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ABSTRACT

There is an increasing interest in the research community to 3D scene reconstruc-
tion from monocular RGB cameras. Conventionally, structure from motion or
special hardware such as depth sensors or LIDAR systems were used to recon-
struct the point clouds of complex scenes. However, structure from motion tech-
nique usually fails to create the dense point cloud, while particular sensors are
inconvenient and more expensive than RGB cameras. Recent advances in deep
learning research have presented remarkable results in many computer vision
tasks. Nevertheless, complete solution for large-scale dense 3D point cloud recon-
struction still remains untouched.

This thesis introduces a deep-learning-based structure-from-motion pipeline
for the dense 3D scene reconstruction problem. Several deep neural networks
models were trained to predict the single view depth maps, and relative camera
poses from RGB video frames. First, the obtained depth values were sequentially
scaled to the first depth map. Next, the iterative closest point algorithm was uti-
lized to further align the estimated camera poses. From these two processed cues,
the point clouds of the scene were reconstructed by simple concatenation of 3D
points.

Although the final point cloud results are encouraging and in certain aspects
preferable to the conventional structure from motion method, the system is just
tackling the 3D reconstruction problem to some extent. The prediction outputs
still have errors, especially in the camera orientation estimation. This system can
be seen as the initial study that opens up lots of research questions and improve-
ments in the future. Besides, the study also signified the positive intimation for
using unsupervised deep learning scheme to address the 3D scene reconstruction
task.

Keywords: learning-based 3D scene reconstruction, unsupervised depth and cam-
era pose, point cloud from video, deep learning
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1. INTRODUCTION

Structure-from-motion (SfM) refers to computer vision methods that exploit the paral-
lax induced by camera motion to infer the 3D scene structure. Conventionally, SfM has
been implemented using handcrafted features such as scale-invariant feature transform
(SIFT) [1] followed by bundle adjustment based on multiple view geometry. Many
software implementations exist such as VisualSFM [2, 3], Bundler [4], and Theia [5]
that utilize this kind of conventional approach.

During the last few years, deep neural networks (DNN), and in particular, convolu-
tional neural networks (CNN) have shown to achieve superior performance in many
image recognition tasks [6]. Recently, CNNs have also been applied to geometric vi-
sion problems including single view depth map prediction [7, 8, 9, 10], camera pose
estimation [11, 12], 3D reconstruction [13] and unsupervised learning based on mini-
mization of the reprojection errors from motion cues [14, 15, 16, 17]. These are end-
to-end solutions where the networks were trained to produce 3D information directly
from the input images without first extracting some predefined or handcrafted features
or key-points like in the conventional approaches. The learning-based approaches can
exploit richer feature representations, learned from examples, that are characteristic
to certain objects or scenes of interest. Therefore, with carefully designed networks
and large amount of training data, the learning based approaches can achieve better
performance than conventional methods.

To the best of our knowledge, some previous works try to tackle the SfM problem
using learning-based techniques. However, a solution for a large-scale dense 3D recon-
struction, especially of indoor space, still remains untouched. The primary objective
of this work is to utilize Tensorflow [18] to train DNN models that can produce a 3D
point cloud from a video representing indoor spaces. The obtained point clouds are
the main source of information for many tasks such as 3D scene understanding, 3D se-
mantic segmentation, and building information modeling. These are especially useful
in cases where the availability of RGB-D or Light Detection and Ranging (LIDAR)
systems are limited, and conventional SfM approaches fail. The main contributions of
this thesis include:

1. Experiments with both supervised and unsupervised deep-learning-based struc-
ture from motion approaches to reconstruct a dense 3D point cloud of a scene
captured with a monocular camera.

2. Introduction of an end-to-end pipeline for generating a 3D point cloud from a
sequence of RGB video frames.
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2. STRUCTURE-FROM-MOTION

In the imaging process, when capturing an image of the real world with a camera, we
lose the depth dimension. Since the beginning day of computer vision, many efforts
have been made to recover this geometric information [19, 20], in which the structure-
from-motion is the most well-known one. The principle of SfM is to reconstruct the
3D structure of a scene by exploiting the parallax cues in camera motion from a set of
overlapping 2D images. The technique was first described by Ullman [21] in 1979 and
became gradually popular in the 2000’s, due to its ability to produce 3D point clouds
easily with relatively low priced cameras instead of an expensive LIDAR system.

Alongside SfM, other research areas, such as simultaneous localization and mapping
(SLAM) and photogrammetry, also attempt to tackle the 3D reconstruction problem. In
photogrammetry they are interested in using precisely calibrated cameras to generate
reliable and highly accurate measurements from photographs. For example, Figure 1
represents a reconstructed model of the exact positions of surface points in satellite
photos. On the other hand, in robotics, SLAM system prefers real-time performance to
accuracy allowing the robot to navigate using vision. One of the most famous SLAM
systems is the self-driving STANLEY car [22] made in Stanford University, which won
the DARPA Grand Challenge [23].

Figure 1. 3D model of the exact positions of surface points from satellite photos. Image
from Google with labeled for reuse.

Despite having many variations, depending on the specific application as well as the
number and type of the used camera, the generic pipeline of SfM remains the same.
As illustrated in Figure 2, the first step is to find corresponding points between pairs of
images by matching detected feature points. Then, the relative camera poses between
views are obtained by computing and decomposing the fundamental matrices. After
that, the 3D triangulation is used to identify the coordinates of the 3D points from
corresponding 2D feature points. Finally, nonlinear optimization (bundle adjustment)
is applied to minimize the reprojection error between the image locations.

Find  
2D corresponding

Feature 
Matching 

Feature 
Extraction 

Camera pose

Decomposed
fundamental

matrix 

Fundamental 
Matrix 

3D  
scene structure

Triangulation 

Bundle  
adjustment

Non-linear  
optimization 3D model 

data 
RGB

frames

Figure 2. A generic structure from motion pipeline.
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There is no doubt that the topic of structure from motion is immense, and detailed
explanations are beyond the scope of this thesis. Therefore, this chapter gives an
overview of the conventional structure from motion approaches, and discusses their
disadvantages which lead to the use of the learning-based technique.

2.1. Finding 2D correspondences

Corresponding points are 2D points that appear in at least two or more views and are
the projection of the same point in 3D space. The process usually starts with the de-
tection and description of the interest points or features in the images. The number of
existing detectors and descriptors are varied but one can use e.g Harris Corner detector
[24] to extract the interest points and SIFT [1] to describe them. Features with similar
descriptors will likely match with each other. The shorter the baseline between con-
secutive frames, the more equal the sets of detected interest points would be. In that
case, the detected and described interest points are matched by comparing the pixel
intensities in a small square area around the points using normalized cross-correlation,
for example.

Figure 3. Corresponding points from two images. Image from Quinghua et al. [25].

Figure 3 illustrates a small set of matched feature points between two images using
Harris Corner detector [24] and SIFT [1]. However, as one can see in the figure, lots
of found correspondences are not correct.

2.2. Calculating relative camera pose

After acquiring the corresponding points, one can estimate the camera pose which con-
tains the rotation and translation of the camera in relation to some known coordinate
system. The transformation of a 3D point X′ in the coordinate system C′ to a 3D point
X in coordinate system C is formulated as

X = RX ′ + t (1)

where R is a 3×3 rotation matrix that contains the camera orientation and t is a 3×1
vector that contains the camera translation.



9

Multiplying both sides of Equation 1 with XT [t]× yields

XT [t]×X = XT [t]×RX
′ +XT [t]×t

0 = XT [t]×RX
′

0 = XTEX ′

where

[t]× =

 0 −tz ty
tz 0 −tx
−ty tx 0


is the cross product matrix of t and E∼[t]×R is a 3 × 3 essential matrix. The symbol
"∼" denotes the up to scale relation.

Considering corresponding points x and x′ from two images in homogeneous nor-
malized image coordinates, the epipolar constraint gives

xTEx′ = 0 (2)

Moreover, assume that the camera intrinsic parameters K and K ′ of the two views
are known, substituting x∼K−1u and x′∼K ′−1u′ into Equation 2 yields

(K−1u)TE(K ′−1u′) = 0

uT (K−1TEK ′−1)u′ = 0

uTFu′ = 0 (3)

where 1) u and u′ are corresponding pixel coordinates in homogeneous format, 2) K
and K ′ are upper triangular matrices that present the camera intrinsic parameters

K =

fx s cx
0 fy cy
0 0 1


where fx and fy are the focal lengths in pixels, cx and cy are the pixel coordinates of
the principal point and s is the skewness of pixels. Furthermore, F∼K−1TEK ′−1 is a
3× 3 fundamental matrix. With at least eight corresponding points, an unique solution
of the fundamental matrix can be obtained using the least squares method.

Then with the known intrinsic K and K ′, the essential matrix can be estimated by

E∼K ′TFK

According to Hartley [26], if the essential matrix has rank 2, it can be decomposed
using singular values decomposition (SVD) into

E = UZWV T

where U and V matrices are orthogonal, with

W =

0 −1 0
1 0 0
0 0 1
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Z =

 0 1 0
−1 0 0
0 0 0


and ZW = diag([σ1, σ2, σ3]). One solution is that the first two singular values are
equal to one and the third singular value is zero e.g. ZW = diag([σ1, σ2, σ3]) =
diag([1, 1, 0]). In this case, the rotation and the cross product of the translation vector
could be calculated directly by

R = UWV T

[t]× = UZUT

where R is an orthogonal camera rotation matrix and t× is a skew-symmetric matrix
with an unknown scale of the translation.

2.3. Triangulation

From the obtained transformation matrices, the 3D points can be calculated by trian-
gulation [27]. However, because of the distortion and outliers, instead of convergence,
the back-projected rays from the views will not perfectly intersect.

xo
vo

x1

v1

R1
Ro

co
c1

qo

q1

p

do d1

Figure 4. Triangulation.

Therefore, in order to find the best point of intersection, one solution is to calculate
the nearest point to all of the back-projected rays by minimizing the distances between
the estimated 3D point and the rays

||cj + djvj − p||2

where p is the optimal 3D point, cj is the origin of camera j, vj is the normalized
optical ray and cj + djvj is a point on the optical ray in direction vj . The optimal value
for the 3D point p could be determined by finding a least square solution using singular
value decomposition.
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2.4. Bundle adjustment

The estimated camera poses and the 3D points from the previous parts are not optimal.
Possible incorrect and/or inaccurate point matches may lead to an inaccurate 3D scene
reconstruction.

