0 present no support, 1 some 

support, and 2 extensive support. For the costs requirement the scale is product with 

no costs is graded with 2 and product with mandatory costs is graded with 0. 

Lifecycle grade is affected by the history of product support.  

As cpmPlus History and InfluxDB does not have stable release for Linux or 

Windows they have 1 for deployment/platform support. TimescaleDB does not have 

built-in automatic data retention policies as others have and hence it has 1 for time 

series support. InfluxDB is lacking large datatype objects while others have support 

for then and hence it has 1 for datatype support. TimescaleDB is lacking some more 

advanced aggregation functions compared to the other two. InfluxDB has only HTTP 

interface itself and hence lacking in API’s. InfluxDB does not support own 

information models and TimescaleDB supported them on some level. Both InfluxDB 

and TimescaleDB does not support hierarchical systems. TimescaleDB did not 

support writing back to the device while with InfluxDB it could be done with 

Kapacitor component and MQ protocol. TimescaleDB was scalable on only for 

reading and hence it has 1 for scalability. Security was on the same level on all the 

databases. All the databases supported availability with hot standby. cpmPlus History 

and InfluxDB have free versions with limitations (only inside ABB or with limited 
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functions). Usage of TimescaleDB requires good knowledge of PostgreSQL and 

hence has 1 for engineering experience. InfluxDB and TimescaleDB are relatively 

new and the long-time support for the product cannot be evaluated at this point and 

hence they have 1 for lifecycle.  

 

Table 1. Summary of requirement fulfillment 

 cpmPlus History InfluxDB TimescaleDB 

Deployment/platform 

support 
1 1 2 

Time series support 2 2 1 

Datatype support 2 1 2 

Aggregation support 2 2 1 

API’s 2 1 2 

Information models 2 0 1 

Hierarchical systems 2 0 0 

Write-to-device 

support 
2 1 0 

Scalability 2 2 1 

Security 2 2 2 

Availability 2 2 2 

Costs 1 1 2 

Engineering 

experience 
2 2 1 

Lifecycle 2 1 1 

 

7.2. Evaluation and test results 

In this subchapter the test results are presented from the test bench which targets for 

measuring the performance and resource consumption requirements for the selected 

databases. Tested database version and used configurations are presented in table 2. 

Virtual machines that run the databases had 4 core 4,2 GHz CPUs and 12 GB RAM. 

For InfluxDB only one measurement was used, and each variable has two tags and 

one field value. For TimescaleDB PGTune tool was used for configuration settings. 

One hypertable was created, and an additional index was created for the name 

column.  

 

Table 2. Database versions and configurations 

 cpmPlus History InfluxDB TimescaleDB 

Version 5.1 1.6.0 0.11 and 10.5 

OS Window 10 Ubuntu 16 Windows 10 

Interface Websocket HTTP C# PostgreSQL 

driver 

 

As described in chapter 5 test bench consists of three different test cases. The test 

bench was run with the configuration shown in Tables 3, 5, and 6. For write test 

database was first filled with initial data that corresponds to 100 GB. This way can 

be verified that the database cannot be fully kept in-memory.  
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Table 3. Write-test configurations 

Write frequency 

(updates/s) 

10 

Database size before test 100 GB 

Initial variable # 15 000 

Measurement iterations  1800 

Variable increment 1 000 

 

Figure 11 and 12 present results of write-test. Figure 11 presents the write operation 

as the number of updated variables is increased. Figure 12 presents the delay to read 

back the recently written value. Delay present the database’s data pipeline’s speed.  

 

 
Figure 11. Write duration. 

 

As the write duration is fixed to one second, write duration should be around 1 

second. When the variable count is 21 000, the write duration is 1,2 s and could be 

seen as a limit for per second speed. InfluxDB’s client’s write operation waits until 

the write operation on the database is completed successfully hence the databases 

write speed can be calculated from the write operation’s duration. As the write 

frequency was 10, the actual written datapoints per second are 210 000. This value is 

in line with InfluxDB’s hardware recommendations and its upper write limit for 

hardware size that the used virtual machine had. TimescaleDB does not appear on 

the figures as the write duration for 15 000 variables was 1,4 s giving write speed 

around 110 000 data points per seconds. Read-back duration with 15 000 variables 

was 0,1 s. From the write duration can be seen that the database is not able to write 

15 000 variables within one second and hence the test was not necessary to run for 

larger number of variables.  
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Figure 12. Read back duration. 

