

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Aleksi Klasila

Mbed OS Regression Test Selection and Optimization

Master’s Thesis
Degree Programme in Computer Science and Engineering

4 2019

Klasila A. (2019) Mbed OS Regression Test Selection and Optimization.
University of Oulu, Degree Programme in Computer Science and Engineering.
Master’s Thesis, 39 p.

ABSTRACT

Testing is a fundamental building block in the identification of bugs, errors and
defects in both hardware and software. Effective testing of large projects
requires automated testing, test selection and test optimization. Using CI
(Continuous Integration) tools, and test selection and optimization techniques
reduce development time and increase productivity. The prioritization, selection
and minimization of tests are well-known problems in software testing.

Arm Mbed OS is a free, open-source embedded operating system
designed specifically for the “things” in the IoT (Internet of Things). This thesis
researches regression test selection (RTS) and optimization techniques (RTO).
The main focus of the thesis is to develop a set of effective automated safe RTS
(mbedRTS) and RTO (mbedRTO) techniques for Mbed OS pull request (PR)
testing. This thesis refers to the set of developed techniques as Mbed OS
regression test techniques (MbedRTT), also known as Mbed OS Smart Tester.

The empirical analysis of the researched, and developed MbedRTT
techniques show promising results. Several developed MbedRTT techniques
have already been adopted in Mbed OS Jenkins CI.

Keywords: Software testing, Test selection, Test optimization

Klasila A. (2019) Mbed OS -regressiotestien valinta ja optimointi. Oulun
yliopisto, tietotekniikan tutkinto-ohjelma. Diplomityö, 39 s.

TIIVISTELMÄ

Testaus on olennainen tekijä vikojen ja virheiden tunnistamisessa sekä
ohjelmistossa että laitteistossa. Isojen projektien tehokas testaaminen vaatii
automaattista testausta, testien valintaa ja testien optimointia. Jatkuvan
integraation (engl. continuous integration) työkalut, testien valintatekniikat ja
testien optimointitekniikat lyhentävät kehitykseen kuluvaa aikaa ja kasvattavat
tuottavuutta. Testien priorisointi, valinta ja minimointi ovat tunnettuja
ongelmia ohjelmistotestauksessa.

Arm Mbed OS on ilmainen avoimen lähdekoodin sulautettu
käyttöjärjestelmä, joka on tarkoitettu erityisesti “asioille” asioiden Internetissä
(engl. Internet of Things). Tässä työssä tutkitaan regressiotestauksen valinta- ja
optimointimenetelmiä. Tämän työn päätehtävä on kehittää tehokkaita ja
turvallisia valinta- (mbedRTS) ja optimointimenetelmiä (mbedRTO) Mbed OS
pull request:ien regressiotestaukseen. Mbed OS -regressiotestausmenetelmillä
(MbedRTT) viitataan tässä työssä kehitettyihin regressiotestausmenetelmiin,
jotka tunnetaan myös nimellä Mbed OS älykäs testaaja (engl. Mbed OS Smart
Tester).

Tutkittujen ja kehitettyjen MbedRTT-tekniikoiden empiirisen analyysin
tulos näyttää lupaavalta. Mbed OS Jenkins CI:ssä on jo otettu käyttöön useita
kehitettyjä MbedRTT-tekniikoita.

Avainsanat: Ohjelmiston testaus, Testien valinta, Testien optimointi

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
TABLE OF CONTENTS
FOREWORD
ABBREVIATIONS
1. INTRODUCTION………………………………………………………………………... 9

1.1. Overview of Mbed OS PR testing …………………………………………………. 10
1.1.1. A brief description of Mbed OS Flaky Tests .……….……….………………. 11
1.1.2. An Empirical Analysis of Mbed OS PR content and testing ……….……….. 11

1.2. A brief description of the MbedRTT approach..……….……….……….…………. 13
1.3. Related research…………..……….……….……….……….……….…………….. 14

1.3.1. Google’s Test Automation Platform (TAP) ……….……….……….……….. 14
1.3.2. Ekstazi: Lightweight Test Selection………….……….……….…………….. 15
1.3.3. An Empirical Analysis of Flaky Tests……….……….……….……………... 15
1.3.4. An Extensive Study of Static Regression Test Selection in Modern Software
Evolution ……….……….……….……….……….……….……….………………. 16
1.3.5. Dynamic Integration Test Selection Based on Test Case Dependencies ….... 16

2. MbedRTT……….……….……….……….……….……….……….……….…………... 17
2.1. Tools, requirements and dependencies ……….……….……….……….………….. 17
2.2. Safe MbedRTT techniques ……….……….……….……….……….……………... 18

2.2.1. JobRTS ……….……….……….……….……….……….……….………….. 18
2.2.2. GreenteaRTS ……….……….……….……….……….……….…………….. 19
2.2.3. TargetRTS ……….……….……….……….……….……….……….………. 21
2.2.4. Disable verbose build traces……….……….……….……….………………. 22

2.3. Researched, but not implemented MbedRTT techniques and improvements ……... 23
2.3.1. Use the build folders of previous builds to optimize build time ……………. 23
2.3.2. MbedRTS based on file access monitoring ……….……….……….……….. 24
2.3.3. Static Greentea RTS techniques ……….……….……….……….………….. 25
2.3.4. Combine JobRTS and TargetRTS ……….……….……….……….……….... 25
2.3.5. Optimize exporter test ……….……….……….……….……….……………. 26

3. Case Studies: Safe MbedRTT techniques ……….……….……….……….…………... 27
3.1. Case Study: JobRTS ……….……….……….……….……….……….…………... 27
3.2. Case Study: GreenteaRTS ……….……….……….……….……….…………….... 28
3.3. Case Study: TargetRTS ……….……….……….……….……….……….………... 31
3.4. Case Study: Verbose build traces ……….……….……….……….……….………. 32

4. Conclusions ……….……….……….……….……….……….……….……….……….... 34
4.1. Threats to validity ……….……….……….……….……….……….……………... 34

4.2. Application possibilities ……….……….……….……….……….……….……….. 34

5. APPENDICES……….……….……….……….……….……….……….………………. 38

FOREWORD

As a former member of Mbed OS test team, it was my job to maintain and develop
Mbed OS testing systems and tools. My specific area of responsibility was Mbed OS
Jenkins CI maintenance and development. The main goal of Mbed OS Jenkins CI is
to test and report Mbed OS GitHub repository PR’s and branches. As a part of my
area of responsibility, I developed and researched tools and techniques for enabling
stable and effective Mbed OS GitHub repository PR testing.

I would like to thank ARM Finland Oy for the opportunity to work on the
Mbed OS project. I would also like to thank Olli-Pekka Puolitaival, Juha Röning (Dr.
Tech., Professor) and others for the invaluable feedback and suggestions.

Oulu, 4.4.2019

Klasila Aleksi

ABBREVIATIONS

OS O perating S ystem

CI C ontinuous I ntegration

HW H ard w are

SW S oft w are

AWS A mazon W eb S ervices

AWS S3 A mazon S imple S torage S ervice

AWS EC2 A mazon E lastic C ompute C loud

Mbed OS Open-source e mbed ded o perating s ystem

Greentea G eneric re gression en vironment for te st a utomation.

