
Direct and inverse scattering problems

for quasi-linear biharmonic operator in

3D

Master's thesis
Jaakko Kultima

2434687
Department of Mathematical Sciences

University of Oulu
Autumn 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Oulu Repository - Jultika

https://core.ac.uk/display/344907104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Contents

1 Introduction 2

2 Preliminaries 3

2.1 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Distributions and fundamental solution . . . . . . . . . . . . . 6
2.4 Useful results from functional analysis . . . . . . . . . . . . . 8

3 Direct scattering problem 9

3.1 From di�erential equation to integral equation . . . . . . . . . 11
3.2 Solution to the Lippmann-Schwinger equation . . . . . . . . . 14
3.3 Asymptotics for Lippmann-Schwinger equation . . . . . . . . . 18
3.4 Saito's formula . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Inverse scattering problem 24

4.1 Inverse Born approximation . . . . . . . . . . . . . . . . . . . 27
4.2 Inverse backscattering problem . . . . . . . . . . . . . . . . . 29

References 33

1



1 Introduction

In scattering theory, a plane wave is sent from a known direction to some
object. We call this object a scatterer. Interaction between the incident wave
and the scatterer forms a new wave which is called a scattered wave. Di-
rect scattering problem concerns determining this scattered wave when the
scatterer is known. Conversely in inverse scattering problem the goal is to
gather information about the scatterer while the behaviour of the scattered
wave is known. Such information can be for example the shape of the ob-
ject. Mathematically the scattering problem can be formulated as a partial
di�erential equation. The partial di�erential operator determines the types
of these waves and the scatterer is presented as a perturbation to the wave.
The most commonly studied operator is Schrödinger operator and some re-
cent studies of that can be found in [1, 2, 5, 7].
We consider a three-dimensional biharmonic operator

H4 = ∆2 + V,

where ∆ is Laplacian and potential V is a scalar valued quasi-linear function.
Conditions for function V will be speci�ed later. The scattering problem for
this operator is given by

H4u = k4u, u = u0 + usc,

where the coe�cient k corresponds to the wave number. The solution u is
assumed to be a sum of two function u0 and usc, where the function u0 is
a plane wave and usc is an outgoing wave in the sense that it satis�es to
the Sommerfeld radiation conditions for biharmonic operator at the in�nity.
While Schrödinger equation can be used to model the behaviour of waves,
strings and particles, biharmonic operators appear in the studies of elasticity
and vibrations of beams. Scattering theory of biharmonic operators with
linear perturbations is studied before in [9, 10, 11] and with quasi-linear
perturbations on the line in [12]. We will follow [11] and the main results
will correspond to those obtained in [11]. This text focuses on the direct
scattering problem, but also two results regarding the inverse problem will be
given. Main results of this thesis are asymptotic behaviour of the solution and
the proof of Saito's formula. We will give two results regarding the inverse
problem, namely uniqueness and representation formula for the unknown
potential V. They both follow from Saito's formula and thus Saito's formula
can be thought as a bridge between the two problems.

This text is organized as follows. We start by �xing some notations and
introducing de�nitions and known results from various areas of mathemat-
ics. Those results will be used later in the text. After that we formulate the
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scattering problem as a partial di�erential equation which we then turn into
a Lippmann-Schwinger integral equation. It will be shown that with some
assumptions the solution to the di�erential equations indeed is a solution to
the Lippmann-Schwinger equation. The solvability of Lippmann-Schwinger
equation will be proved. We then proceed to de�ne the scattering amplitude
and show that the asymptotic behaviour of the solution can be expressed us-
ing the scattering amplitude. Finally, we will prove Saito's formula and two
of its corollaries. We conclude the text by introducing the inverse backscat-
tering Born approximation and discuss some results that have been obtained
using it.

2 Preliminaries

2.1 Function spaces

We start by de�ning some function spaces that we will use throughout the
text. We will use same de�nitions and notations as in [6]. Let Ω ⊂ R3 be a
bounded domain. We de�ne the Lebesgue spaces Lp(Ω) for 1 ≤ p <∞ by

Lp(Ω) := {f : Ω→ C is measurable : ‖f‖p =
(∫

Ω

|f(x)|pdx
)1/p

<∞}

and

L∞(Ω) := {f : Ω→ C is measurable : ‖f‖∞ = ess sup
x∈Ω

|f(x)| <∞}.

Let us formulate two theorems regarding Lebesgue spaces.

Theorem 2.1. If f ∈ Lp(Ω) and g ∈ Lp
′
(Ω) where 1 ≤ p, p′ ≤ ∞ and

1
p

+ 1
p′

= 1, then the product fg is integrable and

‖f · g‖1 ≤ ‖f‖p · ‖g‖p′ .

Theorem 2.2. If f ∈ L1(Rn), then∫
Rn
e−i(x,y)f(y)dy → 0, as |x| → ∞.

Theorem 2.1 is called Hölder inequality and Theorem 2.2 is known as
Riemann-Lebesgue lemma. In particular Hölder inequality will be used fre-
quently in the future. Proofs for these two theorems can be found in [3, p.
96] and [6, p. 399-400], respectively.
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Let us introduce the following notations. We say that α is a multi-index if
α = (α1, α2, α3), where αi ∈ N0, for all i = 1, 2, 3. We denote this by α ∈ N3

0.
For higher order derivatives we use the shorthand notation ∂α which is given
by

∂α =
∂α1+α2+α3

∂xα1
1 ∂x

α2
2 ∂x

α3
3

=
∂|α|

∂xα1
1 ∂x

α2
2 ∂x

α3
3

.

For k ∈ N0 and 1 ≤ p <∞ we de�ne the Sobolev space W k
p (R3) as

W k
p (R3) =

{
f ∈ Lp(R3) : ‖f‖Wk

p (R3) :=
( ∑
|α|≤k

‖∂αf‖pp
)1/p

<∞
}
.

The space of n ∈ N times continuously di�erentiable functions is given by

Cn(R3) = {f : R3 → C : ∂αf(x) exists and is continuous for all |α| ≤ n}.

We say that f is a smooth function or f ∈ C∞(R3) if f ∈ Cn(R3) for all
n ∈ N.
The space of compactly supported smooth functions is given by

C∞0 (R3) =
{
f : Rn → C : supp f is compact andf ∈ C∞(R3)

}
,

where supp f = {x ∈ R3 : f(x) 6= 0} is called the support of function f . The
Schwartz space of rapidly decaying functions is de�ned as

S(R3)=
{
f ∈ C∞(R3) : |f |α,β := sup

x∈R3

∣∣∣xα∂βf(x)
∣∣∣ <∞, for any α, β ∈ N3

0

}
.

Without going into details about vector �elds we give the following two re-
sults.

Theorem 2.3 (Divergence theorem). Let the boundary of domain Ω ⊂ R3

be C1 and let us denote it by ∂Ω. If F is a C1-vector �eld on the closure Ω,

then ∫
Ω

∇ · Fdx =

∫
∂Ω

F · νdσ(x).

Here ν is an outward normal vector on the surface ∂Ω.

The proof of Theorem 2.3 for convex region Ω ⊂ R3 with no holes as well
as some justi�cation for the general case can be found in [8, p.974-976].

Theorem 2.4 (Green's second identity). Let the boundary of the domain

Ω ⊂ R3 be as in Theorem 2.3. If f, g ∈ C2(Ω) ∩ C1(Ω), then∫
Ω

(g∆f +∇g∇f)dx =

∫
∂Ω

g∂νfdσ(x),

where ∂ν is the normal derivative with respect to the surface.
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Proof. Let F = g∇f. Using the divergence theorem and Leibniz rule for
di�erentiation we have that∫

Ω

(g∆f +∇g∇f)dx =

∫
Ω

∇ · Fdx =

∫
∂Ω

g∂νfdσ(x).

Note that is Ω = B(0, R) = {x ∈ R3 : |x| < R} for some R > 0, then
∂ν = ∂

∂|x| on ∂Ω.

2.2 Fourier transform

De�nition 2.5. Let f ∈ S(R3). We de�ne the Fourier transform of function
f as

Ff(ξ) = (2π)−3/2

∫
R3

e−i(x,ξ)f(x)dx, ξ ∈ R3.

Inverse Fourier transform F−1 is given by

F−1f(x) = (2π)−3/2

∫
R3

ei(ξ,x)f(ξ)dξ.