 

cpmPlus History specific statistics with increased variable count are presented in 

figure 13. cpmPlus History client’s write operation does not wait until the write is 

completed on the database hence the write operation’s duration cannot be used to 

determine the write speed. The number of variables does not affect on write 

operation duration, but the database’s performance can be seen starting to weaken 

from the duration to read the recently written value back. If the threshold for the 

duration to read the value back is 2,5 s as it can be identified as near real-time 

response time, then cpmPlus History write speed can be seen as 1 000 000 data 

points per second as the write frequency was 10 times per second for 100 000 

variables.  

 

 
Figure 13. cpmPlus History specific statics. 
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the amount the unique variable currently is written and held on the database. As the 

results are shown for 15 000 variables which are a relatively small number of unique 

variables concurrently updated, the RAM usage is also low. If the variable count 

were for example 150 000, then databases would try to use all available memory in 

the system resulting in around 8 GB of RAM usage. 

In addition, data compression on disk was tested with writing 15 000 variables with 

the frequency of ten times per second over one hour. As one data point size is 

between 26 and 30 bytes, so the total written data is 15,8 GB. InfluxDB and cpmPlus 

History compressed it to 2,5 GB and Timescale to over 50 GB. Timescale uses more 

than the initial data as it has an additional index.  

 

Table 4. Write-test telemetry statistics for 15 000 variables 

 InfluxDB cpmPlus History TimescaleDB 

CPU avg 26% 26 % 22% 

RAM usage 6,3 GB 1 GB 40 MB 

Disk usage(norm.) 654 IOPS 633 IOPS 5778 IOPS 

Network traffic 10,5 Mbps 2,2 Mbps 30 Mbps 

 

For read-test data was first written with fixed timestamps to ensure consistency 

between the databases. After that more initial data was written to the database to 

ensure that the data that is read on the first time, comes from the disk rather than 

from the cache. The test was run with configurations presented in Table 4. Read-test 

consist of three subcases: timespan increment, number of variables increment, and 

the number of connected clients increment.  

 

Table 5. Read-test configurations 

Write frequency 500 

Fill time 1 hour 

Max timespan 34 min 

Max variables  1010 

Variables timespan 1 min 

Max clients 115 

Client variables 5 

Client variable timespan 5 min 

 

Read-tests were run twice to measure how the database performs if the data is read 

from the disk or from the cache if exact same query result is kept on the cache. The 

results for timespan increment for one variable with the cold read, read from the disk, 

are presented in figure 14 and the results for executing the same query second time 

are presented in figure 15.  
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Figure 14. Timespan read-test results (cold). 

 

InfluxDB and cpmPlus History give linear performance against linear increment in 

timespan being read. TimescaleDB gives a more divergent performance and read 

query duration can vary significantly. In one-second InfluxDB gives 11 min 

timespan which results to 330 000 data points. For cpmPlus History the one second 

limit comes in 33 min timespan which results in 990 000 data points. For 

TimescaleDB the actual limit value is not explicit, but the trend can be seen to pass 

one-second limit also at 33 min time span.  

When rereading the same data, for InfluxDB there does not seem to be much 

impact. The one second limit for InfluxDB is passed at 13 min timespan which 

results in 390 000 data points. For cpmPlus History the impact for reading from the 

cache is more efficient as the one-second limit is not passed within the tested 

timespans. Linear predictive calculation results that the limit would be passed at 

1 100 000 data points. For TimescaleDB the performance adapts same the 

performance as from the disk with smaller performance decrement spikes.   

 

 
Figure 15. Timespan read-test results (cache). 
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The second read-test increased the number of requested variables. Data for second 

and third subcase uses data which is written with the frequency of 100. The results 

for the test are presented in figures 16 and 17. Figure 16 presents the results for a 

cold read and figure 17 for second iterations which should use cache for the requests. 

Again, cpmPlus History and InfluxDB have a linear performance against the number 

of requested variables while TimescaleDB gives a more divergent performance. 

cpmPlus History performs best as it returns 1-minute timespan for 1005 variables in 

6,3 seconds while for InfluxDB it takes around 22 seconds and 16 seconds for 

TimescaleDB.  