I/O I nput/ O utput

Stdout St an d ard out put

JSON J ava S cript O bject N otation

CL C hange L ist

TAP Google’s T est A utomation P latform

RT R egression T esting

RTS R egression T est S election

RTO R egression T est O ptimization

RTP R egression T est P rioritization

PR P ull R equest

DUT D evice U nder T est

MbedRTT Mbed OS R egression T est T echniques

MbedRTS Mbed OS R egression T est S election techniques

MbedRTO Mbed OS R egression T est O ptimization techniques

GreenteaRTS Mbed OS Greentea R egression T est S election technique

TargetRTS Mbed OS Target R egression T est S election technique

JobRTS Mbed OS Job R egression T est S election technique

SHA-1 S ecure H ash A lgorithm 1

IDE I ntegrated D evelopment E nvironment

9

1. INTRODUCTION

Embedded systems are electronically controlled systems where hardware and
software are combined. Embedded systems are expensive to develop and test.
Embedded systems testing ensures an embedded system to be as defect-free as
possible. Most embedded systems are real time. In hard real time systems, if
constraints are not met, a system crash could be of consequence. In a soft real time
system, if constraints are not met, no crash will be of consequence. [7]

Mbed OS supports deterministic, multithreaded real time software execution
[5]. Mbed OS embedded systems crash often requires hardware reset: power off and
on.

Regression testing (RT) is a crucial, but potentially time consuming, part of
software development [15]. Testing is a critical part of the development process of
any embedded system [7]. Testing tools enable the testing of embedded systems.
Mbed OS is active and relatively large project. There were on average 116 weekly
commits during the past year (Fig. 1). Mbed OS includes tools and software test
applications for functional unit testing, and integration testing for complex use cases
[10]. Mbed OS testing challenges include, but are not limited to, Mbed OS
supporting a wide range of target/toolchain combinations, and target hardware
wearing down from frequent flashing.

Figure 1: Mbed OS weekly commits.

Automated RT is an important part of the modern embedded systems software
development testing process. The automated testing of large embedded systems
projects requires automated RTS techniques; Only modifying documentation files
should result in only testing the documentation files, only modifying the
dependencies of a subset of all tests should result in only executing the affected tests.

Mbed OS embedded systems software testing includes exporting and building
a set of test and example applications, and executing the built test applications on a
set of targets [10]. Mbed OS tools [3] execute the test applications on the targets and
interpret the results from standard output (Stdout). Mbed OS PR testing uses Generic
regression environment for test automation (Greentea) for executing test applications
on the targets [6]. Mbed OS test application execution using Greentea consists of
resetting a target, flashing the target with a test application, executing the test
application on the target, optionally controlling the execution of the test application
on the target, and reporting the results of the test application. Although, embedded
systems target hardware can be and often is simulated, physical target hardware still
plays a significant role in embedded systems testing. Mbed OS PR’s are mostly
tested on physical target hardware.

10

1.1. Overview of Mbed OS PR testing

Mbed OS PR’s are merged only if all reviewers approve the PR, Mbed OS Travis CI
tests pass, and Mbed OS Jenkins CI tests pass (Fig. 2). Mbed OS Travis CI is usually
executed before Mbed OS Jenkins CI. Mbed OS Travis CI executes light test cases,
such as: build an example, and check style and documentation. Mbed OS uses public
Travis CI, so test results and documentation are publicly available. This thesis does
not focus on Mbed OS Travis CI testing. This thesis focuses on Mbed OS Jenkins CI
testing. Mbed OS Jenkins CI refers to the Jenkins CI used in Mbed OS testing. Mbed
OS Jenkins CI executes a more comprehensive set of tests, including but not limited
to, building and executing test applications on a wide range of targets. Mbed OS uses
internal Jenkins CI. [10]

Figure 2: Simplified Mbed OS pull request state diagram

The current Mbed OS Jenkins CI was taken into use as a part of the Mbed OS testing
process in the autumn of 2018. Mbed OS GitHub repository includes a Jenkinsfile.
When a Mbed OS PR is tested in Mbed OS Jenkins CI, the Jenkinsfile is used [10].
Executing the Jenkinsfile implicitly loads a private Jenkins shared library and calls
the main method. The main method checkouts the Mbed OS PR, builds subjobs
(partially in parallel), and reports the results to the PR in GitHub as a comment (Fig.
3). Mbed OS Jenkins CI stores public results in Amazon Simple Storage Service
(AWS S3) [18]. Mbed OS Jenkins CI stores private results and other private build
information in various databases. Mbed OS Jenkins CI uses Amazon Elastic
Compute Cloud (AWS EC2) for building and executing tests. The current Mbed OS
Jenkins CI tests and reports most PR’s as isolated individual changes. Mbed OS and
Mbed OS Jenkins CI demand for compute resources has been growing slowly
making testing of each code change feasible (Fig. 1) . Currently, Mbed OS Jenkins CI
uses the main RTS and RTO techniques developed in this thesis. The inner workings
of Mbed OS Jenkins CI are out of the scope of this thesis as MbedRTT does not
depend on Mbed OS Jenkins CI.

Figure 3: Mbed OS Jenkins CI report in GitHub.

11

1.1.1. A brief description of Mbed OS Flaky Tests

Various Mbed OS tests depend on the Internet and other resources that are hard to
control. Most Mbed OS tests that depend on resources that are hard to control are
normally disabled in PR testing. Currently, Mbed OS Greentea tests are executed on
physical target hardware. Between executing subsequent Greentea test suites, the
targets are software reset. If for instance a Greentea test suite hard crashes a target,
the software reset may not always fully reset the target, resulting in the next Greentea
test suite execution failing. If a failing / flaky target is detected, the target is in most
cases automatically set into maintenance, either manually or automatically hardware
reset, and released back into the test system. Mbed OS flaky (“unreliable”) tests and
targets are still an issue, especially when the tools that reduce test flakiness fail to
perform as expected.

1.1.2. An Empirical Analysis of Mbed OS PR content and testing

Over 30% of all Mbed OS PR’s were never tested in Mbed OS Jenkins CI, or at least
the results of the tests were never reported to the PR on GitHub. A large portion of
the PR’s for which the tests were never reported on GitHub were either created too
long time ago (issue number smaller than #2000 by at least a few hundred) or tested
as a part of a collection of PR’s (PR’s manually collected / merged into one large PR
and tested all at the same time). Very few PR’s were tested more than three times.
The most common reason for a PR “requiring” multiple rounds of Mbed OS Jenkins
CI testing (build and test Mbed OS) is “real” bugs in the PR modifications. A small
percentage of the tested PR’s fail due to instabilities in the testing system itself.
When a PR test fails due to an unstable testing system, rebuilding only the failed tests
is enough most of the time. (Fig. 4 , Fig. 6)

On average, the more diverse modifications (documentation, source code, ...)
a PR contains, the more times the PR is tested in Mbed OS Jenkins CI. PR’s with
only documentation changes are tested very rarely more than once in Mbed OS
Jenkins CI. PR’s with modifications to tests, resources and targets.json , for example,
are tested relatively frequently at least twice. (Fig. 4)

Figure 4: Integral of the percentage of the number of Mbed OS PR’s over the

number of Mbed OS Jenkins CI build rounds. The figure on the left includes all PR’s.
The figure on the right includes the last 1788 PR’s (at the time).

