B

OULUN YLIOPISTO

UNIVERSITY of OULU

Predictive Model Creation Approach using
Layered Subsystems Quantified Data Collection
from LTE L2 Software System

University of Oulu

Faculty of Information Technology
and Electrical Engineering

Degree Program in Information
Processing Science

Master’s Thesis

Jose Puerto

June 17, 2019

Abstract

The road-map to a continuous and efficient complex software system’s improvement
process has multiple stages and many interrelated on-going transformations, these be-
ing direct responses to its always evolving environment. The system’s scalability on this
on-going transformations depends, to a great extent, on the prediction of resources con-
sumption, and systematic emergent properties, thus implying, as the systems grow big-
ger in size and complexity, its predictability decreases in accuracy. A predictive model is
used to address the inherent complexity growth and be able to increase the predictabil-
ity of a complex system’s performance. The model creation processes are driven by the
recollection of quantified data from different layers of the Long-term Evolution (LTE)
Data-layer (L2) software system. The creation of such a model is possible due to the mul-
tiple system analysis tools Nokia has already implemented, allowing a multiple-layers
data gathering flow. The process starts by first, stating the system layers differences,
second, the use of a layered benchmark approach for the data collection at different
levels, third, the design of a process flow organizing the data transformations from rec-
ollection, filtering, pre-processing and visualization, and forth, As a proof of concept,
different Performance Measurements (PM) predictive models, trained by the collected
pre-processed data, are compared. The thesis contains, in parallel to the model creation
processes, the exploration, and comparison of various data visualization techniques that
addresses the non-trivial graphical representation of the in-between subsystem’s data re-
lations. Finally, the current results of the model process creation process are presented
and discussed. The models were able to explain 54% and 67% of the variance in the two
test configurations used in the instantiation of the model creation process proposed in
this thesis.

Keywords
Quantified Software Engineering, Machine learning, Layered Benchmarking, Data engi-
neering, Data Science.

Supervisor
D.Sc., Professor, Mika Mantyla

Foreword

Thanks for the almost staggering amount of support I received by everyone in Nokia.
Thanks to my family and amazing friends for always believing in me, and helping me
improve, I hope I can help you, support you, and give you at least half from all the
positive energy I get from you.

Special thanks to my university supervisor Mika Méntyld, who guided me into trying
the correct approaches and listened to my cryptic explanations. To Kirsti Simula who
actively corrected and guided this thesis work, and to Virpi Hanni for supporting me
through all the thesis process.

We are more than what we offer, kinder as we are expected, and free to change what we
desire, as long as we embrace the fear of the uncertain.

Oulu, Finland May 5, 2019

Jose Luis Puerto

Glossary

r? Coefficient of Determination. 65, 68, 70, 71, 75, 76, 79
3GPP 3rd Generation Partnership Project. 11, 24, 43

5G Fifth Generation Cellular Network Technology. 26
ASFFS Asaptative Sequential Forward Floating Selection. 30
BTS Base Transceiver Station. 17

CI Continuous Integration. 11, 12, 20, 39, 80
CPU Central Processing Unit. 9, 12, 22, 25

CV Cross Validation. 52-54, 71, 80

DL Down-link. 9-12, 15, 24, 37, 43, 65, 80
DSR Design Science Research. 14, 37, 38, 42, 43, 46, 48, 55, 77, 82

DSRP Design Science Research Process. 13, 14, 37, 47

E-UTRAN Evolved Universal Terrestrial Radio Access Network. 17, 18
EDA Exploratory Data Analysis. 55

eNodeB evolved NodeB. 17-19, 38

EPC Evolved Packet Core. 17-19

EPS Evolved Packet System. 18

EVS Explained Variance. 65, 70, 75
GA Genetic Algorithm. 30

hdf5 Hierarchical Data Format 5. 38
HPC Hardware Performance Counter. 10, 41, 44, 66, 72
HSS Home Subscription Server. 18, 19

HW Hardware. 11

IoT Internet of Things. 18
IP Internet Protocol. 19

IT Information Technology. 13

L1 Physical-layer. 17, 19

L2 Data-layer. 2, 9-12, 14-19, 22, 24, 25, 27, 33, 38, 48, 56, 77-80, 82

L3 Network-layer. 17, 19

LARS Least-angle Regression. 53

LASSO Least Absolute Shrinkage and Selection Operator. 31, 32, 47, 48, 52, 78, 79
LSTM Long-short Time Memory. 22

LTE Long-term Evolution. 2, 7, 9-12, 14-19, 24, 25, 33, 48, 77-80, 82

MAC Medium Access Control. 11, 20
MAE Mean Absolute Error. 65

ME Max Error. 65

MI Mutual Information. 29

MLP Multi-Layer Perceptron. 33

MME Mobility Management Entity. 18, 19

MSE Mean Squared Error. 65
OSI Open Systems Interconnection. 11, 17-19

P-GW Packet Data Network Gateway. 18, 19

PCRF Policy and Charging Function. 18, 19

PDCP Packet Data Convergence Protocol. 11, 19, 20

perf Linux Performance Analyzing Tool. 12, 22, 25, 38, 44
PHY Physical Layer. 20

PM Performance Measurements. 2, 9-12, 15, 16, 22, 24, 32, 33, 39, 40, 43, 55-57, 60—62,
65, 66, 71, 76, 79, 80, 82, 88, 89, 92, 93

QoS Quality of Service. 19

R&D Research and Development. 37
RFE Recursive Feature Elimination. 30
RFR Random Forest Regressors. 47
RLC Radio Link Control. 11, 20

ROHC Robust Header Compression. 19

RRC Radio Resource Control. 19

S-GW Serving Gateway. 18, 19

S1-c¢ Si1-control Plane. 18

S1-u Si-user Plane. 18

SAE-GW System Architecture Evolution Gateway. 19
SBS Sequential Backward Selection. 30

SCT System Component Testing. 12, 21, 38

SFFS Sequential Floating Forward Selection. 30
SFS Sequential Feature Selection. 30

