
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Valtteri Inkiläinen

CLUSTERING IMAGE SETS WITH
FEATURES FROM DEEP

CONVOLUTIONAL NEURAL NETWORKS

Master’s Thesis
Degree Programme in Computer Science and Engineering

September 2019

Inkiläinen V. (2019) Clustering image sets with features from deep
convolutional neural networks. University of Oulu, Degree Programme in
Computer Science and Engineering, 91 p.

ABSTRACT

This thesis compares the results of clustering image sets by features
extracted using different layers of a convolutional neural network. The
image features were extracted with layers of a pre-trained image clas-
sification network which layer weights were trained with ImageNet
dataset. Eight image sets were used to test which extracted features
achieve the best clustering accuracies. Features from the test image
sets were extracted with the layers of the network architecture, and
the features were clustered on a layer by layer basis. The clustering
accuracies were measured with normalized mutual information (NMI).
The results show that the clustering accuracies depend on the char-

acteristic of the image set being clustered. The image sets with more
than two image categories had the best NMI scores with the features
from the second last layer in the architecture, while the image sets with
two categories had different layers give the best NMI scores. Moreover,
the image set with blurred images had the best result come from few
of the first layers, showing that the current method of selecting the
second last layer for feature extraction in pre-trained CNNs is not
always optimal.

Keywords: Feature extraction, transfer learning, dimension reduction,
Xception, agglomerative clustering, UMAP

Inkiläinen V. (2019) Piirteiden vaikutus kuvaryhmän klusterointiin
käyttäen konvoluutioverkolla irroitettuja piirteitä. Oulun yliopisto, Tie-
totekniikan tutkinto-ohjelma, 91 s.

TIIVISTELMÄ

Tässä työssä vertaillaan kuvajoukkojen klusterointituloksia eri piir-
teillä. Piirteiden irrotukseen kuvista käytettiin valmiiksi koulutetun
konvoluutio neuroverkon eri tasoja. Neuroverkko oli koulutettu kuva-
luokitteluun ImageNet datajoukolla. Kahdeksan kuvajoukkoa kluste-
roitiin eri piirteillä, jotka oli irrotettu neuroverkon eri tasoilla. Näiden
kuvajoukkojen klusterointitarkkuus mitattiin parhaan piirreirrotus ta-
son löytämiseksi kullekin kuvajoukolle. Klusteroinnin tulos mitattiin
normalisoidulla yhteisen informaation metriikalla (normalized mutual
information).
Työn tulos osoitti, että klusterointitulos taso tasolta mitatessa riip-

puu klusteroitavasta kuvajoukosta. Kuvajoukot, jotka sisälsivät kuvia
useammasta kuin kahdesta kategoriasta, klusteroituvat parhaiten ver-
kon toiseksi viimeisellä tasolla irrotetuilla piirteillä. Kahden kategorian
kuvajoukkojen parhaat klusterointi tulokset tulivat eri tasoilla. Kuva-
joukko joka sisälsi kuvia sumeista ja tarkoista kuvista, saavutti par-
haat klusterointitulokset piirteillä, jotka oli irrotettu verkon ylemmil-
tä tasoilta. Tulokset osoittavat, että yleisesti käytetty menetelmä valita
valmiiksi koulutetun verkon toiseksi viimeinen taso piirreirrotukseen ei
aina anna optimaalista tulosta.

Avainsanat: Piirreirrotus, siirto-oppiminen, dimensionaalisuuden pie-
nentäminen, Xception, agglomeratiivinen klusterointi, UMAP

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
TABLE OF CONTENTS
FOREWORD
ABBREVIATIONS
1. INTRODUCTION 8
2. CLUSTER ANALYSIS 10

2.1. K-means. 10
2.2. Agglomerative Clustering . 11
2.3. DBSCAN .. 12
2.4. HDBSCAN .. 13
2.5. Clustering parameter selection . 18
2.6. Cluster validation . 18

2.6.1. Internal criteria . 18
2.6.2. External criteria . 19
2.6.3. Relative criteria . 20
2.6.4. Other validation methods . 20

3. CONVOLUTIONAL NEURAL NETWORKS 21
3.1. Structure . 21

3.1.1. Convolution layer . 22
3.1.2. Activation layer . 24
3.1.3. Pooling layer . 24
3.1.4. Other elements of advanced CNNs . 25
3.1.5. Hyperparameters . 26

3.2. Training . 27
3.2.1. Transfer learning. 28
3.2.2. Available datasets for CNN training . 28

3.3. Xception . 28
4. FEATURE DIMENSION REDUCTION 31

4.1. PCA .. 31
4.2. UMAP .. 32

5. DATASETS 34
5.1. ImageNet10 . 34
5.2. flower&qr . 34
5.3. Tools . 35
5.4. overcast&lowlight . 35
5.5. cab&chicken . 35

6. IMPLEMENTATION AND RESULTS 37
6.1. Experimental Setup. 37

6.1.1. Pipeline. 37
6.1.2. Hardware limitations . 39

6.2. Quantitative results. 39
6.3. Qualitative results . 47

4

7. DISCUSSION 55
8. CONCLUSION 57
9. REFERENCES 58
10. APPENDICES 63

FOREWORD

The advent of deep convolutional neural networks has sparked our curiosity for
advancing machine learning. As new network architectures are developed at an
ever-increasing speed, this thesis was done to inspect what capabilities lie inside of
these networks and how these capabilities can be used in the domain of unsuper-
vised learning. I had the privilege to research several machine learning topics for
this thesis and deepen my knowledge of machine learning methodologies, which
will have a great influence on my upcoming endeavours as a machine learning
professional. This thesis would not have been possible without the support of
Visidon Oy. I would like to thank the whole staff of Visidon for providing inspir-
ation, ideas and great 8-pool matches with me during my thesis work. Special
thanks to my technical supervisor Sami Varjo and principal supervisor Miguel
Bordallo Lopez for their valuable feedback.

Oulu, 4th October, 2019

Valtteri Inkiläinen

ABBREVIATIONS

AC Agglomerative Clustering
ANN Artificial neural network
ARI Adjusted Rand index
CNN Convolutional neural network
DBSCAN Density-Based Spatial Clustering of Applications with Noise
HDBSCAN Hierarchical DBSCAN
ILSVRC ImageNet Large Scale Visual Recognition Challenge
NMI Normalized Mutual information
PCA Principal component analysis
ReLU Rectified linear unit
SGD Stochastic gradient descent
UMAP Uniform Manifold Approximation and Projection

K number of clusters
ε minimum distance
minpts minimum number of points
d(xp, xq) pairwise distance
dcore core distance
dmreach mutual reachability distance
Gmpts Mutual Reachability Graph
λ density level
ER Relative Excess of Mass
S(Ci) cluster stability
σ standard deviation

1. INTRODUCTION

The goal of image set clustering is to group similar images to the same groups
and dissimilar images to different groups. Let us have an example of an im-
age set clustering. There is probably hundreds if not thousands of photos in a
smartphone. If I would ask to group all of the photos to subgroups, with similar
images in the same group and dissimilar images in different groups, what kind of
subgroups there would be? Maybe a group of photos including pets, or a group
of selfies taken on vacation with family, or even a group of failed photos. The
boundary of similar and dissimilar photos in groups is intrinsically related to the
set of photos you have.
To measure the image similarity algorithmically, we need to find a measure

from the images which can be used to compute the similarity of the images. For
example, one could use similarity measurement between the pet photos and va-
cation selfies. In the domain of computer vision, images are commonly reduced
to features for classifying algorithms to be able to classify the complex concepts
of images [1]. The state-of-the-art image featurization methods are a group of
machine learning techniques called artificial neural networks (ANNs), and pre-
cisely the subgroup of deep convolutional neural networks (CNNs). Convolutional
neural networks are non-linear estimators that can be used, for example, to clas-
sify images to categories by training the network to learn features from the images.
The network is trained with example input-output pairs of images and their cor-
responding category, e.g. a group of vacation selfies which are categorized as selfie
and group of pet images which are categorized as pets.
CNNs consist of different layers of mathematical operations which are stacked

on top of another, previous layers output being the input of the next layer. Each
of these layers learns to extract particular features known as feature-maps. The
nature of how CNNs are trained means we do not know exactly what features
each layer learns to extract, but the principle is that first layers learn more general
features, i.e. features found in many images, like patterns of simple shapes, while
deeper layers learn more complex features i.e. features which are more specific to
the images in the training image set [2].
Now in this thesis, we were interested in using the different features which

can be extracted with pre-trained CNN layers, as the clustering similarity meas-
urements to test how different image sets can be clustered with these features.
Relative works similar to this thesis are [2, 3], where [2] shows how the features
change from general features to more specific features when deeper layers of pre-
trained CNN are used to extract the image features. They also discussed on
the transferability of the features to other tasks i.e. using the pre-trained CNN
for classification on other image sets. In [3], the researchers showed how image
features extracted with pre-trained CNN can be used to cluster images to cat-
egories. They also briefly mentioned how selecting different layers to extract the
features affect the clustering accuracy. This thesis studies more closely how the
selection of different layers as feature extractors affect the clustering accuracies
of the image sets by testing multiple layers as feature extractors.
The benefits for testing the feature extraction capabilities of pre-trained net-

work is in the resources needed to train new networks from scratch [4, 5]. If the

existing network’s layers can be used for other feature extraction tasks, it shows
a clear benefit as there is no need to train a new network.
The experimental tests were done in a premise that if the image sets could

be clustered to correct groups, the layer had extracted features from the images
which distinguish the images from another, and thus these features could be used
as a similarity measurement between the images in the selected image set. As
noted in [2], deeper layers learn to extract features more specific to the training
set of the CNN, and upper layers learn to extract more general features. Thus
testing all of the layers of one CNN architecture was conducted to find out which
kind of similarities could be measured from the extracted features.
The scope of this thesis is limited to one CNN architecture, the Xception ar-

chitecture developed in Google [6], with pre-trained weights for image classifying,
trained with ImageNet dataset. Following the results of [3], which shows that im-
age set clustering paired with Xception as feature extractor gives the best results
in image clustering tasks.
The implementation part of the thesis compares how the features extracted

with each layer are clustered. The cluster accuracies are measured by using
labelled image sets and external validation metrics. The features are extracted
from multiple image sets, and clustering accuracies are measured for each. The
selection of the clustering algorithm and dimension reduction method for the
clustering is also considered.
This thesis contains first the introduction to cluster analysis and examples of

the used clustering algorithms. This is followed by an introduction to convolu-
tional neural networks and the used Xception architecture. Dimension reduction
of the features for clustering is briefly discussed in chapter four. The used datasets
are presented in chapter five. The implementation and results are displayed in
chapter six. Lastly, the discussion of the results is held in chapter seven, followed
by conclusions in chapter eight.

10

2. CLUSTER ANALYSIS

Backer and Jain define cluster analysis as “In cluster analysis, a group of objects
is split up into a number of more or less homogeneous subgroups on the basis of an
often subjectively chosen measure of similarity, such that the similarity between
objects within a subgroup is larger than the similarity between objects belonging to
different subgroups.”[7], while Hansen and Jaumard write “Given a set of entities,
Cluster Analysis aims at finding subsets, called clusters, which are homogeneous
and/or well separated.”[8]. These definitions give the basis of clustering, which is
to find a subset of a given set in which each subset contains similar objects and
other subsets having dissimilar objects. The similarity measurement of images
in the image set could be the shape of an object in the image, or the colour of
the object, or some other measurable quantity from the image. In this thesis, the
set of entities or group of objects which are being clustered are the features ex-
tracted from the images. The clustering algorithm’s objective is to find separable
subgroups of these features.
The clustering techniques explained in this chapter are categorized as parti-

tional clustering, hierarchical clustering, and density-based clustering algorithms,
based on the properties of the generated clusters. Partitional clustering al-
gorithms directly partition the group of objects to a predefined number of clusters,
without defining any hierarchy for the clusters [9 p.63]. Hierarchical clustering
algorithms construct a hierarchy of clusters by partitioning the data sequentially,
generating hierarchy from where all of the data points are in one cluster to each
data point being a single cluster or vice versa [9 p.31]. Density-based clustering
algorithms cluster data points by representing the data points by their density
conditions (distance and number of nearest neighbours) on the clustering space
[10]. Density-based clustering algorithms are tolerant to noise, as low-density
points can be disregarded from the clustering as outliers or noise [11].
This chapter introduces the most common clustering methods, including the

methods used in the implementation part of this thesis, the agglomerative clus-
tering and the current state-of-the-art HDBSCAN. There is also a brief discussion
of how the clustering parameters are selected for the implementation part, and
the chapter finishes on summarising different validation metrics for clustering.