To resolve these issues, some non-linear optimizations typically need to be applied
to refine the initial estimate of the 3D points and the camera poses. The technique
is called bundle adjustment [28], where the main idea is to iteratively tune the opti-
mization parameters in order to minimize the sum of squared reprojection errors. This
is an essential part in many SfM software packages, and typically consumes a lot of
computation time in a large dataset.

In general, the system tries to minimize the squared Euclidean distance d between
the image point xij and the projected point x̂ij = PiXj

min
Pi,Xj

m∑
i=1

n∑
j=1

D(xij, PiXj)

where Pi = Ki ∗ [Riti] is the projection matrix of the ith view, and Xj is the jth 3D
point.

This can be solved using the Gauss-Newton, gradient descent or Levenberg-Marquardt
method. Detailed explanations can be found in Triggs et al. [28].

2.5. Popular SfM softwares

Bundler [28] is one of the first SfM softwares for unordered image collections. It takes
a set of images, features and matches as input and calculates the motion of the cam-
era as well as the 3D structure of the scene. However, the 3D models from Bundler
sometimes contain large distortions caused by the accumulation of estimation errors.
Nonetheless, the results from this software are usually considered as reference solu-
tions for experimental comparisons.

In 2011, Wu et al. introduced the multi-core bundle adjustment [29] SfM package,
called VisualSFM [2, 3], which not only demand less memory usage and dramatically
reduce the run time but can also produce very accurate models. This improvement
comes from the optimized usage of parallel computational resources. Moreover, Vi-
sualSFM has three excellent features including 1) a graphical user interface for the
visualization of the SfM process, 2) inbuilt SIFT on GPU feature extraction and 3)
possibility to use the patch-based multi-view stereo software (PMVS2) [30] directly
from the graphical user interface. With these tools, VisualSFM can produce a point
cloud reconstructions directly from a set of images.

Recently announced, fast and scalable structure from motion library, called Theia
[5], includes efficient and reliable structure from motion algorithms. Theia library
contains many useful implementations for areas such as image manipulation, feature
detection, description and matching, robust pose estimation and resectioning, random
sample consensus (RANSAC) [31], progressive sample consensus, camera models,
and a full SfM pipeline. Furthermore, Theia is an active open source software with
well-structured and simple interfaces as well as good online documentation. The re-
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Figure 5. Dense 3D point cloud reconstruction using VisualSFM + PMVS2. The point
cloud create from 61 high resolution images (3008×2000 pixels). Source RGB images:
the Hall example of PMVS2.

sults made with both VisualSfM and Theia will be later compared with the results from
the learning-based approaches.

2.6. Some drawbacks of feature-based structure from motion approach

It is difficult to create a robust, flexible and accurate reconstruction system using
feature-based approaches. The scale and complexity of implementation will depend
on the required tasks as well as prior assumptions. Along the pipeline, errors may
occur, accumulate and immediately affect the accuracy and robustness of the outcome.

For example, the performance of the system will decrease if the chosen features
lack essential representations for a generic dataset. The accuracy of the handcrafted
features or extracted key-points heavily affects the efficiency of the point correspon-
dences. Unfortunately, these algorithms suffer from the lack of texture in the indoor
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environment which usually contains uniformly colored flat surfaces. This issue can
be coped by using multiple feature detectors and fusing them together to form better
features. However, this will require lots of works in exchange.

Another problem is in the triangulation process. The optical rays could become
parallel if the transformation between the cameras is a pure rotation without translation.
In this case, the depth of a 3D point cannot be resolved explicitly.
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3. LEARNING-BASED STRUCTURE-FROM-MOTION

Since the success of AlexNet [32] for image classification on the ILSVRC-2012 (Im-
ageNet competition) [6], deep learning (DL) has gained a lot of attention from the
computer vision research community. DL has quickly been applied to many other
problems such as object localization, object detection, semantic segmentation, pose
estimation and depth map prediction. The rapid development of the network architec-
tures, computation capacity, and datasets reveal many intriguing new research direc-
tions and industry applications.

From the broad domain of DL, this section dedicates to present the core ideas of
machine learning as well as deep learning and deep neural networks systems. Some
recent studies using deep learning to solve the 3D reconstruction problems are also
discussed and analyzed.

3.1. Machine learning and deep neural networks

Artificial Intelligence (AI) is a vast research area which aims to give the computer
the ability to perceive, understand, reason, plan and take action at the human-level
efficiency. As a subset of AI, machine learning utilizes fundamental statistical models
to recognize patterns in the data and make the prediction without the requirement of
explicit programming of every rule. That is, computers can make their own decisions
based on what they have learned. Deep learning is a powerful machine learning tool.
The DNN models are specialized in learning the sophisticated representation from the
data. Figure 6 below, illustrates the relationship between AI, machine learning and
deep learning.

                                                                                                   Artificial Intelligence 
                                                                                                     Self-driving car,  

                                                                                           AlphaGO, 
                                                                                                          OpenAI Dota2 bots 

                                                         Machine Learning 
                                                  SVM, KNN,  

                                             Logistic,  
                                                         Neural Networks 

 

Deep Learning
   CNN, RNN, 
   LSTM

Figure 6. A Venn diagram indicates the relationship between Deep Learning, Machine
Learning and Artificial Intelligence.

The elementary component of a neural network is a neuron, also known as unit
or node. The magnification part in Figure 7 shows the structure of a single neuron
receiving data from three inputs (x1, x2, x3).

The neuron multiplies each of the inputs by the corresponding weight, then sums up
and passes the calculated value to an activation function. This process can be formu-
lated as
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Figure 7. Simple structure of a convolutional layer.

y = θ(b+
N∑
i=1

xiwi) (4)

where wi are the weights, b is the bias, x are the inputs, N is the number of input
connections (N = 3 in this case) and θ is the activation function.

The neurons with the same depth form a layer and typically there will be thousands
of neurons in each layer. Layers with continuous depth then connect to each other to
construct the neural network. Training the network is a process of iteratively updating
the weights and biases to minimize the loss function. The weights and biases along
with the specific network architecture will be used to produce the output from the
input data.

3.1.1. Network architecture

In machine learning, the "no free lunch theorem" [33] states that a universal learning
algorithm or an ultimate best learning algorithm does not exist. One must create an own
implementation to perform well on a specific task. With deep learning, the success of
an application depends on the deliberate design of the neural network architecture.

As a consequence of the above fact, DNN’s architectures have tremendously evolved
over the last decades. There are many variations of the artificial neural networks, in
which convolutional neural networks (CNN) have proven theirs competence in many
computer vision tasks [34]. Moreover, these networks contain almost similar compo-
nents, hence the best way to survey the field is thoroughly study of the most important
ones.
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3.1.2. Convolutional layer

The convolutional layer is the core building block of a CNN, and it is extensively
discussed in the literature [35, 35, 36]. For two consecutive convolutional layers, each
neuron in a current layer is only connected with a set of local input nodes that lie
within a specific spatial region in the previous layer. This spatial region is also called
the receptive field. Figure 8 shows a convolutional layer with the filter size of 3×3. The
calculation inside a convolutional layer is the same as in an ordinary neural network.
However, in this case, the dot product is computed in just the receptive field region.

3

32

32

3 x 3 x 3

7

12

12 

Filter size = 3 x 3 
Stride =  3 
Zero padding = 2 

Figure 8. Illustration of a convolutional layer with filter size of 3 × 3, with strides
(s = 3) and zero padding (p = 2).

The size of the output of the convolutional layer is defined by three parameters: 1)
the number of filters, which will specify the number of output feature maps, 2) the
stride (s) defines the step size of the sliding window and 3) the zero padding (p) which
is the width of the frame of zeros added to the input volume before convolution. The
spatial size of the output volume after the convolution can be calculated as follows

(w − f + 2p)

s
+ 1

where (w) is the size of the input volume and (f) is the size of the receptive field.
The number of parameters can be further diminished using the parameter sharing

assumption. Assuming that if an important feature is detected in a specific region, it can
be also useful in other regions, hence the network does not need to learn these features
twice. For example in Figure 8, instead of storing 12×12×7×(3×3×3+1) = 28224
parameters. The network only needs 7× (3×3×3 + 1) = 196 parameters when using
the parameter sharing assumption where 12 × 12 neurons in the whole volume share
the same parameters as shown with the light green box in Figure 8.
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3.1.3. Transpose convolutional layer

Transpose convolutional block [37, 38] is also known as deconvolutional layer (Ten-
sorFlow 0.1 [18], Caffe [39]), or transpose convolution (Theano [40]).

Transpose convolutional layer is used to upsample the input volume by applying
bilinear interpolation. That is, the output is calculated by convolving the input, but in-
stead of scaling down, the output will scale up and still keep the relative representation
of the learned features. This is achieved with a convolution using a fractional input
stride of 1

s
, where s is the stride. Figure 9 illustrates this process.

Figure 9. Illustration of the transpose convolutional layer. In the picture, blue maps are
the inputs, and green maps indicate the outputs. The left image shows the transpose
operation with zero padding and stride s = 1. On the other hand, the right image
displays the transform with zero padding and stride s = 2.

3.1.4. Network in network layer

Network in network refers to an 1 × 1 convolutional layer, which was introduced by
Lin et al. [41] in 2013.

Figure 10. Illustration of an 1x1 convolutional filter.
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At the first glance, people may argue about the usefulness of a somewhat flat con-
volution operator. However, one should remember that the convolutional kernel is, in
fact, an [1× 1×N ] 3D tensor, where N is the depth of the input volume. That is, this
unique block will perform the dot product in the depth dimension with the input layer.
This, in turn, will help the convolved features from the previous layer effortlessly fuse,
which is hard to do by using regular convolutional layers. This contemporary concept
was later expanded in modern DNN models such as GoogLeNet (Inception V1) [42],
Inception V2 [43], Inception V3 [44], ResNet [45], Inception V4 [46], DRNs (Dilated
residual networks) [47].

3.1.5. Inception module

Two years after AlexNet, Szegedy et al. won the ILSVRC-2014 with the GoogLeNet
[42], which introduced a new inception module. Inspired by the network in network
paper [41], inception module applies 1× 1 convolutional layer as a feature downsam-
pling operator before feeding the input volume to the parallel blocks. After that, the
outputs of the parallel blocks are upsampled again using another 1 × 1 convolutional
filter. This is the fundamental idea of the inception module.