 

 
Figure 16. Variable read-test results (cold). 

 

From figure 17 can be seen that when requesting the same data again cpmPlus 

History and especially TimescaleDB can use cache efficiently and their performance 

increases. Timescale performs similarly as cpmPlus History both returning one-
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over 20 seconds.  
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Figure 17. Variable read-test results (cache). 

 

The third subcase was the increment of the number of connected clients. Testcase 

should identify if the database is scalable for a large number of concurrent clients 

and that request competition time for one client is not affected by the load. The 

figure presents the results of the test case. On the y-axis is the duration of the same 

request for one client which requests 5-minute timespan for 5 variables. Other 

connected clients use the same request but for random variables. X-axis presents the 

number of connected clients. InfluxDB shows high scalability as there is no 

increment in the duration time while the number of clients increases. cpmPlus 

History shows similar performance. TimescaleDB starts to have performance impact 

around 80 connected clients and especially around 100 clients. TimescaleDB was 

configurated for 110 clients.  

 

 

 
Figure 18. Client read-test results. 
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The third test case measures how the database performs under concurrent write and 

read operations. The used configurations are presented in table 6. There is one data 

producer who writes 15 000 variables ten times per second and one data consumer 

who reads 10 variables of those and trying to read the latest 15-minute timespan of 

those variables.  

 

Table 6. Mix-test configurations 

Write variables 15 000 

Write frequency 10 

Read variables 10 

Read timespan 15 min 

 

Critical factors in this test are if the database can keep the write performance during 

concurrent data reading and if the data consumer can read all the requested data. For 

cpmPlus History no performance decrement was identified, and all the requested data 

was successfully retrieved from the database. Write performance was not affected for 

InfluxDB, but it did not manage to return all the requested data to the data consumer. 

Data consumer did not get the latest 5 minutes. Similarly, TimescaleDB was not able 

to return all the requested data, and the client got only data for the five-minute 

timespan. Also, the data producing showed to take a performance hit as the time to 

produce 15 000 variables with a write frequency of 10 was 2,2 seconds while in the 

write-test it was 1,4 seconds.  

In table 7 continues telemetry statistics while the test was running are presented. 

Again, it must be notified that small number of variables affect on low RAM usage. 

For disk usage is used disk active time which presents the utilization of disk’s 

maximum speed. Hence the higher the active time percentage is the more bottleneck 

effect disk has for the database performance. cpmPlus History uses CPU, RAM, and 

network the least showing that it can handle the load successfully. InfluxDB uses the 

most CPU and RAM making it resource heavy database. TimescaleDB does not use 

RAM efficiently, and it uses disk heavily. TimescaleDB also has the most network 

traffic while concurrent data writing and reading. cpmPlus History had 1% disk 

usage but it only meant that cpmPlus History did not had to use the disk actively, 

cpmPlus History still used the disk to save the data.  

 

Table 7. Mix-test telemetry statistics for 15 000 variables 

 InfluxDB cpmPlus History TimescaleDB 

CPU avg 50% 27% 45% 

RAM usage 7,3 GB 1,2 GB 100 MB 

Disk active time 

(utilization of max 

speed) 

10% 1% 30% 

Network traffic 13 Mbps 8 Mbps 44 Mbps 

 



 

 

50 

8. DISCUSSION 
 

In this chapter, research questions and objectives are gone through and analyzed 

whether they are answered and reached. The implemented test bench is also 

evaluated against earlier implementation presented in chapter three. Performance 

measurement results from chapter 6.2 are analyzed, and an overall inspection of the 

thesis’ success and significance is presented. The chapter is divided into two 

subchapters: conclusion of the test results and evaluation of the test bench and 

research objectives. 

8.1. Conclusion of the test results 

Identified requirements included multiple different point-of-views, and the weight of 

each of them can differ among business scenarios. For example, a hierarchical 

system configuration might not have high requirement weight if the developed 

system is to be implemented as a single level solution. When the three time series 

databases were evaluated with the identified requirements, differences in how they 

fulfilled these requirements were able to be seen. Hence the second research question 

was to analyze how current time series databases perform against these requirements. 