2.1. K-means

K-means clustering is a partitional clustering algorithm [9 p.68]. K-means par-
titions the dataset to K groups in an iterative process. In native K-means im-
plementation, the number of wanted clusters is given to the algorithm as the
K parameter. The algorithm is initialized by assigning a K number of cluster
centres (centroids) at random on the dataset space, initially partitioning the data-
space to K partitions. The partitioning is updated in alternating between two
steps. The two steps consist of assigning the data points to the nearest centroid,
by calculating the Euclidean distances of the data points to the centroids, and
updating the centroid locations based on the calculated mean values of the data
points assigned to the centroid. The algorithm finishes when no changes appear

11

to the clusters, e.g. the clusters remain stable. [9 p.68]. The K-means algorithm
steps are illustrated in Figure 1.
The advantage of K-means is that it is a fast and quite simple algorithm to

implement. It also clusters all the data points, i.e. it does not have a noise group.
This can also be seen as a limitation of the K-means because it needs to expand
the clusters to outliers which can alter other quite densely packed groups. Other
limitations of the K-means are the random initialization of the algorithm, which
means the partition changes between runs, and that the K parameter needs to
be given before the clustering, i.e. the optimal number of clusters is left to be
determined by the researcher.

Figure 1. Illustration of the K-means algorithm. In this example, the K-
parameter is set to 3.

2.2. Agglomerative Clustering

Agglomerative Clustering or (AC) is a hierarchical clustering method. In AC
each data point being clustered is first considered being on their own cluster [9
p.32]. These clusters are merged by their proximity (distance function) to another
cluster. This merging is continued until all the points are assigned to one cluster,
or when there is a wanted number of clusters.
The parameters for the AC are the distance function and the number of wanted

clusters. The distance function is used to measure the proximity of the clusters
to be merged, which is also called the linkage of the clusters [9 p.33]. One link-

12

age method is Ward’s method, which minimizes the change in variance between
clusters, and merges the clusters with the minimum value of this criterion [12].
AC generates hierarchy for the merged clusters and the wanted number of clusters
is selected by cutting the hierarchy on the level which results for the wanted num-
ber of clusters. Agglomerative clustering can be visualized as a tree structure,
where single clusters are leaf nodes and merged clusters branch downwards the
root, this is illustrated in Figure 2.

Figure 2. Agglomerative clustering visualization as tree structure. (A), (B), (C),
(D) and (E) points are first their own clusters. The closest clusters of each other
by the selected distance metric are the clusters (A) and (B), which are merged to
cluster {A, B}. In the second step the distance of clusters is measured between
clusters {A, B}, (C), (D) and (E), the clusters closest to each other in the second
step are the clusters (C) and (D). This measuring of closeness and merging is
continued and in the third step the closest clusters are the cluster {C, D} and
(E) and in the fourth step the clusters {A, B} and {C, D, E} are merged.

2.3. DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) is a
density-based clustering algorithm developed by Ester et al. [13]. DBSCAN
operates by grouping data points which are packed densely together to clusters
and points which are far away from other points (low-density regions) to noise.
The points which are being clustered can have three properties in the DBSCAN
point of view, the point can be a core point, a reachable point, or an outlier
(noise). The parameters needed for DBSCAN are the minimum distance or ra-
dius (marked as epsilon ε) and minimum points (minpts) parameters. ε is the
metric from which distance away from the other points, a point is determined
to be reachable. The minpts parameter sets how many points need to be reach-
able of the point (the point itself included) to be converted as a core point. The
core points form clusters with the reachable points that are within the given ε

13

distance from the core point. Outliers are points which are non-reachable to the
core points. [9 p.221]
Clusters are formed with all the points reachable by the core point (including,

other core points). New clusters are formed when core points are not reachable
from each other. Different steps of the algorithm are illustrated in Figure 3.
The advantage of DBSCAN is the ability to generate clusters with arbitrary

shapes and good scalability [9 p.220]. Some of the limitations of the DBSCAN
is the choice of suitable parameters [14]. The minpts parameter can effectively
restrict the forming of clusters. If the minimum points needed to form core points
is set too great, natural clusters with fewer data points might be clustered as noise.
The selection of the distance parameter ε can be problematic for high-density
datasets. Selecting too high ε will cause all the data points to become reachable
and then be clustered to one cluster. Selecting too small ε in already densely
packed points might cause a division into multiple clusters. As the parameters
are the same for the whole dataset being clustered, DBSCAN can only provide
clusters based on a global density threshold [14].

Figure 3. Steps of DBSCAN algorithm. The minimum distance is set to epsilon
ε and the minimum points is set to 3. The first column shows the points. In
the second column, the distance ε is drawn for all the points. The last column
shows the assigning of the points to the core, reachable and noise points. The red
points are core points because the red points are within ε distance from the given
minpts (3 points, with the point itself included). The yellow point is reachable
point because it is within ε distance of core point (red). The blue point is an
outlier (noise) because it is not within the distance ε from the core point. The
left side red points plus the yellow point are one cluster, while the red points in
the right side are considered a second cluster and the blue point is clustered to
noise group.

2.4. HDBSCAN

Hierarchical density-based spatial clustering of applications with noise (HDB-
SCAN) is a density-based clustering algorithm, based on hierarchical density
estimates. HDBSCAN was derived from DBSCAN by Campello et al. [14] and
extends DBSCAN to a form of hierarchical clustering algorithm. HDBSCAN
performs DBSCAN over differing epsilon (ε) values and tests the result to find a
clustering that grants the best stability over epsilon [15].

14

HDBSCAN removes the need for giving the minimum distance parameter epsi-
lon ε in DBSCAN, by running the DBSCAN only with minimum points (minpts)
parameter. This indicates that every point (xp ∈ X) of the dataset will find
the minpts number of nearest neighbour points with differing pairwise distances
(d(xp, xq)). The distance or radius which encloses the minpts number of points
is defined as core distance (dcore). Figure 4 illustrates the core and pairwise
distances with given minpts parameter. The core distance is needed for calcu-
lating the mutual reachability distance (dmreach). Mutual reachability distance is
calculated with Equation (1) [14]

dmreach(xp, xq) = max{dcore(xp), dcore(xq), d(xp, xq)} (1)
The mutual reachability distance transformation is used to generate a weighted

graph, which in the original paper is called the Mutual Reachability Graph (Gmpts)
[14]. The points of the dataset (x ∈ X) are the graph vertices and the dmreach is
the weight of the edges between the points it was calculated. From this graph, a

Figure 4. The points and their core distances with minpts value set to 4. The
pairwise distance is calculated between the points. Mutual reachability distance
is calculated between points by the Equation (1), which dictates that the dmreach
should always be the higher value between the core distances and pairwise dis-
tance.

minimum spanning tree (MST) is extracted via the MST finding algorithm1. The
resulting MST is shown in figure 5. The MST can be converted to a hierarchy of
connected components by sorting the MST edges by their distance and iterating
through the edges, and then merging the edges with the closest edge to new
groups [15].
The result of the merging of the edges can be viewed as a dendrogram (a dia-

gram representing a tree structure), which is shown in figure 6. From this dendro-
gram, we could get clusters similar to in DBSCAN by drawing a horizontal line
through the dendrogram by the distance value of the parameter epsilon. How-
ever, in HDBSCAN this is done automatically by condensing the dendrogram to

1Graph theory and the related minimum spanning tree algorithm are out of scope of this
thesis, one used minimum spanning tree algorithm is Prim-Djikstra algorithm which is defined
in paper [16].

15

Figure 5. Minimum spanning tree generated from the Gmpts . Figures 5-8 gener-
ated via HDBSCAN software package [15]

Figure 6. Connected components dendrogram, generated from the minimum
spanning tree of the graph Gmpts .

16

a less branched dendrogram based on the stability of the clusters. The condensed
dendrogram is shown in figure 7. The stability of the cluster Ci at level λ in the
dendrogram is calculated with the concept of Relative Excess of Mass (ER) of a
cluster Ci. The ER at level λmin(Ci) is calculated by Equation (2) [14]

ER(Ci) =
ˆ
xεCi

(λmax(x,Ci)− λmin(Ci))dx (2)

where the λmax(x,Ci) is the density level where Ci is split or it disappears. The
discrete case of Equation (2) for finite dataset size X is formulated as Equation
(3) [14],

S(Ci) =
∑
xjεCi

(λmax(xj, Ci)− λmin(Ci)) =
∑
xjεCi

(1
εmin(xj, Ci)

− 1
εmax(Ci)

) (3)

where λmin(Ci) is the minimum density level at which Ci is defined as cluster.
The parameter λmax(xj, Ci) is the maximum density level where the object xj
belongs to cluster Ci, and εmax(Ci) and εmin(xj, Ci) shows the correlation of λ
level to corresponding ε values [14]. Now the clusters can be selected from the
condensed dendrogram (figure 8). The resulting selection shows that two clusters
were found in the data and the data points outside of the selected λ values are
grouped as noise. The clustered dataset is shown in figure 9, where the dark
points belong to the noise group and the yellow and green points are the points
that are assigned to the clusters.

Figure 7. Condensed dendrogram, by the stability of the clusters.

HDBSCAN’s advantage over DBSCAN is that it is not limited to one density
threshold. HDBSCAN can calculate DBSCAN like densities with an infinite
range of density thresholds and construct a simplified tree structure from the
most significant clusters. From this tree structure, the optimal threshold can
be selected based on the stability of the clusters [14], effectively removing the
problem of selecting optimal ε in DBSCAN. Even the added steps in HDBSCAN
does not make it slower than DBSCAN [17] and such is a generally a better
alternative to use over DBSCAN.

17

Figure 8. Select the clusters based on the stability S(Ci).

Figure 9. The resulting clustering of the data set X with HDBSCAN.

18

2.5. Clustering parameter selection

Many of the discussed clustering algorithms have parameters that need to be
assigned before clustering. The main parameters for the algorithms used in the
implementation are the number of wanted clusters in the case of AC and the
minimum points in HDBSCAN. The other parameters are the distance metric to
calculate the distances between the points in HDBSCAN, and the linkage method
in AC. These parameters affected the clustering outcome, and usually, they are
selected based on the dataset being clustered. However, this needs to be done
automatically or left for default values if the dataset is unknown.
In this thesis, the number of wanted clusters for the AC algorithm is selected

based on the dataset being clustered. The number of groups in the datasets are
known as the images in the datasets have labels on them. The linkage method
for AC is selected to be Ward’s method.
The distance metric parameter is set to Euclidean, which is the default dis-

tance metric in the implementation of HDBSCAN. In HDBSCAN the number of
minimum points is left for the default value of 5. This default minimum points
value is not optimal for each of the datasets, but as leaving the value as default,
we eliminate the parameter tuning for this clustering algorithm and only focus
on how the under-laying features affect the clustering outcome.

2.6. Cluster validation

Validation of the clusters is derived based on a selected metric once the data set
is clustered. The clustering validation metrics can be classified into three groups,
which are internal criteria, external criteria and relative criteria [9, 10]. The
internal validation criteria are used for unknown data sets without labels, and
such, the validation of the clusters could be the clustering object itself. External
validation criteria can be used in data sets with known structures, like image-sets
with image labels. Relative validation compares two clusterings of the dataset,
either with the same algorithm with different parameters or clusterings with dif-
ferent clustering algorithms. The next sections explain the validation criteria
more in-depth and introduce the selected algorithms that are used for validating
the cluster outcomes in this thesis.