For one-dimensional inverse Fourier transform it is proved in [6, p.85] that

F−1Ff(x) = FF−1f(x) = f(x)

and the same is true for three-dimensional inverse Fourier transform.

De�nition 2.6. The convolution of two functions f, g ∈ S(R3) is de�ned by

(f ∗ g)(x) =

∫
R3

f(x− y)g(y)dy.

Note that the convolution is symmetric, i.e., f ∗ g = g ∗ f.

Theorem 2.7. Let f, g ∈ S(R3). Then

F(f ∗ g)(ξ) = (2π)3/2F(f)(ξ)F(g)(ξ)

and conversely

F−1(f · g)(x) = (2π)−3/2(F−1(f) ∗ F−1(g))(x).

Proof. This theorem was proved in [6, p.170]
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2.3 Distributions and fundamental solution

Later in this text we will come across some functions that either behave badly
or we do not know enough about their behaviour. Rather than considering
them as regular functions, we can study how they act on some group of test
function as functionals. This type of study is called distribution theory. We
will de�ne two types of distributions, Schwartz distribution and tempered
distributions.

Let us start by de�ning the null-sequence. This leads us to the concept
of continuity for functionals.

De�nition 2.8. A sequence {ϕj}∞j=0 of C∞0 (R3)-functions is called a null-
sequence if

1. there exists a compact set K ⊂ R3 such that suppϕj ⊂ K, for all
j ∈ N0

2. for every α ≥ 0 we have

sup
x∈K
|∂αϕj(x)| → 0, j →∞.

We use the notation 〈T, ϕ〉 to denote the application of the functional T
to the function ϕ, i.e., T (ϕ) = 〈T, ϕ〉.

De�nition 2.9. A functional T : C∞0 (R3) → C is said to be a Schwartz
distribution if it is linear and continuous, i.e.

1. 〈T, αϕ+βψ〉 = α〈T, ϕ〉+β〈T, ψ〉, for every ϕ, ψ ∈ C∞0 (R3) and α, β ∈ C

2. for every null-sequence ϕj ∈ C∞0 (R3) we have 〈T, ϕj〉 → 0 in C, as
j →∞.

The linear space of Schwartz distribution is denoted by D ′.

De�nition 2.10. A functional T : S(R3) → C is said to be a tempered
distribution if

1. T is linear, 〈T, αϕ+ βψ〉 = α〈T, ϕ〉+ β〈T, ψ〉

2. T is continuous on S(R3), in other words there exists n0 ∈ N0 and a
constant c0 > 0 such that

|〈T, ϕ〉| ≤ c0

∑
|α|,|β|≤n0

|ϕ|α,β.
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The space of tempered distributions is denoted by S ′.

Note that because of the embedding C∞0 (R3) ⊂ S(R3), the space of
Schwartz distributions is wider than the space of tempered distributions.
From these de�nitions it follows that every locally integrable function f ∈
L1
loc(R3) de�nes a Schwartz distribution via the formula

〈f, ϕ〉 =

∫
suppϕ

f(x)ϕ(x)dx.

Since the Fourier transform was de�ned as an operator from S(R3) to
itself, we can de�ne the Fourier transform of a tempered distribution T as a
functional satisfying

〈FT, ϕ〉 = 〈T,Fϕ〉, for all ϕ ∈ S(R3).

Similarly we de�ne the derivative of T by

〈∂αT, ϕ〉 = 〈T, (−1)|α|∂αϕ〉, for all ϕ ∈ S(R3).

Before we de�ne the fundamental solution of partial di�erential operator, we
introduce the Dirac delta distribution δx0 . It is a distribution satisfying

〈δx0 , ψ〉 = ψ(x0), for allψ ∈ C∞0 (R3).

We have the basic properties

F(δ0) = (2π)−3/2 · 1
F(1) = (2π)3/2δ0

F(xα) = i|α|∂α(F(1)) = i|α|(2π)3/2∂αδ0.

De�nition 2.11. Let L be a partial di�erential operator. A fundamental
solution of L is a Schwartz distribution K such that for all ϕ ∈ C∞0 (R3) we
have,

〈LK,ϕ〉 = ϕ(0), or in other words LK = δ0.

Let T be a tempered distribution and Ω ⊂ R3 be an open set. We say that
T vanishes on Ω if 〈T, ψ〉 = 0, for all functions ψ ∈ S(R3) with suppψ ⊂ Ω.

De�nition 2.12. Let Ω ⊂ R3 and T is a distribution on Ω. We de�ne the
support of T as the complement of the largest open set on which T vanishes.

Theorem 2.13. Let T be a distribution with single point support, suppT =
{x0}. Then there exists an integer N ∈ N and complex numbers Cα such that

T =
∑
|α|≤N

Cα∂
αδx0 .

Proof. See [4, Prop. 2.4.1, p.124-125]

7



2.4 Useful results from functional analysis

Here is a collection of some results from functional analysis and operator
theory that we will use in the future.

De�nition 2.14. Let X be a normed space. We say that a mapping A :
X → X is a contraction mapping, if there exists 0 < τ < 1 such that

||A(x)− A(y)||X ≤ τ ||x− y||X , for all x, y ∈ X.

Theorem 2.15. Let X be a complete metric space and Ω ⊂ X a closed

subset. If function f : Ω → Ω is a contraction mapping, then there exists

unique x̃ ∈ Ω such that f(x̃) = x̃. Moreover this �xed point can be found as

lim
j→∞

xj = x̃,

where x0 ∈ Ω is an arbitrary point and xj = f(xj−1).

This theorem is called Banach �xed-point theorem and its proof can be
found in [3, p. 119-120].

Let Ω ⊂ Rn be a bounded domain. Then

Af(x) =

∫
Ω

K(x, y)f(y)dy

is an integral operator in L2(Ω) with kernel K.

De�nition 2.16. Integral operator A is said to be an operator with weak
singularity if its kernel K(x, y) is continuous for all x, y ∈ Rn, x 6= y and
there are positive constants M and α ∈ (0, n] such that

|K(x, y)| ≤M |x− y|−α.

For two integral operators

A1f(x) =

∫
Ω

K1(x, y)f(y)dy and A2f(x) =

∫
Ω

K2(x, z)f(z)dz

we de�ne

(A1 ◦ A2)f(x) =

∫
Ω

K1(x, y)A2f(y)dy =

∫
Ω

K1(x, y)
(∫

Ω

K2(y, z)f(z)dz
)
dy∫

Ω

(∫
Ω

K1(x, y)K2(y, z)dy
)
f(z)dz =

∫
Ω

K(x, z)f(z)dz

and

(A2 ◦ A1)f(x) =

∫
Ω

K2(x, z)A1f(z)dz =

∫
Ω

K2(x, z)
(∫

Ω

K1(z, y)f(y)dy
)
dz

=

∫
Ω

(∫
Ω

K2(x, z)K1(z, y)dz
)
f(y)dy =

∫
Ω

K̃(x, y)f(y)dy.
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Theorem 2.17. If A1 and A2 are integral operators with weak singulari-

ties then A1 ◦ A2 as well as A2 ◦ A1 are also integral operators with weak

singularities. More precisely, if

|K1(x, y)| ≤M1|x− y|−α1 and |K2(x, y)| ≤M2|x− y|−α2 ,

where α1, α2 ∈ (0, n], then there exists M > 0 such that

|K(x, y)| ≤M


|x− y|n−α1−α2 , α1 + α2 > n

1 + | log |x− y||, α1 + α2 = n

1, α1 + α2 < n,

where K(x, y) is the kernel of operator A1 ◦A2. Same estimate holds for the

kernel K̃(x, y) of operator A2 ◦ A1.

Proof. The proof can be found in [6, p.360-362]

Remark 2.18. In the case where α1 + α2 > n, Theorem 2.17 holds also when
Ω is not bounded, in particular it holds when Ω = Rn.