Filter
concatenation 

Previous layer 

3x3 convolutions 5x5 convolutions

1x1 convolutions

1x1 convolutions 1x1 convolutions

1x1 convolutions

3x3 max pooling

Figure 11. Inception module introduced in GoogLeNet [46].

For example, a convolutional layer in a CNN has the size of 3×3×512 and its input
contains 512 features. Normally, the network needs to perform 512 × 3 × 3 × 512 =
2359296 convolution operations (ops). However, if the network first convolve with a
1×1×128 convolutional layer, the number of required ops will be 512×1×1×128 =
65536.

Then, the convolution with the same 3 × 3 filter in this smaller feature space will
cost 128× 3× 3× 128 = 147456 ops. Finally, the network will convolve with another
1× 1× 512 layer to scale up the final feature space. This time it will also need 65536
ops. In total, the network has to perform 278528 ops, which is ∼ 8,5 times lower than
the normal way.

Using this idea, GoogLeNet not only required less parameters but could also ef-
fectively increase the network’s depth and achieve a decent 6.67% error rate on the
ImageNet classification challenge [6]. This study also proved that the neural network
could be trained in parallel with convolutional branches instead of sequentially stack-
ing them together.
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3.1.6. Residual block

The winners of ILSVRC-2015, i.e. K. He et al., presented one of the most competent
network architecture, the residual network (ResNet) [45]. Using ResNet, the authors
trained DNN from hundred up to thousand layers without suffering the vanishing gra-
dient problem.

The vanishing gradient problem occurs when the network is built by sequentially
stacking up more than 19 convolutional layers. Then, in the backpropagation process
(applying the chain rule to calculate the derivatives), after lots of iterative multiplica-
tion, the gradient will gradually decay to zero. As a consequence, the accuracy of the
trained model will saturate or even decrease dramatically.
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Figure 12. Residual block. The image (a) shows the concept idea, while image (b) and
(c) are the combination of skip connection and inception module that are used to train
very deep networks [45].

To overcome this problem, K. He et al. use a residual learning block called skip
connection (also known as identity shortcut-connection), which is conceptualized in
Figure 12 (a). In the skip connection module, the input from the previous layer will
be simultaneously fed to two sequential convolutional layers and directly to the next
layer. The skip over two layers creates a small network in a network [41], in which the
shortcut pass will not decrease the training performance because these layers are only
identity mappings of the input values. In other words, the training error of the deeper
network cannot be larger than its corresponding shallower version.

Figure 12 (b) and (c) dissect two contemporary building blocks that apply the skip
connection and inception module ideas. The conv-block in image (b) is used to
train three sequential convolutional layers instead of one. On the other hand, the up-
projection block in image (c) employs two transposed convolutional layers substitute
for convolution ones to up-sample the input volume. These, in turn, not only increase
the model depth, but also significantly reduce the number of features processed by the
convolution. These two blocks are also used in this thesis. Detailed explanations for
batch normalization (BN) and rectified linear unit (ReLU) will be introduced in the
following sections.
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3.2. Deep learning techniques

There are a lot of hyper-parameters and processing schemes inside a DNN model that
need to be appropriately calibrated to get the best result for a specific task. This section
describes the most common deep learning techniques that are used to train deep neural
network models.

3.2.1. Weight Initialization

To perform numerical calculations on computers, variable initialization is always re-
quired and neural network weights and biases are not exceptions. Moreover, both em-
pirical studies [48] and practice have proved that weight initialization has a big impact
on the convergence of the training process. Therefore, this step needs to be carefully
handled to avoid the symmetric problem of setting all of weights and biases to zeros in
the first place. The network will then update the same gradient during backpropagation
and make the training useless.

One common way is to set these values near but not exactly zero and scale them by
a 1√

n
factor to normalize the input variance as follows

wi =
random(n, µ = 0, σ2 = 1)√

n

where n is the number of the inputs, µ is the mean, and σ2 is the variance.
Another favorite initialization method is to use Xavier initializer [48] with the pur-

pose of keeping the same variance between layers. The variance at the layer i could be
calculated as follows

σ2(wi) =
2

inin + inout

where nin, nout are the number of inputs and outputs at layer i, and σ2 is the variance.
In 2015, K. He et al. [49] presented a standard initialization scheme for ReLU units

wi = random(n, µ = 0, σ2 = 1) ∗
√

2

n

where n is the number of the inputs, µ is the mean, and σ2 is the variance.
Recently, Ioffe and Szegedy introduced a robust technique named batch normaliza-

tion (BN) [43]. Batch-norm is a generic building block in DNN, where the main idea
is to scale and shift the distribution of the training weights. This routine has become
very popular because it is not only an efficient initialization method, but also a prepro-
cessing layer that lies right in front of ReLU in ResNet.

In practice, one efficient way to initialize the weight is to use the pre-trained models
from related task. Although this initialization scheme is more complex and constrains
the network design, applying this can decrease the training time and ease the network
convergence in advance.
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3.2.2. Activation functions

Activation is used to add non-linearity to the network by crunching the dot product
result in a specific function. As said earlier, the non-linearity will help the model
to learn complex representations from the training data. There are several types of
activation functions, which will be briefly discussed in this section. Illustrations of
these functions are presented in Figure 13.
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Figure 13. Illustration of well-known activation functions.

The first activation is the sigmoid function, which is formulated as

f(x) =
1

1 + e−x

In practice, this activation operator suffers from saturation to 0 or 1. These neurons
will not learn anymore because the gradient is very close to zero. Moreover, sigmoid
operator is sensitive to bad initialization and/or data preprocessing, and thus requires
special attention when training the network. Another type of activation is tanh

f(x) = tanh(x) =
ex − e−x

ex + e−x

that also suffers from the same saturation problem. Because of this, these traditional
activation functions are barely used anymore, in practice.

The next type of activation operation is the rectified linear unit (ReLU) [32], which
is calculated with the function

f(x) = max(0, x)

Unlike the two other functions, the ReLUs do not suffer from saturation problem and
are faster to compute. However, they undergo the dying ReLUs problem which hap-
pens when a large gradient is passed through these activation units. In this case, the
gradient flow of these units is always zero. In other words, these neurons are dead and
useless for training the deep neural networks.

One solution for this problem is to carefully set the learning rate when using ordinary
ReLUs. Moreover, some studies managed to tackle this problem by linearly chopping
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off the curve (non-linearity) from multiple possible output as illustrates in Figure 14.
This idea was later generalized by Goodfellow et al. [50] with the proposed maxout
operator. In general, the output after the activation can be further calculated by

fi(x) = max
j∈[1,k]

(xwij + bij)

where wij , bij are the learned weights and biases, x is the input volume and j is the
number of affine feature maps. Figure 14 presents this idea using a quadratic curve. In
addition, other studies like Leaky ReLU [51], or PReLU [49] are both special cases of
maxout.

Figure 14. Maxout linearly approximate the quadric activation function [50].

3.2.3. Backpropagation

Backpropagation [52, 35, 53] is an essential algorithm used to calculate the gradient
of the loss function. It is calculated using the chain rule, so that the neural network
can update the weights and biases in the training process using optimizer such as the
gradient descent.
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Figure 15. The illustration of the forward and backward pass in a simple model with
only one hidden layer and no bias.
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This process could be interpreted as the backward propagation of the errors of the
network layers. When training, the errors at the current layer will be calculated. Then
these error values will be passed backward to the previous layer, and recursively doing
this until the errors have travelled back to the first hidden layer. At each layer, the
network will update its weights and biases by computing the derivative of the cost for
each weight.

Figure 15 shows the basic calculations of the forward and backward pass for a simple
network that has the input layer (1-D tensor, with 256 units), only one hidden layer with
an arbitrary number of neurons and the output layer that has ten units (representing ten
output classes).

3.2.4. Regularization

In machine learning, the term overfitting refers to the problem where the model has
learned the training data too well. Because of this, the model has not only learned
the essential features but also unwanted noise. This, in turn, causes poor generaliza-
tion when testing the trained model with real or test datasets. One way to tackle this
problem is to increase the size of the training dataset. However, it is not always very
straightforward to do this in practice. Instead, there are several regularization tech-
niques that can be utilized to overcome this issue.

One common technique is L2 regularization which adds a compensation λ
2n

∑
w2

to the loss function, where n is the number of training samples, λ is the regularization
parameter and w is the current weight. By decaying the weight toward the zero during
the training, the network tends to learn relatively smaller weights to avoid overfitting
itself.

On the other hand, L1 regularization will add the term λ
n

∑
|w| to the loss function.

In practice, L1 regularization can make the model invariant to noise, because it concen-
trates on updating a small number of important weights while pushing other weights
close to zero.

In the case where the weight is big, L2 will shrink it more than L1. In contrary, if
the weight is small, L1 will shrink that weight more than L2. However, as proposed
by Zou and Hastie [54], it is possible to use both L1 and L2.

Another regularization term is dropout [55], presented by Srivastava et al. This
technique prefers deactivating some neurons inside the training process by adding a
dropout probability p to each neuron. The idea seems counter-intuitive, but by drop-
ping out totally random set of new neurons after every training batch, it helps to control
the overfitting very well and is widely used within the research community.

3.2.5. Optimization algorithms and loss functions

In general, the ultimate goal of the training is to update the learnable variables to op-
timize the cost function by applying some optimization techniques. The definitions of
the loss functions and optimization algorithms are probably the most crucial factors
in the training process and they depend heavily on the application. In the supervised
deep learning, the goal is to minimize the differences between predicted and ground
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truth values. On the other hand, in unsupervised learning, the primary objective is to
learn the whole probability distribution that can synthesize the wanted representation
(or output data). These topics have drawn substantial attention from the research com-
munity with fast-evolving pace. This section will discuss about some useful methods,
in practice.

The first one is the traditional gradient descent (GD), which calculates the gradient
for the whole dataset. The weight is then moved gradually towards the negative gradi-
ent direction until it reaches a local minimum. However, when the goal is to find the
global minima, the local one is usually not enough. In addition, it is also impractical
to calculate the gradient for a big dataset.