2.6.1. Internal criteria

Internal criteria are used to measure the validity of the generated cluster struc-
ture without prior (external) information about the clusters. The internal validity
comes from the objective of the clustering, which was generating groups where
similar objects are in the same group and distinctive objects in different groups
[18]. The basic measurements for validating unknown data sets are the compact-
ness and separation of the data points in the generated clusters. The internal
validation methods do not give insight about if the clusters are correct or mean-

19

ingful on the application domain, but the internal validation measurements can
be used to calculate the optimal number of clusters for the given data set [18].
One algorithm used in measuring the quality of the cluster structure is the

silhouette technique [19]. The silhouette value is calculated for one data point
at a time, based on the distances to other clustered data points. The silhouette
value scales in a range from -1 to 1, 1 meaning the data point is appropriately
clustered and -1 means the data point would naturally belong to the neighbouring
cluster, i.e. the cluster it belongs is “wrong” based on the distance calculated.
The silhouette value for point i is calculated at the following Equation (4) from
[19]:

s(i) = b(i)− a(i)
max{a(i), b(i)} (4)

where a(i) is the average dissimilarity of point i to all other objects in the
cluster it is assigned, marked as A. d(i, C) is the average dissimilarity of i to all
objects in the other clusters C. b(i) is calculated as b(i) = minC 6=A(d(i, C)) for
all the clusters C, except for the cluster the i belongs (A). From Equation (4),
we can formulate the range as −1 ≤ s(i) ≤1 [19].

2.6.2. External criteria

External criteria assume having information about the data structure before clus-
tering the data. After clustering the data, we compare this prior information to
the generated structure of the clustering [10]. In image-set clustering, this prior
structure of the dataset means we have prior knowledge about which images be-
long to the same group and which don’t, e.g. the labels of the images. Two
example indexes for measuring the external validation are the Adjusted Rand
Index (ARI) and Normalized Mutual Information (NMI). The Rand index is a
measure of similarity between two clusterings [20] and the Adjusted Rand Index,
is adjusted for the chance of grouping elements to correct groups, i.e. ARI out-
puts similarity values for groups with more similarity than randomly assigning
elements to clusters.
The ARI is calculated using the Equation (5), where U and V are different

clustering of the same dataset, e.g. the U could be the clustering results of
running the clustering algorithm, and the V could be the clustering based on the
given labels for the images.

ARI(U, V) = 2(N00N11 −N01N10)
(N00 +N01)(N01 +N11) + (N00 +N10)(N10 +N11)

(5)

The indexes, N00, N01, N10 and N11 are defined as follows: N11 is the number of
data point pairs that are in the same cluster in both U and V clusterings. N00
is the measurement of pairs in different clusters in both U and V, while N01 is
the number of pairs which belong to the same cluster in U but are in different
clusters in V. N10 is the number of pairs which belong to the same cluster in V
but are in different clusters in U. [21] ARI scores near 0.0 means random labelling
and ARI score of 1.0 means perfect match [22].

20

The NMI is information theoretic based measure and NMI is defined via mar-
ginal and joint distributions of data in the clusterings U and V . The mutual
information (MI) is expressed as I(U, V) which is defined as H(U)−H(U |V) =
I(U, V). H(U) and H(U |V) are calculated as in [21]

H(U) = −
R∑
i=1

ai
N
log

ai
N
,

H(U |V) = −
R∑
i=1

C∑
j=1

nij
N
log

nij/N

bj/N

The MI can be normalized with multitude of generalized mean methods like joint,
max, sum and sqrt, just to name a few [21]. In this thesis, the MI is normalized
with the sqrt method and the NMI is calculated as in Equation (6) [22]:

NMI(U, V) = I(U, V)
mean(H(U), H(V)) (6)

External criteria give a valid measurement of the clustering quality, but as it
relies on the class labels, it is not a suitable measurement for datasets without
labels or unknown data.

2.6.3. Relative criteria

Relative criteria can be seen as a measure of the utility of the clustering algorithm.
Relative validation criteria can be the selection of clustering parameters or clus-
tering algorithms, which best fit the dataset being clustered [10]. In this thesis,
the relative validation criterion is to use two clustering algorithms for the se-
lected datasets. In the labelled datasets, both clustering algorithms use NMI
for external validation, and the resulting NMI values are used to evaluate if the
change in the NMI values were due to differences in clustering algorithms or the
differences from the datasets.

2.6.4. Other validation methods

Manual inspection can be used as a validation method when the objects being
clustered can be inspected, like images. The manual inspection of clusters can
be used to verify unlabelled datasets, where the usage of the external validation
measures are not possible. Manual validation is usually conducted by a domain
expert.

21

3. CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks (CNNs) are non-linear function estimators, which
work by the principle of learning a function f which maps the given inputs x to
some defined outputs y,

f(x) = y (7)

by learning the function with example input-output pairs. In the case of im-
age classification CNNs the network is trained on with input images and their
corresponding classes. After training the CNN, it is used to predict on which
class the feed input image belongs. The main difference of convolutional neural
networks over other artificial neural networks is that they have least one or more
convolution layers, which can be used to process data that has grid-like topology,
like image data, which can be seen as a 2-D grid of pixels [23 p.326].
CNN derives its idea from biological visual systems where studies of the mam-

mal visual system [24] determined that the first parts of the visual system respond
to patterns of light coming from simple shapes to the receptive fields. This idea
is carried over to CNNs as the convolution operation on the first layers of the
architecture tries to mimic this biological process by activating on similar shapes
of the input image as detected by the biological receptive field of cells. The
first implementations derived from this idea date back to 1980 when Fukushima
presented the Neocognitron [25].
One of the first modern CNN for visual recognition was the network LeNet-

5 which was trained using backpropagation and was used for handwritten digit
recognition [26]. More recent CNNs use similar stacked-layer architectures which
use tens to hundreds of layers, while their predecessor LeNet-5 contained only
seven layers. Modern architectures use a multitude of different techniques to
increase the accuracy of the networks and ease their training. On the next section,
the basic structure of a CNN and the elements within are explained.

3.1. Structure

The CNN structure depends mostly on the selected architecture, but they all
share similar basic building blocks. The building blocks of any CNN are the
layers of the CNN. Usually, the layers of CNNs consist of operations like convolu-
tion, activation, and pooling. These operations are illustrated in figure 10. The
convolution operation is the dot product of the input and the layer’s kernel (or
filter). This produces a set of linear activations. The activation function is used
to scale the linear convolution outputs to non-linear activation maps. Pooling
operation modifies the input by taking, for example, average or maximum values
of certain sized rectangle neighbourhood of the input and passing these values to
the next layer effectively downsampling the input.

22

Figure 10. The basic operations of convolutional neural network.

A dense layer with softmax activations is operation found in the last layer of the
network. The dense (or fully connected) layer with softmax activation functions
is used to map the inputs to the predicted class. Softmax function works by
distributing the input values to the layer as predictions from 0 to 1 to the classes,
and the highest prediction being the class the network has classified the input
image. Figure 11 shows an example of image classification done with CNN.

Figure 11. Image classification example with Xception CNN architecture. The
CNN takes RGB images sized 299 by 299 pixels as input. The first convolu-
tion layer has 32 filters for each channel (RGB) and each filter consist of 3×3
size kernel, with trained weights. The output of the first convolution layer is
the convolution between the filter weights and the input images channels, each
channel result summed as feature map with 32 features size 149 by 149. The
previous layers feature map is feed to the next layer, which results for another
feature map. In the average pooling layer, the feature map is reduced to a vector
of size 1×2048, which is feed to a dense layer, which reduces the features to a
vector of size 1×1000. From this feature vector, prediction of the image class is
concluded by taking the softmax of the vector and mapping the highest value to
the corresponding class.

3.1.1. Convolution layer

The heart of the CNNs is the convolutional layer. The convolutional layers consist
of a group of kernels which have learnable weights (or parameters). The convo-
lution operation is a dot product over vectors, which is presented in Equation
(8) (from [23 p.328, Fig.9.4]). The equation is a discrete case of the convolution
shown for two-dimensional image (I) and kernel (K).

23

S (i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (8)

When the convolution is expanded to colour images, each colour channel is
convolved separately by the corresponding kernel, which means that three channel
colour image needs three separate kernels or a 3-dimensional filter. An example of
a 3-dimensional convolution operation is illustrated in Figure 12. The dimensions
of the feature map (output of the convolution) in the example are 2×2×1 because
the convolution is summed over all the channels, e.g. the selected 3×3×3 filter
has 27 values and the dot product is taken by these values and the corresponding
area of size 3×3×3 of the image. As the image is larger in x and y dimensions, the
filter is slided over the image, such that the whole image is convolved sequentially.

Figure 12. Example of a 3-dimensional convolution for three channel colour image.

While the kernel size may vary depending on the implementation, the kernel
size is usually smaller than the input size. When the kernel size is smaller than
the input the convolution is said to have sparse interactions or sparse weights.
This property is important to CNNs because images can have thousands or mil-
lions of pixels, but even small-sized chunks of the image can be used to extract
important features of the image like edges. With this property, the filters can
extract meaningful features from the image, with fewer parameters than having
to save the parameters for every pixel. [23 p.330]
The input image’s size reduction can be controlled by zero-padding the input

image’s edges with a layer of zeros. For the example in figure 12, zero-padding
the image would result in the image’s size to be raised to 5 × 5 × 3 and the
convolution with the same kernel size of 3× 3× 3 would result in output of size
3 × 3 × 1. The reduction of input image’s size can be calculated with Equation
(9) where O is the output size of height h and width w, while I is the image size
and f is the kernel size.

O(h,w) = (Ih − fh + 1), (Iw − fw + 1) (9)

The result of the convolution (feature map) is feed to the next operations of the
architecture. The convolution operation works the same for feature maps. The

24

parameters of the convolution layer, are the weights of the kernel, the dimension
of the kernel and stride which are explained in section 3.1.5.

3.1.2. Activation layer

Activation layer’s primary function is to add non-linearity to the network. Non-
linearity is needed to approximate non-linear problems. There is different non-
linear activation functions which can be used like sigmoid, tanh, ReLU and their
variants. ReLu is probably the most commonly used activation function in CNNs.
ReLU maps the output values of the convolution to values from zero to upwards
via transfer function as shown in Equation (10) [27].

f(x) = max(0, x) (10)

This way the negative values are removed from the convolution output and
positive values have linear mapping, making the ReLU non-linear with the trans-
formation. The activation transformation results in an output which is referred
to as the activation map.

3.1.3. Pooling layer

Pooling layers act as statistical summaries of the feed input by calculating a
single value from the neighbouring values of the input. The benefits of pooling
are to make the input spatially invariant to small translations, which correlates for
better generalisability of the features, and downsampling the input, making the
following computations more efficient. For example in the case of max-pooling,
the max value of the selected input area is passed to the next layer. If this max
value’s position changes a little, but within the area of the pooling operation the
same max value is selected, and the pooling layers output stays the same [23
p.335-338]. However, the downsampling in max-pooling causes aliasing1 which
can decrease the accuracy of the network [29]. The suggested solution for the
aliasing problem is to add anti-aliasing filter to the pooling operation.
The pooling layer parameters are the pooling operation, the size of the pooling

operation, and the stride. Two common pooling operations are max-pooling,
which selects the maximum value in the pooling area, and average pooling, which
averages the values of the pooling area and passes this value forwards. Max-
pooling is illustrated in Figure 13.

1Aliasing is a phenomenon related to the sampling theorem. Aliasing occurs when the
sampling of signal (discrete in digital) is below the Nyquist frequency. More of the sampling
theorem, effects of aliasing and how to mitigate them with anti-aliasing can be found in the
book ’Practical Digital Signal Processing’ by Edmund Lai [28 p.15]

25

Figure 13. Max-pooling with pooling area size 2 × 2 pixels and stride 2. Figure
from [30].

3.1.4. Other elements of advanced CNNs

As the available computing power increases, more complex architectures have
been developed. Usually, the simplest way to achieve improved classification
accuracies is to increase the labelled training data, but as the training data in-
creases, so does the training time. Better architecture designs are constantly
needed. Some additions to the typical set of layers and techniques are residual
learning [31], batch normalization [32], inception module [33] and depthwise sep-
arable convolutions [34], which further increased the accuracy and trainability of
the networks.
Residual learning adds skip connections to the network, where layer outputs

are added to inputs of layers deeper in the architecture, as well as passing the
output to the next layer [31]. The network has fewer layers to learn in the early
stages of training, because of the skip connections, and thus easing the problem
of vanishing gradients (for vanishing gradient, see section 3.2). A residual block
is illustrated in figure 14.

Figure 14. Residual learning, figure modified from [31].

Networks that use batch normalization can be trained with higher learning rate
(for learning rate, see section 3.2), which theoretically accelerates the training
of the network. Ioffe and Szegedy argue that the batch normalization works
by reducing the internal covariate shift [32], but some experimental studies [35]
show that this might not be the cause. The exact mechanism of how the batch
normalization works is still discussed, but the benefits of using it are evident [36].