There were both paid, and free databases evaluated giving the cost-functionality 

aspect. All three databases supported time series data and aggregation functionality 

broadly. TimescaleDB lacked the event and alarm functionality which is crucial for 

industrial field. There were also some differences on the time precision support as 

InfluxDB supported nanoseconds, cpmPlus History 100 nanoseconds, and Timescale 

only microseconds. Aggregation and processing function support was more advanced 

on cpmPlus History as for InfluxDB, and TimescaleDB more complex and advanced 

functions were left for the user to build from the simpler functions. cpmPlus History 

and InfluxDB both supported automated and online aggregations. Scenario support 

was only found on cpmPlus History, but all databases supported future forecasting in 

some sense. For datatypes, cpmPlus History and TimescaleDB implemented 

extensive support while for InfluxDB it was more limited. InfluxDB lacks support 

for UUIDs, arrays and large objects, e.g., BLOBs or JSON. cpmPlus History offers a 

readier solution as it has specific storages for current values, history values, alarms, 

and events. For InfluxDB and TimescaleDB this kind of separation needs to be done 

manually. From this core functionality and industrial point of view, TimescaleDB 

suffers still from its newness and is not suitable for IIoT usage yet. 

For platform and deployment support both InfluxDB and TimescaleDB showed 

extensive support while cpmPlus History had more limited support than them. 

InfluxDB was limited with deployment size and price while TimescaleDB was cost-

free regardless of the deployment size. As the clustering functionality for InfluxDB 

was only achievable for the paid edition, it forces the system developers to use the 

paid version because as seen in IIoT characteristics, the solutions are generally 

multinode solutions. That adds more weight to the cost requirement. All the 

databases can be deployed on premise as a self-hosted solution which was requested 

by many manufacturers. InfluxDB is designed for SSDs which can limit the 

deployment areas as many current industrial time series database deployments are 

done for regular HDDs. Also, as one of the characteristics for IoT is an extensive 
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amount of data, the prices for large SSDs are still rather high which can lead system 

developers to choose regular HDDs for their solutions. 

Scalability and high availability were requirements that the evaluated databases 

differentiated from each other on the implementation of these requirements. 

InfluxDB’s clustering functionality allows scalability for both write and read 

operations as well as high availability with distributed data replication. TimescaleDB 

implements scalability only for data reading, but high availability is supported with 

complete data replication. cpmPlus History supports more scalable architecture with 

data and master nodes allowing scalable write and read operations and high 

availability with complete data replication. Differences in scalability and data 

replication can make one database more suitable for some specific business scenario. 

TimescaleDB’s lack of scalability for write operations is critical as the one key 

characteristics for IIoT is a massive amount of data to be written.  

For API support databases mostly supported the basic interfaces. InfluxDB and 

TimescaleDB both benefit from their open-source background allowing them to have 

extensive support for different protocols through external plugins. From the 

industrial point of view, OPC DA/HDA and OPC UA protocols are commonly used 

protocols, and only cpmPlus History supported them. This can be a critical decision 

maker for some business scenarios where other protocols cannot be used. Also, the 

need for publish-subscribe pattern support was identified in the requirements, and 

only cpmPlus History supports it natively. For InfluxDB and TimescaleDB it can be 

achieved through external plugins. For monitor applications, having the ability to 

subscribe to some values is a necessity.  

For user’s custom information models, there was support in cpmPlus History and 

TimescaleDB. In the requirements, the need for the user’s own information models 

came from, e.g., usage of OPC protocols. As there was support for OPC protocols 

only in cpmPlus History, the lack of support or limited support for own information 

models was expected. The lack of support for hierarchical data models in InfluxDB 

can create extensive work in data modeling for more complex information models in 

the industrial field, e.g., plants or production lines. cpmPlus History and 

TimescaleDB both have composition functionality which can handle that kind of 

multi-system information models. 

 The main lacking requirement for the evaluated databases was support for 

hierarchical system configurations. Only cpmPlus History supported hierarchical 

systems with master and data collector nodes. InfluxDB and TimescaleDB allowed 

only equal level system configurations. If the business scenario requires hierarchical 

system, for example, a production line wide system with multiple databases, 

InfluxDB or TimescaleDB might not be ideal as they would require extended work to 

combine and use them in a hierarchical setting. Similarly, write-to-device support 

was missing from InfluxDB and TimescaleDB. The feature is specific for industrial 

use cases and hence can explain why it is not implemented on for more general use 

case databases.  