One alternative method is the stochastic gradient descent (SGD), which updates the
weights and biases by looping through the training dataset and calculates the gradient
for each sample. With SGD, the objective function can jump over the local minimum
pitfall. Nevertheless, the variance between every sample is usually high which fluc-
tuates the objective function and make it hard to convergent. Therefore, to combine
the benefits of GD and SGD, it is common in practice to use the mini-batch SGD to
calculate the gradient for a subset of data.

Moreover, to improve the convergence rate in plain gradient descent, a momentum
term

vt = γvt−1 + α∇wL(w)

is usually added into the update scheme by

w = w − vt
where v is the velocity, γ is the momentum, α is the learning rate and ∇wL(w) is the
gradient. This idea was inspired by the momentum term in physics and has become
popular because it also works well when applied to the training of DNN.

However, Nesterov found the problem that momentum can keep overshoot the global
minima if it moves too fast [56]. To slow down the momentum, he suggested calculat-
ing the gradient based on the one-step-ahead rather than the current step before actually
moving into that step. This, in turn, makes the update more responsive to the slopes in
the training data domain.

Furthermore, it is also possible to adjust the learning rate with a parameter. The
adaptive gradient (AdaGrad) [57] is one of these techniques, which uses the dynamic
learning rate to make a large update for infrequent parameters and a small update for
frequent ones. By using this, there is no need to manually change the learning rate
when training.

To push things even further, adaptive moment estimation (Adam) [58] aims to adjust
the learning rates and the momentum for every parameter automatically. The Adam
process includes 1) calculating the mean moment using

m̄t =
mt

1− βt1
(5)

2) uncentering the variance of the gradient by

v̄t =
vt

1− βt2
(6)
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and 3) updating the parameters using

wt+1 = wt −
α√
v̄t + ε

(7)

where α is the learning rate, β1, β2 ∈ [0, 1) are exponential decay rates and ε is the
smoothing value to avoid division by zero. Normally, β1 = 0,9 and β2 = 0,999
whereas ε = 10−8.

In practice, Adam [58] is one the best methods due to its fast convergence rates,
and it often outperforms other methods. There are many more algorithms which could
occupy a whole chapter to explain. For more details, one can check out Ruder’s article
[59], which gives an excellent overview of these methods.

3.3. Structure from motion using deep neural networks

As discussed in Chapter 2, recovering the 3D structure from a set of images or a video
is currently done by using conventional structure from motion methods that are mainly
based on feature-based algorithms. Recently, 3D reconstruction using deep learning
has received much attention since Eigen et al. [7] introduced a new method for monoc-
ular depth prediction. To the best of our knowledge, the compelling task of building
an end-to-end 3D scene reconstruction using DNN is still under development. This
section will discuss some state-of-the-art works that apply DNNs to tackle problems
such as depth map prediction and camera pose estimation, which can be later used for
3D reconstruction.

3.3.1. Related work

One of the foundation studies on the ill-posed monocular depth problem is the paper
by Eigen et al. [7] entitled "depth map prediction from a single image using a multi-
scale deep network". As claimed by the name, the model consists of two-level CNNs.
The first one is the coarse-scaled network, which comprises four convolutional layers
with max-pooling followed by two fully connected layers. This network was trained
to predict the coarse depth map at a global level. The output then will be feed to a
fully convolutional network to refine the previous prediction by aligning it with local
details.

One year later, Eigen et al. presented an expanded version [8] from [7] study, which
train three groups of CNNs for semantic labeling and surface normal estimation. The
first sub-network is used to make the coarse prediction from the input image, and then
the second sub-network will predict mid-level resolution. Finally, the third one will
refine these outputs to produce the high-resolution prediction.

Another effort to estimate the depth map from the monocular system is the study by
Laina et al. [9], where instead of refining from the coarse prediction by using two or
three sub-networks, they employ a fully convolutional residual networks (FCRN) to re-
fine and up-sample the images. The authors utilize the residual block in the ResNet-50
[45] to concatenate high-level features from the output of previous convolutional lay-
ers. Then these output volumes are up-sampled using transpose convolutional layers
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to produce a high-resolution depth map. Their proposed network also removes pool-
ing and fully connected layers, which dramatically reduce both the training time and
network parameters. The idea of employing deeper network showed the improvement
on the prediction performance compared with Eigen et al. studies [7, 8]. This thesis
will later modify the FCRN network for training a supervised DepthNet model.

Recently, Liu et al. proposed a new idea of training DNNs to estimate planar-wise
instead of pixel-wise depth maps called PlaneNet [10]. The network was designed
based on the dilated residual networks [47], and incorporated with a conditional ran-
dom field network to predict the segmentation masks for dominant planes in the scene.
They created 51k the planar-wise ground truth depth maps from the Scannet dataset
[60], and then trained their model on this dataset. This publication currently provides
the best result for the single view depth map prediction problem, despite the use of a
relatively small training dataset.

On the other hand, using the supervised method, Kendall et al. introduced a CNN
model, named PoseNet [11], that can estimate the 3D camera pose from a single im-
age. PoseNet uses the trained weights on ImageNet [6] to perform transfer learning
upon the vanilla GoogLeNet [42] for building a camera pose estimation regressor. The
PoseNet model was trained on the Cambridge Landmarks (outdoor) [61] and the 7
Scenes (indoor) [62] datasets. The results from this work are promising, which in turn
encouraged several later works.

Melekhov et al. [12] proposed a CNN regression model that can predict the rela-
tive camera pose between a pair of images. Also utilizing the supervised method, they
manipulate L2-norm by inserting one parameter to the loss function for balancing the
translation and rotation values. Using this objective function, they conduct transfer
learning on trained hybrid-CNN weights [63] upon a dataset provided by Wilson et
al. [64]. Moreover, to fix the number of spatial bins before feed-forward to the fully
connected layers, they added a spatial pyramid pooling [65] layer at the end of the rep-
resentation learning block. By doing this, the network yields improvement in accuracy
evaluation.

Garg et al. [14] were the first to introduce the idea of training a network to predict
the depth map from a single image in an unsupervised fashion. They trained a CNN
model by optimizing the photometric error when inversely warping the left image to
the right image. However, due to the difficult-to-optimize loss function, their model
showed some limits on the final result.

In 2017, Godard et al. [15] presented an unsupervised DNN model for producing
depth map from the single RGB image. To overcome the problem in Garg et al. [14]
study, the authors combined the left-right consistency with the L1-norm and the sin-
gle scale structural similarity [66] to form the loss function. Using this, they trained
an auto-encoder by minimizing the image reconstruction cost when warping between
pairs of left and right images. In other words, the left image is fed to the network
while the right image is used to supervise the training. In the end, the model learned to
generate the right from the left image, and the disparity map could be calculated from
this stereo pair. The study showed remarkable results. Training the network without
any labeled data, the model can still surpass Eigen et al. [7] and Laina et al. [9] (on
Make3D dataset) which applied supervised method. Moreover, the inference time is
impressive which can process ∼28 images per second in a single Titan X GPU.
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3.3.2. DispNet and SfMLearner models

Mayer et al. [67] proposed an encoder-decoder architecture, called DispNet, that can
directly learn to predict the disparity map from RGB images. In the publication, they
trained the network on their own synthetic dataset, which was generated based on
Flickr [68] images for the background and random Flying Chairs [69] from public 3D
chair models as the foreground. This network was then fine-tuned on the large scaled
street-view dataset named KITTI [70].

Figure 16. Illustration of the DispNet architecture, based on the FlowNet [71], for
disparity map estimation task. The network consists a contractive part to learn the
feature maps and an expanding part to later up-sample the prediction using transpose
convolution with concatenation of previous feature maps in the contractive part. Image
from Mayer et al. [67].

The DispNet’s architecture, showed in Figure 16, consists of the contractive and
expansion parts. The contractive module has 10 convolutional layers where the first
layer uses kernel of size 7× 7, and 5× 5 for the second and third layer. The rest of the
layers use smaller 3×3 kernel size. The numbers of filters are [64, 128, 256, 256, 512,
512, 512, 512, 1024, 1024] from the first to the tenth layer, respectively. These layers
learn the coarse feature maps from a stacked pair of [384× 512× 6] input to be later
refined in the following module.

The output from previous part is fed to the DispNet’s expansion part, which has
four transpose convolutional layers. These layers are used to perform un-pooling and
convolution with the concatenated input feature maps from previous feature maps of
the contractive module. After four up-convolution processes, the size of the spatial
feature maps is expanded from 6 × 8 to 48 × 64 before making the final prediction to
produce a 96× 128 disparity image.

Although the disparity estimation result from the DispNet [67] was not very good,
it is still comparable with the state-of-the-art studies and inspired later research such
as Zhou et al. [17]. In that paper, they proposed SfMLearner, an unsupervised model
that learned to predict the camera poses and depth maps separately from RGB images.
The SfMLearner was pre-trained on the Cityscapes [72] and fine-tuned on the KITTI
dataset [70].
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For the depth map estimation, the SfMLearner employed the DispNet and inserted
four convolutional layers to the contractive part. The kernel sizes of the first four
convolutional layers are [(7× 7), (7× 7), (5× 5), (5× 5)], while the rest of the layers
use 3 × 3 filters. In addition, the numbers of filters are [32, 32, 64, 64, 128, 128, 256,
256, 512, 512, 512, 512, 512, 512] from the first to the fourteenth layer, respectively. In
the contractive part of the SfMLearner network, new transpose convolution layers were
also added using the same idea as in the DispNet to refine the output depth images. The
employment of the additional layers yield improvement on the depth map estimation
task.

Furthermore, Zhou et al. introduced the PoseNet [17] to estimate the relative camera
poses from a set of consecutive frames. This network has 7 convolutional layers with
stride-2, and the numbers of filters are [16, 32, 64, 128, 256, 256, 256], respectively.
The first layer uses 7×7 filter kernel, the second employs 5×5 whilst others use 3×3.
The final convolutional layer is used to produce the 6-DOFs of the camera motion.

These networks are concurrently trained by minimizing the photometric consistency
across monocular video datasets. The Adam optimizer is employed with a default
exponential decay rates of 0.9 and 0.999 for the first and second moment estimate
values, respectively. The learning rate starts at 2× 10−4 with the training batch size 4.
All of the layers utilize ReLU for activation. In addition, every layer, except the output
layer, uses the batch normalization before activation.

