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ABSTRACT

In this thesis, we present the development and evaluation of an augmented reality
X-ray system on optical see-through head-mounted displays. Augmented reality
X-ray vision allows users to see through solid surfaces such as walls and facades,
by augmenting the real view with virtual images representing the hidden objects.
Our system is developed based on the optical see-through mixed reality headset
Microsoft Hololens. We have developed an X-ray cutout algorithm that uses the
geometric data of the environment and enables seeing through surfaces. We have
developed four different visualizations as well based on the algorithm. The first
visualization renders simply the X-ray cutout without displaying any information
about the occluding surface. The other three visualizations display features ex-
tracted from the occluder surface to help the user to get better depth perception
of the virtual objects. We have used Sobel edge detection to extract the informa-
tion. The three visualizations differ in the way to render the extracted features.
A subjective experiment is conducted to test and evaluate the visualizations and
to compare them with each other. The experiment consists of two parts; depth
estimation task and a questionnaire. Both the experiment and its results are pre-
sented in the thesis.

Keywords: Augmented Reality, Mixed Reality, X-Ray vision, Optical See-Through,
Hololens.
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1. INTRODUCTION

Augmented Reality (AR) is the technology of augmenting real-world environments
with computer-generated images. The virtual images are rendered to appear as they
belong to the real scene, but in fact, they are purely digital. AR allows bringing virtual
objects to real-world environments, taking advantages of the recent advancements in
both hardware and software. One of the most successful stories of AR is Pokémon
Go (see Figure 1). The location-based AR mobile game gained an insane popularity
among children and adults. The app allows users to locate, collect, train and battle
Pokémons. These Computer Graphics (CG) creatures, known as Pokémons, appear on
the screen as they are really located in the real-world environment. Since its release
in July 2016, the number of users grew exponentially in a very short time, as well as
revenues. Such kind of success gives remarkable attention to developers, to consider
AR as a technology of the future. In academia, the story of AR started as early as
in the 60s. Since the late 90s, AR technology started to see major advancements.
To boost the improvements further, the research community established new scientific
conferences and journals to discuss the topics related to AR technology. These topics
include designing new AR headsets, improving AR tracking and registration, exploring
new rendering approaches, and more.

"

Figure 1. Pokémon GO is a very popular AR game. Image credits: caffinegeeks.com.

X-ray visualization is one of the famous applications of AR. It allows users to see
through walls and surfaces, by augmenting the real view with virtual images repre-
senting the hidden objects. This resembles the superhuman ability to see through walls
and buildings in science fiction movies. The thesis presents the development of a new
algorithm for AR X-ray vision. We have used Microsoft’s mixed reality headset, the
Hololens, as a development platform. Based on the developed algorithm, we derived
four different X-ray visualizations. We have conducted a subjective study to test and
evaluate the visualizations and to compare them with each other. The experiment was
performed by voluntary participants and consists of two parts; depth estimation task
and a questionnaire. The results of the evaluation are presented in the thesis as well.



The rest of the thesis is organized as follows. Chapter 2 explains the general defini-
tion of Augmented Reality, including key concepts and technologies related to it, like
displays, tracking, registration, calibration, etc. Chapter 3 reviews optical see-through
head-mounted displays. First, we cover the technology behind these displays, includ-
ing optical combiners. Next, we explain the differences between optical and video see-
through head-mounted displays. Then, we review the commercial optical see-through
headsets available on the market. Finally, we discuss the problem of latency and the
methods used to compensate for it on optical see-through displays. Chapter 4 high-
lights the state-of-the-art methods used in AR X-ray vision, focusing on the systems
presented for optical see-through devices. Chapter 5 describes the implementation of
the proposed algorithm as well as the four X-ray visualizations. Chapter 6 presents
the experiment design to evaluate the proposed visualizations and the results obtained.
Chapters 7 contains discussion and Chapter 8 draws conclusions of the thesis.



2. AUGMENTED REALITY

Augmented Reality (AR) aims at merging virtual objects into the view of the real scene,
in a way that the virtual objects appear to be part of the real environment. This chapter
is dedicated to explaining the engineering and techniques related to AR technology
that enables this merging. Section 2.1 gives a detailed definition of AR and lists the
systems that are inside its scope. Section 2.2 presents AR display devices, focusing
on the most common displays. Section 2.3 describes some of the key terms associated
with AR like occlusion and depth of field. Section 2.4 looks at the different tracking
techniques used in AR. Tracking the user’s position, orientation, and motion is the
key component in every AR system. The last section discusses the registration of
the virtual world with respect to the real world, and the calibration methods used to
calibrate different tracking sensors.

2.1. Definition

The well-known definition of Augmented Reality among scholars is the one given by
Azuma [1]. He defines an AR system to have the following features:

e Combines real and virtual objects in a real environment
e Runs interactively, and in real time
e Registers real and virtual objects with each other.

According to this definition, AR is not limited to visual media, or to a specific output
display. Therefore, audio, haptics, and gustatory AR are included in the context. Fur-
thermore, movies that contain computer graphics added to real environments, are not
considered as AR, because they lack interactivity. Interactivity, the second characteris-
tic listed by Azuma, requires that the user within an AR system can freely navigate the
scene, and control the AR experience related to it, in real time [2]. To achieve this, the
system needs to measure the user’s viewpoint, and update the output according to the
registration between the real and virtual worlds. Milgram [3] considered Augmented
Reality as a part of the general area of Mixed Reality (MR). He defined a continuum
of real-to-virtual environments (Figure 2). In AR, virtual objects are added to the real
scene, while in Augmented Virtuality (AV) real objects are added to the virtual scene.
The continuum gives a clear picture of the intersection between the reality and the
virtuality. Any MR system that is closer to the reality more than the virtuality is con-
sidered as AR. On the other hand, anything closer to the virtuality is considered as
AV.

2.2. Displays
As augmented reality merges virtual objects into real environments, AR displays

should be able to display both the 3D virtual images and the real scene. The most com-
mon displays, used to achieve this, are see-through Head Mounted Displays (HMDs).
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Figure 2. Milgram’s continuum of Mixed Reality.

HMDs are categorized into two main types: video, and optical see-through. In the
optical see-through (OST) HMDs, the real and virtual images are combined using half
transparent and half reflective mirrors. The mirrors are usually placed in front of the
eyes, while the imaging device is located just above them, or on the side of the display
so that it does not block the view for the eyes [4]. The real world is seen as it is through
the transparent part, without any modification or alternation. The virtual images are
optically combined with the real world images using the reflective part of the mirrors.
The optical see-through HMDs are generally simple and lightweight. The video see-
through (VST) HMDs block the natural view from the eyes and captures the real world
using a camera instead. The captured images are then combined with the virtual im-
ages electronically [4]. The final result is displayed to the user using a monitor placed
in front of the eyes. Since the real scene is represented as digital images, several im-
age processing algorithms can be applied to process the scene. In fact, there are less
commercial video see-through HMDs in the market, than optical see-through HMDs.
Usually, research groups build their own video see-through displays to experiment and
develop applications related to them. Optical and video see-through HMDs are dis-
cussed in more detail in the next chapter. Despite the popularity of the see-through
HMDs as AR displays, there exist other solutions including hand-held devices, hybrid
optical/video see-through, spatial AR, and immersive displays. The hand-held devices,
such as smartphones and tablets, are able to provide both virtual and real scenes in one
view. Since these mobile devices are available and cheaper than HMDs, they are con-
sidered as the most used AR platform [2]. Next, we address briefly the different types
of AR displays other than optical and video HMDs.

Hand-held/mobile displays are based on smartphones and tablet computers. They
use the built-in camera to capture the real world, then merge the real and virtual images
into a single view, and display it on the screen. Since the system uses the camera,
many consider them as video see-through displays [5]. Figure 3 shows an example of
a hand-held AR. Tracking the device with respect to the world is done mainly using
the camera, yet it is also possible to use other sensors as well [2]. In some recently
proposed systems, the built-in front camera is used to track the user’s pose relative to
the device. Such a system requires two different tracking processes, one for user-to-
device, and one for device-to-world tracking [6] [7].

Hybrid optical/video see through displays are designed to use optical see-through
technology for visualization, and video camera for tracking and localizing objects in
the real world [8]. The real world view is kept intact, while a camera senses the en-
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Figure 3. Handheld devices are cheap devices to experience AR. Credit:
http://magicway.org/services/mobile-app-development-warsaw/.

vironment and helps in generating the virtual graphics, as in VST. This is very useful
in applications that require the natural view of the real scene as well as the camera for
image processing [9]. Projection-based AR, also known as spatial AR, and spatial
projection, is another way to augment the real scene, but without a physical screen.
The augmentation is projected, using a light projector, onto the real world geometry,
as shown in Figure 4. This system does not require a physical screen, nor an optical
combiner, and is perfect for public events and spatial effects on buildings and large
structures [2]. Another setup proposed by Kijima and Ojika [10] is to attach a pro-
jector to a headset, instead of placing it in the environment. Such headsets are called
Head-Mounted Projector Displays (HMPDs).

Virtual
Images

[ ~~ . Projector
Camera \

.

Figure 4. Projective-based AR conceptual diagram.

Fully immersive headsets totally occlude the user’s view of the real world [5]. They
use stereoscopic displays together with specialized lenses to deliver a 3D view to the
user. Two slightly different images are served to the eyes, to help the user to sense
the depth using parallax. The display is very close to the eyes and covers their entire
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Figure 5. Fully immersive displays. From left to right: HTC Vive, Oculus Rift,
and Sony Playstation VR. Credit: https://geekculture.co/htc-vive-oculus-rift-ps-vr-
compared-who-wins-your-money/

field of view. The lenses are placed between the eyes and the display. They allow
the eyes to focus on the images on the display. As the display is very close to the
eyes, the images would be blurry without the lenses [11]. Motion tracking sensors
are used to track head’s position and orientation. The images are updated according
to the tracking. This setup makes the user experience the visual presence in the non-
physical world. This type of technology is suits best for Virtual Reality (VR) and AV.
The system has several interaction methods to interact with the content. The input
methods include hand gestures, voice commands, keyboards, game controllers, and
more. There are plenty of commercial immersive displays in the market, available for
the general audience. The most common headsets are Oculus Rift, Sony PlayStation
VR, and HTC Vive (see Figure 5). Fully immersive headsets can be used as video
see-through displays if they have one or two cameras attached in front of them. In case
they do not have any, one can attach a camera manually [4].

2.3. Basic Concepts

The first attempt to create an AR device that augments the real world with digital
graphics happened as early as in the 1960s. Since that, AR has seen many improve-
ments and advances thanks to the research community. Nowadays, there are many
terms associated with AR technology. Understanding them helps to acknowledge AR
and its dependencies better. For example, understanding the ocularity gives an idea
why some AR headsets have only one display, such as Google Glass [12], while other
headsets have two displays, such as Epson BT-300[13]. In this section, we go through
some of the key terms, including ocularity, field of view, depth of field, interpupillary
distance, latency, and occlusion.
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2.3.1. Ocularity

Ocularity refers to the mechanisms how the AR system shows images to one or two
eyes. Head-mounted displays are divided into three types based on their ocularity:
monocular, biocular, and binocular. A Monocular display serves only one eye. A
small display is placed in front of an eye, while the second observes the real world
freely. Such kind of low weight devices are perfect for displaying information content,
but suffer from lacking stereo depth cues. Biocular displays serve both eyes from a
single image source. These devices are mainly used for cinematic viewing and are
common to be less complex and lightweight than their binocular counterparts. Yet,
they also suffer from missing stereo depth cues. Binocular displays serves both eyes
with separate image sources to provide a stereoscopic view. That is very friendly for
the human vision system. The main advantages of binocular displays are that they have
a large field of view, and provide stereo images, and depth cues. On the other hand,
they are complex, expensive, and require more computation power compared to the
other types [5].