For security requirement databases performed equally. InfluxDB offers full security 

control only for enterprise edition which also forces to use the paid edition for 

industrial use cases. All the databases supported even column and row level 

permission and supported secure communication protocols. From the security point 

of view, evaluated databases are acceptable for IIoT usage.  

From the required engineering experience point of view evaluated databases 

performance equally. The installation for cpmPlus History and InfluxDB was 
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extraordinarily straightforward, and other required configurations before usage were 

minimal. TimescaleDB required some configuration work before it could be used. 

cpmPlus History was more completed product than InfluxDB or TimescaleDB as it 

created different storages automatically for, e.g., current values, aggregations, and 

alarms.  

Time series databases have gained popularity during the past few years. This can be 

seen from the young age of InfluxDB and TimescaleDB. Because of their young age, 

lifetime support and suitability for long lifetime demanded industrial environment 

cannot be appropriately evaluated. Both databases have open-source support which 

gives efficient bug fixing support and development for new features. cpmPlus 

History has long lifetime support and shows suitability for long support for older 

installations. As a closed-source product bug fixing and development for new 

features might not be as efficient because it is bonded to a fixed size development 

team.  

Overall to answer the second research question as seen from the summary table 1, 

cpmPlus History performed best against the identified requirements as it is targeted 

for industrial use cases. InfluxDB performed second best as its most critical lack was 

the support for hierarchical systems, information models, and support for OPC 

protocols. TimescaleDB lacked critically in core functionality as it had limited 

support for data aggregation, size management, and no support for alarms and events.   

The developed test bench was applied to three time series databases. Test results 

showed how databases differ in performance and how the database performs better 

for a certain type of usage. cpmPlus History showed best write performance giving 

around million data points per second write throughput. InfluxDB got only 210 000 

data points per second, and it especially higher write frequency created performance 

cost to it as it uses HTTP protocol for writing. HTTP usage might not be the best 

protocol to use for high-frequency data, and as InfluxDB requires all column values 

to be given it the write message, the HTTP message size grows inefficiently. 

TimescaleDB was showed slowest write throughput with 110 000 values per second, 

and from telemetry statistics can be seen that TimescaleDB used most IO operations 

for writing the data making it slow. TimescaleDB’s high disk usage also showed that 

the database size was ten times as big as for the other two with the same data written 

to them.  

Measured write speeds show similar results and are on the same limits as others 

have measured. InfluxDB’s write speed is the upper limit of write speed for the same 

type of hardware that was used in the test [68]. TimescaleDB was similarly measured 

to have write speed around 110 000 data points per second by TimescaleDB itself 

[69]. Similar test results show that the database is correctly implemented, and 

measured values are valid by being in the same spectrum with previous 

measurements. 

The read-test showed that cpmPlus History and InfluxDB act mostly linearly to 

timespan and variable count increment. TimescaleDB performance was more 

distributed and gave random performance bottleneck spikes. Overall cpmPlus 

History gave best read performance giving 1 million data points per second read 

speed in timespan read test and high scalability with returning 800 variables with 

two-minute timespan in 5 seconds. Even though InfluxDB has relatively high write 

speed, the read speed was worst from the three databases. Similarly, TimescaleDB 

had worst write speed but performed almost as good as cpmPlus History in the read-

test. This shows how databases can be designed for a certain type of usage. In fact, 
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InfluxDB is designed more for high write throughput than for high read throughput 

[33].  

Variable and client increment test cases showed that cpmPlus History is highly 

scalable for higher loads and higher data requests. InfluxDB showed that when 

requesting data with multiple variables, the performance started to decrease. From 

timespan and variable read test cases can be seen that InfluxDB suffers from using 

HTTP as the communication protocol and JSON response format as with higher data 

requests the response time started to grow significantly. cpmPlus History which used 

WebSocket did not have a similar performance impact. Client increment did not 

affect on InfluxDB’s performance which makes it still scalable for high connectivity. 

Variable increment test case strengthened the view that TimescaleDB performs better 

for data reading as it showed almost similar read speed as cpmPlus History. 

TimescaleDB had more divergent performance than the others which do not give the 

status of high quality and reliability for the database.  