12

Most Mbed OS PR’s modify only resources (a large subset of files a build depends
on), target.json (defines supported target/toolchain combinations and their default
configurations), documentation (files that should never affect Mbed OS Jenkins CI
test verdict), tools (python tools used for building and testing Mbed OS) and tests
(unit tests, Greentea tests, and Icetea tests). (Fig. 5)

Figure 5: Integral of the number of Mbed OS PR’s over PR numbers.

Figure 6: Integral of the number of Mbed OS Jenkins CI builds over PR number.

Over 50% of all Mbed OS PR’s modify only documentation and resources. All the
files inside target/toolchain specific folders are included in target/toolchain specific
resources/documentation. Any file in the target/toolchain specific folders can only
affect the corresponding targets/toolchains. The set of target/toolchain specific
resources/documentation is a subset of all resources/documentation. Resources is (at
least in the scope of this thesis) considered a set which contains all target/toolchain
specific resources for all target/toolchain combinations combined with common
resources. Of all the publicly available Mbed OS tests in the Mbed OS GitHub
repository, this thesis mostly only focuses on Greentea tests. Greentea tests are
located inside the TESTS directories. Currently, Unit tests and Icetea tests combined
constitute a very small part of the overall Mbed OS Jenkins CI testing. (Fig. 7)

13

Figure 7: Mbed OS GitHub repository root directory files and directories. The

percentages refer to the percentages of PR’s that included only modifications to the
corresponding files and folders and PR’s that included at least modifications to the

corresponding files and folders.

1.2. A brief description of the MbedRTT approach

This thesis researches the current state of the art techniques for automated RTS. This
thesis describes a set of RTS and RTO techniques developed for Mbed OS RT. The
Mbed OS RTS and RTO techniques are also known as MbedRTT, Mbed OS Smart
Tester, or MbedRTS and MbedRTO. The developed techniques aim to significantly
reduce unnecessary testing (especially on physical target hardware), and speed up the
necessary testing. Currently, Mbed OS Jenkins CI uses three of the developed RTS

14

techniques: JobRTS, GreenteaRTS, and TargetRTS. The developed RTS techniques
are also known as Job Selector, Greentea Selector, and Target Toolchain Selector.

JobRTS selects required jobs based on the names of the files modified in a PR
and a JSON configuration file (JobRTS config file). The main goal of JobRTS is to
have Mbed OS Jenkins CI test nothing for PR’s with only documentation changes
and only test Greentea/unit tests for PR’s with only Greentea/unit test modifications.
The current JobRTS config file was generated manually. This thesis will not
implement automated JobRTS config file generation, however automated JobRTS
config file generation would likely only result in a much more effective usage of
JobRTS. The currently used combination of JobRTS and JobRTS config file affects
less than 10% of PR’s.

TargetRTS selects required target/toolchain combinations based on the
intersection of names of the modified files in a PR and the names of the resource files
of all Mbed OS 5 supported target/toolchain combinations. The current revision of
TargetRTS is activated only if a PR modifies nothing but documentation and resource
files. Currently, TargetRTS affects at least to a degree slightly over 50% of PR’s.

GreenteaRTS selects Greentea test suites (test applications / test binaries)
based on test execution history and inherent binary dependency information. If a
Greentea test suite with the same binary file hash has passed previously, it can be
skipped. Currently, GreenteaRTS affects over 90% of PR’s.

1.3. Related research

A multitude of studies on regression test prioritization, selection and minimization
have been conducted in an attempt to reduce unnecessary testing and speed up
necessary testing. The previous studies include studies on both static and dynamic
regression test techniques. This chapter describes some of the most relevant (in the
context of Mbed OS RT) studies.

1.3.1. Google’s Test Automation Platform (TAP)

The vast majority of Google's software assets are stored in a single, shared
repository. Google chose the monolithic-source-management strategy in 1999 when
the existing Google codebase was migrated from CVS to Perforce. The size of the
Google codebase has grown exponentially. The Google codebase includes
approximately one billion files and has a history of approximately 35 million
commits spanning Google's entire 18-year existence. The repository contains 86TB
of data, including approximately two billion lines of code in nine million unique
source files. [11]

In an average day, Google’s Test Automation Platform (TAP) system
integrates and tests more than 13K code projects, requiring 800K builds and 150
Million test runs. In the past TAP tried to test each code change, but found that the
(demand for) compute resources were growing quadratically with two multiplicative
linear factors: (1) the code submission rate which (for Google) has been growing

15

roughly linearly and (2) the size of the test pool which also has been growing
linearly. This caused unsustainable demand for compute resources, hence TAP
invented a mechanism to slow down one of the linear factors by breaking a TAP day
into a sequence of epochs called milestones, each of which integrates and tests a
snapshot of Google’s codebase. [12]

More than 99% of all tests run by the TAP system pass or flake. Test history
of 5.5 Million affected tests in a given time period, only 63K ever failed; the rest
never failed even once. Test targets, which are essentially buildable and executable
code units labeled as tests in meta BUILD files, that are more than a distance of 10
(in terms of number of dependency edges) from the changed code hardly ever break.
Test targets that directly or indirectly depend on the modified files are called
AFFECTED test targets. TAP needs to execute AFFECTED test targets to ensure that
the latest changes did not cause breakages. TAP executes AFFECTED test targets
only at their latest affecting CL (Change List) because there will be overlap in how
test targets are affected across CLs in a milestone. Probability of a test target
transitioning from a previously known PASSED to FAILED (or FAILED to
PASSED) when executed at the CL consistently increases with file modification
frequency and number of unique users. [12]

1.3.2. Ekstazi: Lightweight Test Selection

The inputs to a traditional RTS technique are two software revisions (new and old),
and the dependency information from the test runs on the old revision. EKSTAZI, a
lightweight RTS tool tracks the dynamic dependencies of tests on files and requires
no integration with version-control systems. EKSTAZI does not explicitly compare
the old and new revisions. Instead, EKSTAZI computes for each test class what files
it depends on. A test class need not be run in the new revision if none of its
dependent files changed. [15]

A typical RTS technique has three phases: the analysis (A) phase selects what
tests to run in the current revision, the execution (E) phase runs the selected tests, and
the collection (C) phase collects information for the next revision. EKSTAZI checks
if the checksums of all dependent files are still the same. If so, the test class is not
selected. If the checksum of any dependent file of a test class differs or does not
exist, the class is selected. The Execution phase executes the selected tests. The
collection phase creates the dependency files for the executed test classes. [15]

1.3.3. An Empirical Analysis of Flaky Tests

Test outcomes are not reliable for tests that can intermittently pass or fail even for
the same code version. A flaky test outcome is non-deterministic with respect to a
given software version. The most common approach to combat flaky tests is to run a
flaky test multiple times, and if it passes any run, declare it passing, even if it fails in
several other runs. Although the current approaches used to deal with flaky tests may