2.3.2. Field of View

Field of view (FOV) in AR refers to the total amount of information displayed to
both eyes, measured as angles in degrees. It is considered as an important feature of
AR headsets [14]. The FOV of an HMD can be classified into three regions; aided
(or overlay), peripheral, and occluded. Aided FOV is the most important and criti-
cal region. It tells how much the virtual images are overlayed onto the user’s view.
Generally, narrow FOV HMDs, whose FOV is horizontally less than 60°, have 100%
overlap. However, wide FOV HMDs (horizontal FOV more than 80°) commonly have
smaller overlap like 60%, for example [4]. Occluded FOV is the region that is blocked
by the headset, in which the user cannot see the real world, nor the virtual images. The
occluded region is recommended to be as small as possible. Peripheral FOV refers
to the part between aided and occluded regions, where the user can see only the real
world. Usually, the optical see-through HMDs have a large peripheral FOV. On the
other hand, it is very hard to achieve wide overlay FOVs on OST devices, due to the
design of the optical combiners. Increasing the FOV also brings more distortions and
aberrations [4]. Video see-through and immersive HMDs have wide aided FOV and
no or small peripheral FOV. Some applications require large FOV, while other applica-
tions, where only a few augmentations, are added to the real world view are satisfied
with small FOV [8].

2.3.3. Depth of Field

The range of distances from the eye in which an object appears in focus is known as the
depth of field. That is defined also as a distance between the closest and the furthest
objects that the eyes can see. The human visual system can focus on a particular
distance each time. It automatically adjusts the eye’s accommodation to focus on a
single plane where the object lays on. This plane is called the plane of focus. Objects
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that lay at different depths than the focused plane are seen blurred [15]. In the case of
AR, HMDs provide both the real and virtual worlds. Stereoscopic displays in general,
display synthetic images of virtual objects at a fixed distance, known as fixed focal
depth [2]. With optical see-through HMDs, if the real objects and the synthetic images
are not at the same distance or close enough, it is impossible for the human eyes to
focus on both of them at the same time. This problem is very common with transparent
HMDs and known as the accommodation-vergence conflict. In the video see-through
HMDs, which are not transparent, this problem does not occur, because the real objects
can be defocused due to the camera. Moreover, in order to avoid blurred video images,
small aperture autofocus cameras are used [4]. Adjusting the focus in HMDs can
be done by manually moving the lenses towards or away from the display until the
CG appears sharp to the user [16]. Several methods have been proposed to solve the
accommodation-vergence conflict with automatic refocus in transparent HMDs [17]
[18].

2.3.4. Interpupillary Distance

Interpupillary distance (IPD) is the distance between the centers of the pupils of the
eyes, measured in millimeters. It is a key parameter for all binocular systems including
stereoscopic head-mounted displays. All head-mounted displays need this parameter
to accurately render the synthetic images. It helps to align the virtual camera output
correctly on the display screen that is placed in front of the eyes. The distance varies
between people. The average IPD for adult humans is 64 mm with the range of 50 to 70
mm. Some exeptional IPDs are within range of 45 to 80 mm [19]. Errors regarding IPD
settings can cause image distortion on the display, eye strain, and headaches [5]. Most
of the HMDs offer a way to adjust the IPD parameter for a proper output rendering.
Some displays, like HTC Vive and Oculus Rift, provide a mechanical tool to manually
adjust the IPD setting by moving the lenses. Another used strategy is to keep the lenses
fixed and change the IPD using a software. All the synthetic images will be rendered
according to the set value. Sony PlayStation VR and Microsoft’s Hololens displays,
for examples, adopt this technique [5].

2.3.5. Latency

In AR systems, latency refers to the time delay from the change of the user’s pose
to the moment when the display content is updated to correspond the new pose. It
is a very important parameter and usually measured in milliseconds. The latency re-
flects the total time the whole system takes to complete one full loop from sensing
to displaying. This loop includes tracking, processing the results, rendering, and then
updating the display output. If the latency is high, inconsistency between visual and
vestibular systems happens and user observes registration errors and disorientation and
starts suffering from motion sickness [4]. For video see-through HMDs, the issue of
high latency is not as critical as in the optical see-through HMDs. The latency is min-
imized by displaying the captured image of the real scene until the synthetic image is
fully rendered. This eliminates the time lag between the real and virtual worlds, but
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introduce a small delay to the real scene. Generally, for a good AR experience using
HMDs, the latency should be less than 60ms [20]. Several algorithms have been pro-
posed to compensate, minimize or eliminate the latency. Time warping and prediction
methods such as extended Kalman filter (EKF) are used to minimize the lag [21] [22].
The latency is discussed in the next chapter in more detail.

2.3.6. Occlusion

Occlusion is a necessary ability for all AR systems. It plays a major role in increasing
the depth perception and the overall realism of the system. In fact, it is considered as an
important depth cue, where from the other depth cues depend on [23] [24]. The human
visual system uses the overlappings between objects to understand the structure of the
seen 3D scene. Any occlusion errors confuse the visual system. In HMDs, preserving
the depth order is important for realistic rendering. To achieve this, the occlusions
should be handled correctly. If all the objects are real, then they are naturally ordered.
The human visual system automatically senses the depth order. If the objects are vir-
tual, the z-buffer technique is used to order them before sending the final image to the
display. However, if the scene contains both real and virtual objects, handling occlu-
sions becomes challenging. In video see-through HMDs, it is relatively easy, because
both the real and virtual worlds are represented by images. If the geometric structure
of the real scene is known, the z-buffer can be used as well to place the virtual objects
in front of the real objects and vice versa [8]. The geometric order can be obtained
using a cheap RGB-D camera, for example [4]. On the other hand, due to the display
capabilities, the occlusion handling occlusion is challenging for optical see-through
HMDs, even if the depth order of the real scene is given. As the real world is seen
through half-transparent mirrors, it is hard, or even impossible, to stop the natural light
to reach the eyes. Thus, making the virtual objects to look like they are in front of the
real objects is difficult. As a solution, Kiyokawa et al. [25] proposed a system where a
liquid crystal display (LCD) is placed in front of the mirrors, to block the light coming
from the real scene when needed. The proposed concept is illustrated in Figure 6.

Graphics
Images

Optical LCD Panel
combiners

Figure 6. An LCD panel for optical see-through devices to help handling the occlu-
sions.
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2.4. Tracking

Tracking is the key process in all AR systems. It refers to the continuous measurement
of user’s position, orientation, and motion in the 3D space. This process is necessary
for AR and VR systems to physically locate the user’s head with respect to the 3D envi-
ronment. According to the tracking results, the view content is updated at the display
output to match the user’s position and orientation. Other entities, such as cameras,
displays and input devices, can be tracked as well. There are many approaches to track
objects in the current AR systems. In this section, we explore sensor-based tracking,
optical tracking, sensor fusion, and simultaneous tracking and mapping (SLAM).

2.4.1. Sensor-based tracking

The rapid development of smartphones and tablets made a variety range of sensors
cheap and available. Their output is not as accurate as their expensive and profes-
sional counterparts, but they are enough for performing several kinds of tracking. To
list a few, methods and devices like GPS, magnetometers, gyroscopes, and linear ac-
celerometers, are commonly used for AR tracking. Global Positioning System (GPS)
measure the position using signals emitted from the satellites in Earth’s orbit. For ob-
taining good accuracy, four or more satellites are needed. However, such signals are
very sensitive to external disturbance and noise. Buildings and grand surfaces may
weaken or block them. Solutions like differential GPS (DGPS) achieves higher ac-
curacy. DGPS uses correction signals, received from the ground stations which their
positions are known in advance. GPS technology is not suitable for precise real-time
tracking that is required for AR registration [2].

A magnetometer, or electronic compass, uses Earth’s magnetic field to determine
the direction with respect to the magnetic north. The results are usually given along
three axes. A Gyroscope is an inertial sensor that measures rotational velocity. To get
a 3 DOF measurement, a setup of three orthogonal gyroscopes is used. Linear ac-
celerometers estimate accelerations using the piezoresistive effect and/or sensing the
change of internal electric capacity caused by the movements. It is very important to
notice that every sensor has its own advantages as well as disadvantages. Furthermore,
in general, the discussed sensors suffer from lacking high accuracy measurements,
which are needed for high-quality AR registration [2]. As a result, in real time track-
ing systems, a single sensor is rarely used alone.

2.4.2. Optical tracking

Optical tracking refers to the use of cameras to track movements. There are a variety
of optical tracking systems being used, but all of them use a single or multiple cameras
as a source of data to measure the pose. Since cameras are cheap and provide rich
easy-to-process data of the environment, they are widely used in AR tracking. Both
camera technology and computer vision algorithms are under extensive academic and
industrial research. It is expected that they will see many improvements in the near
future [2]. Optical tracking systems can be classified into two categories based on
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the targets they track. The targets can be either manually created markers or natural
features [4]. Markers, also known as fiducial markers, contain usually a predefined
pattern or features. They are placed on specific positions in a particular order in the
3D space. When the system starts, one or multiple cameras look for them in the real
space. Whenever a marker is seen on the images, the position and orientation of the
object or the tracking camera can be estimated accordingly. If the markers are not
used, the system tries to extract natural features from the scene using computer vision
algorithms. Such features are known as interest points or keypoints. Natural feature
tracking requires higher image resolution and more computational power. Moreover,
the features should be easy to find and remain in fixed positions [2].

2.4.3. Sensor Fusion

Building a sophisticated tracking system requires the use of all possible data from
the available sensors. When aiming at increasing the performance and the quality of
tracking, different sensor technologies are used simultaneously. However, this setup
increases the complexity, cost, weight, power consumption, and require more calibra-
tion procedures [2]. The combination of multiple sensors to improve the quality of
the measurement is known as sensor fusion. In AR tracking, many good results have
been achieved using the sensor fusion [26] [27] [28]. According to [29], the sensor
fusion systems are classified into three main categories based on their configuration.
In complementary sensor fusion, sensors are not dependent on each other. Every
sensor measures a single degree of freedom and the results are combined at the end.
Competitive sensor fusion occurs when every sensor measures the same degree of
freedom. The final measurement is a combination of the individual measurements
calculated with a mathematical model. This configuration is robust against uncertain
and erroneous measurements [30]. In cooperative sensor fusion, a given sensor uses
the data measured by other sensors to obtain its measurements. This happens when a
property cannot be measured with a single sensor.

2.4.4. SLAM

Simultaneous Localization and Mapping (SLAM) was first proposed by John J. Leonard
and Hugh Durrant-Whyte [31]. SLAM is a technique used in robotics to help mobile
robots to navigate in unknown environments. It creates a map of the surrounding area
around the robot, tracks the position of the robot with respect to the map and uses it for
navigation as well. All this happens at the same time. SLAM has seen many improve-
ments. It can run in real-time and use different sensors for tracking, including IMU
and RGB-D sensors. If SLAM is based only on visual data and uses only cameras,
then it is called visual SLAM (vSLAM) [32]. Today, SLAM and vSLAM are being
used in many applications besides robotics, including AR systems. For example, they
are used as key components in Google Tango AR computing platform [33]. Tango
devices, including Lenovo Phab 2 Pro and Asus ZenFone AR, are able to navigate
smoothly, measure the space of a real object, provide 3D data of the environment and,
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in general, provide a good AR experience. Unfortunately, Google has decided not to
support Tango anymore and prefer ARCore instead [34].