The network architectures of this work are mainly based on the design of the FCRN
[9], DispNet [67] and SfMLearner [17] models. These approaches seem to perform
reasonably well in the single view depth map prediction and camera pose estimation
when using indoor datasets. In addition, they provide both supervised and unsuper-
vised deep learning models for training. In this work, the above models were modified
and used to create a learning-based 3D reconstruction pipeline. Details of these imple-
mentations are described in the next chapter.
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4. IMPLEMENTATION

This research focuses on experimenting different learning-based SfM approaches to re-
construct a 3D model of a scene from a set of overlapping images. These DNN models
aim at predicting the camera transformation (i.e. camera translation and orientation)
and the scene structure (i.e. the depth maps) from the RGB frames. These predicted
values are then used to create the 3D point cloud of the captured scene. The point cloud
reconstruction consists of three steps: 1) scale estimation of the predicted depth maps,
2) point cloud registration with iterative closest point algorithm [73, 74] to refine the
camera transformations and 3) concatenation of overlapping point clouds into a single
3D model. The generic pipeline of this work is illustrated in Figure 17.
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Figure 17. The generic pipeline for point cloud generation from an RGB video.

In this chapter, Sections 4.1 and 4.2 describe the supervised and unsupervised deep-
learning SfM approaches, respectively, while Section 4.3 presents a straightforward
point cloud merging process.

4.1. Supervised depth map prediction

Approximating the direct mapping from a single RGB image to its corresponding depth
map is a difficult problem. However, the depth values are essential information when
reconstructing the 3D space. Therefore, to perform the monocular depth estimation, a
DNN was trained based on the ResNet [45] and FCRN [9] models.

Moreover, the training of the supervised depth map is two-fold. First, the trained
model can directly produce depth maps from RGB images for the dense 3D recon-
struction. Second, the weights from the contraction part of the supervised network will
be used to initialize the training of the unsupervised model in Section 4.2.

4.1.1. Network architecture

The supervised depth model of this work is based on the FCRN architecture [9], with
some changes both in the contraction and extraction modules. The network design is
based on the vanilla ResNet [45], which contains one 7 × 7 convolutional layer (with
64 filters and strides 2) and 19 conv-blocks. The conv-block, as described in Chapter
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3, uses the skip connection and identity blocks to train a much deeper network. The
contractive part of this network consists of 19× 3 + 1 = 58 convolutional layers.

Input

Conv-block

Up-projection block

Prediction

Depth map Supervised DepthNet

Figure 18. Network architecture for depth map prediction.

Moreover, the conv-blocks help to produce much deeper network for capturing a
receptive field up to 497 × 497 despite the vanishing gradients problem. However,
instead of stacking up fully connected layers at the end of the network for inferencing,
the up-projection block is used to gradually up-sample the resolution of the predicted
depth map.

The network input size is 304×228×3, and after performing five up-projections, the
network can produce a 320× 256 pixels depth map. With one additional up-projection
block, the network shows small improvement with larger depth maps than the FCRN
[9] model.

4.1.2. Data preprocessing and augmentation

The original FCRN [9] was leveraged by transferring learning from the pre-trained
ResNet [45] on the ILSVRC dataset [75], which is a very large dataset containing more
than 1.2 millions RGB images for scene recognition tasks. After learning the low-
levels features from the ImageNet dataset, the pre-trained ResNet model was concate-
nated with the extraction module (contains up-projection blocks) for the fine-tuning
on the NYU-v2 [76]. The FCRN [9] model was trained using the NYU-v2 official
train/test split, containing about 95k pairs of RGB-D images after augmentation.

As discussed earlier, the modified network has seven 256-filter conv-blocks and five
up-projection blocks for refining larger resolution depth map. However, the new blocks
introduce more parameters and make the network slower to converge. Therefore, in
addition to the NYU-v2 [76], the model was also fine tuned on the SUNRGB-D [77]
dataset. The SUNRGB-D consists of 13215 original image pairs, which, after aug-
mentation, added more than 52k pairs to the combined dataset. Hence, the dataset
consists of 147k images in total which in turn is divided into 81k/66k for training and
validation, respectively.
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The augmentation of the training data consists of several image transformation pro-
cesses which were applied both on RGB images and depth maps. The transformations
were scaling, rotation, coloring and flipping. For the scaling, the RGB images were
scaled by a random factor in range [0.875, 1.25]. To perform the rotation, the inputs
and ground truth depths were rotated in the range of [−5, 5] degrees. The coloring was
also applied by multiplying the RGB images with a random value in range [0.7, 1.25].
Finally, a subset of pairs were flipped horizontally to produce new images. In the above
processes, coloring, flipping and rotation are geometry-invariant while scaling is not.
Hence, it is necessary to divide the ground truth depth values by the same scaling factor
when perform this type of augmentation.

4.1.3. Training details

During the training phase the weights of the networks are updated using the backprop-
agation to minimize the objective function

L(x) =

{
|x| if|x| ≤ c,
x2+c2

2c
if|x| > c,

(8)

where x represents the error at every pixel and the threshold value c is defined by

c =
1

5
max
i

(|ŷi − ygti |) (9)

where i is the pixel-indices, ŷ is the predicted depth and ygt is the ground truth one.

Figure 19. Training of the supervised depth showed by Tensorboard. In the chart
above, the orange curve indicates training loss while the blue curve shows the vali-
dation one. The decreasing slope of both curves signify the learning progress of the
model over training iterations.

However, instead of the common quadratic loss, the reverse Huber function (Eq. 8)
is utilized for the regression of the depth values. Equation 9 determines the threshold
value c which is 20% of the maximal error of pixels i on each image in the training
batch. Then, in Equation 8, the gradients are updated separately at every pixel depend-
ing on the size of error x. If the error is larger than the threshold c, the quadratic loss
will be calculated, otherwise, the L1 norm will be applied. The reverse Huber (Eq. 8),
in fact, exploits the best from both worlds because the L1 norm is better for a small
error while the quadratic loss is more effective on a larger gradient.
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The initial learning rate for the Adam optimizer was 10−3 and ε was set to 10−8. The
exponential decay rates for the first and second moment estimate values were 0.9 and
0.999, respectively. In the fine-tuning process, the batch size of 16 was used to train for
about 30 epochs, which consumed ∼56 hours running on one Telsa K80 GPU. After
that, the trained model was saved into the checkpoint files that could be later used to
make the inference.

RGB 
image 

Predicted 
depth 

Ground 
truth 

(a) (b) (c) (d) 

Figure 20. Visualization of the predicted depth maps during training. The estimated
depth values gradually became better as seen in the results after about (a) 40k iterations,
(b) 75k iterations, (c) 250k iterations and (d) 350k iterations.

As showed in Figures 19 and 20, using the initialized weights from the FCRN [9]
eased the training of the supervised network. The network started to converge and
produce reasonable depth maps after ∼200k iterations.

4.1.4. Error distribution of predicted depth maps from the supervised model

After training, the error distribution of the estimated depth maps was analyzed to spot
out systematic errors for further improvement. The errors were calculated with ground
truth values from the video sequence number 047 of the SceneNN [78] dataset, which
contains 5693 image pairs for this purpose. For every feasible pixel, the median error
and the standard deviation were computed with respect to the depth values and the
radial distances from the principal point.

In Figure 21, the depth axis shows the range of the predicted values. In case of
the supervised depth network, the estimated value is in meters because the model has
learned the direct mapping from the ground truth. On the other hand, the radial distance
axis indicates how far a certain bin is from the principal point, which is usually at the
middle of an image. The vertical axis shows the error value that measures the median
error (top) and the standard deviation (bottom).

As one can see, errors tend to be bigger with bigger depth values and near image
border regions. The area at depth values from 0.5 to 1.0 meters having large pixel



33

Figure 21. Statistical error distribution of supervised depth map prediction.

distances also contains estimation errors. Therefore, a simple mask was used to filter
out the large error region, especially in the border areas.

4.2. Unsupervised depth map and camera pose estimation

In contrast with the supervised deep learning method in the previous section, the sec-
ond approach trained the neural networks in an unsupervised manner. The DepthNet
and MotionNet do not need the depth maps but only the RGB images in the training.
Moreover, the trained model can predict both the monocular depths and the relative
camera transformations between video frames. Then, along with the semantic seg-
mentation from the SemanticNet, the predicted depth maps are refined using the pla-
nar assumption. Finally, these cues are used to reconstruct the 3D point cloud of the
captured scene.
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Figure 22. The pipeline used to acquire the depth map and camera transformation by
training the unsupervised DepthNet and MotionNet. The SemanticNet was utilized to
produce the semantic segmentation masks for applying the planar assumption.

4.2.1. Network architecture

The unsupervised model consists of the DepthNet for depth map prediction and Mo-
tionNet for the camera pose estimation. In the learning phase, both networks are
trained simultaneously. However, they can infer the depth map and the camera pose
separately in the inference stage.

Input

Conv-block

Transpose convolution

Prediction

Depth map

Concat
Upsampling + concat

Camera
transformation

Unsupervised DepthNet Unsupervised MotionNet 

Figure 23. The network architecture of the proposed unsupervised DepthNet and Mo-
tionNet.

The DepthNet originates from the DispNet [67] and SfMLearner [17] but uses the
network architecture described in Section 4.1.1 for the contractive part to build a better
unsupervised model for datasets of indoor scenes. The much deeper contractive part
of depth map estimation was utilized because indoor scenes are usually more complex
than street-view images from KITTI [70] or Cityscape [72] datasets that were used to
train the SfMLearner network. Moreover, the DepthNet was initialized using the pre-
trained weights that will help the network to converge faster. The expansion part of the
DepthNet employs the same structure as the SfMLearner and produces different-scale
depth maps at the last four transpose convolution layers. These scaled outputs not only
boost up the training of previous layers but also aid to visualize the training.
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The MotionNet consists of eight convolutional layers with stride-2, and the numbers
of filters are [16, 32, 64, 128, 256, 256, 256, 512]. The layer also uses 7 × 7 kernel
size filter, the second one employs 5× 5 whilst others use 3× 3 as in the SfMLearner
model. The final layer applies 1× 1 convolutional layer to output 3 values for the 3-D
translation and 3 values for the Euler angles in degrees.

4.2.2. Data preprocessing

The unsupervised learning technique only need the RGB images alongside with their
camera intrinsic for the training. However, the network required a lot more data to train
the model. Hence, two big indoor datasets, including the SceneNN [78] and SceneNet
[79], were utilized in this task.