3 Direct scattering problem

Let us introduce the three-dimensional biharmonic operator H4 by setting

H4u(x) = ∆2u(x) + V (x, |u|)u(x), (1)

where ∆ is the Laplacian and V is a scalar-valued function depending on
both x ∈ R3 and on the modulus of function u, meaning that biharmonic
operator is perturbed by a quasi-linear perturbation of order zero.
The scattering problem for this operator is given by

H4u(x, k, θ) = k4u(x, k, θ), x ∈ R3, k > 0, (2)

u(x, k, θ) = u0(x, k, θ) + usc(x, k, θ), (3)

lim
r→∞

r
[∂f
∂r
− ikf

]
= 0, for both f = usc and f = ∆usc. (4)

Here the coe�cient k > 0 corresponds to the wave number and u0(x, k, θ) =
eik(x,θ) is the incident wave coming from the direction θ ∈ S2 = {x ∈ R3 :
|x| = 1}. The regular real inner product of vectors x, y ∈ R3 is denoted
by (x, y). We are interested in solutions usc with �nite modulus, i.e., usc ∈
L∞(R3).
By rearranging the equation (2), we obtain

∆2u(x, k, θ)− k4u(x, k, θ) = −V (x, |u|)u(x, k, θ). (5)
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The fundamental solution of operator H0 = ∆2−k4 in n-dimensions is known
to be

G+
k (|x|) =

i

8k2

( |k|
2π|x|

)n−2
2
(
H

(1)
n−2
2

(|k||x|) +
2i

π
Kn−2

2
(|k||x|)

)
,

where H
(1)
n−2
2

and Kn−2
2

are Hankel function of the �rst kind and Macdonald's

function of orders n−2
2
. Some justi�cation for this can be found in [11]. In

three-dimensional case orders of these functions are 1
2
and cylinder functions

of half-integer order can be expressed as elementary functions. This simpli�es
to

G+
k (|x|) =

eik|x| − e−k|x|

8πk2|x|
, in R3.

By applying the fundamental solution via convolution to the equation (5),
we obtain a Lippmann-Schwinger integral equation

u(x, k, θ) = u0(x, k, θ)−
∫
R3

G+
k (|x− y|)V (y, |u|)u(y, k, θ)dy. (6)

Lemma 3.1. For any x ∈ R3 and k large enough, we have that

|G+
k (|x|)| ≤ 1

2πk
.

Proof. We will consider three cases. First let us assume that |x| > 1. Now

|G+
k (|x|)| = |e

ik|x| − e−k|x||
8πk2|x|

≤ 2

8πk2
.

When 0 < |x| < 1 and k|x| > 1, we have inequality 1/|x| < k and
therefore

|G+
k (|x|)| ≤ 2

8πk
.

Finally when 0 < k|x| < 1, by using the Taylor expansion of eik|x|− e−k|x|
we have that

|eik|x| − e−k|x|| ≤
∞∑
j=1

|ij − (−1)j|
j!

(k|x|)j ≤ 2k|x|
( ∞∑
j=0

1

j!
− 1
)

= 2(e− 1)k|x| ≤ 4k|x|.

From this it follows that

|G+
k (|x|)| ≤ 4k|x|

8πk2|x|
=

1

2πk
.

For k > 0 large enough this last estimate gives us the largest upper bound
for |G+

k (|x|)| and therefore Lemma 3.1 is proved.
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3.1 From di�erential equation to integral equation

In this section we will show that a solution to (2) indeed satis�es the equation
(6). The same study was done in [11] for biharmonic operator with linear
perturbations and those results can be used in our problem. We proceed as
in [11].

Lemma 3.2. Let us assume that the function V (·, s) ∈ L1(R3) with respect

to the �rst argument x ∈ R3 for all s <∞. If the function u = u0 +usc, usc ∈
W 4
∞(R3) is a solution to (2) with �xed k > 0, then there exists a constant

C > 0 such that

lim
R→∞

∫
|y|=R

(|usc|2 + |∆usc|2)dσ(y) ≤ C.

Proof. By �rst using Sommerfeld radiation conditions and then Green's sec-
ond identity, we have

2ik

∫
|y|=R

(|∆usc|2 + k4|usc|2)dσ(y)

=

∫
|y|=R

(∆usc(ik∆usc)−∆usc(ik∆usc) + k4usc(ikusc)− k4usc(ikusc))dσ(y)

=

∫
|y|=R

(
∆usc

∂

∂n
∆usc −∆usc

∂

∂n
∆usc + k4usc

∂

∂n
usc − k4usc

∂

∂n
usc

)
dσ(y)

+ o(R−1)

∫
|y|=R

(∆usc + ∆usc + k4usc + k4usc)dσ(y)

=

∫
|y|≤R

(∆usc∆
2usc −∆usc∆2usc + k4usc∆usc − k4usc∆usc)dy

+ o(R−1)

∫
|y|=R

(∆usc + ∆usc + k4usc + k4usc)dσ(y)

=

∫
|y|≤R

(∆usc(−V u)−∆usc(−V u))dy

+ o(R−1)

∫
|y|=R

(∆usc + ∆usc + k4usc + k4usc)dσ(y),

where we have used the fact that ∆2usc − k4usc = −V u.
The �rst integral above is �nite due to ∆usc, u ∈ L∞(R3) and V ∈ L1(R3).
The second integral we consider in two parts and estimate them by modulus.
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First, by Hölder inequality we have

o(R−1)

∫
|y|=R

|∆usc + ∆usc|dσ(y) = o(R−1)

∫
|y|=R

|Re(∆usc)|dσ(y)

≤ o(R−1)
(∫
|y|=R

1dσ(y)
)1/2(∫

|y|=R
|Re(∆usc)|2dσ(y)

)1/2

≤ o(1)
(∫
|y|=R

|∆usc|2dσ(y)
)1/2

.

Similarly

o(R−1)

∫
|y|=R

|k4usc + k4usc|dσ(y) = o(1)
(∫
|y|=R

|usc|2dσ(y)
)1/2

.

Combining these facts gives us that∫
|y|=R

(|∆usc|2 + |usc|2)dσ(y) ≤C‖∆usc‖∞‖u‖∞‖V ‖1

+ o(1)
(∫
|y|=R

(|∆usc|2 + |usc|2)dσ(y)
)1/2

.

This estimate proofs the lemma.

Lemma 3.3. Let Ω ⊂ R3 be an open and bounded domain with smooth

boundary ∂Ω. If f, g ∈ W 4
2 (Ω) then the following equality holds∫

Ω

(f∆2g − g∆2f)dx =

∫
∂Ω

(
f
∂

∂n
∆g + ∆f

∂

∂n
g − g ∂

∂n
∆f −∆g

∂

∂n
f
)
dσ(x).

Proof. This lemma follows from the divergence theorem when f, g ∈ C4(Ω)
and we de�ne the C1-vector �eld F as

F = ∆f∇g + f∇(∆g)−∆g∇f − g∇(∆f).

Theorem 3.4. If the function usc satis�es to the conditions of Lemma 3.2

then it is a solution to the equation (6).

Proof. Let x ∈ R3 be a �xed point and R > 0 so that x ∈ B(0, R). Let then
ε > 0 such that B(x, ε) ⊂ B(0, R) and denote ΩR,ε = B(0, R)\B(x, ε).
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Using Lemma 3.3 we can calculate∫
ΩR,ε

(
usc(y)(∆2

y − k4)G+
k (|x− y|)−G+

k (|x− y|)(∆2 − k4)usc(y)
)
dy

=

∫
ΩR,ε

(
usc∆

2
yG

+
k (|x− y|)−G+

k (|x− y|)∆2usc(y)
)
dy

=

∫
∂ΩR,ε

[
usc

∂

∂n
∆yG

+
k (|x− y|) + ∆usc

∂

∂n
G+
k (|x− y|)

−G+
k (|x− y|) ∂

∂n
∆usc −∆yG

+
k (|x− y|) ∂

∂n
usc

]
dσ(y)

=

∫
∂ΩR,ε

[
usc

( ∂
∂n
− ik

)
∆yG

+
k (|x− y|) + ∆usc

( ∂
∂n
− ik

)
G+
k (|x− y|)

−G+
k (|x− y|)

( ∂
∂n
− ik

)
∆usc −∆yG

+
k (|x− y|)

( ∂
∂n
− ik

)
usc

]
dσ(y).

Since G+
k is the fundamental solution of ∆2− k4, by letting ε→ 0 we obtain

usc(x) = −
∫

ΩR

G+
k (|x− y|)V (y, |u|)u(y)dy

+

∫
∂ΩR

[
usc

( ∂
∂n
− ik

)
∆yG

+
k (|x− y|) + ∆usc

( ∂
∂n
− ik

)
G+
k (|x− y|)

−G+
k (|x− y|)

( ∂
∂n
− ik

)
∆usc −∆yG

+
k (|x− y|)

( ∂
∂n
− ik

)
usc

]
dσ(y).