The approach proposed in [35], called Parallel Tracking and Mapping (PTAM), sep-
arates the tracking from the mapping by creating two parallel threads for each. PTAM
executes the two threads in parallel and allows them to communicate with each other
(see Figure 7). The tracking thread uses the features stored in the map. Then it seeks
their correspondences in every frame. Based on the obtained correspondences, the
user’s pose is estimated. If new strong features are detected in the current tracking
frame and pass a minimum requirement, they are then added to the map. Usually, the
tracking thread runs much faster than the mapping. The tracking runs at the full frame
rate of the system, e.g. 30 or 60 Hz, while the mapping runs once per one or few

seconds [2].
Tracking Mapping
am

Figure 7. In PTAM, the tracking and the mapping are executed on parallel.

2.5. Registration and Calibration

In AR, the registration means the alignment of the coordinate systems of the virtual
and real scenes [36]. It is extremely important for see-through devices, to display
virtual objects in their correct positions, and keep them registered with respect to the
real world. High-quality tracking is required for a good registration and a good AR
experience. There are two types of registration: static and dynamic. Usually, the
static registration happens at the beginning of the AR system when the user is not
moving. A common global coordinate system is then established between the real
and virtual scenes. This ensures that both the real and virtual worlds use the same
coordinate system. The dynamic registration is done when the user is moving and
needs continuous tracking [2]. It maintains the link between the real and virtual worlds
when the user’s pose changes.

A calibration is another important process in all HMDs. It is defined as a process
of comparing measurements of one device with measurements of a reference device.
The measurements of the reference device are considered as the ground truth. The
parameters of the device to be calibrated are tuned until the two measurements are
equal. In AR, the tracking sensors need to be calibrated at least once. The calibration
improves the measurement accuracy. Some sensors require the calibration each time
the operating system starts, others require it continuously. Camera calibration is one of
the important processes. The camera calibration defines the internal camera parameters
which are used to compensate for the lens distortion, for example [2].
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3. OPTICAL SEE-THROUGH HEAD MOUNTED DISPLAYS

The objective of this thesis is to implement an augmented reality X-ray vision on op-
tical see-through HMDs. In this section, we discuss the optical see-through displays,
whereas X-ray vision and its related work, are discussed in the next chapter. Highlight-
ing the advantages of OST-HMDs, as well as their disadvantages, helps to understand
the challenges related to development of an X-ray system for such displays. We start
this chapter by presenting the concepts and technologies enabling OST-HMDs, review-
ing the different approaches used by companies when building their OST headsets.
Next, we compare the optical and video see-through displays. We will see that devel-
opment of an X-ray vision system for VST is easier compared to OST. This explains
why the most of the related work of X-ray vision has been presented for VST displays,
while very few works have been proposed for OST. Then, we explore the problem of
latency in HMDs, and the techniques used to compensate for it. The system latency is
a very critical problem for OST in particularly, and for all HMDs generally. Finally,
we present a brief overview of the available OST headset in the market.

3.1. Optical See-Through Displays

Optical see-through head-mounted displays are one type of augmented reality headsets
that mixes real and virtual images in a single view. They use a half transparent and half
reflective optical mirrors, placed in front of the user’s eyes, to capture the real world
and display the virtual images at the same time. The real world is seen directly through
the optical mirrors without modifications. This gives a natural and intact view of the
real environment. The mirrors also reflect the virtual images to the user’s eyes. A
small projector projects the light beams representing the virtual images on the mirrors.
Figure 8 shows the full process. The optical mirrors are called combiners because the
final output is an optical combination of the real and virtual environments in a single
view [8] [2].
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Figure 8. Optical see-through conceptual diagram.
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The optical combiner is the key technology that enables mixing the real and virtual
images for OST-HMDs. An ideal optical combiner is the one that is small, thin, bright,
low cost and has a large field of view, low weight, high resolution, and low distortion.
Companies also pay attention to the shape and look. Since nobody wants to look
strange in front of other people, the optics and the whole display itself should be well
designed. Unfortunately, such an ideal combiner does not exist; yet researchers are
actively developing new solutions that improve the listed characteristics. The existing
commercial combiners are good in certain characteristics only and fail to satisfy all the
desired specifications. Below, we review the four main optical combiner technologies
used in the industry nowadays.

Solid Beam Splitter is a basic type of optical combiner, used on e.g. SONY
Glasstron, Google Glass, and Epson BT-300 OST displays[5] [13]. They are usually
used with Liquid Crystal on Silicon (LCoS) microdisplays. The LCoS displays are
very common in near-eye displays. In the solid beam splitter setup, they function as
a transmissive and reflective component that generates clear images [5]. They receive
light from an external source, such as a projection engine or a simple sequential RGB
LED, and then transmit the light to the beam splitter. The beam splitter directs the
light towards the display, then to the eyes. Figure 9 shows a simplified illustration of
the technique. Usually, because of the weight and costs, the size of the beam splitter is
small. This results in getting a very small field of view and the users may even see the
blurry edges of the splitter [37]. One major drawback of the solid beam splitter tech-
nology is the brightness. It fails to generate dense light that can cope with natural light
coming to the eyes from the environment. This makes it limited to indoor applications
only.

LCoS Chip

Beam
Splitter

RGB LED

Figure 9. Illustration of light direction in a beam splitter setup. The light is first emitted
from an RGB LED towards an LCoS chip, which forwards it to the beam splitter. The
later directs the light to the display.

The second type of see-through optical combiners is Spherical/Semi-Spherical
Large Combiners. A flat LCD or OLED is placed above one or two large combiners,
to generate the display images. The large combiners reflect the emitted light to the
user’s eyes [37]. This technique is simple and supports high resolution and a big field
of view. But the combiners are very large and usually take a big space. Meta 2 head-
set adopts this technique [38]. It uses two very large semi-spherical combiners with a
single flat OLED panel on top of them. The overall resolution of the display is 2560
x 1440 which is split in half for the two eyes. Meta 2 supports up to 90° FOV. This is
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considered as a very good FOV, and, in fact, incomparable with other small FOVs sup-
ported by the other AR headsets available on the market (for example, Google Glass
has 13° FOV). Furthermore, compared to Solid Beam Splitter, this type of combin-
ers is cheaper and easy to manufacture, due to their simple architecture and the wide
availability and the low cost of LCD/OLED panels.

The third type is Tilted Flat Combiner. It is used by Osterhout Design Group
(ODG) model R-7, as shown in Figure 10. The tilted plates receive light from the
microdisplay and optics located just above the eye brow, and direct the images directly
towards the user’s eyes [37]. This simple architecture is one of the cheapest techniques
used is optical see-through displays. It can support good image resolution and big
enough FOV (about 37° on the R-7) still being light enough. However, any attempt to
further increase the FOV requires more volume and space for the combiner. Because it
is located near the eyes, increasing the volume brings the tilted plat closer to the eyes,
which is considered highly undesirable.

Figure 10. ODG R-7 model uses tilted flat plates to optically combine the real and
virtual images. Credits: TeamViewer

The last type is Flat Waveguides. This is regarded as the most advanced technology
for optical combiners up-to-date, and many believe that is the future of see-through
optical combiners. This technology is based on a phenomenon known as Total Internal
Reflection (TIR). Simply, when light enters the flat optical element, such as a glass or
clear plastic, it starts reflecting internally [37]. Diffractive Optical Element (DOE) is
used to transmit the light to the glass and also transmit it out of the glass. In the case
of see-through combiners, light is emitted from a light source towards lenses, then it
enters the glass via DOE. The light starts reflecting inside the glass until it reaches
the part facing the eye. At this part, another DOE directs the light out of the glass in
the direction of the eye. Figure 11 illustrates the principle. DOE is the key element
of the flat waveguides technology. Without it, the light splits on all directions before
entering the glass. Similarly, it is very hard to transmit sufficient amount of light to the
eyes at the right place without the help of the DOE. Another kind of diffractive grating
similar to DOE is Holographic Optical Element (HOE). HOE has been used as well in
waveguide combiners [4].

Microsoft’s Hololens combiner adopts waveguide technology [5]. It uses two HD
16:9 light engines to generate the virtual images, and utilizes DOE to blend the light
inside a flat optical display and to push it back outside of it. The engines work like
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Figure 11. Advanced waveguides are built based on the TIR principle. Once light
enters a flat optical surface it reflects internally. Diffractive optical elements are used
to enter and exit the light from the optic.

near-eye projectors and emit the light towards the optical surface. Diffractive optical
elements catch it and enter it to the surface. Once the light gets inside, it starts bouncing
(TIR) until it reaches a triangular fold zone as shown in Figure 12. The fold zone
causes the light to turn 90° down to a rectangular zone, where other DOEs are waiting
to transform the light towards the eyes [37]. Hololens combiner is considered as a
miracle of optical see-through technology. However, such a complex architecture have
to be manufactured carefully which makes the mass production very complicated. This
results in high production costs [39].

3.2. Optical Versus Video See-Through Displays

Video see-through head-mounted displays use a different strategy in combining the
real and virtual worlds than optical see-through displays. In VST displays, a video
camera placed in front of the device captures the real world. The obtained digital im-
ages, representing the real world, are combined together with the images representing
the virtual world. Practically, the real images are set as a background and the digital
graphics are aligned on the top of them. This combination is made inside a graphics
processor. The output images are then displayed to the user using a simple monitor
such as an LCD or OLED mounted in front of the eyes. Figure 13 illustrates the con-
cept of video see-through displays.
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Figure 12. Hololens uses advanced waveguides for combining the real and virtual
images. Image credits: https://www.theverge.com
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Figure 13. Video see-through conceptual diagram.

Video see-through HMDs are very good at merging the real and virtual scenes. Since
the real world is captured and then treated as digital images, computer vision and image
processing algorithms can be easily applied to process and modify the real scene. This
pixel-based processing of the real scene gives a big advantage for VST displays to
handle the occlusion problems [40]. Thus, they suit quite well for rendering X-ray
visualization. In OST-HMDs, the real world is seen as it is. No modifications can
be applied to change the scene. This makes the rendering of occlusion and X-ray
challenging. In fact, it is very difficult for OST displays to occlude the real object
using virtual objects only, due to the transparent nature of the optical combiners. The
natural light goes through the transparent combiner directly to the eyes. As the light
of the display is just combined with the natural light before serving it to the eyes, the
natural light cannot be stopped or occluded simply by the display light. This makes
occluding real objects with virtual objects very hard, if not impossible.
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Another advantage of VST HMDs is that images of the real scene can be delayed by
few frames until the virtual graphics are fully generated. As a result, the virtual objects
can be easily rendered to appear in their appropriate places at the right time. The
technique of artificial delay helps a lot in reducing the end-to-end latency as well [8].
However, no delay can be introduced to the real scene in OST displays. The rendering
should be faster to present the virtual objects in their right places with respect to the
environment. In X-ray applications, delaying the scene helps to create a better and
convenient visualization. Since this is not possible with OST displays, applications
implemented on these devices should be optimized as much as possible, so that virtual
objects are rendered very close to their right places. The post-rendering and predictive
tracking are key solutions for optimized systems [41] [42] [21].

The good advantage of optical see-through HMDs is that they leave the view of the
real world as it is. Without any delay or modification, the real scene always appears
natural. This property is necessary for many applications. On the other hand, the
fact that you cannot change or delay the real scene requires that OST systems should
have low latency. Most of the related work of AR X-ray vision has been done on
VST displays. It would be very nice to see an X-ray system on an OST display that
overcomes these challenges. This kind of a system is where we aim at in this thesis.