SOI System of Interest. 9, 17, 19, 24, 80

SRI System Readiness Index. 21

strace Linux Syscall Tracer. 22

SUT System under Testing. 21, 38, 43

SVM Support Vector Machine. 28, 32

SVR Support Vector Regression. 51, 68, 70, 75, 78

SW Software. 11, 15

TLB Translation Lookaside Buffer. 25

tol Tolerance for Stopping Criterion. 52

UE User Equipment. 17-19

Contents
ADSETACT ..t 2
FOTEWOT. ... ettt ettt 3
ADDIEVIATIONS ...ttt et 6
CONEENES ...t 8
1 INEFOAUCHION 1oeeiiiieiiceet ettt ettt bttt 9
1.1 Problem Definition......ccococeioiririnieieireeieireeet ettt ses 10
1.2 CONEIIDULION ..ttt bbb 10
1.3 Scope Of the thesis......ooriir e 11
2 Research method........ et 13
2.1 Design Science Research Processooocevcenncenencencnccnineeereceeeeneeene 13
2.2 Research QUESHIONS......cccoiviieueieieieieie ettt sene 14
2.3 CYCLES st e 15
3 BaCKEIOUNG c..ueiiiiiteirccie ettt ettt 17
70 1 OO UT U STRAT 17
3.1.1 LTE ATCRItECTUTE ...vueieitre ettt 17
3.1.2 LTE Radio Protocols........cocoereurineneinirieeirieeisireeie et aeeeaees 19
3.1.3 The Testing ENVIrONMENTcccueuriieurericieirieieetreeiesceieseeieesseseie e 20
3.2 Quantified Data Modeling........ccooveeuriniriueininceininieenece st 21
3.2.1 Layered Benchmark Approach........ccoeovvevnccnncncenenccnnccnnecnens 23
3.2.2 Performance Measurements..........ocvureeeeeemeuerserserseueuesensensessessessesnens 24
3.23 Profiling TeChNIQUEcoceuimriirreeirccireecrreree e 24
3.24 Tracing TeChnique......cccoceueueineineineencerieicciceeeeei e eseeaeee 25
3.3 Machine Learning ... sesessessessssessessessensens 27
3.3.1 Feature SeleCtion.......covieiriieueirieieieieeieereeieesee ettt seaes 28
3.3.2 REGIESSION ..ot 31
3.3.3 CLUSTEIING .ottt bttt 32
3.3.4 Neural NetWorks.....coocevveeirinieieirceniccntccereee et eeeaes 32
3.4 Visualization teChnology ...t 33
4 Model Creation PrOCESS........ccvieiiieicinieiieiiieieieiesseesseiessse s seseessssessssessssessesenaes 37
4.1 Data ReCOIIECIONcucviiieceieicicicieieceeee et saens 38
4.1.1 Data-flow PrOCESS ...c.cvvureeerecireeeireeeieiricireicineieteieeeisee e ssesesens 38
4.1.2 Automating Data Collectioncccveneeineerincereceneeeneeeeenecneseeneseenns 39
4.2 Data Pre-processing and FIltering.........coceccveeneeenerencrneceneeinenencinecrneesneneeens 39
4.2.1 Function-level Pre-processing Optionscccceeveueererrecurereunereerernenes 41
4.2.2 Event-level Pre-processing Optionscccceeceurneereereneeeiseneeenenenenennens 41
4.2.3 Down-link Throughput Performance Measurements Data................ 43
4.2.4 Function-level data.........ccocccveeeiinciniciniciccceeeeeeeceennene 44
4.2.5 Event-level data. ... 45
4.3 EXPloratory ANalYSiS......cccoeeeerineirieineeeineieieesieisesetsesessesessesseessesessesesesessessens 45
4.4 MOdel Creationc.cceeeuceriucurieeireieineerieireeiseee ettt sttt seene 47
4.5 Feature SEleCtiONcccoirueirirueiriiieie ettt ettt 47
4.6 ALGOTIIINS ..ottt 48
4.6.1 Multi-layer Perceptromncoccecoerrceueirineeininceeseeesesee e 49
4.6.2 K-NEIZRDOTS ..o 49
4.6.3 RANdom FOTest......ocevuiiririeiiiericcsrccsccie et 50
4.6.4 Gradient BOOSHIZccoeueurireeerireeieirceirtecierceie et 50
4.6.5 Support Vector Machines........ccoceeeureeeneeeeneesineineeineeneseeeiseesesesseseenens 51
4.6.6 Lasso, LassoLars and ElastiCNEt.....c.cceeveeeeeeeeeeeeeeeeeeeeeeeeeeveeeeeeeeseenes 52
5 RESUILS e 55
5.1 Exploratory Analysis TSt A......cccerninineineeineeieeeiesseessesessesesseseesessesesnes 55
5.1.1 Performance measurements first part.........ccocoeerreeuereneencnecenenennnes 56
5.1.2 Performance measurements second partc.ccccoveeuereneerrrcneueereneennes 57
5.1.3 Function-level data ... 58
5.1.4 Event-level data.......ooiiinnrcercceeee e 59
5.2 Exploratory Analysis Test B ...t eeeseeeene 60
5.2.1 Performance measurements first part........c.cocoeveeeuneeeneereneenenceneenreennes 61

5.2.2 Performance measurements SeCONd Part.......c.cocoeveuerrerrereerecureenrenennee 62

5.2.3 FUunctioN-16Vel data......c.ccooeeeeieoieeeeeeieeeeeeeeeeeeeee ettt eeeneea 63
5.24 EVeNT-1VE] data...ccucoouieieeieeeeeeeeeeeeeeeeeeeee ettt 64
5.3 Predictive MOAELSoouoeeieieeeeeeeeeeeeeeeeeteee ettt ettt 65
5.3.1 FITST RESUILS ..ottt ettt aan 66
5.3.2 Test Configuration A ...t eeenees 66
5.3.3 Test Configuration B ..ot 72
5.4 Model creation Process Evaluationcccocviieiviiniiieineceeeiereeeseeeseeeseeseesenns 77
6 DISCUSSION...c.uvictviereeetiereeiticriereereeeeete e st esseesseeseeseessesssessseseensserseesseessesssenseenssenseenseensessnennes 78
6.1 MOdEL Creation PrOCESS ..ccveeeueeeeeeieeeeeeeeeeeeeeeeeeeseeeeteeeeeeseseeseeseeteseeseesessesessesseeenens 78
6.1.1 Raw Data Preprocessing ... 78
6.1.2 Feature SeleCTIONc.oou ittt ettt ettt eeeeeaenean 78
6.2 Research QUEStiONS ATNSWELSc.ccoceurureurueurineuetrireeieeseeaesetseseseeseasse s sesseassesseaas 79
6.3 Validity Of RESUILS ...ccuuriiiririce et 80
6.4 FULULIE WOTK....oiiiiieiieeee ettt sttt ettt s sae s eneeaens 80
A O} s Te] LT3 1) o K- TR 82
7.1 SUIMIMIATY weocueeeuieerererereieteietetesesesesesesesessetttataesesesesesesesessssestatasasassesesesessssssssasasasacns 82
8 RELEICIICES ..ttt ettt ettt et sa st st st st s ae st saene s etenssnne 84
A APPEIUAIX oot e 89

1
Performance measurements scatter matrix, teSt A...ooveevveiveereviceerineeeeenenns 89

2
Function-level scatter matrix by processor event, test A........cocooverevereernennne 91

3
Event-level scatter matrix by selected events, test A.......cccoveeveerrereveereernennn. 92

4
Performance measurements scatter matrix, teSt B .voeoveoeeeeeeeeeeeeeeeeeeeeene. 93

5
Function-level scatter matrix by processor event, test B........cccccoeveeurnccunence. 95

.6
Event-level scatter matrix by selected events, test B........cccceveveernccnnccinnne. 96

7
Selected features correlation heat-map for F'3, test Acccovveveurvncennccinenn. 97

.8

Selected features correlation heat-map for F'3 + E2, test Bccccoeevvcenence. 98

1 Introduction

The ability to understand the impact of new software functions and code modifications
before its integration to a release and finished product is an always evolving theme ap-
pearing in various software engineering disciplines (Mens, 2008). This prediction pro-
vides a whole range of benefits such as a better planning of the future requirements, an
accurate description of the quality attributes, and in general a valuable characterization
of the system in development.

The discipline of software engineering focuses on the behavioral design of the System of
Interest (SOI); this means software products most used quantified data reflects variables
from the project rather than the SOI, these data being, for example, lines-of-code, prob-
lem reports, fault density, and others popular software’s project related data (Muller,
2007, p. 1). Managing the design of the SOI by quantitative techniques, similar to other
engineering disciplines, provides access to quantitative data that can measure the current
state of the system accurately. This information enables precise and better estimation of
future performances and hardware requirements, and it also enables comparisons of the
different products or releases versions.