(7)

Now because

lim
R→∞

∫
∂ΩR

|f(y)|2dσ(y) ≤ C, for both f = usc and f = ∆usc,

by Hölder inequality for p = p′ = 2 we have∫
∂ΩR

|usc|dσ(y) ≤
(∫

∂ΩR

1dσ(y)
)1/2(∫

∂ΩR

|usc(y)|2dσ(y)
)1/2

= (4πR2)1/2
(∫

∂ΩR

|usc(y)|2dσ(y)
)1/2

= O(R).

Since ∆yG
+
k satis�es Sommerfeld radiation condition at the in�nity, we have∫

∂ΩR

usc

( ∂
∂n
− ik

)
∆yG

+
k (|x− y|)dσ(y) = o(1).

Exactly the same calculation can be done for the second term in the last
integral of (7). For the rest we again use Sommerfeld radiation conditions for
usc and ∆usc and the fact that both G+

k and ∆yG
+
k are O(R−1) to have that

the second integral in (7) is o(1) as R→∞.
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3.2 Solution to the Lippmann-Schwinger equation

Let us assume that the function V (·, |u|) satis�es the following conditions

|V (·, |u|)| ≤ Cρ α(·), α ∈ L1 , ρ ≥ |u|
|V (·, s1)− V (·, s2)| ≤ C̃ρβ(·)|s1 − s2|, β ∈ L1, ρ ≥ s1, s2.

(8)

Theorem 3.5. Let V be a function satisfying (8). Then for any ρ > 0 there

exists k0 > 0 such that the equation

u(x) = eik(x,θ) −
∫
R3

G+
k (|x− y|)V (y, |u|)u(y)dy (9)

has a unique solution in Bρ(0) = {f ∈ L∞(R3) : ‖f‖∞ ≤ ρ}, for all k ≥ k0.

Proof. In this proof we are going to use Banach �xed-point theorem. In order
to do so, we need to show that for any ρ > 0 there exists k0 > 0 such that
for all k ≥ k0, the operator F de�ned by

Fu(x) := eik(x,θ) −
∫
R3

G+
k (|x− y|)V (y, |u|)u(y)dy

is a contraction mapping from Bρ(0) to itself. Let ρ > 0. Using the estimate
from Lemma 3.1 and the behaviour (8), we have

|Fu| =
∣∣∣eik(x,θ) −

∫
R3

G+
k (|x− y|)V (y, |u|)u(y)dy

∣∣∣
≤ 1 +

Cρ‖u‖∞
2πk

∫
R3

|α(y)|dy ≤ 1 +
Cρρ

2πk
‖α‖1.

By choosing

k1 ≥
ρCρ‖α‖1

2πρ− 2π
,

we have that F : Bρ(0)→ Bρ(0), for all k ≥ k1.
Next we show that F is a contraction. Let u1, u2 ∈ Bρ(0). Then

|Fu1 − Fu2| =
∣∣∣ ∫

R3

G+
k (|x− y|)

[
V (y, |u1|)u1 − V (y, |u2|)u2

]
dy
∣∣∣

≤ 1

2πk

∫
R3

∣∣∣V (y, |u1|)(u1 − u2) + [V (y, |u1|)− V (y, |u2|)]u2

∣∣∣dy
≤ 1

2πk

∫
R3

[
Cρ|α(y)|+ C̃ρ|β(y)|ρ

]
|u1 − u2|dy

≤ 1

2πk

[
Cρ‖α‖1 + C̃ρ‖β‖1ρ

]
‖u1 − u2‖∞ = τ‖u1 − u2‖∞.
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If

k2 >
Cρ‖α‖1 + C̃ρ‖β‖1ρ

2π
, then τ < 1 for all k > k2.

Therefore by setting k0 = max{k1, k2} and using Banach �xed-point theorem,
we have the result.

Remark 3.6. Banach �xed-point theorem also gives us a way to solve the
equation (9). Let u0(x) = eik(θ,x), and uj(x) = Fuj−1. Then

u(x) := lim
j→∞

uj(x)

is the unique solution to (9).

Lemma 3.7. If we assume that in addition to α satisfying (8), for some

R > 0 the function α ∈ Lp(|x| < R), p > 3
2
and |α(x)| ≤ C|x|−µ, µ > 3 for

|x| ≥ R then the following norm estimate holds

‖usc‖∞ ≤
C

k2
,

for k > 0 large enough.

Proof. Let us de�ne

ujsc(x) = −
∫
R3

G+
k (|x− y|)V (y, |uj−1|)uj−1(y)dy,

where uj is as in Remark 3.6.
Now for any j = 1, 2, . . ., we have

ujsc(x) = −
∫
R3

G+
k (|x− y|)V (y, |uj−1|)eik(y,θ)dy

+

∫
R3

G+
k (|x− y|)V (y, |uj−1|)

∫
R3

G+
k (|y − z|)V (z, |uj−2|)eik(z,θ)dzdy − . . .

+ (−1)j
∫
R3

G+
k (|x− x1|)V (x1, |uj−1|)

∫
R3

G+
k (|x1 − x2|)V (x2, |uj−2|) · · ·∫

R3

G+
k (|xj−1 − xj|)V (xj, |u0|)eik(xj ,θ)dxj · · · dx2dx1.

As a convergent sequence {‖uj‖∞}∞j=0 ⊂ R is bounded and therefore there
exists ρ > 0 such that |uj| ≤ ρ for all j = 0, 1, . . ..
For any l = 0, 1, . . ., the following estimate holds∫

R3

∣∣∣G+
k (|x− y|)V (y, |ul|)

∣∣∣dy ≤ Cρ
4πk2

∫
R3

α(y)

|x− y|
dy

≤ Cρ
4πk2

[∫
|y|≤R

α(y)

|x− y|
dy +

∫
|y|>R

C

|y|µ|x− y|
dy

]
. (10)
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Now by using Hölder inequality, we have that∫
|y|≤R

|α(y)|
|x− y|

dy ≤
(∫
|y|≤R

|α(y)|pdy
)1/p(∫

|y|≤R

1

|x− y|p′
dy
)1/p′

= ‖α‖p‖|x− ·|−1‖p′ .

Now because 1
p

+ 1
p′

= 1 and thus p′ < 3, the norm ‖|x − ·|−1‖p′ is �nite for
all x ∈ R3.
For the second integral in (10) we consider two cases. If |x| < R/2 then
|x− y| ≥ |y| − |x| > R/2 and∫

|y|>R

1

|y|µ|x− y|
dy ≤ 2

R

∫
|y|>R

1

|y|µ
dy =

2

R

∫
S2
dθ

∫ ∞
R

r2−µdr

=
8π

R(3− µ)

[
0−R3−µ

]
=

8π

(µ− 3)Rµ−2
.

Let now |x| ≥ R/2 and ε > 0 such that 2 < µ − ε < 3. Then by Theorem
2.17 we have ∫

|y|>R

1

|y|µ|x− y|
dy ≤ 1

Rε

∫
|y|>R

1

|y|µ−ε|x− y|
dy

≤ 1

Rε
C|x|3−1−(µ−ε) ≤ C

Rµ−2
.

Hence for any R > 0 and µ > 3 there exists a constant C such that∫
R3

∣∣∣G+
k (|x− y|)V (y, |ul|)

∣∣∣dy ≤ C

k2

and therefore

|ujsc(x)| ≤
j∑
l=1

(C
k2

)l
.

For k > 0 large enough and j →∞ this sum becomes a geometric progression
and

|usc(x)| ≤ C/k2

1− C/k2
=

1

k2

C

1− C/k2
= O(

1

k2
),

uniformly in x ∈ R3.

Lemma 3.8. Let ujsc be the sequence de�ned in Lemma 3.7 and both α and

β are as was α in Lemma 3.7. For all j ∈ N0 the following norm estimate

holds

‖usc − ujsc‖∞ ≤
C

k2

(C̃
k

)2j

.
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Proof. We will proof this Lemma by induction. First note that u0
sc = 0 and

therefore the estimate holds for j = 0 due to Lemma 3.7. Let us assume that

‖usc − uj−1
sc ‖∞ ≤

C

k2

(C̃
k

)2j−2

.