3.3. Latency Compensation for Optical See-Through Displays

In head-mounted displays, the time delay from tracking the user’s head motion to pre-
senting the rendered image to the user is known as the latency or end-to-end lag. It is
a critical parameter for all AR headsets. For an acceptable AR experience, the latency
should be kept below 60ms [20]. In OST-HMDs, when latency is big, registration er-
rors, motion sickness, and disorientation are observed. This confuses the user [4]. In
VST-HMDs, in which the captured real images can be delayed by few milliseconds
until synthetic images are rendered in their correct places, as discussed previously, the
lag can be reduced easily. To compensate for the latency, different approaches have
been used. Extended Kalman filter (EKF) and other prediction filters have been ex-
tensively applied. Zhao et al. [42] proposed a method that helps to estimate the total
latency as well as measure the effects of the compensation algorithms.

Kijima et al. [21] used image shifting techniques to reduce the latency. They have in-
troduced a term Reflex HMD, based on vestibulo-ocular reflex, which can be applied to
any HMD headset that rapidly updates the display image using raw head measurements
without going through the whole rendering pipeline. In their prototype, they have used
raw gyroscope data to change the viewpoint within the rendered image which is larger
than the screen resolution. The viewpoint is shifted according to the measured head
movement. This shift is made using hardware to manipulate the driving signal of the
LCD displays, as shown in Figure 14. Their experiments showed that using cylindrical
rendering helps in improving the overall performance through deformation cancella-
tion and distortion decreasing. Oculus Rift uses a similar approach using a high-speed
IMU and pixel resampling hardware [4]. Similarly, Microsoft Hololens mixed reality
headset uses its own hardware compensation, called image stabilization pipeline. It is
build based on the algorithm of Reflex HMD. Using the stabilization pipeline, Hololens
corrects for the head movements, occurred after the scene rendering, and reduce the
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overall latency. When programming apps for the device, developers have access to the
hardware. They can define a single plane in the 3D scene that will receive the maxi-
mum hardware stabilization. This plane is called image stabilization plane. In this
thesis, we have used efficiently the Hololens’ image stabilization hardware.

Moving Viewport
in Whole Graphics

N ]
|

Short Loop for Compensation
(Reflex Loop)

Long System Loop

-

Computer

Figure 14. Reflex HMD shifts the view using the raw measurements of head move-
ments [21].

3.4. Commercial Headsets

In this section, we briefly look at the main commercial optical see-through displays
available on the market. We present first Microsoft Hololens, the headset used in our
work. Then, we describe other similar devices including Meta 2, Google Glass, and
Epson BT-300.

3.4.1. Microsoft Hololens

Hololens is a stereoscopic optical see-through head-mounted display, developed by
Microsoft and introduced in 2015. The mixed reality headset (Figure 15) is a small
computer running Windows 10 operating system. It is able to sense the environment,
track the user’s pose, and augment the real environment with virtual objects. It is
completely wireless and mobile, allowing users to freely move around. All the com-
putational tasks are done in the headset itself, so no external components are needed.
For the display technology, the headset uses waveguide technology to display high-
definition images. The waveguide elements face the eyes and deliver a pleasant aug-
mentation of the real world. The optics allow to see the real world as it is and, at
the same time, they display the virtual objects/creatures in their accurate places with
respect to the real environment. Interestingly, the objects stay stable when moving
or just rotating the head. This stabilization and registration are mainly achieved due
to the high quality tracking used by the device. The headset uses four RGB cameras
dedicated for optical tracking as well as a depth camera and an IMU. The users can
interact with the content displayed by the device using gestures, gaze, and voice recog-
nition. Hololens provides also interesting features like 3D sound and spatial mapping.
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The spatial mapping provides a detailed 3D mesh map about the surfaces of the sur-
rounding environment [43]. Table 1 gives more details about the specifications of the
device.

Developing Windows 10 apps for Hololens is mainly done using Unity 3D or Di-
rectX platforms. Unity 3D is the most common platform among developers. The
Windows APIs support apps written in C++ or C#. Nowadays, Microsoft is target-
ing companies by presenting the Hololens as a great data visualization and produc-
tivity tool. Moreover, the company announced they are developing a new generation,
Hololens 2, that is expected to outperform its predecessor, and it will include a custom
Al chip dedicated for running neural networks and Al algorithms.

Figure 15. Hololens headset.

Table 1. Microsoft Hololens characteristics.

Feature Specification

Ocularity Binocular

Image Source LCoS Microdisplays
Resolution 720p / 2HD 16:9 light engines
Color Color Sequential RGB

Field of View 30°

Head Tracking 1 IMU

4 Environment Understanding Cameras

1 Depth Camera

Camera(s) 4 Environment Understanding Cameras

1 Depth Camera

2MP Photo / HD Video Camera

Main Processor(s) Intel Atom x5-7Z8100 1.04GHz

Intel Airmont (14nm)

Custom Holographic Processing Unit (HPU)
RAM 2GB

Development Environment | Windows 10, 32bit
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3.4.2. Meta 2

Meta 2, shown in Figure 16, is an AR headset developed by the company Meta. It
was launched in 2016. With 90° FOV and 2560x1440 pixel resolution, Meta 2 delivers
the world’s most immersive AR experience [44]. It uses a very large combiner with
a flat high definition OLED panel. The combiner is transparent, and thus allows nat-
ural light to come to the eyes. The headset is connected to a desktop computer via a
cable. Actually, most of the computing tasks are done outside the headset. This gives
a significant computing power to the device, but limits its mobility. More features of
Meta 2 are provided in Table 2. App development for Meta 2 is done using Unity 3D
platform. The Meta company provides a Unity SDK to build and share the apps. The
SDK includes SLAM, hands interaction tracking, example code, and documentation
[45]. Though Meta 2 is known to have a great display and immersive AR experience,
it has problems with tracking. The virtual objects are not that stable as in Hololens.
This means the tracking quality of Meta 2 is not as good as the one of the Hololens,
and it can be better.

Figure 16. Meta 2 headset. Credits: Meta.

Table 2. Meta 2 characteristics.

Feature Specification
Ocularity Binocular
Image Source OLED
Resolution 2560 x 1440
Field of View 90°
Camera(s) 720p
Development Environment | Windows 10
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3.4.3. Google Glass

Google Glass, shown in Figure 17, is a monocular optical see-through head-mounted
display, developed by Google and manufactured by Foxconn. It was first released in
2013, then pulled out from the market in early 2015. The Glass uses Android as an
operating system and split combiner technology for displaying digital images. The
users can interact with it using gestures, touchpad, and voice recognition. The touch-
pad is on the side of the device and allows users to slide through apps. Examples of
voice commands are "take a picture”, "record a video", "make a call to (name)", etc
[12]. Overall, Google Glass is lightweight and has a neat design. It is very suitable
for applications that contain information display and data visualization. Google Glass
created new research paths and enabled new innovative applications [5]. The appli-
cations targeted hospitals, industry, and warehouses. Google announced that a new
glass is under design and development. Details about the main features of the Glass
are presented in Table 3.

Figure 17. Google Glass display. Credit: Tim Reckmann, Wikimedia.

3.4.4. EPSON BT-300

The BT-300 from Epson, shown in Figure 18, is the third generation of Epson’s Move-
rio smart glasses, introduced in 2016. It is a binocular optical see-through AR display
based on split combiner technology. It has a slim, neat, and lightweight design. The
first generation, BT-100, was launched as early as 2011. After that, the Moverio fam-
ily has seen main improvements in terms of design, optical thickness, brightness, FOV,
and resolution. Epson developed its own display technology that provides higher res-
olution and higher brightness, called Si-OLED [13]. It uses Silicon-based OLED to
generate digital images, then projects them to the split combiner. The BT-300 display
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Table 3. Google Glass characteristics.

Feature Specification
Ocularity Monocular

Image Source LCoS Microdisplay
Resolution 360p

Color Full Color

Field of View 15°

Head Tracking 9 DoF IMU

Camera(s) SMP Photo, 720p Video
Main Processor(s) OMAP 4430 SoC, dual-core
RAM 2 GB

Development Environment | Android 4.4

adopts this technology. It provides dual 1280x720 pixels per eye and good visibility
in bright sunlight, which makes it suitable for outdoor applications. The smart glasses
has about a 23° FOV and considered as one of the lightweight displays on the market
(headset weight is 69g) [5]. BT-300 uses Android 5.1 operating system. With a good
processor and 2GB of RAM, the glasses can run computationally expensive and de-
manding apps. In addition, the device supports WLAN, so it can be connected to the
Internet or wireless local networks. A small hand controller is attached to the glasses.
The controller has three programmable buttons, a circular trackpad, and a rechargeable
battery. Most of the computing tasks are offloaded to it. Table 4 summarizes the main
features of the glasses.

Figure 18. EPSON BT-300. Credit: Epson.



Table 4. EPSON BT-300 characteristics.

Feature Specification

Ocularity Binocular

Image Source Proprietary Silicon OLED (Si-OLED)
Resolution 1280 x 720

Color 24-bit color %

Field of View 23°

Head Tracking 1 IMU

Camera(s) SMP camera

Main Processor(s)
RAM
Battery Life

Development Environment

Intel Atom 5 1.44GHz Quad Core
2 GB

Approximately 6 hours

Android 5.1

29
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4. X-RAY VISUALIZATION

X-ray vision refers to the ability to see through walls and surfaces. With the help of
computer-generated images, users can see the hidden parts behind occluding surfaces.
Usually, it is described as the superman’s ability to see through walls and buildings.
X-ray visualization is considered as an important application of augmented reality.
During the last two decades, many works have been presented to slove the issues re-
lated to it. From time to time, researchers propose from time to time new methods and
solutions that push the quality of the visualization further. In this section, we review
the state-of-the-art of the augmented reality X-ray. In addition, we discuss as well
some of the used methods to scan 3D environments and spaces, in order to be used
later in X-ray applications.

4.1. Augmented Reality X-ray Vision

The introduction of OpenGL stencil buffer allowed to look beyond occluding objects
in pure 3D scenes. Coffin and Hollerer [46] used stencil buffer techniques to perform
cutouts in surfaces that occlude other objects. Their work facilitated AR X-ray vision.
In the presented system, the user starts defining holes on the occluding surface as well
as a point of interest that points to a hidden object to be seen. Then, based on the holes
and the position of points of interest, a cutaway is performed automatically on the
surface to allow seeing through it. All the information of the occluding surface falling
within the cutaway area is removed from the view. The algorithm uses the surface’s
normal vector, to orient and reposition the cutaway geometry, so that it is rendered with
respect to the user’s view. That means, even if the user turns around or moves from his
initial place, he still can see the correct X-ray cutout. Figure 19 shows the results of
this technique.

Figure 19. The user defines initial holes, then a cutaway is performed based on the
hole positions [46].

Simply rendering the virtual images that represent the hidden objects on top of the
occluder may confuse the user. Rather than seeing the objects behind the occluder, the
user gets a feeling that the hidden objects are floating in front of the occluder. Thus,
X-ray systems should be designed to give correct occlusions. In [47], the authors im-
proved the special awareness of AR X-ray systems using an edge overlay from the
occluding surface. The edge overlay is computed from images of the occluding sur-
face. Images provided by a camera behind the occluder are combined with the edge
overlay. The resulting X-ray visualization provides a good foreground context. This
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technique produces additional depth cues and helps to get the right relationship be-
tween the occluder surface and the occluding objects.

Sandor et al. [23] took one step further by proposing an X-ray system based on
visual saliency. The system builds a map of salient features to detect important visual
landmarks. Salient features include any color, luminosity, orientation or motion that
attract visual attention. Edges from the occluder surface are considered as one salient
feature. The proposed system displays important visual information, through rendering
these visual landmarks of both the occluder and the occluded objects. Such information
helps to perceive depth and recognize the correct relationship between the occluder
and the occluded. The authors highlighted that occlusion is the most important depth
cue, and the other depth cues depend on it. They have presented a diagram, shown in
Figure 20, that demonstrates the relationship between the different depth cues based
on the work on [48]. They also claim that rendering the important regions based on the
saliency maps preserves correct occlusions.
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Figure 20. The relationship between different depth cues.