Mix test showed that cpmPlus History could serve concurrent data writing and 

reading operations making it capable of monitoring type of use cases. InfluxDB did 

not manage to retrieve the latest values for the client which can be a significant factor 

for IoT and especially monitoring use cases. In fact, InfluxDB is designed with that 

value in mind that being able to write and read data is more important than having a 

consistent view and hence latest values cannot be retrieved [33]. InfluxDB also 

showed heavy resource usage among the three databases during the mix testing. 

cpmPlus History performed better with less resource usage making it a more efficient 

database. TimescaleDB also suffered performance lost in write speed, and it did not 

manage to return all the requested data. This shows that TimescaleDB is not suitable 

for monitoring use cases at least in used hardware size and as a single node solution.  

8.2. Evaluation of the test bench and research objectives 

The first research question was to identify functional and non-functional 

requirements for a time series database in IIoT environment. As stated in the 

introduction, the current problem is the lack of knowledge of the requirements for 

time series processing among the system developers. This lack of knowledge results 

to ineffective way of comparing different time series databases and typically also to 

wrong choices. By interviewing operators on the specified field, the requirements 

were identified and listed in chapter 4. The identified requirements have a high 

inheritance from the IIoT characteristics and potential use cases. Hence the 

requirements are on a similar spectrum with the characteristics and therefore fulfills 

them. The created list can be used for analyzing own business scenario and identify 

the weight of each requirement on the user’s own scenario. The list can be used for 

going through possible time series databases as done in chapter 6.1 and that way 

identify the right time series database for the user’s business scenario. The identified 

requirements list also presents a more unobstructed view of what time series 

databases are and what kind of usage they are for. For more general technical usage, 

the requirements list can be used for presenting how time series database differs from 

the more general relational database. Hence the first research question was 

successfully answered.   

From the IIoT characteristics and the implementations of earlier test benches one 

key design feature raised. It was that the usage scenarios could differ a lot and hence 

the test bench should support simulation of different scenarios. The implemented test 
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bench is highly configurable, and it does not use some specific dataset, like the 

earlier implementations, which makes it able to support many different scenarios. As 

written datapoints and read queries are kept simple for measuring highest 

performance, the test bench is not suitable for measuring the performance of more 

complex queries. As seen from databases’ requirement analysis, there can be high 

variation in supported functions and processing tools so implementing comparable 

queries for several databases would be impractical. 

As most of the earlier implementations lacked the industrial point of view from 

measuring and evaluation, in this thesis developed test bench’ the industrial point of 

view is brought by testing three common industrial scenarios: on-premise, PIMS, and 

monitoring. Used write method also mimics the IIoT scenario where the data is 

written on high frequency rather than bulk loading. Also, testbench can be used for 

longer test runs, and it measures a larger number of metrics from the database than 

the earlier implementations.  

From earlier implementations, Bader’s TSDBBench [49] was closest to the required 

test bench. In this thesis developed test bench differs on the type of data written and 

queried but TSDBBench allows automatic database deployment and configurations 

for the test. In the developed test bench, the database needs to be deployed manually 

to a virtual machine, and all necessary configurations also need to be done manually. 

TSDBBench is hence in usability point of view more advanced.  

Overall first and second research objective was successfully reached, and 

performance tests showed that cpmPlus History performs best from the three tested 

databases and acts as IIoT environment demands: high write throughput, scalable for 

the big data request, and scalable for large connectivity. Similar results to earlier 

measurements indicated that the first research objective was successfully reached. 

InfluxDB suffers from HTTP and JSON protocol usage as it creates performance lost 

in high write frequency and large data requests. TimescaleDB showed high 

performance for data reading, but it lacks demanded performance for data writing. It 

can be argued that the use of additional index reduces write throughput and increases 

disk usage, but for efficient data reading and simulation of a real environment, it is 

required. In general aspect, results showed that business product which is targeted for 

industrial usage outperforms general and open-source products. This supports the 

general assumption that with the higher price comes better performance. Evaluation 

of these three different price level databases also presented for the more general 

audience what kind of functionalities and performances can be reached at different 

price levels. Performance results can also be used in the future as a reference level 

for product development or other performance benchmarking purposes. It must be 

noticed that the presented results are measured for single node solution with limited 

hardware size. Tested databases can perform differently as a clustered solution and 

with bigger hardware. The assumption would be that the write and read throughput 

would be higher with more computing power.  