16

alleviate their impact, they are more “workarounds” rather than solutions, and may
even hide real bugs. [17]

The study on the following section studied only a subset of all software
projects, so the results may not generalize. The top three categories of flaky tests are
Async Wait (the test execution makes an asynchronous call and does not properly
wait for the result), Concurrency (the test non-determinism is due to different threads
interacting in a non-desirable manner, excluding Async Wait), and Test Order
Dependency (test outcome depends on the order in which the tests are run). Most
tests are flaky from the first time they were written. Most flaky tests categorized have
an outcome that does not depend on the platform. Fixing a flaky test without
correctly identifying and understanding the root cause may not completely solve the
problem. Common fixes for flaky tests include, but are not limited to: replace sleep
with waiting for something, use deterministic code instead of non-deterministic code,
use locks and guard conditions where required, a clean state between tests and
remove test order dependencies. [17]

1.3.4. An Extensive Study of Static Regression Test Selection in Modern Software
Evolution

RTS can be broadly split into dynamic and static techniques. A typical dynamic RTS
technique computes test dependencies dynamically while running the tests. A typical
static RTS technique computes test dependencies statically before running tests. On
average, typically, static RTS techniques tend to select a higher percentage of tests
than dynamic RTS techniques. While the number of selected tests is an important
internal metric in RTS, the time taken for testing is the relevant external metric
because a developer using RTS perceives it based on this time. Often, mostly
depending on the level of granularity, static RTS techniques are faster to execute than
dynamic RTS techniques. Often, depending on the level of granularity,
non-determinism, and real-time constraints, dynamic RTS techniques are safer and
more precise than static RTS techniques. RTS techniques provide more benefits for
projects with longer-running tests. [13]

1.3.5. Dynamic Integration Test Selection Based on Test Case Dependencies

The result of any test case depends on the results of one (itself) or more test cases.
Test cases can be prioritized and ordered based on the extent to which they are
redundant given that other test cases fail. If one or more of the test cases a test case
depends on, fail, the test case can, in some cases, be considered failed without having
to execute it. [14]

17

2. M���RTT

The developed MbedRTS techniques are safe RTS techniques. Safe MbedRTS
techniques refer to a set of safe Mbed OS RTS techniques which aim to select all
tests that may be affected by code changes (Fig. 8). If a MbedRTS technique is not
extremely close to absolutely certain that not all tests are required, it selects all tests.
If a MbedRTS technique is extremely close to absolutely certain that only a subset of
tests is required, it selects only the required tests. The current MbedRTT techniques
do not include any regression test prioritization (RTP) techniques.

Mbed OS Jenkins CI uses the testing history, and the content and names of
the files modified in a PR to selectively skip tests which are either known to have
passed previously or are known not to affect the test behaviour and outcome. Each
Mbed OS Jenkins CI test (such as a job) is only affected by a subset of Mbed OS
GitHub repository files; For instance, hardware and unit tests are not required when
only documentation is modified. Mbed OS Jenkins CI tests nothing if only
documentation is modified. Mbed OS Jenkins CI tests only Greentea tests if only
Greentea tests and documentation are modified. Mbed OS Jenkins CI tests only
specific target/toolchain combinations if only the resources of specific
target/toolchain combinations are modified. Each Mbed OS hardware test application
depends only on a subset of the files in the Mbed OS GitHub repository, modifying
some Mbed OS GitHub repository files may require all test applications to be
executed, but modifying test specific files requires only the affected tests to be
executed.

Figure 8: Mbed OS Smart Tester integration in Mbed OS Jenkins CI

2.1. Tools, requirements and dependencies

MbedRTT depends on Mbed OS tools. Mbed OS tools are implemented in Python.
Python is a programming language that lets you work quickly and integrate systems
more effectively [1]. MbedRTS techniques are implemented in Python for easy and
effective integration with the existing Mbed OS tools.

Currently, Mbed OS PR’s are tested in Mbed OS Jenkins CI. Currently,
MbedRTT is loosely integrated in Mbed OS Jenkins CI; Mbed OS Jenkins CI uses
MbedRTT by executing groovy scripts which execute python commands in a shell.
MbedRTT does not depend on Mbed OS Jenkins CI. MbedRTT does not use any

18

Jenkins CI specific features. The independency of MbedRTT from Jenkins CI allows
for the possible effective future use of MbedRTT outside of Mbed OS Jenkins CI.

JobRTS depends on Python and the Mbed OS GitHub repository directory
structure. GreenteaRTS depends on deterministic Greentea test suite binaries and a
database the Greentea test results can be stored in and retrieved from. Deterministic
Greentea test suite binaries depend on Mbed OS tools, toolchains, and some
environment variables. For the maximum determinism of Greentea test suite binaries,
it is recommended to build Mbed OS Greentea test suites in a docker container or in
another easy to control environment. TargetRTS depends on having access to the set
of Mbed OS 5 supported target/toolchain combinations and Mbed OS resource
scanning tools, both of which are publicly available in Mbed OS GitHub repository.

Mbed OS and Mbed OS Jenkins CI requirement for compute depends
somewhat on the enabled MbedRTS techniques. The following timings presented are
the empirical observed maximum values. JobRTS takes less than a second to execute
on most computers. GreenteaRTS takes less than 10 seconds to execute on most
computers. GreenteaRTS database query for results takes the longest. TargetRTS
takes less than 3 minutes to execute on m5.4xlarge Amazon EC2 Instance.
TargetRTS takes less than 25 minutes to execute on Intel(R) Core(TM) i7-7600U
CPU @ 2.80GHz.

2.2. Safe MbedRTT techniques

JobRTS is a static RTS technique and uses a JSON configuration file in conjugation
with git diff . JobRTS selects required jobs. The JobRTS config file can be either
manually or automatically generated. TargetRTS is a static RTS technique and uses
static build resource dependency scanning in conjugation with git diff . TargetRTS
selects required target/toolchain combinations. GreenteaRTS is a dynamic RTS
technique and uses inherit dependency information of binary files in conjugation
with a database of previous results. GreenteaRTS selects required Greentea test
suites.

2.2.1. JobRTS

A fairly significant percentage of Mbed OS PR’s modify only the files of no more
than one of the following sets of files: tools, documentation, resources, tests. Each
Mbed OS Jenkins CI job depends only on a subset of the Mbed OS repository files. If
a PR does not modify any of the files a job depends on, the job can be skipped.
JobRTS is a very simple and crude, yet somewhat effective RTS technique.

JobRTS uses a JSON configuration file (Fig. 9) and git diff to determine
which Mbed OS Jenkins CI jobs can be skipped. JobRTS config file lists include and
exclude file patterns for each Mbed OS Jenkins CI job. If any modified file matches
any include pattern and does not match any exclude pattern for a particular Mbed OS
Jenkins CI job, the job is selected, otherwise the job is skipped.

19

Figure 9: job-selector.json: Job Selector JSON configuration file

The current revision of Mbed OS Jenkins CI uses a manually generated and
maintained JobRTS config file. Comprehensive research on automated JobRTS
config file generation has not been performed. Automated JobRTS config file
generation depends on figuring Mbed OS Jenkins CI job dependencies automatically.
One potentially possible approach to figuring Mbed OS Jenkins CI job dependencies
automatically is to monitor what files the job accesses. A Mbed OS Jenkins CI job
does not depend on the files the job never accesses.