Kameda et al. [49] presented an outdoor mixed reality see-though system, based on
a number of surveillance cameras embedded in the environment. The system is im-
plemented on a handy personal computer (HPC) that has a back camera attached to it.
The computer displays the live status of the invisible areas that the user cannot see due
to big structures, such as walls and buildings. The surveillance cameras are located in
different positions. They capture the live images of the hidden areas, then stream them
to the computer, which uses them as a source of the hidden areas. The system amelio-
rates the results using pre-created CG models. The models represent the static area and
have been created using CAD tools. The system outputs a precise visualization where
the images of the hidden areas are imposed on top of the images of the computer’s
camera. Figure 21 shows an overview of the algorithm. All the surveillance cameras
are calibrated against the world offline, to get a better estimation of their locations and
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orientations. Since it is difficult to place markers in outdoor environments, some parts
of the buildings are used as markers for the calibration, together with the CAD models.

3D model Live iges captured

l ' by surveillance cameras
d

Intergrated view on Real image captured
HPC display by HPC camera

Figure 21. Information from three different sources is used to render the X-ray vision
[49].

One application of X-ray is to visualize underground networks, such as water and
gas pipes. Jiazhou Chen et al [50] introduced an X-ray system to visualize under-
ground structures. Their approach uses video processing tools, to add virtual objects,
representing the hidden structures, to the video frames. The system does not require
pre-scanned 3D models of the environment and assumes that the capturing camera is
located in a fixed position. The system extracts features from the frames to create visual
cues, which help users to understand the occlusion relationships. The extracted fea-
tures, like edges and second order derivatives from images, are displayed completely,
or used with blending masks. The fact that no prior 3D information about the area is
needed, facilitates the implementation of the X-ray visualization because there are no
misalignment problems between the 3D model and the reality to handle. The size of
the filters of the edge detection and transparency smoothing affects greatly the total
frame rate. The authors reported that the frame rate of the system ranges from 12 to
18 fps. We believe that higher frame rate can be achieved with the current hardware,
especially if using parallel computing methods.

An augmented reality X-ray that uses Google Street View to get images of the hidden
scene has been presented in [51]. The prototype was designed for outdoor cases. It dis-
plays the X-ray visualization on the facade of buildings. The system was implemented
as an Android mobile application. The proposed application adopted techniques used
by previous X-ray systems such as using edge overlay to provide depth cues. In ad-
dition, the authors introduced a new silhouette computation method to provide more
visual information about the occluding surface. This improves the projection of the
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images of the hidden scene into the real surface. A brightness adjustment step is per-
formed to deal with the outdoor brightness issues. In order to cope with the limitation
of computation capabilities of mobile phones, the images are downscaled before be-
ing processed by the edge detection and silhouette computation algorithms. After the
processing, the images are rescaled to their original scale again.

4.2. X-ray Vision on Optical See-Through Displays

Most of the AR X-ray systems have been made for VST-HMDs and handheld devices.
In this section, we review the systems that have been implemented on OST-HMDs.
Julier et al. [52] presented the implementation of an outdoor AR system that provides
situational awareness information to warfighters. The Battlefield Augmented Reality
System (BARS) is designed to be used in urban environments, where there are a lot
of obstacles that block the view, such as buildings and facades. The whole system is
composed of a mobile computer, a tracked optical see-through HMD, as well as a wire-
less communication system. The system shows only the most relevant information on
the current situation. Important objects in the urban environment are symbolically pre-
sented to the user. The user can see for example the wireframes of buildings, important
targets, the names of streets, sniper locations, and so on.

Livingston et al. [53] studied different display attributes for X-ray applications in-
volving far-field occluded objects. The authors used an OST setup with purely virtual
occluded objects. The aim of the study was to discover the graphical cues that help
the user to maintain the correct depth relationships of virtual objects. They designed
three different X-ray visualization techniques for outdoor environments and performed
a user study to reveal which visualization is the best in expressing occlusion relation-
ships. Each visualization assumes four layers of occlusion, three buildings, and a
target. Each layer is located at a different depth.

A recent X-ray vision system was implemented by Rompapas [54] on OST devices.
The system requires two users both wearing Google Glasses. One of the Glasses
streams the poses and live video images to the other Glass which uses the received
data to perform the X-ray visualization. The system works only if one of the users sees
the point of interest, while the other one cannot see it because of a blocking surface,
like a wall, for example. Another great feature of the proposed system is that it allows
the users to move around freely.

4.3. 3D Scanning for X-ray Vision

For the X-ray visualization, information about the hidden objects is needed. One way
to represent it is to use a pre-built 3D model of the hidden area. The idea is to scan the
area offline, then export the data into a 3D model format. Usually, mesh algorithms are
used to optimize and modify the model, so it will be made suitable for the application.
Later, on the runtime, the X-ray system uses the 3D model to represent the unseen parts
of the scene. In this section, we cover few techniques used to 3D scan environments.
Structure from Motion (SfM) is one approach to determine the 3D structure of spaces
and objects using cheap cameras. The technique uses a set of 2D images to estimate
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the 3D structure of the scene. Usually, the object or the area to be scanned is in a
fixed position, while the camera taking images moves around it continuously. SfM is
a well-known topic in computer vision, and it has been widely studied and developed
by researchers. Current Structure from Motion implementations are often based on lo-
cal keypoints and descriptors such as Scale-Invariant Feature Transform (SIFT). [55].
First of all, features are extracted from each image using the SIFT algorithm, for ex-
ample, and a descriptor is created for every detected feature. Then, the descriptors are
compared with each other to reveal the overlappings. The overlappings help to link the
images with each other. This is called matching. When all the images are matched, the
overall structure of the 3D scene is obtained. One free and easy to use software to go
through these steps is VisualSFM. That is a popular desktop application among schol-
ars published by Changchang Wu [56]. It uses SfM algorithms to generate 3D point
clouds of objects or scenes taking 2D jpeg images as input. The software supports
parallel computing and integrates several reconstruction algorithms developed previ-
ously by the author, including Multicore Bundle Adjustment [57], SIFT on GPU, and
Towards Linear-time Incremental Structure from Motion [58]. The basic pipeline used
by the application is as follows: add images, match images, do a sparse reconstruction,
and then a dense reconstruction. The final output is a point cloud in .ply format, repre-
senting the 3D geometry of the environment or object captured by the 2D images. The
.ply files created by VisualSFM can be converted later into textured 3D meshes using
Meshlab [59], for example.

Another easy-to-use method to obtain 3D information from spaces is Matterport
Scenes. Matterport Scenes is an Android app developed by Matterport, Inc. It runs ex-
clusively on Google Tango devices: ASUS ZenFone AR and Lenovo Phab2 Pro [60].
The app uses available camera sensors and Google Tango APIs to generate 3D point
clouds of the surrounding environment. All the processing is done on the smartphone
internally, without using GPS or external support such as cloud-based services. The
user can export the 3D data as a .ply file, and use it later for other applications. More-
over, there exist other 10S-based scanning apps for Structure Sensor [61]. That is a 3D
sensor designed for iPads only. It can capture depth data as well as RGB images.

Matterport has a 3D camera as well, called Matterport PRO2 [62]. The camera is
rather expensive, and thus, used mainly by professional purposes. It gives very accu-
rate and dense results and can scan big areas, including whole buildings. The camera
captures color and depth, then sends them to be processed in the cloud. The user has
to pay both for the camera and the cloud processing. Recently, a new dataset of point
cloud scans from Matterport PRO2 3D Camera has been published [63]. The scans
have been made in five big areas including offices, educational spaces, conference
rooms, meeting rooms, and more. Every point of the point clouds is labeled according
to 12 categories (floor, wall, window, chair, table, etc.). The dataset allows students
and researchers to develop algorithms that deal with 3D point cloud scans.

The last covered scanning method is Bundlefusion. It is a real-time scanning frame-
work published by Dai et al. [64]. It uses one RGB and one depth camera to extract
3D mesh of the space. It supports several devices that have RGB-D sensors, such as
Microsoft Kinect, Intel RealSense, and Structure Sensor. The framework processes
the scene and generates the 3D mesh in real-time. It uses advanced parallel computing
methods, such as Cuda and requires a good GPU. No offline processing is needed. The
algorithm takes RGB-D frames as input and then detects correspondences between the
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input frames. The algorithm uses a GPU-based SIFT feature extraction, matching, and
pruning. Then, it performs a combination of local and global alignment steps. It uses
sparse and dense correspondences for the pose estimation. The result obtained from
every frame is added to the previous results. By doing so, the reconstructed 3D model
updates continuously. The framework supports relocation and tracking recovery. That
is, when tracking errors happen, it can recover and relocate the camera with respect to
the scene. After the recovery, the algorithm continues scanning.
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5. IMPLEMENTATION

This chapter describes the details of the implementation of our augmented reality X-
ray system. We have implemented an X-ray cutout algorithm, as well as four different
visualizations that use it. First, we start by reviewing the software and platforms used
for the development of the system. We cover Unity 3D, Vuforia SDK, and OpenCV.
Next, we present the technique used to create a 3D model of the real scene. The model
is needed for both the cutout algorithm and the visualizations. Finally, we explain our
X-ray cutout algorithm, followed by the four different visualizations.

5.1. Platforms

In this section, we give details about the platforms used in the implementation of our
work. First, we review Unity 3D, the software that hosted all the development. Unity
3D engine supports making applications for augmented reality headsets, including Mi-
crosoft Hololens. Then, we describe the augmented reality SDK, Vuforia. It is one of
the most popular AR platforms. It implements different computer vision algorithms
that help to develop AR applications. Lastly, we cover OpenCV, the powerful and very
optimized open source computer vision library. It provides multiple computer vision
algorithms used for face/object detection, camera calibration, stereo vision, feature
detection, classification, and more.

5.1.1. Unity 3D

Unity is a cross-platform engine for making games and 3D interactive applications.
It is developed by Unity Technologies. The first version was launched in 2005 and
supported MacOS only. Through the successive released versions, it was gradually
extended to support several platforms. Now, Unity can deploy games and applications
to more than 27 platforms, including Windows, Mac, mobile devices, and video game
consoles. It has a free and a commercial versions that include more features. Unity
makes it possible to start creating 3D interactive applications and video games without
big investments. It offers interesting features like real-time lighting, 3D coordinate
spaces, 3D physics engine, audio, dynamic shadows, and more. For scripting, C# or
JavaScript are used, but most of the Unity developers prefer C#. Unity is mainly used
for creating games, but it can be used to create 3D simulations, animations, visual-
izations, etc, as well. Moreover, Unity provides native support for different commer-
cial AR and VR headsets, including Microsoft Hololens. Developing applications for
Hololens requires Unity and Visual Studio. First, the application is created with Unity,
then built and deployed to the device using Visual Studio. The deployment can be done
via a USB cable or wirelessly. Microsoft and Unity work closely to deliver unique fea-
tures related to the Hololens and other immersive headsets. These features are used
by developers when making applications using Unity. These include gaze, gestures,
voice command, 3D audio, world coordinates, spatial sound, and spatial mapping. In
our work, we have used Unity 2017.02 and Visual Studio 2017 to build and deploy our
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X-ray system to the Hololens. More details about the development of our system are
discussed in the next sections of this chapter.