Figure 24. Data preprocessing with RGB frames from the SceneNet and SceneNN
datasets. Images were stacked in the sequence of s(s = 3) images. The first image is
the target view while the others are the source views.

SceneNet [79] is a synthetic dataset containing rendered images from 3D models of
indoor scenes. It has 17k 3D scene models and each model consists of 300 rendered
images which makes up totally 5.1 million images. The images were rendered by
moving the camera randomly inside the textured model having realistic lighting. The
only limitation of the rendered dataset is the unrealistic textures of the objects in the
images. However, a photorealistic scene was found easier for the network to learn in
the early training stage.

SceneNN [78] is a real world dataset, which was captured using the Asus Xtion
depth camera. This dataset contains 95 scenes with 52 room scenes, 22 office scenes
and 21 main hall and class room scenes. The camera baselines in SceneNN dataset are
small (about 10-20 cm), which is helpful for the training at the later stage.

Moreover, the trained explainability model from the SfMLearner [17] was used to
remove images that contain occlusions between different views and non-Lambertian
surfaces more than 35% of total number of pixels. The consecutive frames were then
stacked together with their camera intrinsic to perform the training. Figure 24 shows
some training sequences used in the training of the unsupervised networks.
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4.2.3. Training details

The objective function for training the unsupervised networks is formulated as

Ltotal =
∑
l

Llvs + λsL
l
smoothness (10)

where l indicates the scale of the images, Lsmoothness is the smoothness loss (Eq. 14)
and λs is the smoothness loss coefficient. The novel view synthesis loss Lvs is calcu-
lated with

Lvs =
∑
s

∑
p

|It(p)− Îs(p)| (11)

where Îs is the warped source view, It is the target view, s presents the source view
index and p indicates the pixel index. The network was trained by optimizing the
projection error between the source view warped onto the target view and the target
view.

To calculate the warped source view image Îs, the pixel in the target view image was
first warped to the source view by

ps ∼ KT̂t→sD̂t(pt)K
−1pt (12)

where pt is a point in the target view, ps is the temporary projected position of pt in
target view warped onto the source view, K is the camera intrinsic parameters, T̂t→s is
the estimated camera transformation from target view to source view and D̂t(pt) is the
predicted depth value of target view at pt.

After that, Îs was obtained by bilinear sampling the values from four neighboring
pixels using

Îs(pt) =
∑

i∈{t,b},j∈{l,r}

wijIs(p
ij
s ) (13)

where Îs(pt) is the source view warped on the target view, ij indicates the positions
of four neighboring pixels at top-left, top-right, bottom-left, bottom-right of the pixel
in the source view after warping, (t, b, l, r) implies top, bottom, left, right respectively,
and wij is spatial proportion between the projected position ps with respect to its 4-
pixel neighbors. The sum of four wij is equal to 1.0.

The aperture problem that occurs in, e.g. textureless areas, creates zero gradient
because the projection losses are equivalent in flat uniformly colored surfaces. This
problem hinders the learning process of the DepthNet. Therefore, the spatial regular-
ization

Lsmoothness =
1

m× (n− 2)

m∑
i=1

n−2∑
j=1

|δ
2fd
δx2
|ij +

1

(m− 1)× (n− 1)

m−1∑
i=1

n−1∑
j=1

| δ
2fd
δxδy

|ij

+
1

(m− 1)× (n− 1)

m−1∑
i=1

n−1∑
j=1

| δ
2fd
δyδx

|ij +
1

(m− 2)× n

m−2∑
i=1

n∑
j=1

|δ
2fd
δy2
|ij

(14)
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where fd(x, y) is the predicted disparity map with the resolution of m × n, was em-
ployed in the training to compensate for this problem. This term try to regularize the
projection loss by optimizing the mean of the second-order gradients of the predicted
disparity values from the DepthNet. Note that, the predicted depth values were the
reciprocal of the disparity map, and were computed by depth = 1/disp.

Figure 25. Total training loss and smoothness loss of the unsupervised DepthNet and
MotionNet showed by Tensorboard. This illustrates the intermediate training process
after ∼2 million iterations. The unsupervised model is more difficult to converge. In
the figure, the top chart indicates the smoothness loss while the bottom chart showed
the total loss. The total loss fluctuates, but still shows the decreasing slope especially
at iteration number 2.35 millions.

Adam optimizer was utilized to train the unsupervised DepthNet and MotionNet,
with the initial learning rate 3 × 10−3 and ε = 10−8. The smoothness coefficient λs
was set to 0,5

2l
, where l is the scale index and l ∈ [1 . . . 4]. The exponential decay

rate for the first and second moment estimate values were 0.9 and 0.999, respectively.
The contractive part of the DepthNet was initialized using the pre-trained weights from
the supervised depth model. Both the convolutional layers in the DepthNet’s expansion
module and the MotionNet were then initialized using the Xavier method. The training
used approximately 750k images and it was trained for about 100 epochs with the batch
size of 8. The networks were trained on three Telsa K80 GPUs for around 125 hours.

In contrast to the supervised model, the objective function for training the unsuper-
vised network is much less constrained, which made the network harder and slower to
converge. An intermediate training session, illustrated in Figure 25, showed that the
training loss took about 185k iterations to decrease the total training loss by ∼0.125.
Otherwise, the smoothness loss fluctuated between [3.950×10−1 . . . 4.250×10−1] pre-
venting the gradient decaying to zero and making the learning meaningful.

The core training of the DepthNet and MotionNet is to minimize the projection
error in Equation 11. Figure 26 visualizes this training process in a period of ∼200k



38

(e)

(b)

(a)

(c)

(d)

Figure 26. Illustrations of the target image (row a), source image (row b), the warped
source view on the target view interpolated using the RGB information from the source
view (row c), the projection error between the projected image and the target view (row
d), and the predicted disparity map (row e). The predicted depth map is calculated by
depth = 1/disp.

iterations. It was first started by applying Equation 12 to project pixels from the target
view (Fig. 26, row a) to the source view (Fig. 26, row b) using the predicted depth
values and camera transformations from the networks. The predicted depth values
were calculated by depth = 1/disp. These pixels were then interpolated using the 4
neighboring pixels in the source view (Eq. 13) to create the projected image (Fig. 26,
row c). The projection errors were calculated and showed in (Fig. 26, row d). From the
left to the right, images are presented in an ascending order of the number of training
iterations. Although the difference between the showed example images is not very
clear, in the course of time, Figures 25 and 26 still present the decreasing trend of the
projection error.
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4.2.4. Error distribution of predicted depth maps from the unsupervised DepthNet

Using similar analysis as described in Section 4.1.4, the predicted depth values from
the unsupervised DepthNet still contain errors around the border areas.

Figure 27. Statistical error distribution of predicted depth maps from the unsupervised
DepthNet.

Large errors also appear in the areas of bigger depth values, which in the unsuper-
vised case are not in the metric scale. Although the contractive part of the DepthNet
was initialized by the supervised model, the depth prediction values have a rather ar-
bitrary scale. This happens because the network indirectly learns to predict both the
depth and the camera pose to minimize the objective function, which is more loosely
constrained than the reverse Huber loss.

In general, output depth values seem to shift a little bit from the ground truth, which
could push the predicted depth further away from the real values. Therefore, applying
small weight λUd for unsupervised depth compensation along with depth map scale
estimation could fix this problem.
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4.2.5. Semantic network and the planar assumption

Indoor scenes are usually constructed by dominant planar surfaces such as walls, floors,
ceilings, and flat objects. The planar-wise understanding is very helpful, because most
of the 3D scenes can be reconstructed by exploiting these linear surfaces. Therefore,
one can apply a planar assumption to produce a depth map with dominant planes by
using semantic segmentation on the predicted depth maps.

As illustrated in Figure 22, the planar assumption starts by predicting the depth and
semantic maps. The depth values are filtered before back projecting them into 3D space
to create a point cloud. A RANSAC plane fitting function with semantic constraints is
then applied to these point clouds to find the dominant planes.

First, the SemanticNet is used to create the segmentation mask for walls, floor, furni-
ture, stairs and others from the input RGB image. It was created based on the ResNet-
101 DeepLab [80] model and fine-tuned on the ADE20K dataset [81] for semantic
segmentation of indoor scenes. The outputs are pixel-wise 2D semantic labels, where
peach color is the wall, green is the floor, gray is furniture and blue is the other classes.

(a) (b)

Figure 28. Semantic segmentation of images from the SUNRGB-D dataset. The se-
mantic maps (column b) were created from the RGB images (column a). In the ex-
ample segmentation images, the peach color presents the wall (labeled 1), green is the
floor (labeled 2), gray is furniture (labeled 3) and blue is the other classes (labeled 26).

Next, the predicted depth values having |zi − zmedian| > 3 × std(zi), where
z is the depth value, are filtered out. In addition, the 3D points with less than
N(N = 500) neighboring points in a sphere with the diameter d,

[
d = 0,1 ×

max(3d_points_distances)
]

are also removed.
Then, RANSAC plane fitting is applied with specific semantic labels to find dom-

inant wall, floor, furniture and stair planes. RANSAC [31] is a generic robust fitting
technique for estimating the model parameters disregarding outliers in the data. Specif-
ically, the plane fitting in our pipeline 1) randomly selects three samples from the point
cloud and calculates the plane normal and offset, 2) fits all the samples and counts
the number of 3D points Nplane

inliers if their distances to the plane are smaller than 0.01,
and 3) If Nplane

inliers is greater than 40% of the number of 3D points in the cloud then the
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algorithm updates the plane parameters and the set of remaining points. The iteration
limit of RANSAC plane fitting is Nlimit = 35, which is chosen by the suggestion of
Fischler et al. [31]. For each semantic category, the algorithm tries to find at least 11
dominant planar surfaces.

After that, the obtained planes with the same label are merged together if the normal
angles are within 20o. In this case, the plane merging process determines and fuses the
smaller planes to a bigger one. As the results, Figure 29 shows the reconstructed point
cloud with (c) and without (b) planar assumption from RGB images (a).

(a) (b) (c)

Figure 29. Point cloud reconstruction using the planar assumption. The example im-
ages show the reconstructed point cloud without (b) and with (c) the planar assumption
from input images (a). Although some of the 3D points are filtered out, the point cloud
can still present the most of the scene.