The rich quantitative data allows the creation of a prediction model, trained with the
current and past state measurements of the system, with the particularity of being de-
tailed quantified information incoming from different systems layers. These layers can
be delimited based on a layered benchmark framework proposed by Muller (2007). This
approach divided any software system into four layers, defined as hardware, operative
system, services, and applications. It allows better analysis and understanding of the
amount of affectation caused by each part to the complete system’s performance, see
Section 3.2.1. By having these data, the model can estimate and predict better relevant
system performance aspects, based on the assumption, the more detailed information
used in the analysis, the most likely one can reveal and understand more precisely com-
plex and hidden relations in-between the system layers.

The use of the layered benchmark framework can enable a more in-depth comprehension
of Down-link (DL) throughput performance, this one measured in symbols per second,
that then depending on how many bits a symbol can carry, translates on bits per second.
The DL throughput performance is one of Nokia’s LTE system most critical defining
characteristics that allow Nokia to differentiate from its competitors.

In order to apply this framework to this thesis work, and achieve the goal of revealing
and increasing the understanding of the inner relations from the system’s sub-layers
and the DL throughput performance; the quantified data collected by the different test
is organized in three kinds, first, thirteen DL throughput PM, second, function-level
hardware performance data collected by profiling techniques (see Section 3.2.3), and
last, events reception and processing times inside the L2 system by tracing techniques,
see section 3.2.4. All these multiple properties are represented in quantified variables
and are calculated on tests runs inside the L2 capacity testing environment.

Knowing that there has been successful work using machine learning in capacity testing
environment to estimate Central Processing Unit (CPU) loads using test parameters(i.e.,
the different conditions and hardware configurations of the system, this one being used
various final users) (Piippo, 2018, p. 87). Moreover, the work done in anomaly detection,

10

using the same kind of function-level hardware performance data that is used in this
thesis, showing that high-dimensional function-level Hardware Performance Counter
(HPC) (i.e., function-specific hardware event attributes separately) has better predictive
power to characterize software performance change, when compared to lower dimen-
sional data (Laivamaa, 2019, p. 75). Building upon these researches, this thesis attempts
to characterize (predict) relevant DL throughput metrics, using machine learning on the
L2 capacity testing environment, using high-dimensional data from function-level and
adding another layer of high-dimensional data from events-level reception and process-
ing times.

1.1 Problem Definition

There exist many variables affecting the final performance of the LTE L2 system devel-
oped by Nokia. It is known that the relatively little overhead of functions in the code can
add up to generate noticeable degradation of the transmission speed rates. Being able to
follow the releases trend and the impact to the PM related to the DL throughput using
a multi-variable analysis, can be a great addition to be able to predict and estimate from
the code fragments the expected behavior to fulfill the expected requirements related to
the throughput, response time, and performance.

To draw a concrete picture of the practical use of this work in LTE L2 software design,
one can think about a new chunk of code, this reflected in a new revision on a software
version control system, that before being integrated to a critical branch or release, is
quantitatively measured in regards of the effect of such code to PMs that measure the
overall DL throughput performance. This precise measurement of the impacts by the
new code allows a better estimation of the actual distance from the current system be-
havior to the optimal system performance and a better prediction of the future additional
hardware resources needs.

1.2 Contribution

The objective of the thesis is to provide an experience of performance prediction and
characterization using quantitative data gathered by diverse tools, coming from different
dimensions of the LTE L2 system, an approach Nokia wants to explore, in addition to the
many existing research done inside the L2 teams, with the goal of continuously leading
up to new, better, and more precise analyze techniques.

This research is building on top of other thesis workers research as well as elaborating on
them, attempting in doing the instrumentation and integration of all the parts needed
to have a better understanding and accuracy in the prediction of the DL throughput
affectation, as seen through software revision’s evolution in time. The expected outcome
is a unified process, beginning at the collection of different kinds of data and ending with
improved accuracy in the prediction of the DL throughput related PM of the system.

This thesis deals with pre-processing, transformations, storage and availability of data in
useful formats, visualization alternatives for high dimensional data, continuous integra-
tion process updating models as new samples are collected, as well as, fast and practical

11

use of the most adapted machine learning techniques to processes all data, having an
outcome an accurate predictive model.

This type of studies can be categorized in the field of quantified software engineering, a
field where there is not much research done as the primary focus. In other fields, there
are various approaches to quantify the impact of software. However, studies quantifying
the impact of the software exist. State of the art from different fields has been done, with
particular emphasis in reliability and readiness of software.

In Nokia, there have been successful work done over the characterization of L2 hard-
ware design using machine learning and artificial intelligence techniques in software
and hardware capacity testing result data. The work from Piippo (2018, p. 87) showed
excellent results in estimating CPU loads of hardware based on L2 parameters, creating
a model that was able to explain 99% of the variation on CPU loads. The main contri-
bution of this research is to perform similar characterization work in L2 software and
thereby provide possible improvements for detailed design.

The quantified performance information from Software (SW) function level behavior
can enable a better design of Hardware (HW) related requirements as the later can be
modeled with a robust estimation allowing future needs to be taken into account quickly.
Additionally, this unified quantitative information collected from different layers at mul-
tiple states of the project will enable both release-to-release and product-to-product com-
parisons.

1.3 Scope of the thesis

Nokia being a large organization provides LTE infrastructure to various services providers
all around the world, they thrive to provide always the best quality service offering, to
achieve this goal having an outstanding DL throughput performance with low latency
is essential. A common ideal in any continuous software development process is that
new feature updates should not cause degradation to the service quality, this ideal can
be better achieved by specifying quantitative means to not only know if there is degra-
dation but also how much there is. The thesis work has a big emphasis on understanding
and predicting DL throughput performance. This under the scope of L2, from the Open
Systems Interconnection (OSI) model, as specified by the 3rd Generation Partnership
Project (3GPP), which consists of the Packet Data Convergence Protocol (PDCP), Radio
Link Control (RLC) and Medium Access Control (MAC) sub-layers (3GPP 36.321, 2019;
3GPP 36.322, 2018; 3GPP 36.323, 2019).

The LTE L2 property of interest in this work is the throughput, i.e., the rate of success-
fully delivered messages through a given communication channel, quantified in bits per
second. This rate is affected by the system components processing power, the behavior
of the end-user, and especially crucial for this work, the different interactions between
the L2 protocols.

It is pertinent to state that the related new features have an impact not only on the
different PM but as well as, in the performance of the analysis tool itself. After obtaining
a more accurate model about such impacts on different performance levels, this needs to
be analyzed in the scope of the current Continuous Integration (CI) processes, with the

12

vision of integrating the findings of this thesis into the current software development
pipeline.

The central thesis focus is the performance of the DL throughput whose performance
is represented by its associated PM, this being one of Nokia’s LTE system most critical
defining characteristics that allow Nokia to differentiate from its competitors. It is essen-
tial to clarify, the data collected for the L2 software system comes from the development
processes and inside the System Component Testing (SCT) environment. The data used
to feed the proposed predictive model is limited by the tools that enable its quantified
measurements, for example, the CPU performance at the functions level is limited to the
number of registers in the hardware dedicated for this purpose. All data recollected by
execution time tests are affected to a different extent by the recording of its results, and
they are compared under the assumption that the overhead produced by the tests is the
same for every data sample.

Test results and performance related data for different releases is available from the CI
pipeline. The data comes from the SCT environment that has a different hardware con-
figuration meant to fulfill the system requirements checking multiple scenarios of usage.
The test cases from which the data will be collected have two levels, in one hand the func-
tion level, using Linux Performance Analyzing Tool (perf) (Benaissa, Bonvoisin, Feliachi,
& Ordioni, 2016) to obtaining the information of how many cycles does a function use,
and on the other hand the requirements level, obtaining information about the speed,
the rate of transfer, and other alike, from different parameters and configurations of the
system.