2.2.2. GreenteaRTS

Ekstazi [16] stores test class dependency information in dependency file. Mbed OS
build tools store Greentea test application dependency information in the binary.
Unlike Ekstazi, which requires dependency file hashes to be calculated in order to
determine whether a test class needs to be run, GreenteaRTS only requires
calculating the hashes of the test application binaries in order to determine whether a
test application needs to be run. A test suite need not be run if a suite with the same
binary hash has already passed. GreenteaRTS naturally handles newly added
suites/targets/toolchains: if there is no dependency information for some
suite/target/toolchain combination, it is selected. (Fig. 10)

Figure 10: Greentea Selector selects test suites for each target/toolchain pair based on

execution history.

20

Currently, GreenteaRTS uses Greentea results stored in either MongoDB or
InfluxDB. GreenteaRTS is highly compatible with most databases and can be
switched to use another type of database. GreenteaRTS takes a build_data file as a
parameter. The build_data file is generated when building Greentea tests. The
build_data file includes the paths to the generated binaries. GreenteaRTS calculates
SHA-1 hash for each binary. GreenteaRTS selects results from the database where
the result binary SHA-1 matches any calculated build_data binary SHA-1 and the
result is pass. GreenteaRTS can be configured to ignore results with too old
timestamps. Currently, in Mbed OS Jenkins CI, GreenteaRTS is configured to ignore
results with a timestamp over four days old.

For maximum performance, GreenteaRTS requires deterministic binary
hashes. If, for example, a binary includes a non-constant timestamp, the binary hash
is non-deterministic, as it is different every time. GreenteaRTS selects a suite
practically always if the binary hash of the suite is non-deterministic. GreenteaRTS
does not select a suite with non-deterministic binary hash only when executing
GreenteaRTS with the exact same binaries as previously (when rebuilding Mbed OS
Jenkins CI Greentea test job). A number of Mbed OS tools modifications were
required and implemented in order to reduce Greentea test binary hash
non-determinism. (Fig. 11)

Figure 11: Required REALTEK_RTL8195AM tools modifications in order to get

deterministic binary hashes

The current revision of GreenteaRTS considers a test result to depend only on the
selected binary/target combination. Greentea test result does not depend only on the
binary/target combination, but also on the test tools, some of which reside in the
Mbed OS GitHub repository, some of which are specific to a subset of all Greentea
test suites. Currently, it is extremely rare for a PR to modify the Greentea specific
tools in the Mbed OS GitHub repository after their addition, and potentially affect
Greentea test suite results. Nevertheless, depending on future Mbed OS
modifications, it might be beneficial to research, analyse, and evaluate Greentea test
suite execution dependencies in more detail.

A subset of all target/toolchain/Greentea test suite combinations still exhibit
non-deterministic behavior. The reasons for the non-determinism present are
currently mostly due to the timestamps and usage of absolute file paths.

21

2.2.3. TargetRTS

Over 50% of PR’s modify only resources (Mbed OS resource files) and
documentation. Over 25% of PR’s modify only target/toolchain specific resources
(resources which are not common to all Mbed OS 5 supported target/toolchain
combinations) and documentation. If a PR modifies only resources and
documentation, only the target/toolchain combinations with intersecting resources
with the modified resources require testing. The current revision of TargetRTS
classifies only a subset of potential resource files (by file extension) as resources
(Fig. 12).

Figure 12: Mbed OS 5 supported targets resources.

Any Mbed OS 5 supported target/toolchain combination depends on less than 25% of
all resources. Almost 4000 out of almost 7500 Mbed OS PR’s modified only
resources and documentation. Any target/toolchain combination requires testing in
less than 25% (1000/4000) of Mbed OS PR’s which modify only resources and
documentation. Any target/toolchain combination requires testing in less than 60%
(3500/7500 + 1000/7500) of all Mbed OS PR’s. (Fig. 13)

Figure 13: Mbed OS PR’s with resource modifications count by target. The figure
includes both all PR’s with resource modifications ([contains]) and PR’s with only

resource modifications ([only])

22

Each target/toolchain combination supports a set of features. Each target/toolchain
combination depends on a set of resources, including, but not limited to common
resources and feature specific resources. Some resources are common to all
target/toolchain combinations, some resources are shared between targets within a
target family, and some resources are unique to specific targets or target/toolchain
combinations. (Fig. 14)

Figure 14: Integral of unique resources over Mbed OS 5 targets.

Over 70% of PR’s modify only resources, targets.json , tests, and documentation.
Over 80% of the test modifications are Greentea test modifications. Each Greentea
test (suite) supports a subset of target/toolchain combinations. Each targets.json
modification affects a subset of all supported target/toolchain combinations. The
current revision of TargetRTS always selects all target/toolchain combinations if a
PR modifies Greentea tests or targets.json . Only the union of target/toolchain
combinations which support the modified tests, are affected by the targets.json
modifications or have intersecting resource files with the modified resource files are
required. If TargetRTS were to be modified to also consider targets.json and
Greentea test modifications, the percentage of PR’s TargetRTS affects would increase
significantly.

2.2.4. Disable verbose build traces

Disabling verbose build traces when building Mbed OS applications can reduce build
time from over an hour to a few minutes for some target/toolchain combinations. The
drastic improvement in build time is mostly due to the removal of all warning traces.
Some target/toolchain combinations may produce the same warning trace over 12K
times when building Mbed OS once (Fig. 15). Currently, Mbed OS Jenkins CI builds
normally with verbose build traces disabled. Mbed OS Jenkins CI builds with
verbose build traces enabled only when rebuilding a failed build. Rebuilding a failed
build with verbose traces enabled is an automated process in Mbed OS Jenkins CI.

23

Figure 15: Mbed OS GitHub repository issue #10015 description.

2.3. Researched, but not implemented MbedRTT techniques and improvements

A multitude of potential Mbed OS RTS and RTO techniques were researched but
never implemented. Some of the implemented MbedRTT techniques could be further
improved and combined for even more effective Mbed OS RT.

2.3.1. Use the build folders of previous builds to optimize build time

Mbed OS build tools and toolchains can optimize Mbed OS building if a build
directory exists. A source file needs updating / compiling only when either the file
itself or any of its dependencies have been modified. An elf file needs to be relinked
and a binary file needs to be recreated only when any of the dependencies of the
program have been modified.

Using the build folders of previous builds to optimize build time requires the
build folders be available. Currently, Mbed OS Jenkins CI stores the build folders of
Mbed OS 5 test and example builds in AWS S3. Currently, Mbed OS Jenkins CI does
not store the build folders of exporter tests in AWS S3. Mbed OS Jenkins CI exporter
tests export and build Mbed OS examples using many different ides.

The potential time savings of using the build folders of previous builds are
noticeable. Reduction of up to 80% in examples build time for some target/toolchain

24

and target/ide combinations were observed in initial testing. Related to using the
build folders of previous builds to optimize build time, Mbed OS Jenkins CI makes
use of cached build folders by first building with verbose disabled and after failing
with verbose enabled. This thesis neither researches the usage of the build folders of
previous builds in more detail nor present any conclusive results on the subject.