26

A Inception module adds multiple convolutions with different kernel sizes to
one layer, making it wider. The idea behind making the network wider is that
the kernel size limits how small or big features the kernel can search from the
image. When adding three convolution kernels with varying size (1 × 1, 3 × 3
and 5× 5 in the paper) the convolution operations can look for differently sized
features, making the architecture more accurate. More convolutions make the
network more computationally demanding, and thus the inception module has
1 × 1 convolutions before the different sized kernels, to limit the input channels
sizes, making the convolutions less computationally demanding [33]. A Inception
module is shown in figure 15.
Finally, depthwise separable convolution performs first channel-wise (depth di-

mension) spatial convolution and is then followed by 1× 1 convolution [6].

Figure 15. Inception block, figure modified from [33].

3.1.5. Hyperparameters

The layer parameters can be divided into fixed and learnable parameters based
on if the parameters change when CNN is being trained. The fixed parameters
are the kernel size and stride. The learnable parameters are the weights of the
convolution layer’s kernel. The kernel size and the weights determine what the
operation returns. A convolution kernel has three parameters which are the
size of the kernel, the stride and the weights. Pooling layers have only fixed
parameters which are the size and the stride. The kernel size determines how
many neighbouring values affect the operation, e.g. with kernel size 3 × 3 eight
neighbouring pixels (nine in total) affect the outcome value, being it convolution
in convolution layers or pooling operation in the pooling layers. Stride is used to
adjust the overlap of the operations by determining how many pixels the kernel
moves while sliding over the input, in cases where the kernel size is smaller than
the input.
The weights are the most important part of the convolution kernel because

it determines which kind of shapes are looked in the kernel sized area of the

27

input. As the weights are randomly initialized at first, they look for arbitrary
shapes, but as the weights are adjusted in the learning part, the kernels learn
to look for meaningful shapes from the input. The stride can be used on both
convolution and pooling layers for downsampling the input size. Activation layers
only parameter is the activation function.

3.2. Training

The objective of training the CNN is to change the convolution layer’s weights
and other learnable parameters so that the CNN can output the wanted results,
i.e. the prediction of the correct class of the given input. The weights, which are
commonly initialized randomly at first, are the parameters the network learns by
optimizing the error of the network. The error of the network is the difference
of the prediction (class) and the correct class that the input belongs. As such,
the network needs vast amounts of correct input-output pairs, e.g. image and its
correct label, for training these weights when starting from a random state.
The basic building blocks for optimizing the error of neural networks are the

optimization function, its parameters, and the backpropagation method. The
backpropagation is a method used to calculate all the gradients (the change of
the weights) from the output of the network to back to the input, using the dif-
ferential chain rule [23 p.200-201]. The most used optimization algorithms are
stochastic gradient descent (SGD) and its variants like SGD with momentum,
RMSprop, AdaGrad and Adam [23 p.290-305]. The SGD updates the gradient
values calculated by the backpropagation, by minimizing the error of the classi-
fication by comparing the output of the network (category class) to the real class
given to the network. One important parameter for the SGD is the learning rate,
which is used to give boundaries for how much the optimizer changes the weights
per run, which affects how fast the CNN learns. Too small learning rate and the
error decreases very slowly, and too high learning rate and the error might not
decrease at all.
Some of the problems which can appear in training are the overfitting and van-

ishing gradient problems. Overfitting means that the weights learn the training-
set too accurately, and the network loses its generalisability when presented with
new unseen inputs to predict. Overfitting is usually the result of too small or
poorly selected training-set or an architecture that has too much capacity (learn-
able parameters) for the task complexity it tries to solve. Vanishing gradient is a
problem which causes trainability issues for the upper layers of a deep network.
The vanishing gradient occurs when deep networks use sigmoid or tanh activation
functions. The sigmoid and tanh activation functions map the activation values
to a range of 0 to 1. Therefore, convolution outputs are ’squeezed’ to the narrow
range of 0 to 1. After stacking multiple of these activation layers in the architec-
ture, the high output values in the upper layers have a minuscule influence on the
network’s output. When the layers influence for the output is minuscule, so is the
error caused by the layers. The error of the upper layers diminishes to zero, and
the gradients can not be calculated, which means the weights of the layers are
not changed. Vanishing gradients can be avoided by using activation functions

28

that map the values on border range than the sigmoid or tanh functions. One
such activation function is the ReLu.

3.2.1. Transfer learning

Transfer learning can be seen as a technique to take existing networks with learned
weights on some domain (e.g. network trained with ImageNet) and use the net-
work to some other relatively similar task, like extracting features from different
image sets. The transferability of the weights is limited by the difference of the
task the weights were trained on, and the task the weights are transferred. Usu-
ally fine-tuning for the used domain is needed. Fine-tuning means training only
the last layers of the network, which is usually much faster than training the
whole network. It has been shown that pre-trained networks can learn general
enough features to be used in transfer learning for other tasks [2, 37, 3]. The
advantages of using a trained network for other tasks are the lesser amount of
data and time needed to train the network. Training a network from the begin-
ning needs a great deal of training data, which might not be available in some
specialized cases, for example, medical imaging.

3.2.2. Available datasets for CNN training

There is an increasing number of publicly available labelled datasets, which can
be used in image classification, object detection and recognition tasks, like Open
Images [38], ImageNet [39], PASCAL VOC [40] and CIFAR [41] datasets. Prob-
ably the most used dataset is the ImageNet and its subset, which is used in
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). ImageNet
dataset contains 14 million images from 21 thousand classes. ILSVRC subset
contains 1.2 million categorized images with 1000 different classes from the Im-
ageNet dataset [42]. ImageNet datasets contain images of objects ranging from
everyday items to different species of animals. Because of the popularity of the
ImageNet dataset, there is a lot of CNN architectures published with pre-trained
weights which are trained with the ImageNet dataset. As is the case with the used
Xception architecture, which has readily available framework (Keras) implement-
ation with weights trained with the ImageNet dataset. CNN architecture, which
was trained with ImageNet, was selected because of the availability of these ar-
chitectures. These architectures have been shown to get comparable results with
the ILSVRC dataset, which is a de-facto benchmark test for new CNNs.

3.3. Xception

Xception is a CNN architecture which novelty was the adaptation of modified
depthwise separable convolution layers. Xception was developed in Google [6],
and it is based on the previously published Inception [33] architectures, also de-
veloped in Google. In Xception architecture, the Inception modules were changed

29

to the modified depthwise separable convolutions, and hence the name of ‘Ex-
treme Inception’. Xception reached 0.790 Top-1 accuracy on ImageNet in 2016.
Now (as of writing in 2019) the networks with similar parameter count achieve
0.826 Top-1 accuracy [43]. Xception was chosen to be the CNN architecture of
study, because of its good performance on the ImageNet dataset, and the avail-
ability of the pre-trained models with the ImageNet. Also, the readily available
implementations of the architecture allowed for straightforward runs through dif-
ferent layers of the architecture.
Xception architecture is illustrated in figure 16, where the separable convolu-

tion layers are the modified depthwise separable convolution layers. Xception
architecture also includes the residual layers and batch normalization. Xception
architecture can be seen to be split to 14 different blocks which are separated
by the residual layers. The layers in the implementation also follow the 14 block
separation in their naming, by grouping the layers by the corresponding block
they belong.

30

Figure 16. Xception architecture, modified from [6]. The input images are first
feed through the entry flow and then through the middle flow, which is repeated
eight times, and finally through the exit flow. The logistic layer softmax produces
the category predictions of the input image.

31

4. FEATURE DIMENSION REDUCTION

High dimensional data adds complexity for processing data [9 p.237]. The data
complexity by high dimensions is usually referred as ‘curse of dimensionality’, a
term coined by Bellman [44], which describes the exponentially increasing cost
of algorithms with the growth in the number of variables (dimensions) [45]. Di-
mension reduction (DR) is a technique used for alleviating the problems associ-
ated with high dimensions. The basic principles of dimension reduction are the
concatenation of most relevant features from the high number of available and
insignificant features. This can be formalized as:

F (x) : Rd → Rd′

where DR is the mapping F which maps the high-dimensional feature space
Rd to a lower-dimension feature space Rd′ [9 p.238].
Various clustering approaches are based on the assumption that there is a higher

number of data points (N) in the dataset than feature variables (dimensions, d)
in a single data point. Thus, dimension reduction can be useful in situations
where the feature variables of a given data point are higher than the number
of data points being clustered (N < d) [9 p.237]. The difference in clustering
algorithms with high dimensional features can also be seen in experiments that
compare the results of AC and HDBSCAN. Dimension reduction can also be
used to visualize high dimensional features, by compressing the features to two
or three dimensions. DR has limitations, as the process of which features to keep
and which to discard is usually done via optimization of a cost function, which
causes loss of information [9 p.238].
Dimension reduction algorithms can be categorized into linear and non-linear

algorithms. Examples of linear algorithms are PCA [46] and ICA [47], while
UMAP [48], LLE [49] and autoencoders [50] are examples of non-linear dimen-
sion reduction algorithms. The algorithms selected to be used in this thesis
are the linear principal component analysis (PCA) and the non-linear uniform
manifold approximation and projection for dimension reduction (UMAP). PCA
is probably the most commonly used linear dimension reduction method, while
UMAP is a novel non-linear method (2018). UMAP is also great at visualizing
high dimensional data [50] (also, see figure 17). The algorithms are introduced
in more detail in the next sections.
Dimension reduction is usually used as a preprocessing step with high-dimensional

feature spaces, which the output features of different layers are. For example,
some of the layers can have output features with size 147× 147× 128, which res-
ults in features with over 2.7 million dimensions. However, as DR causes loss of
information, the features in this thesis are also clustered without dimensionality
reduction.

4.1. PCA

Principal Components Analysis (PCA) is a statistical method which can be used
in data reduction, data compression and dimension reduction by finding a subset

32

of features which represent the majority of the data. PCA works by finding the
single best subspace (Rd′) of the original feature space (Rd) within the criterion of
least-square error [51]. This is achieved by searching orthogonal directions which
maximise the variance of the dataset, assuming the feature-space is linear. Hence
PCA can have problems with non-linear feature spaces. The search for orthogonal
directions can be formalized as an error minimization function J which minimises
the representation error E as follows (modified from [51])

JPCA = E

‖x−
d′∑
i=1

(wi,x) wi‖2

 (11)

where orthonormal directions are vectors wi and x is a matrix of dataset fea-
tures in original d dimensions. Principal components (PCs) are derived from the
orthonormal directions as PCi,···,d′ = ((wi,x), . . . , (wd′ ,x))t. The PCs with max-
imum variances are selected to represent the data points in the target dimension
d′ by selecting d′ number of PCs, in order that PC1 explains most of the vari-
ance of the dataset and PC2 the second-most, etc. [51]. If the wanted dimension
parameter is not specified, the PCs are generated for all the original dimension.
This can be helpful when deciding to which dimensions the dataset is reduced, by
looking how much variance each PC contains. For example, if the dataset being
reduced contains features with 100 dimensions and the first two PCs contain 50%
of all the variance and the other 98 PCs contain evenly spread out the last 50%
of the variance, it could be useful to only use the first two PCs to represent the
dataset in reduced dimension. However, the optimum number of PCs is highly
application dependent.