2

2.1

13

Research method

Design Science Research Process

This thesis consists of a state of the art review, and it finds its place in the six activities

of De

sign Science Research Process (DSRP) as methodology proposed by Peffers et al.

(2006). This methodology is best suited to research mainly done by the creation and
evaluation of Information Technology (IT) artifacts (A. Hevner & Chatterjee, 2010), this

being

the case of this thesis, where the objective is to create an artifact that adds value,

is useful, and can be evaluated. The DSRP has 6 activities represented in Figure 1 the

activi

ties consist of:

v v I I

PROBLEM IDEN- OBJECTIVES OF DESIGN & DE- DEMONSTRATION EVALUATION . | COMMUNICATION
TIFICATION & A SOLUTION VELOPMENT '
MOTIVATION n Find suitable » Observe how Scholarly pub-
What would a Artifact g context 2 ° effective, effi- o lications
Define problem 8 better artefact o S o §] cient § =
g accomplish? 5 o3 Use artefactto | ® g = ig’ Professional
Show impor- 2 2 = solve problem 83 lterate back to 23 publications
tance £ = £ =& desian a&
A A A A =
PROBLEM CEN- OBJECTIVE CEN- DESIGN & DE- OBSERVING A
TERED AP- TERED SOLUTION VELOPMENT SOLUTION
PROACH CENTERED AP-
PROACH
N— U
—

Possible entry points for research

Figure 1: Design Science Research Process (DSRP) model, taken from (Peffers et al.,

2006,

p. 11).

Activity 1. The problem identification and motivation: The problem definition is
used to atomize the problem conceptually, so the solution reflects the complexity
of the problem appropriately, this stated in section 1.1, also giving value to the
contribution provides motivation and relevance to the research and the readers.
This activity needs to be done knowing the current state of the problem and the
relevance of its solution.

Activity 2. Solutions Objectives: The objectives are inferred from the problem def-
inition and shall be stated qualitatively or quantitatively, this way the produced
artifact can be measured and if possible compared to existent solutions. For this
activity is required to know the state of the currents solutions if they exist.

Activity 3. Design and development: In this activity, the artifact’s architecture and
functionality are defined, and a first version of the artifact is developed. Know-
ing theories that can enable a solution is key to the transition from the defined
objectives to the creating of the artifact.

Activity 4. Demonstration: A proof of concept is done, for example, in a case
study or a simulation, where one assesses that the artifact addresses the problem
and going towards a solution. One needs to develop the knowledge to use the
proposed artifact effectively

14

« Activity 5. Evaluation: The measurement that needs to reflect the quantitative or
qualitative objectives defined in activity 2, this to be able to compare the evolution
of the transformation of the artifact. Measurement is necessary in order to achieve
the most efficient versions that would be rated better in regards to their ability to
solve the main defined problem.

« Activity 6. Communication: Sharing the whole process of the artifact creation, al-
lows to asses the rigor of the method, and allows other researches to build knowl-
edge upon the one generated during the whole DSRP process.

2.2 Research Questions

The research question formulation is rather particular in Design Science Research (DSR),
given its paradigm’s distinct nature. Not all of the DSR publications have research ques-
tions. Recent research found out from 104 publications, 61.5% used at least one research
question to link problem statements to their research approaches(Hoang Thuan et al.,
2019, p. 20). In the same research, the authors proposed a typology of the articulation of
different research questions mapped to the A. R. Hevner, March, Park, and Ram (2004,
p. 7) Three view cycle. This is useful to clearly state research questions related to its
location in between the interactions of DSR that enables knowledge to be built, this ty-
pology can be appreciated in Figure 2, having this in mind, the research questions for
this thesis that intend to guide the design science research process for this thesis are the
following:

Design Science Research
Application domain Foundations

Environment Build Design Artifacts Knowledge Base

2. How can we

[represent | process | 3. What prior knowledge is available

1. Which requirements | implement] artifact X? about artifact X in the KB?

components | properties] define
artifact X?

Rigor Cycle
Grounding

Relevance Cycle
Requirements
Additions to KB

Field Testing

6. What new knowledge is
available about artifact X to be
added to the KB?

5. How can we use artifact X in the 4. How can we
application domain? evaluate artifact X?

Evaluate

Figure 2: Design research genres with example research question structured inside
A. R. Hevner et al. (2004, p. 7) proposed three cycle view, taken from (Hoang Thuan et
al., 2019, p. 19).

« Main R(@): How can we implement a predictive model to fulfill the future needs
based on the quantified data collected from different sources from the LTE L2
system?

15

« R()2: What are most essential elements affecting the down-link throughput in
LTE L2 system?

« R(Q)3: How can we evaluate and present the predicted model to ensure it fulfills
the future needs?

« R(3.1: How good can function-level performance data predict and model down-
link throughput related PM?

« R()3.2: How good can tracing signals performance data predict and model down-
link throughput related PM?

These research questions are meant to guide the research of this thesis with the pro-
posed artifact goals (Hoang Thuan et al., 2019). The research question one addresses the
architecture of the process, research question two deals with the identification of most
affecting element’s relationships and finally, research question number three contains
the usability goals of the artifact, in other words, to asses if the artifact does work and it
is useful.

2.3 Cycles

The artifact proposed by this research is a system that models and analyses the possi-
ble impacts to the DL throughput with optimized SW and performance related param-
eters fine tuning in L2 SW. Following the iterative nature of design science and taking
into account its seven guidelines to manage the creation process of the goal artifact
(A. R. Hevner et al,, 2004). The artifact produced in this thesis work is the process of
gathering layered data into the creation of a predictive model, and its current state is
achieved in 6 cycles:

Cycle 1. Define the union the different quantified data that will compose a complete
sample

As the objective of this work is to produce an artifact that will be able to predict and
reveal relations between different layers of the system, using as reference the layered
benchmark approach proposed by Muller (2007) in the (still in writing process) paper
on how to characterize software and hardware to improve the software design process.
Three different types of quantified data from three layers were chosen to construct the
sample; first, the DL throughput PM, second, function-level hardware performance data,
and third, events reception and processing times.

Cycle 2. Define an architecture adapted to a continuous modeling and analysis process.

As is the importance of the demonstration of the real usability of any new created artifact
is key to its real utility, the architecture of the processes, starting from the sample collec-
tions and its storage and, ending in a prediction output, shall be adapted to a developing
environment, this meaning, that it is possible that tools, tests, the passing status from
tests and functioning procedures are unavailable for short periods of time, something
that is natural in a developing environment, this in-between a flux of modifications and
improvements attempts will inevitably, sometimes, in its evolution process, generate

16

unexpected behavior that needs to be taken into account in the design of the artifact’s
architecture.

Cycle 3. Define transformations and pre-processing for all the particular raw data, that
form a sample.

The raw data transformations are the key to enable proper performance of machine
learning algorithms and techniques. Based on previous observations by other researches
at Nokia, the first pre-processing options will be guided by this insight; then other pre-
processing options will be considered and compared between themselves.

Cycle 4. Reveal and explore inside relations from the different layer’s data by doing
several exploratory analysis.