In overall developed test bench and identified functional and non-functional 

requirements help system developers in IIoT field to find the best time series 

database for their business scenario and identify the important requirements of a time 

series database in their business scenario. Requirements list can be used as a 

checklist for evaluating own business scenario and how meaningful that requirement 

is for the scenario. From the practical example of database analysis based on 

identified requirements and developed test bench, differences on available time series 

databases were extensive. Database’s performance level might differ between writing 
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and reading, and hence it can be suitable for different parts of larger IoT system. 

Thesis’ research questions were successfully answered, and research objectives were 

met. Thesis broad light to time series databases on IIoT and what are some key 

concepts and requirements for them. 

8.3. Future work 

Future work of the thesis is targeted for the future development of the test bench. As 

stated above the usability and automation of the database can be developed further. 

Data production could also be multiplied into multiple clients. The results from one 

client and two clients write tests could be then compared to verify that the measured 

limit is genuinely the performance limit of the database and not the limit of the 

client.  Similarly, for more precise simulation results tested database might need to 

be on physical hardware, and the test should be run with more extensive data sizes. 

The current implementation is bonded to virtual machines only for telemetry 

recording purposes which allows the testbench to be run even for physical hardware 

solutions. Test bench could also be further developed by allowing custom read 

queries and performance test of the more complex time series functions that the 

database supports. Currently the read queries are simple and fixed. Bader’s 

TSDBBench is in this sense more advanced as it uses scan, avg, sum, and count 

functions in its test queries. Of course, this requires that the tested databases support 

the used functions which might limit the number of the possible databases to be 

tested.  
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9. CONCLUSION 
 

The problem that this thesis was targeted to provide a solution for, was the lack of 

knowledge of the requirements of the time series database in IIoT. The lack of 

knowledge derived from the inefficient way of comparing different time series 

databases. The purpose of this thesis was to identify the functional and non-

functional requirements of time series database in IIoT and design and implement a 

performance test bench for time series databases. A practical example of how time 

series databases can be compared with identified requirements and developed test 

bench was also needed to provide.  

Thesis provided a theoretical examination of IIoT, time series data, time series 

databases, and benchmarking which was used for identifying the characteristics that 

the scope of the thesis has. Current time series database market was also examined, 

and key characteristics of the databases were presented. For performance test bench 

design, earlier implementations were examined and evaluated against the thesis’ 

topic. To help identify different requirements, different use cases of time series 

database in IIoT were presented. Use cases consisted of write heavy, read heavy, and 

concurrent write and read operation scenarios.   

Identified functional requirements were deployment/platform support, time series 

support, datatype support, aggregation support, API’s, information models, 

hierarchical systems, and write-to-device support. Non-functional requirements were 

identified to relate to scalability, security, availability, performance, resource usage, 

costs, engineering experience, and lifecycle. The requirements were also explained 

and reasoned in more detail. 

Earlier test bench implementations showed lack of industrial point of view while 

testing the time series database. The developed test bench in this thesis took IIoT 

point of view by testing the database in three scenarios: write heavy, read heavy, and 

concurrent write and read operations. Test bench measured database’s write and read 

throughput and resource usage. Test bench’s another main difference was the level of 

configurable.  

Three databases were selected for evaluation: ABB’s cpmPlus History, InfluxDB, 

and TimescaleDB. Requirements evaluation of the three databases showed that 

cpmPlus History performed best against the identified requirements as it is targeted 

for industrial use cases. InfluxDB performed second best as its most critical lack was 

the support for hierarchical systems, information models, and support for OPC 

protocols. TimescaleDB lacked critically in core functionality as it had limited 

support for data aggregation, size management, and no support for alarms and events. 

The developed test bench was also applied to these three databases. Test results 

showed that cpmPlus History performs best from the three tested databases and acts 

as IIoT environment demands: high write throughput, scalable for the big data 

request, and scalable for large connectivity. InfluxDB suffers from HTTP and JSON 

protocol usage as it creates performance lost in high write frequency and large data 

requests. TimescaleDB showed high performance for data reading, but it lacks 

demanded performance for data writing. 

In overall the contributions of this thesis are the developed test bench and 

identified functional and non-functional requirements. They can help system 

developers in IIoT field to find the best time series database for their business 

scenario and identify the important requirements of a time series database in their 

business scenario. 
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