2.3.2. MbedRTS based on file access monitoring

Each Mbed OS test accesses (depends) only a subset of all Mbed OS GitHub
repository files. For example, building all Mbed OS Greentea test suites for
K66F/GCC_ARM target/toolchain combination depends only on a relatively small
(deterministic) subset of all Mbed OS files (Fig. 16). Mbed OS build tools do not
include Greentea test suite specific tools. If a pull request only modifies tool files and
source files, and the modified tool files are not accessed when building the first
Greentea test suite for a selected target/toolchain combination, building all but the
suites with intersecting source files with the modified source files can be skipped.
Building all Mbed OS Greentea test suites for K66F/GCC_ARM target/toolchain
combination depends on less than 40% (63 / 163) of all Python files in the tools
directory in the Mbed OS GitHub repository. Files accessed by a program can be
listed. The files a test, such as building Mbed OS Greentea test suites, depends on,
can be listed. A Mbed OS test outcome is independent of modifications to files or the
removal of files the test does not depend on. If, for example, a test passes at a first git
commit, and the second git commit only modifies or removes files executing the test
at the first git commit did not access, executing the test at the second git commit is
not required. Besides the previously mentioned example use cases, there are many
other potential use cases for the information acquired by monitoring file accesses.
File access monitoring could potentially be used to further improve JobRTS,
TargetRTS and other Smart Tester related techniques. Implementing Mbed OS
regression test selection based on file access monitoring requires further research,
may not be beneficial in Mbed OS testing at this point in time, and is out of the scope
of this thesis.

Figure 16: Integral over unique files accessed when building Mbed OS Greentea test
suites for K66F/GCC_ARM target/toolchain combination ordered by the number of

accessed files. The build folder and other caches were cleared between building
subsequent suites.

25

2.3.3. Static Greentea RTS techniques

If a PR modifies only tests, only the modified tests require testing. Over 5% of PR’s
modify only tests. Though easily implementable, test suites, test applications, to
build selection for PR’s with only test modifications is out of the scope of the thesis.

Each supported target/toolchain combination supports over 150 Greentea test
suites (Fig. 17). Each Greentea test suite depends on a set of libraries, including, but
not limited to Mbed. Each library supports a set of target/toolchain combinations.
Each library contains a set of resources, the subsets of which belong to the subsets of
all supported target/toolchain combinations. Greentea test suites to build can be
selected based on test suite dependencies, either similarly to target/toolchain
combination selection or perhaps more effectively somewhat similarly to Ekstazi
[16]; by monitoring the intersection of accessed files and modified files, a safe
reduction of dependent modified files can be performed on a target/toolchain
combination basis. Greentea test suites to build selection is out of the scope of the
thesis.

Figure 17: Greentea test suites

2.3.4. Combine JobRTS and TargetRTS

JobRTS config file defines the dependencies of each Mbed OS Jenkins CI job.
TargetRTS defines the dependencies of each target/toolchain combination if only
resources are modified. This intersecting dependency information can be used in
Mbed OS Jenkins CI to reduce unnecessary testing.

For example, a PR modifies both tools and resources. The PR is tested in
Mbed OS Jenkins CI and fails to build all but a subset of target/toolchain
combinations. The failure is fixed by modifying only a subset of resource files. Now,
it is known that only the union of the failed target/toolchain combinations and the
target/toolchain combinations with intersecting resource files with the modified
resource files require building as all other target/toolchain combination are known to
pass. This particular form of combining JobRTS and TargetRTS is out of the scope of
this thesis. The current revision of MbedRTT loosely combines JobRTS and

26

TargetRTS by using JobRTS in TargetRTS to filter out documentation files before
checking if all modified files are resource files.

2.3.5. Optimize exporter test

The current revision of Mbed OS Jenkins CI exporter test builds examples with
verbose build traces enabled. Currently, disabling verbose build traces for Mbed OS
Jenkins CI exporter test would save very little time. Nevertheless, depending on
future Mbed OS Jenkins CI exporter test target/IDE combinations, it may become
beneficial for Mbed OS Jenkins CI exporter test to build with verbose traces
disabled.

Currently, Mbed OS Jenkins CI exporter test builds 12 examples with
K64F/µVision target/IDE combination. The current Mbed OS Jenkins CI exporter
test revision launches µVision 12 times for K64F/µVision target/IDE combination.
Launching an IDE can take over 3 minutes. Launching µVision 12 times can take
over 35 minutes (over 90% of the overall exporter test time). Potential Mbed OS
Jenkins CI exporter test optimization techniques include, but are not limited to:
optimize IDE launch time, minimize IDE relaunch count.

27

3. C��� S������: S��� M���RTT ����������

This thesis includes case studies of all MbedRTT techniques currently enabled in
Mbed OS Jenkins CI. The effectiveness of MbedRTT is measured empirically from
available Mbed OS Jenkins CI test results. This thesis does not evaluate the different
MbedRTT techniques against each other as the techniques target different areas of
Mbed OS testing.

The probabilities of JobRTS and TargetRTS affecting PR testing can be
approximated using the available data of the history of Mbed OS PR modifications
(Fig. 5, Fig. 6). The effectiveness of GreenteaRTS can be approximated by
comparing the number of selected Greentea test cases with the number of all
selectable Greentea test cases. The empirically measured execution times of Mbed
OS Jenkins CI testing for different PR’s can be used to approximate the reduction in
execution time of Mbed OS Jenkins CI testing with MbedRTT enabled compared to
with MbedRTT disabled.

3.1. Case Study: JobRTS

This case study uses the current revision of Mbed OS Jenkins CI JobRTS config file
(Fig. 9). If a PR modifies only documentation (any file that requires no Mbed OS
Jenkins CI testing can effectively be considered documentation by JobRTS), Mbed
OS Jenkins CI skips all testing. For example, modifying only .travis.yml file requires
no Mbed OS Jenkins CI testing (Fig. 18). Mbed OS Jenkins CI checkouts the PR and
executes the JobRTS. Mbed OS Jenkins CI execution time is no longer than a few
minutes. The probability of a PR only modifying documentation files is (or at least
has traditionally been) less than 5% (220 / 7434).

Figure 18: Mbed OS Jenkins CI testing for a PR that modifies only .travis.yml .

If a PR modifies only tests, Mbed OS Jenkins CI can skip all but building and
executing the modified tests. If a PR modifies only unit tests, Mbed OS Jenkins CI
executes only unit tests. Mbed OS Jenkins CI test execution takes no longer than a
few minutes. If a PR modifies only Greentea tests, Mbed OS Jenkins CI builds and
executes only Greentea tests (Fig. 19). Mbed OS Jenkins CI test execution takes
approximately an hour depending on Mbed OS Jenkins CI stability, queue length and
whether GreenteaRTS is enabled. The probability of a PR only modifying tests is less
than 10% (479 / 7434).

28

Figure 19: Mbed OS Jenkins CI testing for a PR that modifies only Greentea tests.