The use of exploratory analysis is vital due to the visualization of the data, displaying
complex data high-dimensional data, in understandable human means, so the messiness
or the smoothness of data can be recognized. An adapted graphical representation allows
us to interpret data that in other cases, such as in one-dimensional graph (histograms
or bar chart for example) will be perceived as noise. Noise can be smoothed by the use
of multidimensional graphs as the scatterplot matrix, radar plot, stereo-ray glyph, and
others (Yu, 2017).

Cycle 5. Create and compare different predictive models

The automated creation of models and its comparison based on the continuous collected
and pre-processed data will provide trends information regarding the probable future
affectation of the PM in the LTE L2 system.

Cycle 6. Evaluate the models and the architecture of the whole process, start making
appropriate modifications.

In this cycle, the current state of the architecture of the whole process, the visualization
decisions, and the pre-processing transformation will be continuously assessed and im-
proved, modifying the previous cycles comparing the predictive power of the model in
regards the decision taken on the previous cycles, in other words, the decision through
the whole architecture is evaluated as a function of maximizing the predictive power of
the generated models.

17

3 Background

The background section of this thesis is divided into five parts, first, an explanation of
the LTE L2 software system, their specific properties and relations with the other OSI
model layers, second, the research of the state of the art of similar quantified software
engineering work, relevant insight coming from the software analytics domain and the
exploration of the different software techniques and frameworks that combined make
possible the model process creation and a possible better analysis and understanding of
the systems behavior, third, the revision of the machine learning techniques and algo-
rithms more adapted to the SOI from this thesis work and how they can be used to find
relations in-between the system layers and predict them, fourth and final, the explo-
ration of the most relevant data visualization methods to present the multidimensional
data used at the whole process of this thesis.

These background section touches not only one domain but instead explores relevant
papers and related domains intending to add insight or compare different approaches to
the on-going design approach for this work and possibly support the quantified software
engineering research domain.

3.1 LTE

LTE provides Internet access to mobile subscribers through the Evolved Universal Ter-
restrial Radio Access Network (E-UTRAN) and a Evolved Packet Core (EPC). the E-
UTRAN is composed of one or several evolved NodeB (eNodeB) that have the role of
Base Transceiver Station (BTS), these eNodeBs uses the relevant radio protocols to en-
able the connection of the User Equipment (UE) and the EPC (LTE, n.d.). These protocols
performed by the eNodeB are found in the three first layers of the OSI model.

The LTE systems are composed of many subsystems, and naturally, each of these has
their properties and relations in-between that affect the performance of the system al-
together. This significant number of configuration possibilities in the structure of a LTE
network instantiation creates the necessity of specific configurations simulation before
actual the systems real construction and implementation.

It is relevant to explain the purpose of L2 on the complete communication system. The
L2 layer following the OSI model architecture is in charge of providing functional and
procedural means to establish, maintain, and release data links between the network
entities, also in charge of permissions to transmit data between devices, identification
and encapsulation of network layer protocols, as well as frame synchronization and error
checking control (Zimmermann, 1980, p. 6), the L2 layer directly interactions with the
Physical-layer (L1) and Network-layer (L3) as seen in Figure 3 (Dahlman, Parkvall, &
Skold, 2011)

3.1.1 LTE Architecture

As stated in the previous section the LTE architecture consists of three main compo-
nents; first, the UE that interacts with the E-UTRAN, second, the communication flow

18

data unit layers NAS (Non Acces Stratum) IP (Internet Protocol)
L7 Application ‘g _ 1
Network Process to Application & User Traffic
- k.
0 L6 Presentation RRC (Radio Resource Control) [+
g::' Data Representatior L RRC PDUs
Lu < b a - PDCP ccmm'[(Control Traffic) .
g s .| PDCP (Packet Data Convervence
T k Protocol) -
Radio
RLC Control T Bearers
o~ [¥ -
— % - RLC (Radio Link Control)
— = -
e i Logical
o aton and MAC Control Channels
Log ssing (IP)

o MAC (Medium Access Control)
© | L2 Data Link
— < Frames Physisal Addressing L1 Config l T Transport
®© (MAC and LLC) = Channels
o : -
% L 5 . Physical Layer (Downlink: ODFMA, Uplink: SC-FDMA)

| 2inary Tre n 5 l T Physical

- Channels

Figure 3: the OSI model view by layers (Offnfopt, 2015) and the L2 Data Link sub-layers.

continuous to the EPC, then it finally connects to the external networks that compose the
internet (Dahlman et al.,, 2011), see Figure 4. These three components together make up
the Evolved Packet System (EPS), which connected to any external networks, completes
a LTE network.

The UE is a general term to refer to an end user device that connects to the network,
such as smartphones, laptops, tablets, and all the increasing number of electronic de-
vices connected to the internet following the trend of the Internet of Things (IoT). The
user’s UE connect to the LTE network by the E-UTRAN. The functions of the E-UTRAN
are to manage all radio related processes and protocols, such as security, data deliv-
ery, header compression, retransmission, and mobility management. The E-UTRAN is
made up of radio base stations; in this case, multiple eNodeBs, it is relevant to state that
the E-UTRAN architecture is flat, meaning there are no central control nodes. As Fig-
ure 4 represents, the eNodeBs connection is dine by a X2 interface, enabling handovers
through the different available nodes.

The eNodeBs are connected to the EPC by the S1 interface. This connection is split, in
one hand by the S1-user Plane (S1-u), connecting to the Serving Gateway (S-GW), and in
the other hand by the S1-control Plane (S1-c) that connects to the Mobility Management
Entity (MME). It is relevant to point out that the eNodeBs can be connected to multiple
S-GW and MME, as shown in Figure 4, but each UE connection exist only through a
single connection of MME and S-GW (Dahlman et al., 2011, p. 110).

The principal control component of the EPC is the MME; its functions are to provide
authentication and security to the UEs, as well as, keeping track of UE locations, by this
handling subscription profiles, service connectivity, and mobility and bearer manage-
ment. the component Home Subscription Server (HSS) is a database server, that contains
subscriptions and location data from the registers users, by providing this information
it supports the MME functions (Dahlman et al., 2011, p. 110) and (Piippo, 2018, p. 36).

The S-GW collects statistics and data for charging, and it acts, in one side, as the user
plane connector for the eNodeBs with both the MME and the Policy and Charging Func-
tion (PCRF), and in the other side, it connects as control plane to the Packet Data Net-

19

Sl-c/cp EPS

eNodeB SAE GW

D ((22) |1 »S-GW

External

E-UTRAN

Figure 4: High level architecture of a LTE network

work Gateway (P-GW). This relays the data from the eNodeB and the P-GW, being an
anchor whenever the UE changes its single eNodeB connection. The P-GW provides the
Internet Protocol (IP) for the UE that will identify it on the external networks; it is in

charge of information gathering for charging, traffic gating, and the enforcement of the
Quality of Service (QoS).

After the brief explanation of two of the three components of the EPC, the MME and the
HSS, the remaining component, the PCRF as its name suggests, is responsible for charg-
ing and also for the QoS. It is connected to both components of the System Architecture
Evolution Gateway (SAE-GW), the P-GW and the S-GW, keeping them informed of QoS
requirements for services and policies (Dahlman et al., 2011, p. 110)

3.1.2 LTE Radio Protocols

The L2 software is tailor-made as part of the LTE solution to Nokia’s clients. It is relevant
to explain the SOI in which the study is conducted and the predictive model addresses.