5.1.2. Vuforia SDK

Vuforia is an augmented reality SDK created by Qualcomm Inc, now acquired by PTC.
The SDK gives mobile application developers a rather easy way to create AR experi-
ences without significant efforts to develop the required computer vision algorithms. It
facilitates the work for developers by providing these algorithms. Users can detect tar-
gets on the real space and track their pose in real-time. The SDK can be used together
with the main app development software, including Android Studio, Xcode, Visual
Studio, and Unity. Thousands of apps powered by Vuforia have already been pub-
lished in Google Play and App Store [65]. Furthermore, the SDK supports HMDs that
can be programmed using Unity, such as Microsoft Hololens. Development of basic
applications for Unity projects is free, but includes the Vuforia watermarks. The recent
versions of the Unity integrated Vuforia within the editor. For more advanced features,
like storing targets on the cloud, developers need a commercial license. Also, the li-
cense is needed for all native development (10S, Android, UWP) rather than Unity,
including even the basic features.

Vuforia platform uses images as targets to launch an AR experience. Instead of
scanning barcodes or QR codes, simple images can be used to start the experience.
When the app starts, the platform creates a global coordinate system. Whenever an
image target is detected on a given image frame, the platform registers its pose with
respect to the coordinate system and tracks it. The AR experience is launched along
with the detection. The experience can start an animation, place a 3D object on top of
the image, play a 2D video, etc. The image targets are stored in a database locally on
the device. Users who have the license have the possibility to store them on the cloud.
The SDK comes up with several predefined targets. Users can print and use them
directly in their applications. However, if they want to use their own image target, they
should scan, measure and add it to the database that Vuforia uses on the runtime. It
is very important to provide accurate measurements of the image, otherwise tracking
problems will occur.

On our AR X-ray vision system, we used Vuforia 6.5 with Unity to position and align
the virtual 3D model of the scene with the real world. We printed out one of the image
targets included in the SDK and attached it to a wall in a room, as shown in Figure 22.
When the headset comes closer to the wall, and the camera captures the target, the 3D
modeled wall comes into view, placed and aligned with respect to the real wall. The 3D
model is linked with the image target in advanced in Unity. When Vuforia detects the
target during runtime, the pose of the 3D model is initialized according to the target’s
pose. Vuforia uses the camera resource of the Hololens on its own and does not allow
other parties or APIs to use it directly. If an API needs camera images, it should ask
for them from Vuforia. The only way to access the images is via Vuforia API. This
creates an unnecessary delay and limits some image processing capabilities. Since the
main reason to use Vuforia in our system is to initialize the pose of the 3D model,
after a few seconds after the target detection and pose initialization, we keep the 3D
model in its place and stop Vuforia API. That releases the camera resource so that other
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APIs and image processing libraries can use it, eliminates unnecessary computational
power, and increases the frame rate of the application making the app to run faster.

Figure 22. Vuforia image target is used to link the real and virtual worlds.

5.1.3. OpenCV

OpenCV (Open Source Computer Vision) is an open source library written in C/C++
for image and video analysis. It is designed for real-time applications and offers more
than 500 optimized algorithms related to the field of computer vision. It was originally
developed at Intel and introduced in 1999. The first version was launched in 2006.
In 2009, the second version, called OpenCV 2, was released bringing important fea-
tures and changes and the library is still continuously expanding. When writing this
sentence, the latest version of OpenCV is 3.4.1 (February 2018). The library is re-
leased under a BSD license so that it can be used by researchers and developers free of
charge. OpenCV has C++, Python and Java interfaces and supports Windows, Linux,
Mac OS, i0S, and Android. Bindings and wrappers are available as well to support
other programming languages such as C#. In order to use OpenCV in Unity projects,
there is one asset in Unity Asset Store called OpenCVforUnity [66]. It is built based
on OpenCV Java, allowing users to use the same API as the latest version of OpenCV
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Java. The asset works on many hardware including Microsoft Hololens and can be
used in applications related to augmented reality technology too. In this thesis, we
used OpenCVforUnity to process live images taken by the Hololens in real-time to
create a dynamic X-ray visualization. That is discussed in more detail in Section 5.4.4.

5.2. 3D Modeling of the Real Scene

The work presented in this thesis demonstrates the development of an AR X-ray vi-
sion algorithm. In addition, four different visualizations that use this algorithm were
implemented. We evaluate them in the next chapter, and rank them regarding to the
quality of the X-ray visualization and depth perception based on user experience. In
this section, we present the 3D modeling of a real scene used to develop and test our
X-ray vision algorithm, as well as the proposed visualizations. To simplify the tasks,
we modeled a single wall in an office rather than the whole office. The wall serves as
the occluding surface. We add later virtual objects behind the wall to test whether the
cutout succeeded to visualize the X-ray vision. For a more convenient application, it
is better to scan the whole office, using one of the approaches discussed earlier in the
previous chapter. That would use the same algorithm developed in this work giving in
addition a more realistic view. The straightforward technique to model the wall is to
use the built-in Cube object of Unity and modify its size and scale to match with the
real size of the wall. The model is textured manually using a color image of the real
wall. We start by measuring the size of the wall using a handy measuring tape. Next,
we create a Cube object in the Unity editor. We change its size and scale to match
with the dimensions of the real wall. Lastly, we texture the wall manually by taking
a picture of the wall, importing it to the Unity project and assigning it to the model.
Several tests were then made to make sure the virtual model aligns with the real wall.
The final model is presented in Figure 23.

5.3. X-ray Cutout

In this section, we discuss our X-ray cutout algorithm. In order to understand the
implementation, it is necessary to understand how objects work in Unity. Unity uses
a modular component system to construct the scene objects. All objects on a Unity
project, including cameras, lights, 3D models, characters, and so on, are called game
objects. Each game object contains several components attached to it. They decide
how the object looks and behaves. This approach is not similar to the traditional in-
heritance architecture where a strict hierarchy of classes is used. In this component
system, objects are in a flat hierarchy, and every object has multiple components that
have different functionalities. By default, a Transform component is attached to all
game objects automatically. That determines where the game object is located, and
how it is rotated and scaled. All the components can be removed except Transform
because all the objects must have a position, rotation, and scale in the 3D world.
Moreover, there are two key components that can be attached to game objects; scripts
and renderers. Scripts decide how the game object behaves, while renderers decide
how the object should appear. Unity refers to the code files as scripts. These can be
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Figure 23. (Top) The real wall. (Down) The 3D modeled wall.

used to control the behavior of the objects, read input data, toggle graphical effect, send
data to the Internet, implement image processing algorithms, and more. Developers
can use C# or JavaScript to write the scripts. In order to run a code file, it should be a
component of a game object. Scripts that are not attached to any game object are not
executed. Unity does not allow linking to external code libraries, and therefore ,all the
scripts should be inside the Unity project.

Commonly, 3D models in Unity projects have a MeshRenderer and MeshFilter com-
ponents. The MeshFilter tells what is the shape of the object, while the MeshRenderer,
called also renderer, tells how the object should appear. A game object can have only
one renderer, but the renderer can have multiple materials. A material is a simple
wrapper for a shader. The diagram in Figure 24 shows the relationship between these
components. The material can store properties and textures and use them to control
the shader. Multiple materials can be created based on a single shader. The shaders
are common programs in computer graphics used to determine how to draw the object,
taking into account the light sources around it, material properties, the location of the
viewer, surface orientation, and more. These are used by the GPU when calculating the
color of each pixel representing the model within the final rendered image. Nowadays,
shaders can even be used to create graphical effects or do video post-processing.
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Figure 24. The relationship between game object, material, and shader.

Our X-ray algorithm is implemented on a shader file. A material is created based on
the shader to control it and then attached to the 3D model receiving the X-ray cutout.
The main function enabling the X-ray cutout within the shader program is the intrinsic
HLSL function clip(). HLSL (High-Level Shader Language) is a shading language
developed by Microsoft and can be used in Unity. The function is used to discard a
certain pixel at a certain condition. It is usually used to simulate clipping planes and
to test alpha behavior. It works in a similar manner to the stencil buffer techniques
used by Coffin and Hollerer [46]. In our implementation, we have used the function to
take away a 3D volume having the shape of a sphere from the 3D model. The volume
is selected by specifying a position in 3D space and a radius. We discard the pixels
within the selected volume and do not draw them. That illustrates opening a window
in the model so that users can see what is behind it. Since shaders run in the GPUs, the
algorithm benefits from the high-speed computing power of the GPUs. If the algorithm
is implemented on C# scripts, it will take longer time to execute.

The discussed technique is efficient when applying it to a planar surface. To make
our algorithm more robust, it is more convenient to make the cutout of a shape of a
cylinder. This is because we are expecting to deal with a 3D model that may have
a complex shape and/or take a lot of space. However, performing a simple sphere
cutout in the middle of the model is not enough. The parts of the model that lays
between the user and the cutout position can occlude the cutout. The solution is to use
a cylindrical cutout. It ensures that a window is opened in the whole 3D model, not
just a simple sphere cutout in a given position on the model. We mimic a cylindrical
cutout by performing several spherical cutouts continuously. The cutouts have a shape
of a sphere close to each other and aligned in a single line. We call the position of the
first sphere the starting position and the last sphere the stopping position. These two
positions determine the starting and ending positions of the cylindrical cutout. The rest
of the positions are automatically generated. Figure 25 illustrates the implementation.

For a smooth rendering, the algorithm needs to update the starting and stopping
positions continuously. We use a C# script to pass the two positions to the shader for
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Figure 25. A cylindrical cutout is made with several spherical cutouts.

each frame. We call it X-ray Manager. The script calculates the two positions first,
then sends the values to the shader. The cylindrical cutout is performed based on the
received values. We assign the starting point to the current user’s position, while the
stopping point to a position that is in the same direction of the user’s gaze in a distance
of 3 meters. When the user moves his head or changes his gaze direction, the new
positions are updated quickly. With the same script, the radius of the spheres can be
changed, as well as the distance between every two successive spheres. We have used
a custom lightning model as well to make the shader a lightweight and suitable to be
used in devices that have limited hardware, such as the Hololens. The used lightning
model is called Lighting Mobile Blinn Phong.

5.4. Visualizations

In this section, we show four different X-ray visualizations, implemented for the
Hololens device. Each visualization uses our X-ray algorithm, and they are designed
to help the user to estimate the depth of different objects correctly. The main differ-
ence between the visualizations is how to visualize information about the occluding
surface. The visualization techniques are listed below and described in more detail in
the following sections:

1. Simple X-ray cutout. This is the simplest visualization. No information about
the occluding surface is presented. The user estimates the depth of the virtual
augmentation using parallax only.
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2. X-ray with static edge overlay. An edge overlay of the occluding surface is
displayed on top of the occluding wall. The edges are extracted from the image
texture of the 3D model.

3. X-ray with dynamic edge overlay displayed on a 2D plane. An edge overlay
based on live images taken with the Hololens built-in camera is displayed in
front of the user. The edges are displayed at a fixed distance from the user and
follow the user when moving or changing gaze direction.

4. X-ray with dynamic edge overlay displayed on the 3D space. This visualization
is similar to the second one, but here the edge overlay gets updated continuously
using streamed camera images from the Hololens camera.

5.4.1. Simple X-ray cutout

This visualization does not provide any information about the occluding surface. It
only performs the X-ray cutout to open a window on the 3D model. The user can see
the objects located behind the wall through the window. The user relies on his eyes to
estimate the depths of the displayed virtual objects. The Hololens provides a separate
image for each eye, thus creating a stereoscopic effect, mimicking the human visual
system. The depth perception from given stereo images is known as stereopsis. That
is a binocular depth cue resulted from the horizontal disparity of the two images. Our
vision system uses this cue to understand the depth order of the surrounding objects.
This happens naturally inside our brains. The same principle is applied to sensing the
depth of virtual objects using stereo images. If the images are rendered to provide a
stereoscopic view, the brains are able to estimate the distance of the virtual objects dis-
played on the images. Depth perception does not rely only on stereopsis but uses other
monocular cues as well, such as occlusion and shading. Figure 26 shows a screenshot
of the visualization taken from the Hololens. We have put a cube behind the wall to
serve as an occluded object.