4.2. UMAP

Uniform manifold approximation and projection for dimension reduction (UMAP)
is a non-linear dimension reduction method, based on manifold learning. UMAP
does dimension reduction by finding a low dimensional embedding of the data
that approximates an underlying manifold [48]. The inner workings of UMAP in
dimension reduction are based on theoretical frameworks of Riemannian geometry
and topological algebra, which can be further inspected in the original paper [48].
The simplified principle of UMAP can be described in two steps, one where

k-neighbour based graph from the dataset is constructed and other where the
low-dimensional layout of the graph is computed, which represents the dimension
reduced version of the dataset. The strengths of UMAP for visualization come
from the ability to pack similar points from the higher dimensions closer together
in two dimensions, and the ability to keep enough global structure to have visu-
alizations where there is enough separation between dissimilar points. This is
illustrated in figure 17, which compares how the dimension reduction done with
UMAP and PCA generates different plots. Both were used to reduce the same
2048 dimensional features to two dimensions.
UMAP implementation [52] has a multitude of hyperparameters, which can

be used to fine-tune the algorithm. The parameters for the basic usage are the

33

Figure 17. UMAP and PCA mapping in two dimensions. 1000 features with a
dimension of 2048 were reduced to two dimensions with UMAP and PCA, then
clustered with AC. The colours represent the labels of for each cluster.

number of neighbours (k) used in the k-nearest neighbour search, the target
dimensionality (d′) of the dataset, the minimum distance which controls how
tightly the points are packed, and the metric to be used in the calculation of the
pairwise distance matrix. Other parameters were left as default values, unless
mentioned specifically.
One notion of UMAP regarding this thesis use case is the optimization of the

low-dimensionality layout, which is based on the SGD optimizer. SGD uses sub-
sampling for the optimization. This effectively means that the order of features
feed to UMAP affects how the lower-dimensionality is constructed. As stated
in the original paper ‘Since UMAP makes use of both stochastic approximate
nearest neighbour search, and stochastic gradient descent with negative sampling
for optimization, the resulting embedding is necessarily different from run to run,
and under sub-sampling of the data.’ [48]. To get reproducible results when
using UMAP as DR step before clustering, the features need to be feed in the
same order for each run, and the sampling needs to have the same random seed
number.

34

5. DATASETS

The clustering results and features extracted by the CNN highly depend on the
images in the datasets. Eight image sets were selected to be used as evaluation
datasets. The evaluation datasets are selected within the assumption that the
datasets contain images with enough differences that the extracted features, by
some of the layers, results in clusters forming. The requirements for the datasets
depend on the selected validation metric. When external clustering validation is
used, the dataset being clustered needs to have labels on the data. The dataset
labels are compared to the labels given by the clustering algorithm. In this thesis,
the selected clustering validation metrics were the external NMI and ARI scores,
and thus the dataset being clustered needs to have labels.
The datasets were selected for testing the layers feature extraction capabilities

based on different clustering tasks. The selected datasets and their clustering
tasks can be seen in Table 1. Next subsections introduce the datasets more
thoroughly.

Table 1. Properties of the evaluation datasets

Dataset Name Clustering Task Img. Size Classes Images
ImageNet10 Object detection Varying 10 500
flower&qr Object detection 256× 256 2 500
Tools Object detection 640× 480 7 560
overcast&lowlight Scene detection 256× 256 2 500
cab&chicken, sigma2 Object / blur detection Varying 2 200
cab&chicken, sigma3 Object / blur detection Varying 2 200
cab&chicken, sigma5 Object / blur detection Varying 2 200
cab&chicken, sigma9 Object / blur detection Varying 2 200

5.1. ImageNet10

ImageNet10 is a dataset with images from 10 classes from the ILSVRC 2012
validation set, each class containing 50 images. As the used CNN was trained with
ImageNet dataset, these classes selected from the validation image set represent
the baseline dataset for extracting features which should generate good clustering
results in the deeper layers. The selected categories from the ILSVRC 2012
validation set are jigsaw puzzle, dial telephone, ground beetle, analog clock, cup,
hay, French bulldog, great grey owl, bearskin and steel drum.

5.2. flower&qr

The second dataset is the flower&qr dataset, that is constructed from in house
datasets used for other projects. The flower&qr dataset was created by selecting
images from two datasets, one category having images similar as in the CNN’s

35

training dataset, while the other category has images which are not explicitly
used in the CNNs training set. The flower images should generate distinguish-
able features with the CNN because the used training dataset (ImageNet) con-
tains images of flowers. The second category in this dataset was selected to be
compromised of images augmented with a QR-code image on top of the image
because QR-code images are not explicitly trained with the CNN. As to test if
the extracted QR-code image features can be separated from the flower images.
The flower&qr dataset has two categories, each one having 250 images.

5.3. Tools

The dataset Tools was published by the authors of [3], which they used in their
Xception feature extraction and clustering pipeline. The CNN architecture is the
same as used in this thesis, and thus their dataset can be used as a validation
method for the pipeline constructed in this thesis. The Tools dataset contains
seven object categories with images of tools like allen key, clamp, driver, flat and
images from pens, screws and USB sticks. The category images are constructed
with five lighting and background conditions. All of the conditions and the objects
are used as one mixed image set, having seven classes based on the object category,
containing 560 images.

5.4. overcast&lowlight

The overcast&lowlight dataset contains images from two scene categories, a low
light and overcast categories. The first category is constructed from low light
images, e.g night time images where the major part of the image is dark while
having some light sources in the image, of different things like objects and scenes,
while the second category contains overcast (cloudy skies) images which are taken
from objects and scenes in outdoor environments. The low light and overcast
images can both have objects similar to the CNN’s training dataset, and thus the
extracted features can be similar to images from both of the categories, as the
dataset is labelled based on the scene of the images and not by the objects in
the images. This dataset tests if the CNN’s features from some of its layers can
be used to separate scene images. The overcast&lowlight dataset has 500 images,
250 on both categories.

5.5. cab&chicken

The cab&chicken datasets are constructed from images in the cab and prairie
chicken categories from the ILSVRC 2012 validation set. The datasets also con-
tain blurred versions of the cab and prairie chicken images. The images were
blurred with Gaussian blur, with a kernel size of 31 × 31 and with sigma values
2, 3, 5 and 9. The cab&chicken datasets are separated and named based on the
value of the sigma used in the Gaussian kernel in the dataset. The cab&chicken

36

datasets have two clustering targets, cluster images to category groups or blurred
and non-blurred image groups. These datasets are used to test if some of the
features from the layers can be used to cluster images to groups based on blurri-
ness. Additionally, these datasets are used to test how different amounts of blur
in the images affect the clustering to the image categories. The datasets have 200
images, 50 for each group and 100 per class.

37

6. IMPLEMENTATION AND RESULTS

6.1. Experimental Setup

Within the increased usage of CNN based systems, there has been growth in
readily available software packages and frameworks for developing and training
CNNs. Few of the most used frameworks are TensorFlow, Torch, Keras, Theano
and Caffe, which TensorFlow is probably the most popular. All of the men-
tioned frameworks have application programming interfaces (APIs) or bindings
to Python, which made the selection of the implementation programming lan-
guage obvious. From the frameworks, TensorFlow was selected to be the baseline
framework with supplementary high-level APIs from Keras. Additional librar-
ies used in the implementation are machine learning library scikit-learn and the
Python implementations of the UMAP and HDBSCAN algorithms.
TensorFlow is a mathematics framework with a focus on machine learning.

TensorFlow was developed in Google, and made available for the public in 2015
[53]. Keras is a neural networks library which is written in Python, allows for
fast prototyping, and can be used on top of TensorFlow. Keras library also has
an implementation of Xception model with pre-trained weights trained on the
ImageNet dataset [54]. Scikit-learn is a machine learning library for Python [22]
which has the implementations for the AC clustering, PCA dimension reduction
and the NMI and ARI validation score implementations, while the UMAP and
HDBSCAN have implementations provided from [52] and [15]. The used hardware
for the implementation was desktop PC with Ryzen 7 2700X 8-core CPU with 32
GiB of onboard RAM and 1050ti GTX GPU.

6.1.1. Pipeline

The implementation pipeline is shown in figure 18. The figure shows an example of
a two-category clustering workflow. The images are first loaded and preprocessed
by Keras preprocessing implementation and then run through Xception’s layers
to the selected layer. The naming for the layers follows the naming schema of
Xception’s Keras implementation. The output from the selected layer are the
features for the corresponding image. The features are either clustered straight
on or run through dimension reduction. When the features are clustered, the
corresponding image which the features were extracted is given the same label as
the clustering gave to the features. Validation metrics are used to measure the
correctness of the clustering. When a layer is changed, clustering and dimension
reduction parameters are kept the same on the runs with each layer. If the
clustering, dimension reduction, or other parameters are changed, all the layers
are run with the changed parameters.

38

Figure 18. The implementation pipeline. This example shows the implementation
workflow when clustering dataset with two categories. Images in the categories
are first labelled. The images are preprocessed and combined for one image set
that is sequentially run through the CNN to extract the image features with
the selected layer. The image features are clustered, and the cluster labels are
compared to the label given to the image.

39

6.1.2. Hardware limitations

The features extracted with Xception’s second block of layers have large dimen-
sions. Xception architecture’s block 2 contains convolution kernels with 128 di-
mensions with the input height and width being 147, which means that the total
memory consumption per image’s features can be calculated as follows:

MemConsPerImg = float32bit ∗ width ∗ height ∗ kernelSize

this results, assuming 32 bit floating points, to 88.51 Mb or 11.06 MB per
image. The memory consumption in the actual implementation doubles because
the features are converted to 64 bit floats in the clustering algorithms, resulting
to 22.12 MB memory usage per image.

6.2. Quantitative results

First, the evaluation datasets were run without dimension reduction and with
agglomerative clustering, using the number of clusters parameter according to
the used dataset, leaving the rest as default values. The NMI scores with feature
dimension reduction and HDBSCAN clustering are shown in the appendices.
Table 2 shows the NMI median values and standard deviation (σ) per layer block
(layer blocks, see section 3.3) for the first four datasets. The NMI median values
for each block in the cab&chicken datasets are shown in Table 4.

Table 2. NMI value medians and standard deviations in layer groups (blocks) for
datasets

ImageNet10 flower&qr Tools overcast&lowlight
Median σ Median σ Median σ Median σ

Block1 0.12 0.01 0.28 0.19 0.10 0.00 0.55 0.06
Block2 0.12 0.01 0.68 0.15 0.12 0.01 0.47 0.10
Block3 0.20 0.01 0.82 0.12 0.12 0.01 0.15 0.08
Block4 0.21 0.04 0.80 0.18 0.08 0.03 0.20 0.15
Block5 0.26 0.07 0.83 0.39 0.08 0.01 0.05 0.20
Block6 0.31 0.09 0.07 0.42 0.07 0.00 0.03 0.01
Block7 0.28 0.09 0.81 0.41 0.04 0.03 0.04 0.01
Block8 0.27 0.03 0.05 0.01 0.07 0.03 0.04 0.02
Block9 0.44 0.09 0.96 0.49 0.02 0.02 0.07 0.13
Block10 0.42 0.14 0.81 0.44 0.04 0.02 0.03 0.07
Block11 0.53 0.09 0.95 0.48 0.03 0.02 0.17 0.08
Block12 0.57 0.09 0.94 0.30 0.03 0.01 0.24 0.07
Block13 0.42 0.12 0.06 0.42 0.02 0.02 0.04 0.03
Block14 0.87 0.12 0.93 0.46 0.25 0.17 0.15 0.16

As seen in the Table 2 the best NMI scores usually came from layers in the last
block, block 14. The exceptions were the flower&qr and the overcast&lowlight

40

datasets. flower&qr dataset had high median values from multiple blocks, and
the best value came from the block 9 at 0.96, while the last block had a value of
0.93. overcast&lowlight dataset had significantly better scores from the first two
blocks than from the last block. The layers which features were clustered with the
highest NMI scores for each dataset can be seen in Table 3. The overcast&lowlight
and the cab&chicken (blur) datasets had highest scores from layers quite early in
the architecture, when compared to the other datasets with category clustering
(exception being flower&qr dataset). The next subsections show the layer NMI
scores more in depth, on a dataset basis.

Table 3. Highest NMI scores of each dataset

Dataset NMI
score

Layer DR Clustering

ImageNet10 0.95 avg_pool UMAP AC
flower&qr 1.0 block5_sepconv11 None AC

Tools 0.67(0.03)2 avg_pool UMAP HDBSCAN
overcast&lowlight 0.70 block5_sepconv1_act PCA AC
sigma2(Category) 1.0(0.0)2 block10_sepconv2_act1 UMAP HDBSCAN
sigma3(Category) 1.0 block12_sepconv11 None AC
sigma5(Category) 1.0 block12_sepconv1_bn1 None AC
sigma9(Category) 1.0 block14_sepconv1_act1 None AC

sigma2(Blur) 0.80 block3_sepconv1_bn PCA AC
sigma3(Blur) 0.90 block3_sepconv2 PCA AC
sigma5(Blur) 1.0 block5_sepconv1 PCA AC
sigma9(Blur) 1.0 block3_pool1 PCA AC

1)The first layer in the architecture with the maximum score is shown if there is
multiple layers with score of 1.0.
2)The noise group percentage is shown in brackets with HDBSCAN clustering.s

ImageNet10

The ImageNet10 dataset had a trend on increasing the maximum NMI values
when deeper layers were selected. However, on some of the layers, the NMI
value declined (see figure 19). Majority of the NMI value drops came from the
third separable convolution layers (sepconv3), either on the batch normalisation,
convolution or activation parts of these layers. The best scores came from the last
five layers, having NMI values over 0.85. The network was trained to separate
these image categories from each other, and thus, the increased separation of
these image features increased as deeper layers were selected.