The L1 and L2 handles the LTE radio access protocol for the control plane and user plane.
The L3 also handles the Radio Resource Control (RRC). The Physical layer, Data link layer,
and the Network layer from the OSI model, as seen in Figure 3 have the scope of the radio
protocols in LTE. The protocols manage the signal flow enabling the proper and correct
connection between the UE and the EPC. Signaling for both control and user planes
means managing packet data, The user plane handles the end user IP data traffic and the
control plane handles mobility and other signaling related to connections creation and
maintenance (LTE, n.d.; LTE-Advanced, n.d.; Holma & Toskala, 2009, p. 36—-39)

To understand better the interactions of the protocols, an overall architecture can be
seen in Figure 3 and Figure 5.

+ The PDCP does IP header compressor using the standardized for mobile commu-
nications technologies header-compressor Robust Header Compression (ROHC).
It is in charge of ciphering and, for the control plane, integrity protection of the

20

[TP packel | TPpackel

PDCP, ::
Header Decompr. |

T
<TH- <— Radio Bearers — TTIT
RLC RLC
— Payload selection | ARQ Reassembly, ARQ
<1 <— Logical Channels — g
pranans, | (MRS ‘

Retransmission
|control

1 < Transport Channels —

Scheduler
Redundancy
version

scheme

Antenna and
resource
assignment

1
Antenna and 1
resource mapping]

eNodeB terminal (UE)

Figure 5: LTE protocol architecture taken from (Dahlman et al., 2011, p. 112).

transmitted data, as well as in-sequence delivery and duplicate removal for han-
dover. At the receiver side, the PDCP protocol performs the corresponding deci-
phering and decompression operations. There is one PDCP entity per radio bearer
configured for a terminal.

« RLC is responsible for segmentation/concatenation, retransmission handling, du-
plicate detection, and in-sequence delivery to higher layers. The RLC provides
services to the PDCP in the form of radio bearers. There is one RLC entity per
radio bearer configured for a terminal.

« MAC handles multiplexing of logical channels, hybrid-ARQ retransmissions, and
uplink and down-link scheduling. The scheduling functionality is located in the
eNodeB for both uplink and down-link. The hybrid-ARQ protocol part is present in
both the transmitting and receiving ends of the MAC protocol. The MAC provides
services to the RLC in the form of logical channels.

« Physical Layer (PHY) handles coding/decoding, modulation/demodulation, multi-
antenna mapping, and other typical physical-layer functions. The physical layer
offers services to the MAC layer in the form of transport channels.

3.1.3 The Testing Environment

As Nokia follows agile methodologies, the development is done in multiple small itera-
tions; the objective is to have as well structured and easy to understand code as possible.
One tool used is the Open-source automation server Jenkins (Moutsatsos et al., 2017)
enables the practice of continuous integration CI thus the process of testing can be in-
tegrated fast and efficiently into the software production pipeline. An essential goal of
the testing systems main goal is to test that the software and hardware are proper for

21

production and release. As for this research, the data is obtained performing capacity
testing a part of the SCT method. The SCT method aims to verify components correct
functionality separately, this by creating stubs or other types of simulating behavior
software objects when external interacting components are not available.

The data is obtained from the System under Testing (SUT) at the layer two level as shown
in Figure 6

Data generator

N

PDCP

Y _/

RLC

y /
MAC

System under testing \

\

Physical layer

Figure 6: SCT testing environment

3.2 Quantified Data Modeling

What is quantified software engineering? As for the words tell, it is related to quanti-
tative measurement of the application of engineering to the complete systematic cycle
of software development. The process of representation from concepts in the theoret-
ical world to quantifiable variables in the empirical, allow us to test propositions by
hypothesis and eventually obtain well-grounded empirical knowledge about the studied
phenomenon.

There is an always present gap filled with uncertainty in-between the plan and the actual
execution of any software project (Fitzgerald & Stol, 2017). There are many techniques
and approaches to assure performance; for example, one attribute often studied is how to
measure test code quality and its impact to handle issues (Athanasiou, Nugroho, Visser,
& Zaidman, 2014). There are also techniques to use Natural Language Processing to
identify technical debt (Maldonado, Shihab, & Tsantalis, 2017).

There exists not much research with a primary focus on the quantification of software
reliability and readiness (Asthana & Olivieri, 2009) where they state of quantitative cri-
teria for software readiness and the need for a systematic approach to quantifying soft-
ware goodness. The need of a System Readiness Index (SRI) and a method that presents
different criteria coming from quality and reliability data in simple metrics and visual-
izations (Olivieri, 2012), has also contributed to the definition of a systematic approach
to quantify Hardware and software(as a coupled system) goodness.

22

There is fairly recent work in the task of modeling a computer system to predict future
resource usage as well to detected anomalies, collecting present state data such as mem-
ory usage and CPU statistics, having a base assumption that the past usage of resources
influences the present and future resource usage (Schmidt, Niepert, & Huici, 2018). This
is a similar assumption to the one chosen for this thesis work. In their paper, the re-
searchers use the perf tool to sample system calls (equally as in this thesis work) and the
Linux Syscall Tracer (strace) tool, tracing tools available on Unix systems. After the data
is pre-processed, they use a Long-short Time Memory (LSTM) recurrent neural network,
creating a model that maintains a hidden current state representation of the system. The
end-to-end architecture of their process can be seen in Figure 7

Resources Stats Disk ‘
Data collection
s CPU, T 7
RAM Disk,
t
\ ‘ | CPUL
: RAM, Disk,.,
System in
state £ CPU‘*’
- R A
Trace Data; Mt*’
Trace DaltalI T D
race Data
=y Trace DataI / !
| — :
skip-
Syst(?m calls modeling N
Tracing data Trace Datan
Trace Datan

Figure 7: Example of resource usage prediction model architecture.

A particularity in their model design is the use of a representation learning approach
for their tracing data. They manage it as a vector of event representations, this using
word2vec skip-gram model (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). In this
thesis, the tracing tool is not strace but rather a tailor-made tracing tool used in Nokia.
This tool provides already the average time of each event called during a specified period
of time, also, because there is already insights observed by previous researches done here
at Nokia, the model proposed in this thesis work will aim to feed the model with those
previously identified events that affect the downlink throughput performance the most.

The domain of load testing in large scale systems is related to quantified software en-
gineering by the need to organize large amounts of data and the final goal that is an
indicator of the current state of the system, it maybe pass or fail, or more directly the
current discrete value that allegedly reflects a vital aspect of the system(this is analo-
gous to classification and regression differences). It is possible to automatically detect
performance regressions, base on the analysis of performance counters organized in hi-
erarchical clustering, this under the premise that during the test execution there would
be specific conditions that will generate clusters on the performance counters vectors
(Chen et al.,, 2017, p. 5-6). This in contrast to the approach of this thesis, where the
granularity of the samples is the joint mean values from the profiling, tracing and PM
variables, in other words, the referent axis for samples comparison in this work is revi-
sions (who reflect the modification from new code fragments to the L2 system), rather
than seconds during the execution time of each test (Javidian, Jamshidi, & Valtorta, 2019).

23

3.2.1 Layered Benchmark Approach

Measuring and analyzing the system at several levels improves the understanding of the
system performance throughput. It is known that the entire system is too complex to
understand in one single pass, therefore checking the layers or subsystems in a generic
four-layer model enables the analysis of the complexity of the internal subsystems re-
lationships (Muller, 2007), a representation of this model can be seen in Figure 8. There
are four horizontal layers, plus one lateral and parallel to the others.

« The first layer in this framework, called hardware layer, comprises all the quan-
tified data that is possibly collected from CPU performance, memory access, bus,
cache access and misses, disk read and write, network times and others alike.