5.4.2. X-ray with static edge overlay

A common problem with X-ray systems is that the virtual objects behind the occluding
surface may appear floating in front of the user rather than behind the surface. In this
case, the system fails to show occlusions correctly. This problem is solved in the liter-
ature by displaying features on the occluding surface [23] [47]. However, displaying a
lot of information about the occluder may also have a negative effect and confuse the
user. This is known as "superman’s X-ray vision" problem [53]. In this visualization,
we display features on the occluding surface using Sobel edge detection algorithm, in
order to help the user to percept the depth correctly. We create an edge overlay from
the image texture of the 3D model. The overlay is attached to the 3D wall and de-
signed to show some relevant edges only. Both the X-ray and the Sobel edge detection
algorithms are implemented on separate shaders. We create a material for each shader
and attach it to the 3D model. The two shaders work independently. The X-ray cutout
shader performs the needed cutouts to open a window on the 3D model, while the edge
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Figure 26. The visualization 1 does not render any information about the occluding
surface. The user relies on his eyes to estimate the depth of the virtual objects.

shader shows features from the texture. Figure 27 illustrates the attached materials
and their dependencies.

3D Model

X-ray Manager | __ | . .
(C#) P X-ray material
3D model Edge detection
. i X
texture (jpg) material

Figure 27. In visualization 2, two materials are attached to the 3D model. The X-
ray material uses values given by the X-ray Manager script, while the edge detection
material uses the image texture of the 3D model.

Sobel operator [67] is a classical algorithm in the field of image processing for ex-
tracting edges. It is also known as Sobel filter and Sobel edge detection. Since an edge
is an indication of discontinuity in the intensity function, the edge causes a higher gra-
dient value. The operator uses two 3x3 kernels to estimate the gradients. The Sobel
operator works like a high-pass filter and gives gradients in vertical or horizontal di-
rection only, depending on which kernel of the filter is used. To reduce noise, it uses
a small window filter around the target pixel. Usually, we perform both vertical and
horizontal filtering and combine the obtained results. Different kernels with different
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dimensions and values can be used as well, yet the kernels associated with Sobel filter
have the following values:

+1 0 -1

r=| 42 0 -2
+1 0 -1

+1 42 +1

Y= 0O 0 O
-1 -2 -1

In our edge detection shader, we used the above 3x3 Sobel kernels. The algorithm
takes the image texture of the model as an input and outputs an image with highlighted
edges. The result is applied to the 3D model on the runtime. Notice that the input
image is the same during the whole visualization. It is not updated or changed, and
thus, the output remains the same. This is why the edge overlay is called static. The
algorithm processes all the pixels of the input image. We compute first the intensity
of the pixel of interest and the 8 neighboring pixels around it. After that, we estimate
the gradients for both vertical and horizontal directions separately. We take the color
values of a given pixel and its 8 neighbors and multiply then with the 3x3 kernels then
we sum the result of the vertical and horizontal directions. Finally, we combine the
sums into one result. Our shader has a capability to change the color of the edges as
well as their intensity. The algorithm runs very smoothly. It benefits greatly from the
computational power of the GPU. The same algorithm implemented with C# would
run slower. Figure 28 shows a screenshot of the visualization during runtime.

Figure 28. The visualization 2 aligns a static edge overlay on top of the occluding
surface.
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5.4.3. X-ray with dynamic edge overlay displayed on 2D plane

Hololens has a built-in camera mounted in front of the headset. Developers can use it
to take images and videos and apply different image processing algorithms on them.
In this visualization, we use live camera images taken with Hololens to generate infor-
mation that may help the user in the depth estimation. We compute an edge overlay
based on the images using the same Sobel edge detection algorithm discussed earlier.
We display the edge overlay at a fixed distance in front of the user. If the user changes
his position or rotates his head, the edge overlay follows him. This allows the user to
see the edges not from the occluding wall only, but from all the real objects around
him as well. We developed this visualization to address the problem associated with
the depth perception. That is, the virtual objects appear to be floating in front of the
blocking surface instead of appearing behind it.

In order to display the updated edge overlay for the user, our algorithm runs the
following loop continuously: captures a picture of the scene, applies image processing
on it, and projects the results back into the user’s view. We need three essential com-
ponents for the loop to work; a camera to take the pictures, a projector to project the
edges, and a display panel to receive the projected edges and show them to the user.
The camera is a physical device, while the projector and the display panel are purely
virtual. Hololens’ built-in camera supports 4 possible image resolutions. We choose
the lowest one, i.e. 896x504. It is suggested by the manufacturer to use this resolution
for image processing tasks. All the images have 16:9 aspect ratio. For projecting the
edges, we use a Unity object called Projector. It comes with Unity’s standard assets.
That works like a real world projector. It allows projecting a material onto all objects
facing it. The material must use a special type of shader called projection shader. The
Projector has multiple parameters that can be adjusted. These include the field of view,
aspect ratio, near clip plane, far clip plane, and more. We assign these values to be
the same as the values of the physical camera. That way the projected edges have the
same size than the real edges. For the display panel, we create a simple transparent
object that has a rectangular shape. The projector is placed at the location of the cam-
era, while the display panel is placed in front of the user. The user does not see the
projector but sees the edges displayed on the panel.

We create a material for the X-ray cutout and attach it to the 3D model, and a material
for the edge detection and attach it to the Projector, as shown in Figure 29. For the
Projector to work correctly, a C# script called Streaming Manager is used. The script
requests images from the Hololens’ camera. When an image is ready, it locates the
camera at the time when the image was taken, moves the projector to that position,
and then transmits the image to the material to be processed by the edge detection
algorithm. Obtaining the location of the camera, at the time it captured the image,
is extremely important to align the virtual edges with the real ones. If this step fails,
misalignments occur. Every time when Hololens captures an image, it also stores some
metadata with it. That enables the calculation of the position of the camera in the world
at the time when the image was taken. In our scenario, we need to know its location
and rotation to place the Projector correctly. Unity API provides a 4x4 matrix called
cameraToWorldMatrix at the time the photo was captured. It allows calculating the
pose of the camera if the location data is available. We use it to get both the position
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and orientation of the camera, to properly position the Projector. Figure 30 shows a
screenshot of visualization 3.

3D Model Projector
X-ray Manager | __ . : Streaming | __ Edge detection
(C#) P X-ray material Manager (C#) P material

Figure 29. X-ray material is assigned to the 3D model, while the edge detection mate-
rial is assigned to the Projector.

Figure 30. The visualization 3 displays an edge overlay on a 2D plane placed in front
of the user.

5.4.4. X-ray with dynamic edge overlay displayed on the 3D space

In this visualization, we use live images taken with the Hololens camera to create a
dynamic edge overlay. The edge overlay is aligned on top of the 3D model as in visu-
alization 2. However, the overlay gets updated continuously using the streamed cam-
era images. Figure 31 shows a screenshot of the visualization. We have developed an
algorithm using OpenCYV library to process the captured images in real-time. The algo-
rithm is implemented as a C# script and requires a simple shader that allows updating
its texture on runtime. The script reads an image from the built-in Hololens camera,
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processes it and sends the output image to the shader. We call the script as OpenCV
Streaming Manager and the material of the shader as Texture update material. Both
materials are attached to the 3D model, as illustrated in Figure 32.

Figure 31. The visualization 4 uses a continuously updated edge overlay aligned on
top of the occluding surface.

3D Model
X-ray Manager | _ _ | . .
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Figure 32. In visualization 4, the X-ray and texture update materials are attached to the
3D model. Each material works together with a C# script.

Our algorithm uses the original image texture of the 3D model as a reference. On
runtime, it searches for similarities between the captured images and the reference
image. If sufficient amount of similarities are found, the edge overlay is updated. If
only a part of the wall is detected within the live image, the overlay only updates the
edges of the detected part. The flow diagram of the algorithm is illustrated in Figure
33. First, we apply Sobel edge detection on both images. We store the result to be
used later. Then, we use Accelerated-KAZE (AKAZE) [68] to compute local features
for both images. The AKAZE feature detection is based on KAZE [69] features and
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its implementation is provided in OpenCV 3. It detects local features in real-time with
binary descriptors that are invariant against changes in scale and rotation. We create
descriptors for the detected features in both images. Next, we apply k-nearest neighbor
(kKNN) feature matching, with k = 2, to match the descriptors. We use the matches to
calculate the homography. The RANSAC method is applied to reject the outliers from
the matches. The homography represents the relationship between the reference and a
live image.§ We use the homography to transform the image resulted from the Sobel
edge detection on the live image. We get the edges of the part of the wall that have
been captured on the current image frame. We fill the undetected part of the wall with
the edges from the reference image. This process is repeated for every image frame.

In order to optimize the algorithm, we created a separate thread for the image pro-
cessing besides the main thread, as suggested in the Hololens documentation. The
image processing thread runs in the background, and when a result is ready it notifies
the main thread. This architecture increased the FPS of the app. The following design
was used:

1. Main Thread: compute edge detection for the reference image
2. Main Thread: compute AKAZE features and descriptors for the reference image.
3. Main Thread: start the camera device
4. Main Thread: read a new image from the camera
5. Main Thread: pass the new image to the processing thread
6. Processing Thread: compute edge detection for the image
7. Processing Thread: compute AKAZE features and descriptors for the image
8. Processing Thread: match the descriptors and compute the homography matrix
9. Processing Thread: compose the final image for the edge overlay
10. Main Thread: pass the final image to the material
11. Main Thread: repeat from step 4.

In the next chapter, we evaluate the developed visualizations.
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Figure 33. The different steps used on the algorithm of visualization 4.
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6. EVALUATION

Every visualization, presented in the previous chapter, has a unique approach to display
information about the occluding surface. This chapter presents a subjective evaluation
that we conducted to test the four visualizations. The goal of this evaluation is to
study the overall appearance of the visualizations. We evaluate each visualization alone
to see whether it succeeds to provide the needed visual impression and depth cues.
Then, we compare them against each other. The purpose of this evaluation is to find a
visualization where the X-ray sight effect is the most authentic. This chapter is divided
into three sections. First, we discuss the experiment design. Then, we describe the
data collection method used in the experiment and finally, we analyze and study the
experimental results and make conclusions.

6.1. Experiment Design

The purpose of this experiment is to study the developed visualizations and compare
them against each other. Every visualization is designed to perform X-ray cutout by
providing cues for depth perception. In this study, we would like to know if the tech-
niques used on each visualization work as they should. We want to test if they deliver
an impressive visualization and provide the necessary depth cues at the same time to
help the users to estimate the 3D order of the objects correctly. Some visualizations
display information about the occluder surface. We want to study the effects of this
information to conclude whether it helps on depth perception or confuses the users. In
addition, we would like to detect the errors or limitations within the implementations
that were not known before. The experiment is designed to answer these questions.

In this study, we are interested in evaluating two aspects for each visualization; ap-
pearance and depth perception. Also, we want to know which visualization is the best
way to illustrate the X-ray sight effect, thus provides the most impressive visualiza-
tion. We have divided the experiment into two parts; a depth estimation task and a
questionnaire. Both parts of the experiment are interconnected with each other. We
have created a virtual cube to represent the occluded object. We divide the depth es-
timation task into four cycles, with each cycle having seven trials. The X-ray system
uses a unique visualization on each cycle. In every trial, we change the position of
the cube and ask the user to estimate the depth of the cube. We decided to use seven
different positions for the cube; three in front of the wall and four behind the wall. The
cube is located in a different position in each trial. Figure 34 shows the possible posi-
tions during a single cycle. The results from each cycle are recorded and studied later.
The questionnaire is composed of short questions asked after each cycle, and general
questions asked at the end of the experiment. The short questions have a 1-to-5 scale
and are the same for all the cycles.