41

Figure 19. ImageNet10 dataset clustered with AC, the number of clusters para-
meter set to 10, and other parameters are left for default. The majority of the
drops in NMI values came from the sepconv3 layers. The features from the aver-
age pooling layer gave the best NMI score.

flower&qr

The flower&qr dataset results show that features extracted with the seventh layer
already gave distinguishable features for clustering this dataset (see figure 20), as
the resulting NMI value for the layer was 0.91. The flower&qr dataset is probably
easier to cluster with its two categories than the 10 category ImageNet10 dataset,
and thus high NMI values can be achieved with the features form layers quite
early in the architecture. The NMI values drop on the sepconv3 layers, similar
as in the ImageNet10 dataset, but more drastically.

Tools

In the Tools dataset, the NMI value stays below 0.1 on the majority of the layers,
as 90 layers out of 112. On the entry flow layers (layers in blocks 1 to 4), the
value stays below 0.15 and only on the last four layers does the NMI value increase
being 0.54 on the last layer (same value as in the article [3]) and around 0.39 on
the three previous layers (see figure 21). The scores seem to indicate that layers
other than the last four could not extract features which could be clustered to
corresponding groups. The specific features from the deeper layers were more
prominent in separating the categories from each other than the general features
extracted from the upper layers.

42

Figure 20. flower&qr dataset clustered with AC, the number of clusters parameter
set to 2, and other parameters are left for default. The low NMI values come from
the sepconv3 layers, except the last sepconv3 layer in block13. Features from five
layers are clustered with perfect NMI score (1.0).

Figure 21. Tools dataset clustered with AC, the number of clusters parameter set
to 7, and other parameters are left for default. Only the features from the last
four layers gave significant clustering scores.

overcast&lowlight

The overcast&lowlight dataset NMI values for the first three layers are above 0.55,
while the majority of the layers have NMI values below 0.50. The highest NMI
value comes with features extracted on the layer block5_sepconv1_act1, having

43

NMI value of 0.60. The results indicate that the features extracted with the
upper layers from this dataset can be used to cluster the images more accurately
than with the features extracted with the deeper layers. The general features
were more prominent in separating the categories in this dataset, as the deeper
layers extract more specific features which could not be used to separate these
two categories. The overcast&lowlight dataset NMI values can be seen in figure
22.

Figure 22. overcast&lowlight dataset clustered with AC, the number of clusters
parameter set to 2, and other parameters are left for default. The general fea-
tures from the first few layers give significantly higher cluster NMI values for the
clustering than the features extracted with the last average pool layer (0.57 in
the first layer and 0.32 in average pool layer) with these scene images in the
overcast&lowlight dataset.

cab&chicken

The cab&chicken datasets show how the layer NMI scores differ when the clus-
tering task changes from image category clustering to blurred and non-blurred
image clustering. The dataset with the least amount of blur (sigma 2) in the
images did not cluster to blurred and non-blurred images, as the maximum NMI
score from the whole architecture was 0.23. The image category clustering task
had similar NMI score behaviour as with the flower&qr dataset, as seen in figure
23. The NMI score increased to 0.80 in the first 15 layers, and on the first four
of the sepconv3 layers, the NMI scores dropped significantly.
The second cab&chicken dataset with sigma value 3 could be clustered to

blurred and non-blurred image groups with some of the layers. Over 0.65 NMI
scores came from the 8th, 9th and 10th layer in the architecture. Other peaks in

44

Figure 23. cab&chicken, sigma 2 dataset clustered with AC, the number of
clusters parameters set to 2, and other parameters are left for default. NMI scores
when clustering to blurred and non-blurred groups (blue) and image categories
(red). Images with the least blur did not group based on blurriness. The category
clustering had similar NMI score profile as in the flower&qr dataset, with four
first blocks with sepconv3 layers had significantly lower NMI scores than majority
of the layers.

the NMI scores are from the pooling layers of block 2, block 3 and block 4, each
having NMI scores over 0.40. Two of the layers between the pooling layers got
NMI scores over 0.70 in the category clustering, which indicates that the layers
switch on detecting blurriness, then image category, and then a subsequent layer
can recover the blurriness again. The NMI scores for the sigma 3 dataset can
be seen in figure 24. The image category clustering for the dataset with sigma
value 3 had similar NMI scores as in the dataset with sigma value 2. Some differ-
ences to the NMI scores came from the layers which could be used to detect the
blurriness of the images. This phenomenon can also be seen in Table 4, which
lists the median NMI values of the cab&chicken datasets for both clustering tasks
over different layer groups. The same layers do not achieve good clustering NMI
scores with both of the clustering tasks.
For the sigma 5 dataset, the same 8th, 9th and 10th layers had similar NMI

scores for clustering the image set based on blurriness as the dataset with less
blurry images. The differences to the NMI scores came from the layers in block 3
and in block 4, which had significantly increased NMI scores from the less blurred
dataset on the blurriness clustering task, shown in Table 4 when comparing the
medians of block 3 and 4 between the datasets. The NMI scores for the layers
with sigma 5 dataset can be seen in figure 25. From figure 25, we can see that
the NMI scores for the category clustering task were lower on layers from block
1 to block 9 than in the sigma 3 dataset.

45

Figure 24. cab&chicken, sigma 3 dataset clustered with AC, number of clusters
parameters set to 2, and other parameters are left for default. NMI scores when
clustering to blurred and non-blurred groups (blue) and image categories (red).
When the image blurriness is increased to sigma 3, the images can be clustered
based on the blurriness. The features from the first sepconv1 layer in block 1 are
clustered by blurriness with a NMI value of 0.73.

Table 4. cab&chicken datasets median NMI values on both clustering tasks over
layer groups in each dataset

Dataset Sigma2 Sigma3 Sigma5 Sigma9
Task Category Blur Category Blur Category Blur Category Blur

Block1 0.07 0.00 0.18 0.00 0.21 0.00 0.36 0.00
Block2 0.06 0.02 0.01 0.57 0.01 0.67 0.00 0.74
Block3 0.62 0.00 0.01 0.20 0.00 0.86 0.00 0.96
Block4 0.64 0.00 0.09 0.02 0.00 0.86 0.00 1.00
Block5 0.71 0.00 0.64 0.00 0.00 0.01 0.00 0.86
Block6 0.01 0.00 0.01 0.00 0.02 0.00 0.01 0.02
Block7 0.68 0.00 0.62 0.00 0.01 0.00 0.00 0.66
Block8 0.02 0.00 0.02 0.00 0.02 0.00 0.01 0.00
Block9 0.86 0.00 0.86 0.00 0.76 0.00 0.79 0.00
Block10 0.81 0.00 0.81 0.00 0.83 0.00 0.78 0.00
Block11 0.81 0.00 0.88 0.00 0.86 0.00 0.79 0.00
Block12 0.88 0.00 0.93 0.00 0.83 0.00 0.86 0.00
Block14 0.93 0.00 0.88 0.00 0.94 0.00 1.00 0.00

46

Figure 25. cab&chicken, sigma 5 dataset clustered with AC, the number of
clusters parameters set to 2, and other parameters are left for default. NMI scores
when clustering to blurred and non-blurred groups (blue) and image categories
(red).

The dataset with the most blurred images, had best NMI scores from layers
in the block 3, 4 and 5 for the blurriness clustering task, while these same layers
failed in image category clustering. However, the best NMI scores for the image
category clustering task came from the layers in blocks 9 through 11, and the
last five layers in block 14. Interestingly, the last five layers in the sigma 9
dataset had perfect scores on the category clustering while on the datasets with
less blur the last five layers only had perfect scores on two or three of the layers.
The NMI scores are shown in figure 26. The cab&chicken datasets (sigma 9
particularly) shows how the increased blur in the images lead to totally different
clusters depending on the layer.

47

Figure 26. cab&chicken, sigma 9 dataset clustered with AC, the number of
clusters parameters set to 2, and other parameters are left for default. NMI scores
when clustering to blurred and non-blurred groups (blue) and image categories
(red).

6.3. Qualitative results

The qualitative results were obtained by visually examining the clusters. The lay-
ers with the maximum NMI difference between adjacent layers were selected to
be inspected. The plots are derived by reducing the feature vectors to two dimen-
sions with UMAP and plotted to a two-dimensional plane. The individual colours
represent the clusters the clustering algorithm set the corresponding image. The
clustering is performed with the original feature dimensions, and the features are
reduced only for the plotting. The plot is a projection of the high dimensional
features, so comparing the positions of the points in the two-dimensional space
does not represent the real positions of the features on their native high dimen-
sion space. However, the plots can still give us some insights about the clustering
if we assume that the UMAP can keep the local and global structures reasonably
close to the original dimensions.

ImageNet10

In the ImageNet10 dataset, the layers with the maximum change between them
were layers block11_sepconv1_act and block11_sepconv1, where the NMI score
changed from 0.33 to 0.61. Figure 27 shows the clustering of the features ex-
tracted with layer block11_sepconv1_act and figure 28 shows the clustering with
block11_sepconv1 features. The activation layer’s features appeared to be more
densely together than the features from the separable convolution layer. This
could be the reason the clustering accuracy increased with the later layer’s fea-
tures.

48

Figure 27. ImageNet10 dataset clustered with the features extracted with
block11_sepconv1_act layer. AC algorithm with the number of clusters set to
10. NMI score 0.33.

Figure 28. ImageNet10 dataset clustered with the features extracted with
block11_sepconv1 layer. AC algorithm with the number of clusters set to 10.
NMI score at 0.61.

flower&qr

The flower&qr dataset had many adjacent layers with high differences on the
NMI values. The adjacent layers with the maximum NMI score difference were
the layers block9_sepconv1_act and block9_sepconv1 with NMI scores of 0.06
and 1.0, respectively. Figure 29 shows the clustering of the features from layer
block9_sepconv1_act and figure 30 shows the clustering of the features from the
layer block9_sepconv1. In figure 29, there can be seen two separate groups forming
to the left and right edge of the plot, even though they both are coloured green as

49

Figure 29. flower&qr dataset clustered with the features extracted with
block9_sepconv1_act layer. AC algorithm with the number of clusters set to
2. NMI score at 0.06.

marked to being on the same cluster. After inspecting the images on the groups,
the left side seemed to contain mostly flower images as the right side group
contained mostly QR images. The reason why the majority of both categories
were clustered to the same cluster could be explained by the AC algorithms way
of merging single points to groups based on their pairwise distance. On the right
bottom side of the plot, there is the clustering algorithm’s other cluster marked
with violet colour, which contains images from both categories. As explained in
section 2.2, the AC merges points closest to each other to the same cluster, and
so, the features in the images in the violet group have higher pairwise distances
than the features in the major groups of flowers and QR images. This results for
the flower and QR images being in the same cluster and low NMI value.
In figure 30, the features are clustered perfectly to their corresponding groups

and the features are separated clearly in the plot. As to answer why the features
changed so radically between these two adjacent layers that the NMI values in-
creased from near zero to perfect, could be explained by the plot in figure 29.
As explained above, figure 29 did contain separate groups for the flower and QR
code images, but the clustering algorithm did not cluster them correctly. This
could be speculated to be due to a few of the images having features which were
highly different from the rest of the features, e.g. they were outliers and thus the
AC algorithm broke down. However, testing this is left for future work.

50

Figure 30. flower&qr dataset clustered with the features extracted with
block9_sepconv1 layer. AC algorithm with the number of clusters set to 2. NMI
score at 1.0.