« In the operating system, layer data can be collected regarding the handling of
interrupts, task switching times, resource management, process communication,
and other OS services.

« The services layer in this framework' comprehends on services build on the per-
formance of the other two layers below. These services can be, for example, net-
works access times, storage devices, database functionality, and others. This layer
depends on quantified data of throughput, execution time, CPU speeds, memory
footprint, cache usage and impact, number of interrupts and context switches, and
amount of invoked OS services.

« At the applications layer, the performance of end-to-end functions is added; this
is, as perceived by the user of the system. Once again, it depends on the layers
below plus the affectation of the end-to-end functions that, is what the final user
interacts with directly.

« Finally, the tools perpendicular layer This layer contains the affectation of linkers,
compilers, configurators, high-level generators and alike. The previously men-
tioned tools influence most other layers, typically. Quantified data that can be
collected at this level is locality and density of code, the efficiency of the gener-
ated output and run-time overhead introduced by the tools (Muller, 2007).

Ithis is the name given by Muller (2007) refers to the third layer in the proposed layered framework

24

. end-to-end
typical values function
interference
variation duration
i the Tavers senvces
Y network transfer gfk”;ﬂ;:hes
database access 0S services
database query CPU time
services/functions footprint applications
interrupt - EENE layer| |ocality
task switch kit il interrupts density
CP%J1 OS services f%';gj:&‘e task switches efficiency
cache OS services services layer| |overhead
memory - cache Y
bus duration
' footprint .
L i operating system layer
latency
bandwidth tools
efficiency (computing) hardware layer layer

Figure 8: Graphic representation of the layered benchmarking approach taken from
(Muller, 2007, p. 11).

3.2.2 Performance Measurements

In the case of the SOI to this thesis, the Nokia’s LTE L2 system, the quantified data
coming from the services layer (following the layered benchmark approach) are custom
performance measurements (PM). These measurements record fundamental properties
emerging in different contexts. It is essential to explain that there is a great amount of
PM required to be implemented by the 3GPP (3GPP 36.425, 2019), and in this thesis, only
13 PM are taken into account, these ones related to the DL throughput.

There exists similar research on how to determine the most affecting performance coun-
ters > which can be done by first removing performance counters that seem to be mea-
suring the same property of the system, this can be quickly done by checking for zero
variance in different versions, second by applying clustering techniques, in this manner
grouping the similar ones and mapping each of the resulting clusters to a system’s per-
formance model (Shang, Hassan, Nasser, & Flora, 2015, p. 18). This is going to be very
relevant to this thesis, as, with the results of the first cycle, there is a need to review the
real differences of the 13 PM, see Section 5.1.

3.2.3 Profiling Technique

Software profiling is a technique used to dynamically study the behavior of a program in
terms of frequency of the function calls or the cost of instructions with regards to proces-

2performance counters is the most common name used in the literature, in this work, the analogous
data is called performance measurements (PM)

25

sor time consumed or other hardware metrics, such as L1 cache Translation Lookaside
Buffer (TLB) misses on the CPU. Different types of profilers exist, depending on the
method used to gather data. For example, instrumentation profilers depend on special
instructions inserted by the programmer or the compiler to collect data, or by running
the code under the control of the profiler. Instrumentation profilers, who need to add
special instructions to the instruction stream, usually can affect the performance of the
system being measured, which needs to be taken into account when using such tools.

Another standard methodology of collecting data for profiling is by sampling in intervals
determined by hardware events, like a real-time clock or performance counters, in other
words, the clock or the counter is configured to cause an interrupt when an overflow
occurs, at which point the profiler will “take a sample” by recording the state of the
program when the overflow occurred (e.g., the instruction last executed). With a high
enough amount of samples, we can get an excellent approximation of which parts of a
program are more expensive with regards to time spent (if a clock is used), or hardware
events measurable by a performance counter, which can be cache TLB or cache misses,
flushes, instructions executed, missed branches on the branch predictor, et cetera. The
underlying processor of the system determines the performance counters available.

Sample-based profilers can usually get measurements for an executed program by having
a negligible effect on the performance to be measured since most of the time; no other
code is being executed. A reasonable sampling period allows the program to execute the
same way as usual up to the point an interrupt occurs in order to take a sample. Some
inaccuracies in the data measured can still occur since the interrupts can be delayed
sometimes, or there can be sections where interrupts are disabled.

The perf tool is based on the events subsystem of the Linux kernel, meaning that it is not
limited only to profiling, a number of other features are implemented, for example, it is
possible to use the performance counters to measure the number of instructions executed
in the course of the execution time of a user provided command. The types of counters
we can track are not limited to the hardware counters implemented by the hardware,
but we can also count the trace events declared within the Linux kernel (Molnar, 2009)
(Motakis, Spyridakis, & Raho, 2013).

In this work this sample based profiling that provides the ability to collect detail in-
formation about execution time performance of functions is essential to have accurate
data of the hardware performance at function-level, the profiling technique allows us
to do so because the processors used by Nokia in its LTE solution are able to record
up to six events, as they have six registers reserved for this function. Measuring the
revisions as they progress through time with perf allows us to obtain functions-level
high-dimensional data, which is required to construct the proposed model by this thesis.

3.2.4 Tracing Technique

One type of data, used to explore the relations from different part of the system, is the
event reception and processing times inside the L2 system. This data is collected through
the practice of tracing. What is tracing? It can be sometimes not clearly distinguished
from other forms of logging or gathering information about the execution of a software,
the information gathered is "low level” and is meant to be used by the development

26

team, not mainly by system administrators. Let us state a short definition of tracing.
Tracing is a powerful analysis technique that consists of collecting information at run
time, which provides developers or programmers with several useful data. The most sig-
nificant advantage of this dynamic analysis is that while running in real-life production
environments, it can potentially obtain almost any "low level” information on program
behavior. In exercise, the data collection unsettles the execution of the program, but the
perturbation remains reasonably small, potentially insignificant, in several cases with
the reasonable use of optimal algorithms (TracingBook - TracingWiki, 2009).

The software tracing technique can be an efficient way to record detail information about
a program’s execution, including event reception and processing times between hard-
ware and software entities. Tracing is suited for applications where the intercommuni-
cation of numerous processes with the operating system and with each other is highly
complex and where time behavior critical systems could be affected unexpectedly. For
example, such online servers with many interactions between several cooperating pro-
cesses, embedded real-time systems controlling traffic and autos in a Fifth Generation
Cellular Network Technology (5G) enabled city or telecommunication systems and its
interaction with cellular phones. Tracing has proven to be very efficient in multi-core
systems mainly. It is used by developers to face problems whose resolution requires un-
derstanding interactions between all layers of a complex system, including third-party
products such as hypervisors, OSs, virtual machines, system libraries, and applications.
These layers might also be running in different hardware, like general-purpose CPU or
DSPs, and be written in completely different programming languages. Much problem-
atic behavior from complex systems only arises when hardware and software interact
under real and dynamic workloads; In such situations, a tracer is a tool that can help a
great deal to the proper identification of the issue (Toupin, 2011).

Tools for data analysis meet the challenge of staying interactive while managing vast
amounts of data. Even within a compact binary form, traces might be as significant as
10 gigabytes and more, this often exceeding the amount of readily available RAM; thus,
they can not be loaded into the memory. Whenever a user zooms into a given region
of any such trace, this could take some time for all the i/0 and calculations required to
obtain state information. A way to address these problems may be to read the complete
trace once it is opened in order to pre-calculate a number of desirable properties and
values.