By using the integral expressions of functions usc and u
j
sc we have

|usc − ujsc| =
∣∣∣ ∫

R3

G+
k (|x− y|)

[
V (y, |u0 + usc|)(u0 + usc)(y)

− V (y, |u0 + uj−1
sc |)(u0 + uj−1

sc )(y)
]
dy
∣∣∣

≤ 1

4πk2

∫
R3

1

|x− y|

∣∣∣V (y, |u0 + usc|)− V (y, |u0 + uj−1
sc |)

∣∣∣dy
+

1

4πk2

∫
R3

1

|x− y|

∣∣∣[V (y, |u0 + usc|)usc(y)− V (y, |u0 + uj−1
sc |)uj−1

sc (y)
∣∣∣dy

= J1 + J2.

The properties of function β and the usage of triangle inequality gives us the
following estimate

J1 ≤
C̃ρ

4πk2

∫
R3

|β(y)|
|x− y|

∣∣∣|u0 + usc| − |u0 + uj−1
sc |
∣∣∣dy ≤ C1

k2
‖usc − uj−1

sc ‖∞.

For J2 we do similar calculation as in the proof of Theorem 3.5 and we obtain

J2 =
1

4πk2

∫
R3

1

|x− y|

∣∣∣V (y, |u0 + usc|)(usc − uj−1
sc )(y)

+
[
V (y, |u0 + usc|)− V (y, |u0 + uj−1

sc |)
]
uj−1
sc (y)

∣∣∣dy
≤ Cρ

4πk2

∫
R3

|α(y)|
|x− y|

|(usc − uj−1
sc )(y)|dy

+
ρC̃ρ
4πk2

∫
R3

|β(y)|
|x− y|

∣∣∣|u0 + usc| − |u0 + uj−1
sc |
∣∣∣dy

≤ C2

k2
‖usc − uj−1

sc ‖∞ +
C3

k2
‖usc − uj−1

sc ‖∞.

Notice that ∫
R3

|α(y)|
|x− y|

dy,

∫
R3

|β(y)|
|x− y|

dy <∞

as was shown in the proof of Lemma 3.7. By taking C̃ = C1 + C2 + C3, the
claim follows by induction.
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3.3 Asymptotics for Lippmann-Schwinger equation

Theorem 3.9. Let u ∈ L∞(R3) be a solution to the equation (9). If in

addition we assume that there exists R > 0 such that

|α(x)| ≤ C

|x|µ
, when |x| > R and µ > 3, (11)

then for �xed k > 0 and |x| → ∞,

u(x, k, θ) = eik(x,θ) − C3
eik|x|

k2|x|
A(k, θ′, θ) + o

( 1

|x|

)
, (12)

where function A(k, θ′, θ) is called the scattering amplitude and it is de�ned

as

A(k, θ′, θ) =

∫
R3

e−ik(θ′,y)V (y, |u|)u(y, k, θ)dy.

The constant depending on the number of dimensions in our case is C3 = 1
8π

and θ′ = x
|x| is the direction of the observation.

Proof. In this proof we follow the footsteps of [5] and [11]. From (6) we have
a representation for the function usc as an integral over R3. Let us split the
area of integration as

usc(x) = −
∫
R3

G+
k (|x− y|)V (y, |u|)u(y)dy

= −
∫
|y|≤|x|α

G+
k (|x− y|)V (y, |u|)u(y)dy

−
∫
|y|>|x|α

G+
k (|x− y|)V (y, |u|)u(y)dy = I1 + I2,

where the value of parameter 0 < a < 1 will be determined later. Let us �rst
consider I1. When |y| ≤ |x|a, by using the asymptotic formula (1 + x)s =
1 + sx+O(x2), we have that

|x− y| = (|x|2 − 2(x, y) + |y|2)1/2

= |x|
[
1− (x, y)

|x|2
+
|y|2

|x|2
+O

([
− 2(x, y)

|x|2
+
|y|2

|x|2
]2)]

= |x| − (θ′, y) +
|y|2

2|x|2
+O(|x|2a−1)

= |x| − (θ′, y) +O(|x|2a−1).
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Similar calculation shows that

|x− y|−1 = |x|−1[1 +O(|x|a−1)].

For �xed k > 0 and |y| ≤ |x|a we choose a < 1
2
. Now 2a−1 < 0 and therefore,

when |y| ≤ |x|a ≤ |x| → ∞, we can use the small argument behaviour for
exponent function ex = 1 +O(x).
These three estimates gives us the following asymptotic behaviour for kernel
G+
k , when |y| ≤ |x|a.

G+
k (|x− y|) =

1

8πk2
|x− y|−1(eik|x−y| − e−k|x−y|)

=
1

8πk2
|x|−1(1 +O(|x|a−1))(eik|x|e−ik(θ′,y)eikO(|x|2a−1)

− e−k|x|ek(θ′,y)e−kO(|x|2a−1))

=
1

8πk2|x|
(eik|x|e−ik(θ′,y) − e−k|x|ek(θ′,y)) +O(|x|2a−2). (13)

By substituting this into I1, we have

I1 = − eik|x|

8πk2|x|

∫
R3

e−ik(θ′,y)V (y, |u|)u(y)dy

+
e−k|x|

8πk2|x|

∫
|y|≤|x|a

ek(θ′,y)V (y, |u|)u(y)dy

+
eik|x|

8πk2|x|

∫
|y|>|x|a

e−ik(θ′,y)V (y, |u|)u(y)dy

+O(|x|2a−2)

∫
|y|≤|x|a

V (y, |u|)u(y)dy.

Here the �rst term is of desired form and the rest is o( 1
|x|). Indeed in the second

term we have an integral of L1(R3)-function multiplied by Ce−k|x|

|x| which is

clearly o( 1
|x|). The integral on the third row tends to zero as |x| → ∞ due to

V (·, |u|)u(·) being a L1(R3)-function. Because of our choice a < 1
2
, the last

term is also o( 1
|x|).

Next we will show that I2 = o( 1
|x|). We start by splitting the integral into

two parts

I2 =−
∫
|x|α<|y|< |x|

2

G+
k (|x− y|)V (y, |u|)u(y)dy

−
∫
|y|> |x|

2

G+
k (|x− y|)V (y, |u|)u(y)dy = I ′2 + I ′′2 .
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When |x|α < |y| < |x|/2, by triangle inequality |x − y| ≥
∣∣|x| − |y|∣∣ ≥ |x|

2
.

Therefore,

|I ′2| ≤
∫
|x|α<|y|< |x|

2

∣∣∣G+
k (|x− y|)V (y, |u|)u(y)

∣∣∣dy
≤ C

∫
|x|α<|y|< |x|

2

|V (y, |u|)u(y)|
|x− y|

dy

≤ C

|x|

∫
|x|α<|y|< |x|

2

∣∣∣V (y, |u|)u(y)
∣∣∣dy.

Because the function V (·, |u|)u(·) ∈ L1(R3), the integral above can be esti-
mated as∫
|x|α<|y|< |x|

2

∣∣∣V (y, |u|)u(y)
∣∣∣dy ≤ ∫

|x|α<|y|

∣∣∣V (y, |u|)u(y)
∣∣∣dy = o(1), as |x| → ∞.

For I ′′2 we will use Theorem 2.17. Since |α(x)| ≤ C
|x|µ and µ > 3, we can take

ε > 0 such that 2 < µ− ε < 3.
Then

|I ′′2 | ≤ C

∫
|y|≥|x|/2

|V (y, |u|)|
|x− y|

dy ≤ C

∫
|y|≥|x|/2

1

|y|µ|x− y|
dy

≤ C

|x|ε

∫
|y|≥|x|/2

1

|y|µ−ε|x− y|
dy.

Here we have two kernels

K1(x, y) =
1

|x− y|
and K2(y, z) =

1

|y|µ−ε

which meet the conditions of Theorem 2.17. In our case we have α1 = 1 and
α2 = µ− ε and due to our choice of ε > 0 we have α1 + α2 = 1 + µ− ε > 3.
Therefore by using Theorem 2.17 and Remark 2.18 we obtain

|I ′′2 | ≤
C

|x|ε

∫
|y|≥|x|/2

1

|y|µ−ε|x− y|
dy ≤ C

|x|ε

∫
R3

1

|y|µ−ε|x− y|
dy

≤ C

|x|ε
|x|3−1−(µ−ε) =

C

|x|µ−2
= o
( 1

|x|

)
.