Tools

In the Tools dataset, the maximum NMI score difference is between layers
block14_sepconv1_act and block14_sepconv2, with NMI scores of 0.11 and 0.40.
The corresponding clusterings are shown in figure 31 and 32. The activation
layer features formed some clusters where the dominant features were the image
background, rather than the image object, and the images were grouped based
on the background. In figure 31, there is an example of these object images
where the clusters were formed based on the background, and not based on the
image object. Both of the USB images in figure 31 are in different groups because
their backgrounds are vastly different. In figure 32, with clustering on the layer
block14_sepconv2 features, the clusters are more separated from each other than
in figure 31 and contain more objects from the same categories. This is probably
the cause for the increased NMI score. The leftmost group in figure 32 still con-
tains only images with the same metallic background, rather than being a group
of images with the same objects.

overcast&lowlight

The overcast&lowlight dataset had maximum NMI change between the layers
block4_pool and block5_sepconv1_act, with NMI values of 0.03 and 0.61. Figures
33 and 34 show the clusterings for layer block4_pool and block5_sepconv1_act.

51

Figure 31. Tools dataset clustered with the features extracted with
block14_sepconv1_act layer. AC algorithm with the number of clusters set to 7.
NMI score at 0.11. Same objects (USB) with different backgrounds are clustered
to different groups. Images in the figure are from the Tools dataset and are taken
by the authors of the dataset [3].

Figure 32. Tools dataset clustered with the features extracted with
block14_sepconv2 layer. AC algorithm with the number of clusters set to 7.
NMI score at 0.4.

52

Figure 33. overcast&lowlight dataset clustered with the features extracted with
block4_pool layer. AC algorithm with the number of clusters set to 2. NMI score
at 0.03.

Figure 34. overcast&lowlight dataset clustered with the features extracted with
block5_sepconv1_act layer. AC algorithm with the number of clusters set to 2.
NMI score at 0.61.

cab&chicken

The maximum NMI difference in the cab&chicken datasets came from layers
block14_sepconv1_bn and block14_sep-conv1_act, when clustering to image cat-
egories, regardless of the amount of blur in the blurred images in the dataset.
The score difference was 0.93 for the dataset with blur with sigma 2, while 0.96

53

for the other datasets. The example comparison of the clustering with the layers
are shown with the dataset sigma 2 on figure 35. The low NMI score resulted

Figure 35. Comparison of cab&chicken dataset with blurred images on
sigma value 2, clustered image categories with layers block14_sepconc1_bn and
block14_sepconv1_act.

from the unbalanced clustering of the images, as shown in figure 35, where one of
the two groups contained only four images while the other had rest of the images
(196). In the activation layer block14_sepconv1_act, the images were clustered
more evenly to both groups. This phenomenon is probably caused by the four
outlier images which features are highly different compared to the rest of the im-
ages, and the clustering fails similarly as with the flower&qr dataset. The same
outlier phenomenon can be detected when the features from the layer are reduced

54

to two dimensions with PCA and clustered with AC. This is illustrated in figure
36, where the four outlier images are the same as when clustered with the high
dimensional features. The clustering comparison figures for these layers features
with the different sigma valued datasets are shown in appendix 3.

Figure 36. cab&chicken dataset with blurred images on sigma value 2 clustered
with two-dimensional features extracted with layer block14_sepconv1_bn and re-
duced to two dimensions with PCA.

55

7. DISCUSSION

The results show that clustering the tested image sets which had more than
two categories is best done with the features from the last pooling layer of the
CNN (average pool in Xception) before the class prediction layer. Moreover, this
was expected behaviour for the CNN because the capability to separate multiple
classes from each other increases as deeper layers are selected.
When clustering image sets which had two categories, the selection of which

layer to use as feature extractor depended on the image set being clustered.
The flower&qr dataset could be clustered to correct groups with multiple layers
of Xception architecture. Even if the dataset could be clustered perfectly with
other than the second last layer, there is probably no benefit in doing so. The
guideline for selecting the second last layer as feature extractor should be used
when the target domain has similar images than in CNN’s training set.
The selection of which layers to extract features with was most impactful when

clustering images based on blurriness. The cab&chicken datasets results show
that some of the layers gave features which could be used to cluster the im-
ages based on blurriness, while most of the layers resulted in clustering the two
categories to groups. However, to be able to cluster the images based on their
blurriness, the images needed to have a substantial amount of blur, as the perfect
or near-perfect clusterings came with the images blurred on Gaussian blur with
31 × 31 kernel size and having sigma value being 9 and 5. The usefulness of
detecting a high amount of Gaussian blur in images, which might not correlate
to detecting naturally blurry images, is left to be determined.
Clustering is usually conducted to an unknown dataset, and thus selecting

the optimal layer to be used as the feature extractor becomes difficult, as the
external validation metric for the clustering accuracy can not be used. The most
used pipeline for using CNNs as feature extractors in clustering image sets is to
use only the second last layer as the feature extractor or fine-tune some of the
last layers to the target domain with corresponding training images. However,
the usage of other layers as feature extractors need to be studied more, as the
results from the overcast&lowlight and cab&chicken datasets indicate that also
other than the few last layers from pre-trained CNNs could be used as feature
extractors, depending on the datasets we have and the problem we are solving.
So, should we use pre-trained CNNs and the different layers within for mul-

titude of image feature extraction scenarios in an image set clustering, or is it
better to train a specific classification network for each use case separately? For
applications like cloud image services or mobile phone galleries, where images
from thousands upon thousands of categories can be included, the training of
specific classification network which can be used to separate the images, could
be challenging. For such applications, this thesis gives an implication that the
pre-existing off-the-shelf networks have more capability to extract different im-
age features than the number of classification categories suggests. The different
features extracted with the different layers of CNN could be used for generating
multiple clusterings of the same image set with one CNN architecture. The im-
ages could be clustered to similar groups based by the features extracted from

56

the upper layers of the CNN architecture and the features from the final layers
could be used to fine-tune the clusters to more specific groups.
Future work should include analysis of clustering unlabelled image sets, as to

test which kind of images group and how the grouping of the images change on
a layer by layer basis. The capability of the layers to separate features from
multiple blurred image categories should be tested, as to figure if some of the
layers are focused purely on detecting blurriness or does the blur detection de-
pend on the images which were blurred. Another interesting area to study more
thoroughly would be, why the neighbouring layer features behaved so differently
when clustering them. The qualitative results demonstrated that the selection of
which layers to use in feature extraction affects the clustering outcome greatly
when neighbouring layers could produce features which cluster very differently.
Overall the evidence gathered here was with a sample of few datasets and on

one CNN architecture, which limits the generalisability of the results. For future
work, a smaller CNN architecture or architectures could be beneficial, as the
more focused study could be conducted with fewer layers and with multiple CNN
architectures.

57

8. CONCLUSION

The objective of this thesis was to test image feature extraction capabilities of a
pre-trained CNN’s layers for image set clustering. To test which kind of features
could be extracted with the layers, eight image sets with different scenarios were
selected. While previous studies have focused on using some of the last layers
for the feature extraction, the tests in this thesis were conducted with all of the
layers in the CNN, to test if the features extracted with different layers could be
used for clustering different image sets.
The test results show that the best clustering scores come from different layers

depending on the selected image set being clustered. The test results verify the
known viable method of selecting some of the last layers for extracting features
from images similar to the ones in CNN’s training set. However, the test datasets,
which focused on blurriness and scene detection showed that the pre-trained
CNN’s last layers do not always give the best clustering results. On image set
clustering applications, where the image feature extractor is selected to be CNN
architecture, and the image sets being clustered vary, the optimal layer for the
feature extraction should be selected based on the image set. Other findings
from the experimental result are, how differently image sets cluster when using
adjacent layers from CNN to extract the image features, and thus finding an
optimal layer for different image set needs testing.
This thesis suggests that when pre-trained CNNs are used as feature extract-

ors in an image set clustering pipeline, the features should be extracted with
multiple layers of the architecture to find the optimal features for the clustering
task. However, the selection of the optimal layer has limitations, as the features
obtained by a layer used for the feature extraction should be validated with a
labelled sample set.

58

9. REFERENCES

[1] Caron M., Bojanowski P., Joulin A. & Douze M. (2018) Deep clustering
for unsupervised learning of visual features. In: Ferrari V., Hebert M.,
Sminchisescu C., Weiss Y. (eds) Computer Vision - ECCV 2018, ECCV
2018. Lecture Notes in Computer Science, vol 11218. Springer, Cham.

[2] Yosinski J., Clune J., Bengio Y. & Lipson H. (2014) How transferable are
features in deep neural networks? In: Z. Ghahramani, M. Welling, C. Cortes,
N.D. Lawrence & K.Q. Weinberger (eds.) Advances in Neural Information
Processing Systems 27, Curran Associates, Inc., pp. 3320–3328.

[3] Guérin J., Gibaru O., Thiery S. & Nyiri E. (2017) CNN features are also
great at unsupervised classification. CoRR abs/1707.01700.

[4] Liu J., Liu J., Du W. & Li D. (2019) Performance Analysis and Character-
ization of Training Deep Learning Models on NVIDIA TX2. arXiv e-prints ,
arXiv:1906.04278.

[5] Li D., Chen X., Becchi M. & Zong Z. (2016) Evaluating the energy efficiency
of deep convolutional neural networks on cpus and gpus. In: 2016 IEEE
International Conferences on Big Data and Cloud Computing (BDCloud),
Social Computing and Networking (SocialCom), Sustainable Computing
and Communications (SustainCom) (BDCloud-SocialCom-SustainCom), pp.
477–484.

[6] Chollet F. (2017) Xception: Deep learning with depthwise separable convo-
lutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 1800–1807.

[7] Jain A.K. & Backer E. (1981) A clustering performance measure based on
fuzzy set decomposition. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 3, pp. 66–75.

[8] Hansen P. & Jaumard B. (1997) Cluster analysis and mathematical pro-
gramming. Mathematical Programming 79, pp. 191–215.

[9] Xu R. & Wunsch D.C. (2009) Clustering. IEEE Series on Computational
Intelligence, Wiley-IEEE Press.

[10] Halkidi M., Batistakis Y. & Vazirgiannis M. (2001) On clustering validation
techniques. Journal of Intelligent Information Systems 17, pp. 107–145.

[11] Breitkreutz D. & Casey K. (2008) Clusterers: a comparison of partitioning
and density-based algorithms and a discussion of optimisations. James Cook
University.

[12] Murtagh F. & Legendre P. (2014) Ward’s Hierarchical Agglomerative Clus-
tering Method: Which Algorithms Implement Ward’s Criterion? Journal of
Classification 31, pp. 274–295.

59

[13] Ester M., Kriegel H.P., Sander J. & Xu X. (1996) A density-based algorithm
for discovering clusters a density-based algorithm for discovering clusters in
large spatial databases with noise. In: Proceedings of the Second Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD’96, AAAI
Press, pp. 226–231.

[14] Campello R.J.G.B., Moulavi D. & Sander J. (2013) Density-based clustering
based on hierarchical density estimates. In: J. Pei, V.S. Tseng, L. Cao,
H. Motoda & G. Xu (eds.) Advances in Knowledge Discovery and Data
Mining, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 160–172.

[15] McInnes L., Healy J. & Astels S. (2017) hdbscan: Hierarchical density based
clustering. The Journal of Open Source Software 2, p. 205.

[16] Dijkstra E.W. (1959) A note on two problems in connexion with graphs.
NUMERISCHE MATHEMATIK 1, pp. 269–271.

[17] de Berg M., Gunawan A. & Roeloffzen M. (2017) Faster db-scan and hdb-
scan in low-dimensional euclidean spaces. CoRR abs/1702.08607.

[18] Liu Y., Li Z., Xiong H., Gao X. & Wu J. (2010) Understanding of internal
clustering validation measures. In: 2010 IEEE International Conference on
Data Mining, pp. 911–916.

[19] Rousseeuw P. (1987) Rousseeuw, p.j.: Silhouettes: A graphical aid to the
interpretation and validation of cluster analysis. comput. appl. math. 20,
53-65. Journal of Computational and Applied Mathematics 20, pp. 53–65.

[20] Rand W.M. (1971) Objective criteria for the evaluation of clustering meth-
ods. Journal of the American Statistical Association 66, pp. 846–850.

[21] Vinh N.X., Epps J. & Bailey J. (2010) Information theoretic measures for
clusterings comparison: Variants, properties, normalization and correction
for chance. J. Mach. Learn. Res. 11, pp. 2837–2854.

[22] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O.,
Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos
A., Cournapeau D., Brucher M., Perrot M. & Duchesnay E. (2011) Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research
12, pp. 2825–2830.