If a PR does not modify only tests and documentation (PR modifies also other files),
Mbed OS Jenkins CI does not skip any tests (Fig. 20). Mbed OS Jenkins CI test
execution takes usually less than two hours depending on Mbed OS Jenkins CI
stability, queue length, and whether GreenteaRTS is enabled. The probability of a PR
not modifying only tests and documentation is more than 90% (6955 / 7434).

Figure 20: Mbed OS Jenkins CI testing for a pull request that does not modify only

documentation and tests.

Although, currently, JobRTS reduces overall Mbed OS Jenkins CI testing by less
than 10%, it is worth it, as the implementation is simple and there are very few
downsides to using it. The only “real” downside to using JobRTS is the currently
manually generated and maintained JobRTS config file. Currently, JobRTS config
file requires no maintenance, as the only excluded files are files which are very
unlikely to affect Mbed OS Jenkins CI test verdict. With automated JobRTS config
file generation, the effectiveness of JobRTS would only increase.

3.2. Case Study: GreenteaRTS

If a Greentea test suite binary has already passed it does not require testing. Most
PR’s affect the hash of very few Greentea test suite binaries. GreenteaRTS reduces
PR Mbed OS Jenkins CI Greentea testing by over 90% on average (Fig. 21).

29

Figure 21: Greentea test case count for PR’s with Greentea Selector enabled.

Mbed OS Jenkins CI executes Greentea tests for a PR in just under two hours on
average when GreenteaRTS is not enabled (Fig. 22). Mbed OS Jenkins CI executes
Greentea tests for a PR in less than 30 minutes on average when GreenteaRTS is
enabled (Fig. 23).

Figure 22: Greentea execution times when Greentea Selector is disabled.

Figure 23: Greentea execution times when Greentea Selector is enabled.

There is only a limited number of physical targets available for Greentea testing in
Mbed OS Jenkins CI. Physical targets wear down relative to the number of times
they are flashed. Eventually physical targets stop working and need to be replaced.
GreenteaRTS reduces target flashing on average and hence reduces the frequency at
which targets need to be replaced. The reduction in Mbed OS Jenkins CI Greentea
test execution time also allows more Greentea tests to be executed in parallel and
sequentially, if required.

Mbed OS Jenkins CI requires GreenteaRTS to operate efficiently. When
GreenteaRTS does not work, Mbed OS Jenkins CI Greentea testing becomes
somewhat unstable (Fig. 24). When Mbed OS Jenkins CI Greentea testing is
unstable, Mbed OS Jenkins CI Greentea test needs to be executed more than once on

30

average for each PR. Executing Mbed OS Jenkins CI with GreenteaRTS either
disabled or not working wastes time and resources.

Figure 24: Unique Greentea test cases executed count by job number. From

approximately build number #1765 to #1771 GreenteaRTS could not retrieve results
from the database. From approximately build number #1765 to #1807 GreenteaRTS

could not send results to the database.

Currently, Mbed OS Jenkins CI nightly Greentea test executes over 40K test cases
(once every night). The current revision of Mbed OS Jenkins CI nightly Greentea test
has GreenteaRTS disabled. Mbed OS Jenkins CI nightly Greentea test case count
increases over time. Mbed OS Jenkins CI Greentea Test executes at most around 30K
test cases for a PR. Mbed OS Jenkins CI Greentea test is executed for from 0 to
easily over 10 PR’s in a day. The number of Greentea test cases executed for PR’s in
a day is on average lower than the number of Greentea test cases executed in Mbed
OS Jenkins CI nightly Greentea test. (Fig. 25)

Figure 25: Greentea test case count for pull requests versus nightly.

31

3.3. Case Study: TargetRTS

If a PR modifies only resource files, only building, exporting, and testing the
affected target/toolchain combinations is required (Fig. 26). If a PR modifies other
files but resource files, any target/toolchain combination may be required. The
current revision of TargetRTS is activated only if a PR modifies only resources. Over
50% (3902 / 7434) of PR’s modify only resources. Around or slightly over 25%
(1892 / 7434) of PR’s modify only target/toolchain specific resources.

Figure 26: Build and exporting for one target/toolchain combination with all but the

required resources removed.

For example, if a PR modifies only EFM32 specific resources, TargetRTS selects
only EFM32 targets, and Mbed OS Jenkins CI builds, exports, and tests only EFM32
targets (Fig. 27). Currently, TargetRTS does not implement resource scanning for
Mbed OS 2 specific targets. Currently, Mbed OS 2 build target/toolchain
combinations includes the selected Mbed OS 5 target/toolchain combinations and
Mbed OS 2 specific target/toolchain combinations (Fig. 28).

Figure 27: Mbed OS 5 target/toolchain combinations for a pull request that modifies

only EFM32 target specific resource files.

Figure 28: Mbed OS 2 target/toolchain combinations for a pull request that modifies

only EFM32 target specific resource files.

32

If a PR modifies only resources, TargetRTS takes less than 3 minutes to execute on
m5.4xlarge Amazon EC2. If a PR does not modify only resources, TargetRTS takes
less than 1 second to execute on m5.4xlarge Amazon EC2 Instance. (Fig. 29)

Figure 29: Resource scanning time on a m5.4xlarge Amazon EC2 Instance for all

Mbed OS 5 supported target/toolchain combinations.

Mbed OS Jenkins CI testing is parallelized only to a degree. If Mbed OS Jenkins CI
maximum node instance cap is exceeded, testing is queued. Mbed OS Jenkins CI
maximum node instance cap is practically always exceeded when building all
target/toolchain combinations for one PR. Building and exporting all target/toolchain
combinations can take over 1.5h depending on how many PR’s are under testing at
the same time. TargetRTS can reduce test execution time drastically depending on
how large number of target/toolchain combinations gets selected. In the best case
scenario (if only a small subset of target/toolchain combinations are selected)
TargetRTS can reduce overall Mbed OS Jenkins CI test execution time for a PR
down to less than 30 minutes.

3.4. Case Study: Verbose build traces

Building Mbed OS with verbose (build traces enabled) can take over 60 times longer
than with verbose disabled. Build time with verbose disabled takes on average less
than 5 minutes in Mbed OS Jenkins CI. Build time with verbose enabled takes up to
40 minutes for some target/toolchain combinations. Building Mbed OS multiple
times subsequently (first with verbose disabled and then with verbose enabled) and
not removing build folder before building with verbose enabled is much faster than
building Mbed OS multiple times subsequently and removing build folder before
building with verbose enabled; For this reason, Mbed OS Jenkins CI builds first with
verbose disabled, and then if the building failed, with verbose enabled. (Fig. 30 , Fig.
31)

Figure 30: Build times with verbose enabled and disabled.

Figure 31: Build times with verbose first disabled and then enabled after failing.

33

Mbed OS Jenkins CI rebuilds Mbed OS with verbose enabled after failure because
building Mbed OS with verbose disabled produces logs with very little information,
and it is not always possible for Mbed OS developers to rebuild the failed builds with
verbose enabled by themselves (Fig. 32).