4.3. Point cloud merging using predicted depth maps and camera poses

After getting the depth maps and camera poses, a simple merging routine was imple-
mented to reconstruct the full point cloud of the scene. The predicted depth maps are
first rescaled to a uniform scale to fix the misalignment problem. Next, the iterative
closest point (ICP) algorithm [73, 74] is used for the registration of the point clouds
into a common coordinate frame using the estimated camera poses as an initial guess.
Finally, the point clouds are merged together to form the dense 3D point cloud of the
scene.

4.3.1. Depth maps scale estimation

In both supervised and unsupervised approaches, the direct mapping of RGB values
to corresponding depth information created depth maps having slightly varying scale
even when the model was the same. Therefore, the back-projected 3D points of these
depth maps from two consecutive frames do not align properly. Figure 30 (a) illustrates
this issue, where the level of the floors from two continuous frames are different.
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(a)

(b)

Figure 30. Depth map re-scaling. Point clouds from two consecutive depth maps
without (a) and with (b) re-scaling.

To cope with this problem, the depth maps were re-scaled in the following manner.
For every pair of consecutive depth maps framet and framet+1 1) re-project the
framet+1 onto the framet and 2) use RANSAC to find a scale factor which minimizes
the error between the framet and the re-projection of the framet+1.

After this, the pairwise scale factors were used to re-scale the depth maps into the
scale of the first depth map. The back-projected point clouds of two consecutive frames
after the re-scaling are presented in Figure 30 (b).

4.3.2. Point cloud registration

All re-scaled depth maps in Section 4.3.1 are back-projected to reconstruct 3D models.
However, these overlapping point clouds are acquired from different views. Therefore,
point cloud registration process such as the iterative closest point (ICP) [73, 74] is
needed to align these point clouds into a single 3D model.

ICP is an algorithm which is used to register two point clouds so that a specific error
between the clouds is minimized. This procedure starts by first determining a set of
corresponding points between the source and target point cloud. In this case, a subset
of floor and wall points from two point clouds was chosen. After that, the estimated
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camera poses (e.g. acquired from MotionNet) were applied to point clouds as an initial
guess for the transformation.

(a)

(b)

Figure 31. The improvement in the merged point cloud between without (a) and with
(b) ICP implementation. As presented in image (a), even though the frames represent
the same scene, the locations of floors and especially walls vary without ICP. In con-
trast using ICP, the merged point cloud in image (b) shows clear refinement having
uniform floor and wall surfaces.

From these starting points, ICP iteratively finds the nearest target point for every
source point. The obtained point pairs are then used to calculate the best transformation
(contains camera rotation and translation) to register the source points to the target
points by applying the least-squares method.

The coordinates of the source points are then updated using the computed transfor-
mation. The mean error distance between the source and target points is then calcu-
lated. If the error decreases iteration by iteration and reaches a pre-defined threshold,
the ICP will stop and return the total transformation. Otherwise, the algorithm will
repeat until the error is minimized or a maximum number of iterations is reached. Fig-
ure 31 shows a set of merged point clouds with and without ICP. The improvement in
the point cloud alignment, when ICP is used, is clearly visible.
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4.3.3. Simple merging process

As a summary, the main processes of this stage consist of 1) filtering the predicted
depth maps based on their statistical errors, 2) re-scaling of the filtered depth maps, 3)
ICP registration of the point clouds using the depth values and the estimated camera
poses. The refined camera poses from ICP and the processed depth maps are finally
concatenated into a single 3D point cloud representing the scene.

Unfortunately, the errors in the predicted depth maps and camera transformations
affect the quality of the final merged point cloud at the moment. Therefore, a more
sophisticated fusion is needed in the near future. One possible solution would be to
apply the depth map fusion by Kyöstilä et al. [82]. The principle of that method is
to iteratively fuse the depth maps into a single non-redundant point cloud. At every
frame, the predicted depth values are back-projected into the 3D space. The new 3D
points are then used to refine the existing points if they are close enough. Otherwise,
the new points are inserted into the global point cloud.

Another method is to merge the predicted depth maps using iterative bundle opti-
mization, as suggested by Li et al. [83]. The general idea is first to create depth maps
from a set of overlapping images using trained depth model. Then, the inaccurate
depth values are improved using a bundled track optimization followed by a position
refinement and normal estimation.
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5. EVALUATION

The quality of the reconstructed 3D point clouds heavily depends on the accuracy
of both the depth map prediction and the camera pose estimation. This chapter first
introduces the depth map and camera pose inference results from the proposed model
with respect to state-of-the-art studies. Then, the final results are compared with the
point clouds generated by conventional SfM methods. The purpose of this evaluation
is to find the best learning-based SfM technique. This chapter is divided into five
sections. The first section introduces the used evaluation metrics for the depth and
camera pose prediction. Then, the next part describes the utilized datasets for the
evaluations. Finally, the last three sections present the results from depth map, camera
pose, and point cloud reconstruction tasks.

5.1. Metrics

Standard metrics that are extensively used to evaluate monocular depth prediction [7, 8,
9, 14, 17, 15] include the absolute relative error (rel), the squared relative error (sqr-rel),
the root mean square error (rms), the root mean square error in log space (log-rms), the
scale-invariant error (scale-inv) and the percentage thresholds (δi). On the other hand,
the camera pose prediction errors are measured using the camera relative orientation
error (ROE) and relative translation error (RTE). These metrics are described in the
following sections.

5.1.1. Depth estimations

The errors are calculated pixel-wise for each predicted depth map regarding their cor-
responding ground truth where the depth information is available. In the following
equations, the resolution of the predicted and ground truth images are both m × n, ŷ
indicates the predicted depth values, and ygt is the ground truth depth information.

Absolute relative (rel): 1
m∗n

∑ |ŷ−ygt|
ygt

Square relative (sqr-rel): 1
m∗n

∑ (ŷ−ygt)2
ygt

Root mean square error (rms):
√

1
m∗n

∑
(ŷ − ygt)2

Log root mean square error (log-rms):
√

1
m∗n

∑
(log ŷ − log ygt)2

Accuracy δi < 1.25i : 1
m∗n

∑
(| log ŷ − log ygt| < log 1.25i)

However, all of the previous metrics do not consider the varying scale between the
predicted values and the ground truth. To suppress this issue, Eigen et al. [7] pro-
posed the scale-invariant mean squared error (scale-inv), which calculates the pixel-
wise mean square error disregarding the scaling factor. This metric is formulated as

1

2(m ∗ n)

∑
(log ŷ − log ygt + α(ŷ, ygt))

2
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where α(ŷ, ygt) = 1
m∗n

∑
(log ygt − log ŷ) is the regularization factor that is used to

minimize the error of a given (ŷ, ygt).
With the rel, srq-rel, rms, log-rms and scale-inv metrics the lower the values the

better the results. Otherwise, in δ1, δ2 cases, the higher the better.

5.1.2. Camera pose estimations

The relative camera transformations are evaluated using the relative translation error
(RTE)

cos θt =
~̂t · ~tgt
||~̂t|| ||~tgt||

and the relative orientation error (ROE)

cos θR =
trace

(
R̂ · (Rgt)

T
)
− 1

2

where ~̂t is the predicted camera translation vector, ~tgt is the ground truth translation,
R̂ indicates the predicted camera rotation matrix and Rgt is the ground truth rotation
matrix.

The RTE measures the angle between the predicted translation vector ~̂t and the
ground truth vector ~tgt. RTE instead computes the angle between the estimated ro-
tation matrix R̂ and the ground truth rotation matrix Rgt. The unit for both RTE and
ROE is degrees.

5.2. Datasets

The labeled set of the NYU Depth V2 [76] was used to evaluate the trained depth map
prediction models. This part consists of 1449 densely labeled corresponding RGB and
depth map pairs. Similar to other works like [7, 9, 10], 654-image pairs are used to test
on the supervised and unsupervised depth networks. The quantitative and qualitative
reports are presented in Section 5.3.

The camera pose prediction model was tested on a novel benchmark dataset called
RGB-D SLAM [84]. The ego-motions in this dataset were captured using eight high-
speed tracking cameras (100 Hz), which helped to create a high-fidelity ground-truth
trajectory. The proposed MotionNet was compared with the methods in [84, 16] using
two video sequences namely freiburg1_360 and freiburg1_desk. Both the RTE and
ROE were evaluated. The former sequence contains 2769 images with valid times-
tamps, while the latter has 544 images. The results are presented in Section 5.4.

Finally, the 3D point clouds were reconstructed from the video number 025 of the
SceneNN [78] and the real world datasets. The results are visually compared with the
point clouds generated by conventional SfM software like VisualSfM [2] and Theia
[5]. Section 5.5 is used to present the obtained outcomes.



47

5.3. Single view depth map prediction

The quantitative evaluation of the supervised and unsupervised DepthNets are pre-
sented in Table 1. The qualitative results comprising of the predicted depth maps and
the reconstructed single view point clouds, are shown in Figures 33 and 32, respec-
tively. The acquired results, even not as good as state-of-the-art, are still comparable.
This is especially encouraging in the unsupervised DepthNet case, where the network
was trained using only the RGB images.

Table 1. Quantitative results of single view depth map prediction. The results were
evaluated on 654-images pairs from the labeled test set of the NYU Depth V2 [76].
With rel, srq − rel, rms, log − rms and scale− inv metrics, the lower the values the
better the results. For δ1, δ2 metrics, the higher the better.

Methods/Metrics rel sqr-rel rms log-rms scale-inv δ1 δ2
Eigen et al. [7] 0.215 0.212 0.907 0.285 0.219 0.611 0.887
Laina et al. [9] 0.127 - 0.573 0.195 - 0.811 0.953
Liu et al. [10] 0.142 0.107 0.514 0.179 - 0.812 0.957

Supervised DepthNet 0.143 0.125 0.592 0.190 0.208 0.810 0.938
Unsupervised DepthNet 0.236 0.305 0.601 0.224 0.241 0.702 0.896

Although the evaluation accuracies of the trained DepthNets are lower than others
[9, 10], they can still produce reasonable single view point cloud as shown in Figure 32.
The dense reconstructions of the view are reasonable when comparing with the ground
truth data.

Unsupervised DepthNet Supervised DepthNet

PlaneNet [10] Ground truth

Figure 32. 3D reconstructions of single view point clouds from the predicted depth
maps.
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Figure 33 shows and compares example predictions from several depth maps estima-
tion models including the supervised DepthNet (column b), the unsupervised DepthNet
(column c) and the PlaneNet [10] (column d). While the depth images of the PlaneNet
in case number 4, 6 and 9 look better than the others, the supervised DepthNet result
seems more favorable in complex case number 3. In general, the predicted depth maps
from these models are quite similar and comparable with the ground truths (column e).