Thus we have shown that both I ′2 and I ′′2 are o( 1
|x|). This gives us that I2 =

o( 1
|x|) and the theorem is proved.
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3.4 Saito's formula

Theorem 3.10. Let α, β ∈ Lp(|x| < R) for some R > 0, where p > 3 and

when |x| > R they satisfy the condition (11). Then

lim
k→∞

k2

∫
S2×S2

e−ik(θ−θ′,x)A(k, θ′, θ)dθdθ′ = 8π2

∫
R3

V (y, 1)

|x− y|2
dy, (14)

uniformly in x ∈ R3.

Proof. We start by substituting u = u0 + usc and dividing the integral into
two parts.

k2

∫
S2×S2

e−ik(θ−θ′,x)A(k, θ′, θ)dθdθ′

= k2

∫
S2×S2

e−ik(θ−θ′,x)

∫
R3

e−ik(θ′−θ,y)V (y, |u|)dydθdθ′

+ k2

∫
S2×S2

e−ik(θ−θ′,x)

∫
R3

e−ik(θ′,y)V (y, |u|)usc(y)dydθdθ′ = I1 + I2.

For I1 we can substitute V (y, |u|) = V (y, |u|)− V (y, 1) + V (y, 1) and further
split the integration into two parts to obtain

I1 = k2

∫
R3

∫
S2
e−ik(θ′,y−x)dθ′

∫
S2
e−ik(θ,x−y)

[
V (y, |u|)− V (y, 1)

]
dθdy

+ k2

∫
R3

∫
S2
e−ik(θ′,y−x)dθ′

∫
S2
e−ik(θ,x−y)V (y, 1)dθdy = I

(1)
1 + I

(2)
1 .

Let us �rst consider I
(2)
1 . We would like to �rst integrate with respect to θ′ and

θ. Note that since we are integrating over the whole unit sphere, the integral
does not depend on the angle x−y

|x−y| . Therefore without loss of generality we
may set it to on one of the axis. When we switch to spherical coordinates,
the inner product (θ, x−y|x−y|) = cos(µ), where µ ∈ [0, π]. Now the Jacobian of

this transformation is sin(µ) [4, p. 441.] and therefore we have∫
S2
eik(θ,x−y)dθ =

∫ π

0

∫ 2π

0

eik|x−y| cosµ sinµdϕdµ

= − 2π

ik|x− y|
(eik|x−y| − e−ik|x−y|) =

4π

k|x− y|
sin(k|x− y|).

(15)
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Now substituting (15) into I
(2)
1 and using a trigonometric formula we have

that

I
(2)
1 = 16π2

∫
R3

V (y, 1)

|x− y|2
sin2(k|x− y|)dy

= 8π2

∫
R3

V (y, 1)

|x− y|2
dy − 8π2

∫
R3

V (y, 1)

|x− y|2
cos(2k|x− y|)dy. (16)

For the second term above we will use the Riemann-Lebesgue lemma to show
that it tends to zero as k →∞. In order to do so we must show that

g(y) :=
V (y, 1)

|x− y|2
is a L1(R3)− function.

Indeed,∫
R3

|V (y, 1)|
|x− y|2

dy ≤ C

∫
|y|≤R

|α(y)|
|x− y|2

dy + C̃

∫
|y|>R

1

|y|µ|x− y|2
dy = K1 +K2.

For K1 we use Hölder inequality to obtain

K1 ≤ C
(∫
|y|≤R

|α(y)|pdy
)1/p(∫

|y|≤R

1

|x− y|2p′
dy
)1/p′

≤ C‖α‖p‖|x− ·|−2‖p′ ,

(17)
where both of these norms are �nite when p > 3.

For K2 we proceed as in the proof of Lemma 3.7. Let us consider two
cases. When |x| ≤ R

2
we have |x− y| ≥ |y| − |x| ≥ R

2
and∫

|y|>R

1

|y|µ|x− y|2
dy ≤ 4

R2

∫
|y|>R

|y|−µdy < +∞. (18)

If |x| > R
2
we can use Theorem 2.17 same way we did before in the proof

of Lemma 3.7 and obtain∫
|y|>R

1

|y|µ|x− y|2
dy ≤ C

|x|µ−1
<

C ′

Rµ−1
. (19)

Now combining (17) - (19) we have that the function g(y) is a L1-function.
Therefore by Riemann-Lebesgue lemma the last term in (16) goes to zero as
k →∞ and

I
(2)
1 → 8π2

∫
R3

V (y, 1)

|x− y|2
dy, as k →∞.

22



Next we consider I
(1)
1 . Let us �rst split the area of integration into two parts

I
(1)
1 = k2

∫
R3

∫
S2
e−ik(θ′,y−x)dθ′

∫
S2
e−ik(θ,x−y)

[
V (y, |u|)− V (y, 1)

]
dθdy

= 4πk

∫
|y|≤R

sin(k|x− y|)
|x− y|

∫
S2
e−ik(θ,x−y)

[
V (y, |u|)− V (y, 1)

]
dθdy

+ 4πk

∫
|y|>R

sin(k|x− y|)
|x− y|

∫
S2
e−ik(θ,x−y)

[
V (y, |u|)− V (y, 1)

]
dθdy

= J1 + J2.

Because β ∈ Lp(|x| < R)-function for p > 3 and Lemma 3.7 gives us the

estimate ‖usc‖∞ = O
(

1
k2

)
by using Hölder inequality, we have

|J1| ≤ 4πk

∫
S2

∫
|y|≤R

|V (y, |u|)− V (y, 1)|
|x− y|

dydθ

≤ C k

∫
S2

∫
|y|≤R

|β(y)|||u| − 1|
|x− y|

dydθ

≤ Ck‖usc‖∞
∫
S2

(∫
|y|≤R

|β(y)|pdy
)1/p(∫

|y|≤R

1

|x− y|p′
dy
)1/p′

dθ

≤ C k||usc||∞‖β‖p‖|x− ·|−1‖p′ = O
(1

k

)
.

For J2 we use the behaviour (11) to have

|J2| ≤ 4πk

∫
S2

∫
|y|>R

|V (y, |u|)− V (y, 1)|
|x− y|

dydθ

≤ 4πk

∫
S2

∫
|y|>R

|β(y)| | |u| − 1 |
|x− y|

dydθ

≤ 4πk||usc||∞
∫
S2
dθ

∫
|y|>R

1

|y|µ|x− y|
dy.

The last integral was shown to be �nite in Lemma 3.7 for any x ∈ R3 and
therefore |J2| = O( 1

k
).

Finally for I2 we can �rst integrate with respect to θ′ by using (15) and
we have

I2 = k2

∫
S2×S2

e−ik(θ−θ′,x)

∫
R3

e−ik(θ′,y)V (y, |u|)usc(y)dydθdθ′

= k2

∫
R3

∫
S2
e−ik(θ′,y−x)dθ′

∫
S2
e−ik(θ,x)V (y, |u|)usc(y)dθdy

= 4πk

∫
S2

∫
R3

e−ik(θ,x) sin(k|x− y|)V (y, |u|)usc(y)

|x− y|
dydθ.
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Now this can be estimated by modulus as follows

|I2| = 4πk
∣∣∣ ∫

S2

∫
R3

e−ik(θ,x) sin(k|x− y|)V (y, |u|)usc(y)

|x− y|
dydθ

∣∣∣
≤ C k ‖usc‖∞

∫
R3

|α(y)|
|x− y|

dy

≤ Ck‖usc‖∞
(∫
|y|≤R

|α(y)|
|x− y|

dy +

∫
|y|>R

C̃

|y|µ|x− y|
dy
)
.

(20)

For the �rst integral above we will use Hölder inequality to obtain∫
|y|≤R

|α(y)|
|x− y|

dy ≤
(∫
|y|≤R

|α(y)|pdy
)1/p(∫

|y|≤R

1

|x− y|p′
dy
)1/p′

= ‖α‖p‖|x− ·|−1‖p′ .