Figure 32: Mbed OS Build logs with verbose disabled and enabled

34

4. C����������

This thesis described the results of a project performed on Mbed OS. The
overarching goal of this project was to develop and empirically evaluate safe test
selection and optimization techniques that can aid Mbed OS developers by providing
them with quick feedback as well as reduce instability and unnecessary testing in
Mbed OS Jenkins CI.

Mbed OS RT is important but resource intensive, and sometimes unstable,
process. This thesis studied Mbed OS, Mbed OS PR’s, and Mbed OS Jenkins CI to
understand, identify, evaluate, research, and develop techniques to solve the most
common root causes of unstable, unnecessary, or ineffective Mbed OS RT.

The empirical analysis of the researched, and developed Mbed OS RTS and
RTO techniques show promising results. Several developed Mbed OS RTS and RTO
techniques have already been adopted in Mbed OS Jenkins CI. JobRTS reduces
overall Mbed OS Jenkins CI PR testing by less than 10%. TargetRTS reduces, or at
least has the potential to reduce, overall Mbed OS Jenkins CI PR testing by over
25%. GreenteaRTS reduces Mbed OS Jenkins CI PR Greentea testing by over 90%
on average. Building Mbed OS with verbose disabled can be over 60 times faster
than building with verbose enabled.

4.1. Threats to validity

The MbedRTT implementations may contain bugs. The figures in this thesis may
contain bugs or inaccuracies. To mitigate the risks, well-known languages,
techniques, and tools were used when available. Unit, and integration tests were
developed and executed for both the MbedRTT scripts and the scripts used in
generating the figures.

The GitHub PR’s included in this thesis include over 99% of all closed,
merged, and currently open Mbed OS PR’s from all forks and branches to all
ARMmbed Mbed OS branches. The only PR’s not included are either empty,
corrupted, or otherwise unavailable PR’s. It is quite difficult to automatically collect
accurate Mbed OS PR test information, such as what were the names of the modified
files in a PR at the time of the test execution, as the information available is either
stored for only a limited time (AWS S3), or somewhat inaccurate (GitHub). This
thesis considers the PR related information (such as the percentages of the different
subsets of modified files) to be constant in most cases, so some of the results may be
too generalized.

4.2. Application possibilities

MbedRTT is currently used only in Mbed OS Jenkins CI. The developed MbedRTT
techniques are not Mbed OS Jenkins CI dependent. JobRTS and TargetRTS can be
used locally, for example, to simply determine what testing will happen in Mbed OS
Jenkins CI. A subset of the selected tests can then be executed locally in order to

35

determine whether Mbed OS Jenkins CI is likely to pass or not. The local usage of
GreenteaRTS can use either Mbed OS Jenkins CI Greentea results database or local
Greentea results database. Mbed OS Jenkins CI Greentea results database can be
used for either both downloading and uploading Greentea results, or just
downloading Greentea results.

JobRTS is not Mbed OS specific. JobRTS can fairly easily be used in other
projects, for example, to skip unnecessary testing for files in specific folders or files
with specific file extensions. TargetRTS is Mbed OS specific. TargetRTS can be used
to prioritize target/toolchain combinations by only including resource files in
modified files. The most likely target/toolchain combinations to require testing are
the target/toolchain combinations with intersecting resource files with the modified
resource files. The technique used in GreenteaRTS is not Mbed OS specific. The
technique requires test units, for example, test binaries, and their dependencies to be
hashable and deterministic.

36

REFERENCES

[1] "Welcome to Python.org", Python.org , 2019. [Online]. Available:

https://www.python.org/. [Accessed: 10- May- 2019].

[2] "ARMmbed/mbed-os", GitHub , 2019. [Online]. Available:
https://github.com/ARMmbed/mbed-os. [Accessed: 03- Apr- 2019].

[3] "ARMmbed/mbed-os-tools", GitHub , 2019. [Online]. Available:
https://github.com/armmbed/mbed-os-tools. [Accessed: 03- Apr- 2019].

[4] "OpenTMI/opentmi", GitHub , 2019. [Online]. Available:
https://github.com/OpenTMI/opentmi. [Accessed: 03- Apr- 2019].

[5] "Mbed OS | Mbed", Arm Mbed , 2019. [Online]. Available:
https://www.mbed.com/en/platform/mbed-os/. [Accessed: 04- Apr- 2019].

[6] "ARMmbed/mbed-os-tools", GitHub , 2019. [Online]. Available:
https://github.com/ARMmbed/mbed-os-tools/tree/master/packages/mbed-g
reentea. [Accessed: 04- Apr- 2019].

[7] Nptel.ac.in. (2019). [online] Available at:
https://nptel.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Embedd
ed%20systems/Pdf/Lesson-38.pdf [Accessed 19 Apr. 2019].

[8] Pipeline. (2019). Pipeline . [online] Available at:
https://jenkins.io/doc/book/pipeline/ [Accessed 19 Apr. 2019].

[9] Extending with Shared Libraries. (2019). Extending with Shared Libraries .
[online] Available at: https://jenkins.io/doc/book/pipeline/shared-libraries
[Accessed 19 Apr. 2019].

[10] Os.mbed.com. (2019). Continuous integration (CI) testing - Contributing |
Mbed OS 5 Documentation . [online] Available at:
https://os.mbed.com/docs/mbed-os/v5.12/contributing/ci.html [Accessed
27 Apr. 2019].

[11] Rachel Potvin, J. (2019). Why Google Stores Billions of Lines of Code in a
Single Repository . [online] Cacm.acm.org. Available at:
https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billion
s-of-lines-of-code-in-a-single-repository/fulltext [Accessed 28 Apr. 2019].

[12] Static.googleusercontent.com. (2019). [online] Available at:
https://static.googleusercontent.com/media/research.google.com/en//pubs/a
rchive/45861.pdf [Accessed 28 Apr. 2019].

37

[13] Mir.cs.illinois.edu. (2019). [online] Available at:
http://mir.cs.illinois.edu/~marinov/publications/LegunsenETAL16StaticRT
S.pdf [Accessed 28 Apr. 2019].

[14] Anon, (2019). [online] Available at:
https://www.researchgate.net/publication/295908347_Dynamic_Integration
_Test_Selection_Based_on_Test_Case_Dependencies [Accessed 28 Apr.
2019].

[15] Mir.cs.illinois.edu. (2019). [online] Available at:
http://mir.cs.illinois.edu/~marinov/publications/GligoricETAL15EkstaziDe
mo.pdf [Accessed 7 May 2019].

[16] M. Gligoric, L. Eloussi and D. Marinov, "Ekstazi: Lightweight Test
Selection," 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering , Florence, 2015, pp. 713-716.

[17] Mir.cs.illinois.edu. (2019). [online] Available at:
http://mir.cs.illinois.edu/~qluo2/fse14LuoHEM.pdf [Accessed 7 May
2019].

[18] Mbed-os-ci.s3-website-eu-west-1.amazonaws.com. (2019). [online]
Available at:
http://mbed-os-ci.s3-website-eu-west-1.amazonaws.com/?prefix=jenkins-ci
/ARMmbed/mbed-os/ [Accessed 8 May 2019].

38

5. APPENDICES

Appendix 1. Simplified MbedRTT python implementations

39

Appendix 1. Simplified MbedRTT python implementations