[23] Goodfellow I., Bengio Y. & Courville A. (2016) Deep Learning. MIT Press.
http://www.deeplearningbook.org.

[24] Hubel D.H. & Wiesel T. (1962) Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. The Journal of physiology
160, pp. 106–154.

[25] Fukushima K. (1980) Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position. Bio-
logical Cybernetics 36, pp. 193–202.

60

[26] LeCun Y., Bottou L., Bengio Y. & Haffner P. (1998) Gradient-based learning
applied to document recognition. Proceedings of the IEEE 86, pp. 2278–2324.

[27] LeCun Y., Bengio Y. & Hinton G. (2015) Deep learning. Nature 521, pp.
436–444.

[28] Lai E. (2004) Practical Digital Signal Processing. Newnes.

[29] Zhang R. (2019) Making Convolutional Networks Shift-Invariant Again.
arXiv e-prints , arXiv:1904.11486.

[30] Wiki C.S. (2018), Max-pooling / pooling — computer science wiki,.
URL: https://computersciencewiki.org/index.php?title=Max-
pooling_/_Pooling&oldid=7839, [Online; accessed 8-April-2019].

[31] He K., Zhang X., Ren S. & Sun J. (2016) Deep residual learning for image
recognition. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778.

[32] Ioffe S. & Szegedy C. (2015) Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In: 32nd International
Conference on Machine Learning, ICML 2015, pp. 448–456.

[33] Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., Anguelov D., Erhan D.,
Vanhoucke V. & Rabinovich A. (2015) Going deeper with convolutions. In:
Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pp. 1–9.

[34] Sifre L. & Mallat S. (2014) Rigid-motion scattering for image classification.
Ph. D. dissertation .

[35] Santurkar S., Tsipras D., Ilyas A. & Madry A. (2018) How Does Batch
Normalization Help Optimization? arXiv e-prints , arXiv:1805.11604.

[36] Kohler J., Daneshmand H., Lucchi A., Zhou M., Neymeyr K. & Hofmann T.
(2018) Exponential convergence rates for Batch Normalization: The power
of length-direction decoupling in non-convex optimization. arXiv e-prints ,
arXiv:1805.10694.

[37] Razavian A.S., Azizpour H., Sullivan J. & Carlsson S. (2014) CNN Fea-
tures Off-the-Shelf: An Astounding Baseline for Recognition. In: 2014 IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pp.
512–519.

[38] Krasin I., Duerig T., Alldrin N., Ferrari V., Abu-El-Haija S., Kuznetsova
A., Rom H., Uijlings J., Popov S., Veit A. et al. (2017) Openimages: A
public dataset for large-scale multi-label and multi-class image classification.
Dataset available from https://github. com/openimages 2, p. 3.

[39] Deng J., Dong W., Socher R., Li L.J., Li K. & Fei-Fei L. (2009) ImageNet:
A Large-Scale Hierarchical Image Database. In: CVPR09.

61

[40] Everingham M., Van Gool L., Williams C.K.I., Winn J. & Zisserman A.
(2010) The pascal visual object classes (voc) challenge. International Journal
of Computer Vision 88, pp. 303–338.

[41] Krizhevsky A., Hinton G. et al. (2009) Learning multiple layers of features
from tiny images. Tech. rep., University of Toronto, Toronto.

[42] Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang
Z., Karpathy A., Khosla A., Bernstein M., Berg A.C. & Fei-Fei L. (2015)
Imagenet large scale visual recognition challenge. International Journal of
Computer Vision 115, pp. 211–252.

[43] Tan M. & Le Q.V. (2019) EfficientNet: Rethinking Model Scaling for Con-
volutional Neural Networks. arXiv e-prints , arXiv:1905.11946.

[44] Bellman R. (1957) Dynamic Programming. Princeton University Press, Prin-
ceton, NJ, USA, 1 ed.

[45] Kuo F.Y. & Sloan I.H. (2005) Lifting the curse of dimensionality. Notices of
the AMS 52, pp. 1320–1329.

[46] Pearson K. (1901) Liii. on lines and planes of closest fit to systems of points
in space. The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science 2, pp. 559–572.

[47] Hyvärinen A., Karhunen J. & Oja E. (2004) Independent component ana-
lysis, vol. 46. John Wiley & Sons.

[48] McInnes L., Healy J. & Melville J. (2018) UMAP: Uniform Manifold Ap-
proximation and Projection for Dimension Reduction. ArXiv e-prints .

[49] Roweis S.T. & Saul L.K. (2000) Nonlinear dimensionality reduction by loc-
ally linear embedding. Science 290, pp. 2323–2326.

[50] Hinton G.E. & Salakhutdinov R.R. (2006) Reducing the dimensionality of
data with neural networks. Science 313, pp. 504–507.

[51] Sorzano C.O.S., Vargas J. & Montano A.P. (2014) A survey of dimensionality
reduction techniques. arXiv e-prints , arXiv:1403.2877.

[52] McInnes L., Healy J., Saul N. & Grossberger L. (2018) Umap: Uniform man-
ifold approximation and projection. The Journal of Open Source Software 3,
p. 861.

[53] Abadi M., Agarwal A., Barham P., Brevdo E., Chen Z., Citro C., Corrado
G.S., Davis A., Dean J., Devin M., Ghemawat S., Goodfellow I., Harp A.,
Irving G., Isard M., Jia Y., Jozefowicz R., Kaiser L., Kudlur M., Levenberg
J., Mané D., Monga R., Moore S., Murray D., Olah C., Schuster M., Shlens
J., Steiner B., Sutskever I., Talwar K., Tucker P., Vanhoucke V., Vasudevan
V., Viégas F., Vinyals O., Warden P., Wattenberg M., Wicke M., Yu Y. &
Zheng X. (2015), TensorFlow: Large-scale machine learning on heterogen-
eous systems. Software available from tensorflow.org.

62

[54] Chollet F. et al. (2015), Keras. https://keras.io.

63

10. APPENDICES

Appendix 1. Table comparing the maximum NMI scores of dimension reduced
and native feature clusters with HDBSCAN.

Appendix 2. Figures of NMI scores for the evaluation datasets with UMAP and
PCA dimension reduced features also results with the HDBSCAN clustering
algorithm are included.

Appendix 3. Clustering plot comparisons of layers with a maximum difference
in NMI scores with the cab&chicken datasets

Appendix 1. 64

Table 1. Highest NMI scores of HDBSCAN clustering

Datasets Best NMI score
with DR

Best NMI score
without DR

ImageNet10 (UMAP) 0.95 0.76
flower&qr (UMAP) 1.0 0.62

Tools (UMAP) 0.67 0.47
overcast&lowlight (PCA) 0.55 0.24
sigma2(Category) (UMAP) 1.0 0.79
sigma3(Category) (UMAP) 1.0 0.70
sigma5(Category) (UMAP) 1.0 0.65
sigma9(Category) (UMAP) 1.0 0.61

sigma2(Blur) (PCA) 0.64 0.10
sigma3(Blur) (PCA) 0.70 0.10
sigma5(Blur) (PCA) 0.92 0.41
sigma9(Blur) (PCA) 0.90 0.83

HDBSCAN clustering accuracies increase with all of the datasets when using
dimension reduction.

Appendix 2. 65

Figure 1. ImageNet 10 category dataset features clustered with original and PCA
and UMAP reduced dimensions. Clustering with AC.

Appendix 2. 66

Figure 2. ImageNet 10 category dataset features clustered with original and PCA
and UMAP reduced dimensions. Clustering with HDBSCAN.

Appendix 2. 67

Figure 3. FLOWER & QR dataset features clustered with original and PCA and
UMAP reduced dimensions. Clustering with AC.

Appendix 2. 68

Figure 4. FLOWER & QR dataset features clustered with original and PCA and
UMAP reduced dimensions. Clustering with HDBSCAN.

Appendix 2. 69

Figure 5. Tools dataset features clustered with original and PCA and UMAP
reduced dimensions. Clustering with AC.

Appendix 2. 70

Figure 6. Tools dataset features clustered with original and PCA and UMAP
reduced dimensions. Clustering with HDBSCAN.

Appendix 2. 71

Figure 7. OVERCAST & LOWLIGHT dataset features clustered with original
and PCA and UMAP reduced dimensions. Clustering with AC.

Appendix 2. 72

Figure 8. OVERCAST & LOWLIGHT dataset features clustered with original
and PCA and UMAP reduced dimensions. Clustering with HDBSCAN.

Appendix 2. 73

Figure 9. Cab & prairie_chicken with sigma2 blur dataset features clustered to
categories with original and PCA and UMAP reduced dimensions. Clustering
with AC.

Appendix 2. 74

Figure 10. Cab & prairie_chicken with sigma2 blur dataset features clustered
to categories with original and PCA and UMAP reduced dimensions. Clustering
with HDBSCAN.

Appendix 2. 75

Figure 11. Cab & prairie_chicken with sigma2 blur dataset features clustered to
blur and non-blur groups with original and PCA and UMAP reduced dimensions.
Clustering with AC.

Appendix 2. 76

Figure 12. Cab & prairie_chicken with sigma2 blur dataset features clustered to
blur and non-blur groups with original and PCA and UMAP reduced dimensions.
Clustering with HDBSCAN.

Appendix 2. 77

Figure 13. Cab & prairie_chicken with sigma3 blur dataset features clustered
to categories with original and PCA and UMAP reduced dimensions. Clustering
with AC.

Appendix 2. 78

Figure 14. Cab & prairie_chicken with sigma3 blur dataset features clustered
to categories with original and PCA and UMAP reduced dimensions. Clustering
with HDBSCAN.

Appendix 2. 79

Figure 15. Cab & prairie_chicken with sigma3 blur dataset features clustered to
blur and non-blur groups with original and PCA and UMAP reduced dimensions.
Clustering with AC.

Appendix 2. 80

Figure 16. Cab & prairie_chicken with sigma3 blur dataset features clustered to
blur and non-blur groups with original and PCA and UMAP reduced dimensions.
Clustering with HDBSCAN.

Appendix 2. 81

Figure 17. Cab & prairie_chicken with sigma5 blur dataset features clustered
to categories with original and PCA and UMAP reduced dimensions. Clustering
with AC.

Appendix 2. 82

Figure 18. Cab & prairie_chicken with sigma5 blur dataset features clustered
to categories with original and PCA and UMAP reduced dimensions. Clustering
with HDBSCAN.

Appendix 2. 83

Figure 19. Cab & prairie_chicken with sigma5 blur dataset features clustered to
blur and non-blur groups with original and PCA and UMAP reduced dimensions.
Clustering with AC.

Appendix 2. 84

Figure 20. Cab & prairie_chicken with sigma5 blur dataset features clustered to
blur and non-blur groups with original and PCA and UMAP reduced dimensions.
Clustering with HDBSCAN.

Appendix 2. 85

Figure 21. Cab & prairie_chicken with sigma9 blur dataset features clustered
to categories with original and PCA and UMAP reduced dimensions. Clustering
with AC.

Appendix 2. 86

Figure 22. Cab & prairie_chicken with sigma9 blur dataset features clustered
to categories with original and PCA and UMAP reduced dimensions. Clustering
with HDBSCAN.

Appendix 2. 87

Figure 23. Cab & prairie_chicken with sigma9 blur dataset features clustered to
blur and non-blur groups with original and PCA and UMAP reduced dimensions.
Clustering with AC.

Appendix 2. 88

Figure 24. Cab & prairie_chicken with sigma9 blur dataset features clustered to
blur and non-blur groups with original and PCA and UMAP reduced dimensions.
Clustering with HDBSCAN.

Appendix 3. 89

Figure 1. Clustering of Cab & prairie chicken dataset with images blurred at
sigma 3 on layer block14_sepconv1_bn and block14_sepconv1_act features.
Correct labels set to categories of cab and prairie chicken.

Appendix 3. 90

Figure 2. Clustering of Cab & prairie chicken dataset with images blurred at
sigma 5 on layer block14_sepconv1_bn and block14_sepconv1_act features.
Correct labels set to categories of cab and prairie chicken.

Appendix 3. 91

Figure 3. Clustering of cab&chicken dataset with images blurred at sigma9 on
layer block14_sepconv1_bn and block14_sepconv1_act features. Correct labels
set to categories of cab and prairie chicken.