The second integral in (20) was shown to be �nite earlier and therefore the
estimate for ‖usc‖∞ gives us that

|I2| = O(
1

k
).

By combining what we have done, we have shown that both I
(1)
1 and I2 go

to zero as k →∞ and I
(2)
1 tends to the right hand side of (14) as k →∞.

4 Inverse scattering problem

In inverse scattering problem we assume that the scattering amplitude
A(k, θ, θ′) is known. Our task then is to determine some characteristics of the
unknown function V. Having the Saito's formula proven we obtain two corol-
laries, namely uniqueness and representation formula for function V (x, 1).
For three-dimensional Schrödinger equation the corresponding results have
been proved in [5] and we will follow those proofs.

Corollary 4.1 (Uniqueness). Let V1(x, 1) and V2(x, 1) be as in Theorem

3.10. If the respective scattering amplitudes A1 and A2 coincide for some

sequence kj → ∞, as j → ∞, then V1(x, 1) and V2(x, 1) are equal in the

sense of tempered distributions.

Proof. It is enough to show that the homogeneous equation

f(x) := 8π2

∫
R3

V (y, 1)

|x− y|2
dy = 0 (21)
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has only a trivial solution V (·, 1) ≡ 0 in the sense of tempered distribu-
tions. Note that the function f is a convolution of functions V (x, 1) and 1

|x|2 .
Therefore we can calculate its Fourier transform as

F(f)(ξ) = 8π2F(V (x, 1) ∗ 1

|x|2
)(ξ)

= 8π2(2π)3/2F(V (x, 1))(ξ)F
(

1

|x|2

)
(ξ). (22)

The value of F(|x|−2) can be calculated precisely by using (15) and we have

F
( 1

|x|2
)

(ξ) = (2π)−3/2

∫
R3

e−i(x,ξ)
1

|x|2
dx = (2π)−3/2

∫ ∞
0

∫
S2
e−ir(θ

′,ξ)dθ′dr

= (2π)−3/2

∫ ∞
0

4π

r|ξ|
sin(r|ξ|)dr =

4π

(2π)3/2|ξ|

∫ ∞
0

sin(t)

t
dt

=
2π2

(2π)3/2|ξ|
. (23)

By combining (22) and (23) we have that

F(f)(ξ) = 16π4 1

|ξ|
F(V (x, 1))(ξ). (24)

Let us denote the space of S(R3)- functions vanishing on some neighbourhood
of origin by S0(R3). Now the function f de�nes a tempered distribution in
S0(R3).
Using (21) and (24) we have that for the Fourier transform of f the following
holds

0 = 〈Ff, ψ〉 = 16π4〈|ξ|−1F(V (x, 1))(ξ), ψ(ξ)〉
= 16π4〈F(V (x, 1))(ξ), |ξ|−1ψ(ξ)〉,

for all ψ ∈ S0(R3).
If µ ∈ S0(R3), then also |ξ|µ ∈ S0(R3). Therefore

〈F(V (x, 1))(ξ), µ(ξ)〉 = 〈F(V (x, 1))(ξ), |ξ|−1|ξ|µ(ξ)〉 = 0,

for all µ ∈ S0(R3). This implies that the support of F(V (x, 1)) is at most
the origin. In the case where suppF(V (x, 1)) = {0}, by Theorem 2.13 there
exists an integer N ∈ N and complex numbers Cα such that

F(V (x, 1)) =
∑
|α|≤N

Cα∂
αδ0.

Now the inverse Fourier transform gives us that the function V (x, 1) is a
polynomial. However no polynomial satis�es to the conditions (11) other
than V (x, 1) ≡ 0.
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Corollary 4.2 (Representation formula). If the conditions from Theorem

3.10 are satis�ed, then

V (x, 1) =
1

16π4
lim
k→∞

k3

∫
S2×S2

A(k, θ, θ′)|θ − θ′|e−ik(θ−θ′,x)dθdθ′,

in the sense of tempered distributions.

Proof. Let the function f be as in the proof of Corollary 4.1. From (24) by
using the inverse Fourier transform we have

V (x, 1) =
1

16π4
F−1

(
|ξ|F(f)(ξ)

)
(x). (25)

Next we are going to calculate the Fourier transform of the function f in the
sense of distributions using Saito's formula. Let ψ ∈ S(R3). Fubini's theorem
allows us to change the order of integration and we obtain

〈F(f), ψ〉 = 〈f,F(ψ)〉 =

∫
R3

(
lim
k→∞

k2

∫
S2×S2

e−ik(θ−θ′,x)A(k, θ′, θ)dθdθ′
)

×
∫
R3

e−i(ξ,x)ψ(ξ)dξdx

=

∫
R3

∫
R3

lim
k→∞

k2

∫
S2×S2

e−i(x,ξ+k(θ−θ′))A(k, θ′, θ)dθdθ′dxψ(ξ)dξ.

Inside the integral the only term depending on x ∈ R3 is the exponential
function and therefore∫

R3

e−i(x,ξ+k(θ−θ′))dx = F(1)(ξ + k(θ − θ′)) = (2π)3/2δ0(ξ + k(θ − θ′)),

where δ0 is the Dirac delta distribution. Hence we may conclude that

F(f)(ξ) = lim
k→∞

k2

∫
S2×S2

(2π)3/2δ0(ξ + k(θ − θ′))A(k, θ′, θ)dθdθ′, (26)

in the sense of tempered distributions. Now by (25) and (26) we have that

〈V (x, 1), ψ(x)〉 =
1

16π4

〈
F−1

(
|ξ|F(f)(ξ)

)
(x), ψ(x)

〉
=

1

16π4

〈
|ξ|F(f)(ξ),F−1(ψ)(ξ)

〉
=

1

16π4

∫
R3

|ξ|F(f)(ξ)F−1(ψ)(ξ)dξ

=
1

16π4

∫
R3

lim
k→∞

k2

∫
S2×S2

|ξ|δ0(ξ + k(θ − θ′))A(k, θ′, θ)dθdθ′

×
∫
R3

ei(ξ,x)ψ(x)dxdξ.
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Note that in the last equality the constant (2π)3/2 from (26) and the constant
from inverse Fourier transform cancel each other out.
By using Fubini's theorem and the fact that∫

R3

|ξ|δ0(ξ + k(θ − θ′))ei(ξ,x)dξ = k|θ − θ′|e−ik(x,θ−θ′),

we can write

〈V (x, 1),ψ(x)〉 =
1

16π4

∫
R3

lim
k→∞

k3

∫
S2×S2
e−ik(x,θ−θ′)|θ − θ′|A(k, θ, θ′)dθdθ′ψ(x)dx,

or in other words,

V (x, 1) =
1

16π4
lim
k→∞

k3

∫
S2×S2

e−ik(x,θ−θ′)|θ − θ′|A(k, θ, θ′)dθdθ′

in the sense of tempered distributions.

4.1 Inverse Born approximation

In this section we take a short look at one method for solving the inverse
problem. The method we choose to use is called Born approximation. The
idea is to de�ne a function that approximates our unknown function V (x, 1)
and show that the di�erence between the two is in some sense smoother
than the function V (x, 1). We will give the de�nition for the inverse Born
approximation with full scattering data and in section 4.2 we discuss the
case when only the backscattering data is available. We proceed as in [6,
p.493-495] and [7]. For technical reasons, for negative values of k we de�ne

u(x,−k, θ) = u(x, k, θ), k < 0.

Using this de�nition we are able to extend A to the whole line k ∈ R, via

A(k, θ′, θ) = A(−k, θ′, θ), when k < 0.

The estimate from Lemma 3.7 suggests us to approximate the solution to
the Lippmann-Schwinger equation by the incident wave, u ≈ u0. When we
substitute this into to the de�nition of the scattering amplitude, we have

A(k, θ′, θ) ≈
∫
R3

e−ik(θ′−θ,y)V (y, 1)dy = (2π)3/2F
(
V (x, 1)

)
(k(θ′ − θ)).

This implies that

V (x, 1) ≈ (2π)−3/2F−1 (A(k, θ′, θ)) (x), (27)
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where the inverse Fourier transform is understood in some special sense.
Let us de�ne two cylinders M0 = R×S2 and M = M0×S2 and the measures
µθ and µ on M0 and M , respectively, as

dµθ(k, θ
′) =

1

4
|k|2dk|θ − θ′|2dθ′

and

dµ(k, θ′, θ) =
1

4π
dθdµθ(k, θ

′).