(a) (b) (c) (d) (e)

Figure 33. Depth map prediction of the supervised (column b) and unsupervised (col-
umn c) DepthNets on the NYU Depth v2 compare with Liu et el. [10] (column d).
Column (a) and (e) show the input RGB and ground truth depth images, respectively.
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5.4. Camera pose estimation

Quantitative results of the camera pose estimation task are presented in Table 2 and
Figure 34. The camera transformations from the unsupervised MotionNet contain
relatively big errors in the camera orientations. This issue, in return, caused further
problems which are described later in Section 5.5.

Table 2. Camera pose estimation on the freiburg1_360 and freiburg1_desk sequences
of the RGB-D SLAM dataset [84].

RGB-D SLAM 360 desk
RTE ROE RTE ROE

Sturm et al. [84] 5.672 27.158 0.458 28.361
Vijay et al. [16] 0.515 64.343 0.687 48.586

Unsupervised MotionNet 3.054 33.640 2.168 38.287

However, the relative camera pose estimations can be used as initial guesses for
the iterative closest point (ICP) [73, 74] algorithm. In addition, the predicted camera
transformation and feature-based camera pose estimation can complement each other.
If the number of matching feature-points between image pairs are too low (e.g less than
five matches), the calculation of the essential matrix will fail. In this case, the system
can use the predicted pose to initialize the ICP algorithm instead of the feature-based
approach.

(a)

(b)

Figure 34. Visualization of the camera translation and orientation error with the respect
to time. Row (a) presents the evaluation of the 360o sequence, whilst row (b) shows
the results with the desk sequence. The left column presents the RTE while the right
column shows the ROE.
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5.5. Point cloud merging

This section discusses the final results of the 3D reconstruction pipeline. As shown in
Figures 35, 36 and 37, the 3D point clouds of the scene are relatively incomplete. This
is caused by the errors in both the predicted depth maps and camera transformations.

(c) Supervised DepthNet + fearture-based
pose estimation

(d) Supervised PlaneNet + fearture-based
pose estimation

(b) Theia SfM software

(e) Unsupervised DepthNet + MotionNet (f) Ground truth

(a) VisualSfM + PMVS2

Figure 35. Reconstructed 3D point clouds of the view 025 in SceneNN dataset. Note
that the green dots in the point cloud (b) are the estimated camera positions in the world
coordinate system.

The simple merging process can produce reasonable point clouds when feeding a
small collection of consecutive frames. Figure 35 shows the reconstruction made from
about 50 frames of the scene number 025 in the SceneNN dataset [78]. The resolution
of the input images was 640 × 480 pixels. The two point clouds (c) and (d) were
created using two different supervised monocular depth models and feature-based pose
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estimation, while point cloud (e) was built using the depth maps and camera pose
estimation from the unsupervised networks. Even though the quality of the PlaneNet
depth maps is better than the others (as shown in Table 1), the result point clouds (c),
(d), and (e) are quite similar.

The point clouds in Figure 35 (a) and (b) were created using the structure from
motion software VisualSfM [2] and Theia [5], respectively. As it commonly happens,
the reconstruction of the scene broke at certain frame when the feature-based tracking
failed to estimate the camera pose. This situation became even worse when using low-
resolution or lack of texture input images. In these cases, the big scene point cloud
was split into many smaller point clouds. These chunks of points are quite hard to
recognize and have their own camera coordinate systems. Point clouds (a) and (b)
present one of them.

Figure 36 shows the results using VisualSfM (a) and unsupervised deep learning
models (b) from the real world dataset. This uses about 60 input images, which were
taken with a calibrated mobile device with an image resolution of 1280 × 720 pixels.
The 3D point cloud (b) still contains lots of noise, but nevertheless can reconstruct the
shape of the scene especially in the floor area. In contrast, the point cloud (a) is almost
empty even with 720p input images.

(b) Unsupervised DepthNet + MotionNet(a) VisualSfM + PMVS2

frame #5 frame #16 frame #25 frame #33 frame #41

Figure 36. Reconstructed 3D point clouds from a real world dataset. The top row
shows five input frames of the 60 total frames. Point cloud (a) was created using
VisualSfM [2], which failed to reconstruct the scene. The learning based approach
instead, was able to get a rough structure of the scene as shown in point cloud (b).

So far, the unsupervised DepthNet and MotionNet seem to be the most promising
approaches because they can produce sufficient single view point cloud as well as the
predicted camera poses. The supervised depth map prediction models and conventional
SfM software have troubles when the feature-based technique can not estimate the
camera poses.

However, the unsupervised model still has to cope with the errors that occur in the
prediction. Figure 37 illustrates a situation where the merged point cloud was recon-
structed from a set of 208 consecutive images from the SceneNN dataset [78]. In the
merged point cloud, one can see that the left area of the wall behind the chair was
wrongly reconstructed because of a large camera pose estimation error. This wall was
quite well constructed although it was turned up side down compared with the ground
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Unsupervised DepthNet + MotionNet Ground truth

Figure 37. A failure case of the 3D point cloud reconstruction.

truth. This problem can be solved by the improvement of the predicted depth map and
camera pose accuracy or implementation of a more sophisticated point cloud merging
process.
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6. DISCUSSION

This study focused on experiments with deep learning-based structure from motion ap-
proaches to reconstruct the dense 3D point cloud of a scene captured with a monocular
camera. To achieve this goal, several deep neural networks were trained to predict the
depth maps from single view images and relative camera transformations between con-
secutive frames. The first supervised network was trained to predict the depth values
from input images. The second and third unsupervised networks were simultaneously
trained to learn the depth and camera pose information of the novel view synthesis in
a consistent way from inputting only RGB images. These predicted values were then
used to rebuild the dense 3D point cloud of the recorded scene using a simple merging
process.

Although the supervised network was easier to train and faster to converge, it always
required a lot of carefully labeled data to increase the prediction accuracy. On the
contrary, the unsupervised networks were much harder to train and produce relatively
lower estimation accuracy. However, it is compelling that they only need the RGB
information for the learning process. The trained unsupervised models do not only
provide both the depth and camera pose cues, but also overcome the problem in feature-
based technique such as feature-mismatch or insufficient matches. The dense 3D point
clouds from the unsupervised models are fairly acceptable despite the fact that they just
partly solve the reconstruction task. This seems to be a positive intimation for using
the unsupervised learning scheme to tackle the 3D scene reconstruction problem.

In addition to increasing the accuracy of the predictions, both the supervised and
unsupervised models could be trained with more datasets and initialized using the pre-
trained weights. Especially in the unsupervised case, as long as the capturing camera
is properly calibrated, it could be easy to collect up to millions of images because the
networks will be trained using the pure RGB information. This will help to enhance the
precision of monocular depth and camera pose estimation, which will lead to higher
reconstruction quality in the near future.

To further improve the final results, more complex merging process should be imple-
mented. The first prominent method is Li et al. [83], which merges the predicted depth
maps using the iterative bundle optimization. In their paper, to minimize the errors
from these estimated depth values, bundled track optimization is first applied. Next,
the position refinement and normal estimation will be used to further optimize these
inaccurate predictions. Another possible implementation is depth map fusion scheme
from Kyöstilä et al. [82], that incrementally fuse the predicted depth maps into the
global point cloud. In this process, every point in each depth map is back-projected
into the 3D space and used to refine an existing nearby point if any or added to the
point cloud otherwise.

The deep neural network design can be expanded to fully exploit the motion cues
as well as integrate the semantic segmentation to better understand the context of the
scenes. This can be achieved for example, by training a long short-term memory net-
work (LSTM) [85] for learning the motion not only at the latest previous frames, but
also at previous pivot frames where large motion or sudden direction changes appear.
This will, in return, provide vital information for the unsupervised MotionNet. An-
other suggestion is the direct incorporation of semantic segmentation module into the
unsupervised DepthNet. This idea originates from the study by Liu et al. [10], which
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might boost the performance of the unsupervised models. Furthermore, the compre-
hension of the context will better solve the aperture problem than using the common
smoothness which tends to also smooth out important information of the scene.

One possible future work is based on the study by Izadinia et al. [86], which pro-
posed an interesting idea of rebuilding an indoor scene from a single image without the
need to reconstruct everything. In this research, they trained several deep neural net-
works to perform an object detection and a room layout estimation. The room layout
estimation model will fit and build the geometric layout of the room. Then, similar 3D
models are simultaneously rendered and aligned with the detected objects to estimate
the 3D pose of the objects. Finally, the error between the rendered room and the input
image is iteratively minimized to find the best furniture placement for the scene.

Another future direction could be the extension of the unsupervised network to di-
rectly learn the 3D representation of a scene from 2D images. This idea is based on
the recent work by Tulsiani et al. [87], who proposed a differentiable equation for
calculating the gradient of the 3D volume from the 2D image. This novel idea allows
backpropagation to learn directly the 3D representation from the 2D observation.
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7. CONCLUSION

This thesis presented experiments with both supervised and unsupervised deep learn-
ing structure from motion approaches to solve the 3D scene reconstruction problem.
Several deep neural network models were trained to predict the monocular depths and
relative camera poses from consecutive frames. After the inferences, the predicted
depth maps were uniformly scaled to the first depth map. Then, the estimated camera
poses were refined using the iterative closest point algorithm. Finally, these scaled
depth values and refined camera transformations were utilized to reconstruct the dense
3D point cloud of the scene. Although the final point clouds overcame the conven-
tional structure from motion methods and produced encouraging results, the system is
just partly resolving the 3D scene reconstruction problem. Most of the false cases were
caused by the accumulated errors of the trained networks, especially in the camera ori-
entation estimation.

Further developments in the future are required to deal with this problem thoroughly.
The implementations of more sophisticated point cloud merging processes are neces-
sary to cope with the errors from the predicted depth maps and camera poses. The
performance of the deep neural network prediction can be improved by increasing the
amount of training data, especially for the unsupervised DepthNet and MotionNet.
Modifications in the network architecture could also be applied to understand the con-
text of the scene better. This information in return will provide tremendous help for
training the networks and improving the quality of the 3D point clouds. Besides, new
3D reconstruction schemes using deep neural networks can be applied.
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