Overall, we have four X-ray visualizations and seven cube positions. We believe
that the depth estimation task and the questionnaire are sufficient enough to evaluate
the visualizations and to select the best among them. In the next sections, we present
the questions asked in the questionnaire and study the results. Before conducting the
real experiment, we performed a pilot test. We noticed that changing the size of the
cube each time we change its position helps a lot in testing the visualization. If the
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Figure 34. The possible cube positions during the experiment. Participants are asked
to determine each time whether the cube is in front or behind the wall.

size of the cube is fixed, then it is easier for the users to estimate the depth just from
the observing the size of the cube, but by varying the size, the users are forced to find
other clues to estimate the depth. This solution tests whether the system provides the
needed cues for depth estimation or not.

6.2. Data Collection

The experiment is composed of a depth estimation task and a questionnaire. For the
depth estimation task, in each trial, we ask the participant to estimate the location of
the cube whether it is in front or behind the wall. We write down his/her answers to
analyze them later. In the questionnaire, we ask the participant a couple of questions
after finishing every cycle of the experiment, and some questions at the end of the
whole experiment. The questions of every cycle are in form of a Likert scale. The
participants answer by giving a score in 1-to-5 scale. The score 1 means that the
participant strongly disagrees with the statement, while 5 means that he/she strongly
agrees with it. The questions asked at the end of the experiment are open questions.
The questions asked after each cycle are listed below:

1. The system is simple to use ] 1 \ 2 \ 3 \ 4 \ 5 \
2. I feel comfortable using the system ] 1 \ 2 \ 3 \ 4 \ 5 ‘
3. X-ray visualization is realistic ’ 1 \ 2 \ 3 \ 4 \ 5 ‘

4. Edges are clearly visible (*) 121345




53

5. It is easy to locate the cube 123 ]4] 5|

6. The edge overlay helps me to see if the | 1 | 2 [ 3 | 4 | 5 |
cube is in front or behind the wall (*)

7. Virtual edges are well-aligned withthereal | 1 | 2 [ 3 | 4 | 5 |
edges (*)

8. Holograms seem to be static 121345

9. Overall I am satisfied with the system. 123 ]4] 5|

Questions 3, 6, and 7 marked with (*), were not asked for the first visualization, sim-
ple X-ray cutout, because no edges are displayed in this visualization. The questions
asked at the end of the experiment are as follows:

1. Do you have previous experience with AR headsets/applications?
2. Which visualization provides the best user experience?

3. Did you experience any eye confusion or accommodation problem?
4. Can you move freely while using the system?

5. What would be good applications to x-ray visualization?

6. What improvements should we do?

In the next section, we analyze the obtained results to draw conclusions.

6.3. Experimental Results

The experiment was conducted at the Center for Machine Vision and Signal Analysis
(CMVS), University of Oulu. We recruited eight voluntary participants. They are all
students at the university. Four of them had experienced or developed AR applications
before. Every participant wore Hololens and tested all the cycles of the experiment.
The average time to complete a single experiment is around 13 minutes. We asked the
participants to wear Hololens, then perform the depth estimation task and answer the
questionnaire. Users can freely move inside the office and perform the experiment.
For some of the participants, this was their first time to try the device. We helped
them to wear the headset and explained them briefly what AR devices are capable of.
We prepared also few slides about examples of augmented reality X-ray vision if the
participants want to know more about the topic.

The result of the depth estimation task showed that all the participants succeeded to
estimate the depth of the cube in the all visualizations, except the third visualization
where three mistakes were made. The statistics are shown in Figure 35. The partic-
ipants were encouraged to talk during the experiment and to express their thoughts.
We recorded their answers, as well as wrote down comments and observations about
the speed of answering the depth position. We noticed that the participants used more
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time to answer the cube position when testing visualization 1 and 3. We can clearly see
that the visualization 3 suffers from problems, which did not appear in the other ones.
Even displaying the information about the occluding surface did not help to deliver the
needed depth cues. We can conclude that the information displayed in the visualization
3 confuses the user instead of helping him to estimate the depth correctly.

Visualization 1 |7
Visualization 2 |7
Visualization 3 1 6.63
Visualization 4 |7

0 1 2 3 4 5 6 7

Figure 35. Average results of the depth estimation task. The total number of correct
answers for each visualization is 7.

The second part of the experiment consists of a questionnaire. A series of questions
are asked after trying each visualization. The total number of the questions is 9. The
participant responds by giving a score from 1 to 5 to each statement. The score 1 means
the participant strongly disagree with the statement, while 5 means he/she strongly
agree. We compare the visualizations based on these scores. Higher scores reflect
higher satisfaction. After collecting the answers, we analyzed them. We used the
scores given by the participants as weights. Then we sum and average them to get the
final score of each visualization. For example, if participant A answered 1, 2, 2, 4, 4, 4,
4,5, 5 for the questions of visualization 2, we start by summing up the weights. Thus,
the total weight will be 1 + 2x2 + 4x4 + 2x5 = 31. We take the average by dividing the
total weight over the number of questions. We obtain 31/9=3.44. This result is the final
score for visualization 2 given by participant A. We follow the same approach with the
rest of the visualizations. Since we have 8 participants, we average the final scores
obtained from all the participants. The final result of the questionnaire is presented in
Figure 36. The result shows that the participants preferred the visualizations 2 and 4.
Accordingly, the participants highlighted that the two visualizations gave better X-ray
rendering, and the displayed edges helped them to find the location of the cube easily.
The score of the visualization 1 is also near to the two top ones. But the score of
the visualization 3 is somewhat smaller reflecting the fact that participants were less
satisfied with it.

At the end of the experiment, we asked the participants explicitly what visualization
do they prefer. Their answers are illustrated in Figure 37. We can see that three
participants preferred the visualization 4, while the visualizations 1 and 2 got two
votes. Only one participant selected the visualization 3. By comparing the overall
results of the depth estimation task, the questionnaire and the questions after finishing
the experiment, we can say that visualization the 2 and 4 are the best visualizations
for the X-ray system. We conclude as well that the visualization 3 failed to satisfy the
participants and to deliver enough depth cues. Moreover, the participants gave some
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Figure 36. Average score for each visualization

suggestions as well to improve the system. Based on that, the three relevant future
improvements would be 1) a better frame rate in the visualization 4, 2) use a bigger 3D
model of the room and 3) better design in the visualization 3. Another asked question
was to name possible applications for the developed X-ray algorithm. The participants
proposed to use the X-ray system in medical applications, such as training new doctors
and visualizing the internal organs. They suggested as well to use it in video games,
indoor navigation, building and construction and security applications.

Visualization 1

Visualization 2

Visualization 3

Visualization 4

I §-
I §-
-

1

0 8

Figure 37. The answers were given by the participants to express what visualization

do they like. The

x-axis represents the number of participants.



56

7. DISCUSSION

The goal of this study was to develop an X-ray system for optical see-through head-
mounted displays. So far, we implemented an X-ray vision algorithm and four render-
ing techniques based on it. We conducted as well a subjective experiment to test and
evaluate each visualization. The results of the experiment showed that the best ren-
dering style is to display information about the occluding surface on top of the surface
itself. In our case, the visualization 2, named X-ray with static edge overlay, and visu-
alization 4, named X-ray with dynamic edge overlay displayed on 3D space, adopt this
approach. Both visualizations draw the edge overlay on top of the occluding wall. The
only difference is that the visualization 4 updates its overlay continuously by extract-
ing edges from streamed camera images taken with Hololens, while the visualization
2 computes the edge overlay only once, based on the image texture of the 3D model of
the wall.

Another finding is that displaying the information of the occluding surface on a 2D
plane placed in front of the user’s head does not help in the depth perception. In con-
trast, it may lead to negative effects and confuse the user. The results of the experiments
showed that the visualization 3, named X-ray with dynamic edge overlay displayed on
a 2D plane, failed to provide enough depth cues for the users. Moreover, the visualiza-
tion 1, simple X-ray cutout, did not display any information about the occluding wall
yet outperformed the visualization 3. We can conclude that the visualization 3 mislead
the user and instead of helping him in the depth perception, it made the situation more
complicated.

As a future work, to improve our X-ray system further, we would like to increase
the frame rate of the visualization 4. The visualization performs heavy computations,
from conversion of the captured image to an OpenCV format, feature extraction and
matching, homography calculation, to image transformation. This loop is bulky for the
Hololens device. Finding a way to optimize it would help to increase the frame rate
of the process. Another improvement is to scan the entire room instead of just part of
it. That would deliver a more realistic rendering for the user. We could try one of the
techniques discussed earlier in the thesis to create a 3D model of the room. Or instead
of a pre-scanned 3D model, we could use the spatial mapping feature of the Hololens.
That would provide untextured meshes of the environment around the Hololens on
runtime. This direction has not yet been explored. The last improvement would be to
add hand gestures to the X-ray system, and thus, allowing the users to interact with the
system.
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8. CONCLUSION

The thesis presented the development and evaluation of an augmented reality X-ray
vision system for optical see-through head-mounted displays. We have developed an
X-ray cutout algorithm that allows users to see through solid surfaces such as walls
and facades, by augmenting the real view with virtual images representing the hidden
objects. The algorithm requires a 3D model of the environment in order to represent
the hidden objects. Our X-ray system is developed based on the optical see-through
display, Microsoft Hololens. The algorithm is implemented on a shader file. It runs
very smoothly and benefits from the high-speed computing power of the GPUs. We
have developed four different visualizations as well based on the algorithm, to study
the issue known as "superman’s X-ray vision" problem. In X-ray vision, displaying
the virtual images that represent the hidden objects without any information about the
occluding surface may lead the virtual objects to appear in front of the surface rather
than behind it. But showing a lot of information about the surface may confuse the
user, and thus, lead to the superman’s X-ray vision problem. One visualization sim-
ply renders the X-ray cutout without displaying any information about the occluding
surface, while the other three visualizations present information extracted from the oc-
cluding surface. Sobel edge detection was used to extract the information. The three
visualizations differ in the way how the extracted features were rendered.

The thesis presented a subjective experiment to test and evaluate the visualizations
and to compare them with each other. The experiment consisted of two parts; depth
estimation task and a questionnaire. In the depth estimation task, participants wore
Hololens and test the X-ray system. Their main task was to estimate the depth of
a virtual cube displayed sometimes in front of the occluding surface, and sometimes
behind it. If the participants easily locate the cube positions, this indicates that the
system provides enough depth cues so that users could correctly estimate the depth of
the virtual objects on the X-ray application. If they fail, that is a sign that the system
has problems with providing enough depth cues. The participants were asked to fill
a questionnaire as well. The results of the experiment showed that the best rendering
style is to display information about the occluding surface on top of the surface itself.
However, displaying the information in a 2D panel placed in front of the user’s head
does not help in depth perception. In contrast, it leads to negative effects and conflicts.
The results showed that the visualization that did not display any information about
the occluding surface outperformed the visualization that displayed the information in
a 2D panel.

There are few X-ray systems presented in the literature for optical see-through head-
mounted displays. Most of the work has been presented for video see-through and
hand-held displays. The work presented in this thesis tried to overcome the challenges
associated with optical see-through displays and explored new rendering styles. We
believe that the presented work contributes to the research community and opens new
research directions to further investigate new visualization renderings and X-ray re-
lated applications.
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