Here dθ and dθ′ are regular Lebesgue measures on the unit sphere S2.
We de�ne the inverse Fourier transforms on these cylinders as

F−1
M0

(f) (x) =
1

(2π)3/2

∫
M0

e−ik(θ−θ′,x)f(k, θ′)dµθ,

F−1
M (g) (x) =

1

(2π)3/2

∫
M

e−ik(θ−θ′,x)g(k, θ′, θ)dµ.

Now recall that the regular inverse Fourier transform is de�ned as

F−1f(x) = (2π)−3/2

∫
R3

ei(ξ,x)f(ξ)dξ.

If we �x the value of θ and write ξ = k(θ− θ′), then k and θ′ can be obtained
as

k =
|ξ|

2(θ, ξ̂)
, θ′ = θ − 2(θ, ξ̂)ξ̂, ξ̂ =

ξ

|ξ|
.

Since the Jacobian of this transformation is 1
4
|k|2dk|θ − θ′|2dθ′, it can be

shown that for the coordinate mapping

uθ : M0 → R3, uθ(k, θ
′) = k(θ − θ′),

F−1
M0

(f ◦ uθ) = F−1f,

when f ∈ S is even and

F−1
M (f ◦ uθ) = F−1f,

when f ∈ S. Here we have used the notation (f ◦ uθ)(·) to denote the com-
position f(uθ(·)). Now the approximation (27) suggests us to introduce the
following de�nitions.
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De�nition 4.3. The inverse Born approximations V θ
B and VB are de�ned as

V θ
B(x) = (2π)−3/2F−1

M0
(A(k, θ′, θ)) (x) =

1

8π3

∫
M0

e−ik(θ−θ′,x)A(k, θ′, θ)dµθ

and

VB(x) = (2π)−3/2F−1
M (A(k, θ′, θ)) (x) =

1

8π3

∫
M

e−ik(θ−θ′,x)A(k, θ′, θ)dµ,

in the sense of distributions.

Previous studies have shown that the function VB can be used to deter-
mine some characteristics of the unknown function V (x, 1) and we expect
that to be the case here as well. This de�nition assumes that the whole scat-
tering data is known. However, since in practise having the whole scattering
data is rarely the case, next we consider what kind of results can be obtained,
when the measurements are obtained from a �xed direction, namely from the
direction of the incident wave.

4.2 Inverse backscattering problem

Let us now consider the inverse backscattering problem. We assume that the
angle of observation is the opposite to that of the incident wave, i.e., θ′ = −θ.
By approximating the function u again as u ≈ u0 and substituting these into
the de�nition of scattering amplitude we obtain

Ab(k, θ) = A(k,−θ, θ) ≈
∫
R3

e2ik(θ,y)V (y, 1)dy = (2π)3/2F−1 (V (x, 1)) (2kθ).

This expression suggests us to de�ne the inverse backscattering Born approx-
imation as

V b
B(x) := F

(
(2π)−3/2Ab(

k

2
, θ)
)

(x) =
1

8π3

∫ ∞
0

k2

∫
S2
e−ik(θ,x)Ab

(k
2
, θ
)
dθdk.

In order to simplify some future calculations we set Ab(k, θ) = 0 when k < k0,
where k0 > 0 is large enough. Therefore the Born approximation becomes

V b
B(x) =

1

8π3

∫ ∞
2k0

k2

∫
S2
e−ik(θ,x)Ab

(k
2
, θ
)
dθdk.

Next recall that in Lemma 3.7 we obtained the solution to the integral equa-
tion as the limit

u(x, k, θ) = eik(θ,x) + lim
j→∞

ujsc(x, k, θ).
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Using this, we de�ne a new sequence

Ajb(k, θ) =

∫
R3

eik(θ,y)V (y, |u0 + ujsc|)(u0 + ujsc)(y, k, θ)dy,

when k ≥ k0 and Ajb(k, θ) = 0 otherwise.

Lemma 4.4. If α, β ∈ Lp(|x| ≤ R) ∩ L1(R3) for some R > 0 and p > 3 and

when |x| > R they satisfy the condition (11), then

|Ab(k, θ)− Ajb(k, θ)| ≤ C
(C̃)j

k2j+2

Proof. Let us consider the nontrivial case, where k > k0. The modulus of the
di�erence can be estimated as

|Ab(k, θ)− Ajb(k, θ)|

≤
∫
R3

∣∣∣V (y, |u0 + usc|)(u0+ usc)(y, k, θ)−V (y, |u0 + ujsc|)(u0 + ujsc)(y, k, θ)
∣∣∣dy

≤
∫
R3

∣∣∣V (y, |u0 + usc|)−V (y, |u0 + ujsc|)
∣∣∣dy

+

∫
R3

∣∣∣V (y, |u0 + usc|)usc(y, k, θ)− V (y, |u0 + ujsc|)ujsc(y, k, θ)
∣∣∣dy

= K1 +K2.

Now using the Lipschitz property of function V we can estimate K1 as

K1 ≤
∫
R3

C̃ρ|β(y)|
∣∣∣|u0 + usc| − |u0 + ujsc|

∣∣∣dy ≤ C̃ρ‖β‖1‖usc − ujsc‖∞.

For K2 we use the Lipschitz property again and the fact that both α and β
are L1 functions to obtain

K2 =

∫
R3

∣∣∣V (y, |u0 + usc|)(usc − ujsc)(y, k, θ)

+
[
V (y, |u0 + usc|)− V (y, |u0 + ujsc|)

]
ujsc(y, k, θ)

∣∣∣dy
≤
∫
R3

Cρ|α(y)||usc − ujsc|dy +

∫
R3

ρC̃ρ|β(y)|
∣∣∣|u0 + usc| − |u0 + ujsc|

∣∣∣dy
≤
[
Cρ‖α‖1 + ρC̃ρ‖β‖1

]
‖usc − ujsc‖∞.

Combining these estimates with the estimate from Lemma 3.8 gives us the
result.
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The inverse Born sequence is given by

V b
B,j(x) = F

(
(2π)−3/2Ajb(

k

2
, θ)
)

(x).

The study continues by showing that there exists j0 ∈ N such that for all
j ≥ j0, the di�erence V

b
B(x)−V b

B,j(x) de�nes in some sense smooth function g.
This smoothness can mean for example that the function g is continuous or it
belongs to some Sobolev space. If it can be shown that such term V b

B,j(x) can
be expressed as sum of the unknown function V (x, 1) and some well-behaved
function f , this then implies that

V b
B(x) = V (x, 1) + h(x), (28)

where h is well-behaved. Assuming that the function h is continuous we
would be able to conclude that the singularities and jump discontinuities of
the unknown function V (x, 1) would coincide with those of the inverse Born
approximation V b

B(x).
For an operator with zero and �rst order quasi-linear perturbations on

the line, it was shown in [12] that with some additional regularity conditions
for perturbations the function corresponding to h was continuous and van-
ished at the in�nity. Although in [12], on the right hand side of (28) there
was a transformed version of the unknown function, it was concluded that
singularities of that unknown function can be recovered from the backscat-
tering data. In [9, 10], the inverse Born approximation was used to show that
in two- and three-dimensional cases, the backscattering data is su�cient for
recovering the singularities of a combination of zero and �rst order linear
perturbations. There the approach was slightly di�erent due to the linearity
of the coe�cients, but the main idea was similar to ours.
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Conclusion

Direct and inverse scattering problems for three-dimensional biharmonic op-
erator were studied. We managed to prove the existence of the solution for
the direct scattering problem using integral equations. With some additional
conditions for potential, we provided two norm estimates for this solution.
The behaviour of the solution was shown to satisfy certain asymptotic pre-
sentation which led us to de�ne the scattering amplitude. Saito's formula
for our operator was proved and it gave us two corollaries regarding the in-
verse scattering problem. We gave precise proofs for these two corollaries and
concluded the text by introducing the inverse backscattering Born approxi-
mation and we discussing some results that have been obtained using that
approach.

In future works we will study the inverse backscattering Born approxima-
tion for this operator more carefully. We expect to be able to prove similar
results as in [12, 10] for our operator. We are also interested in studying the
same problem in n-dimensional space and adding a �rst order perturbation
into the operator.
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