A large number of different analysis may be performed on a trace. Examples include
computing the causality links between events (thus finding the time-critical path be-
tween two events), or searching for specific patterns (excessive swapping, spurious time-
outs, overloaded disk subsystems).

One crucial step of any data analysis technique is how to visualize the information con-
tained in such data, in this case, of the traces. The preprocessing of the tracing data
before its representation can be done with the use of several tools, such as filter, to se-
lect the events shown based on their type and the value of their fields. Visualization
methods for traces often have event list to easily display a table of events, similar to a
database viewer ; control flow view to display the state of various objects, i.e., process,
disk, CPU and alike, in function of time, in a way similar to a lot of Gantt graphs; his-
togram of events, number of events from a specific type, value of a field over a particular
type of event, graph showing, for instance, the amount of disk read requests through
time; as well as, statistical information like the total number of events by type, average

27

and duration (TracingBook - Tracing Wiki, 2009).

In this work, tracing provides the ability to collect detail information about event recep-
tion and processing times between the different components of the system, this provides
accurate data of key relevant processes for the correct execution and fulfillment of func-
tion and non functional requirements, the tracing technique allows us to do so because
Nokia has implemented custom hooks in the L2 software, and using its own tracing tool,
it allows us to obtain event-level high-dimensional data, which is required to construct
the proposed model by this thesis.

An excellent visualization technique to understand easily with ease, both profiling and
tracing data is flame graphs, for example, such as Figure 9. In this tailor-made graph,
a stack trace is displayed in columns of boxes, in which each box represents either a
function or an event. The y-axis presents the stack depth information, showing the
hierarchy of parent and son events, the top box shows the function or event that was
being executed at the moment of taking the sample. The x-axis of flame graphs does not
represent time but rather the frequency of meta-functions or events that were found in
the stack traces at the moment of sampling, in other words, the wider the box, the most
frequent the function or event occurs in the system (Gregg, 2016, p. 7-8).

Flame Graph

(]| cleanup_redi..
|' B execute_builtin_or_function
||| execute_simple_command

Figure 9: Flame graph example taken from Gregg (2019) stack trace visualizer github
repository

3.3 Machine Learning

Machine learning is a broad domain, and it can be divided into three types of learning
methods, supervised, unsupervised, and reinforcement, they differ from one another by
the nature of their inputs and outputs. In supervised methods the input and output is
given by a human, in this sense, the machine is shown the outputs of specific inputs, in
order to eventually predict a not given output from a new input (this will be the method
used in this thesis work), In unsupervised methods, the machine only is feed with some
inputs and its output is used if its satisfactory, and finally, in reinforcement learning,
similar to unsupervised learning, the machine only knows some "human” inputs (pro-

28

5 0 »

vided by a human) and then generates it’s machine” output, but in this case, as the name
suggests, there is a reward or punishment for these generated outputs, with the goal of
guidance to the desired solution, neural networks are a typical example of a method that
can be used for reinforcement learning (Kojouharov, 2019).

A very straight forward to categorize the most common methods and algorithms is once
again in three categories, Basic regression, cluster analysis, and classification. In the
basic regression category, there is linear and logistic® regression, both methods using
supervised learning. In the cluster analysis category, there are many methods; for ex-
ample, the k means the method and spectral clustering. Both can be implemented with
supervised or unsupervised learning. Finally, and the most relevant category for this
thesis, the classification (also able to do regression) category contains; all different types
of neural networks, K-neighbors, decision trees, random forest, Support Vector Machine
(SVM) and Bayesian methods (Kojouharov, 2019).

As the domain of machine learning is too broad and is not so relevant to enter in details
for the objective of this thesis, the most critical parts and the most relevant algorithms
to be used to create the predictive model will be explored next.

3.3.1 Feature Selection

One crucial part of machine learning in data science is feature selection. Features can
be crucial to help a model have good predictive power, and at the same time, if selected
poorly they can affect the model’s predictive power in a great deal (Chandrashekar &
Sahin, 2014, p. 1-2). Feature selection goal is, as its name suggests, to select the optimal
subset of variables, reducing noise from irrelevant variables while achieving accurate
predictions as output (Guyon & Elisseeff, 2003).

The primary motivation to the study of feature selection and reduction is the fact that the
evaluation of all subsets of n variables is of the size of (2") and this becomes an NP-hard
problem, as the number of features grows, which is often the case (Chandrashekar &
Sahin, 2014). One can categorize the feature selection methods broadly into three, filter
methods, wrapper methods, and embedded methods.

3.3.1.1 Filter Methods Filter methods use variable rating methods to choose variable
by ordering as the main criteria. Rating methods are often used for practical applications
due to their easiness and effectiveness. The rating of variables is premised on a suitable
rating measure as well as a threshold used to delete variables underneath the thresh-
old (Chandrashekar & Sahin, 2014, p. 17). For example, one of the most straightfor-
ward ways to filter irrelevant variables is removing features that do not meet a variance
threshold, in other words, variables that do not change much through different samples
will most likely be removed, given that they do not provide much information. Standard
rating methods are Pearsons correlation coefficient criteria and Mutual information. It
is easy to understand by using as an example a Bernoulli random variables variance to
decide which features to eliminate,

Var[X] = p(1 —p) (1)

3This in contrast to linear regression, the output variable is categorical.

29

In the Formula 1, one can replace the probability p for the percentage of target variance
to keep considering the feature in the model. By choosing p = 0.7, in this example, all
binary features that have a probability over 0.7(1 — 0.7) of being one of the two binary
states, will be removed from the data. This could be interpreted in other words as; the
feature was many times the same value, ergo, did not provide much information.

The most used filtering method could arguably be the Pearson’s correlation criteria used
to detect linear dependencies from the input variables towards the output one, in the For-
mula 2, one can obtain a R(7) value for every input variable z; by dividing the covariance
cov() of the input and output variable, by the square root from the multiplication of the
variance var() of the input and output variable, z; and Y (Chandrashekar & Sahin, 2014,

p. 17).

cov (z;,Y)
V/var (z;) * var(Y)

R(i) = ()

Another standard filtering method is the Mutual Information (MI) criteria, measuring
variables dependency, using Shannon’s Information Theory entropy definition shown
in Formula 3.

Zp) log(p (3)

This formula represent the uncertainty of the output variable Y.

H(Y|X) = ZZp:cylog (ylz)) (4)

Adding another variable to the system represented by Formula 4 and checking what is
its impact towards the uncertainty of Y reveals a delta that can be calculated by Formula
3,

I(Y, X) = H(Y) — H(Y|X) B

This will provide the MI between two features or variables, X, and Y. It will be 0 if the
variables are independent and more significant than 0 if they provide information about
the other, ergo, having dependency relationship (Chandrashekar & Sahin, 2014, p. 18).

The benefits of filtering methods are that they are computationally fast and prevent over-
fitting and are demonstrated to operate well for specific datasets. Filter methods do not
work on biased learning algorithms that are equal to altering information to suit the
learning algorithm. Salient features which are less informative on their own but are
informative once paired with others could be thrown away using Pearson’s correlation
and MI criteria; and also, there is no perfect technique for selecting the size of the feature
space (Chandrashekar & Sahin, 2014, p. 18).

3.3.1.2 Wrapper Methods In comparison to filter methods that use feature-relevance
criterion, Wrapper methods operate on classification to obtain a good feature subset,
they use the predictor as a black box and predictor performance to assess the variable

30

subset as the objective function. Because evaluating 2N subsets becomes an NP-hard
problem, suboptimal subsets are found using search algorithms that heuristically find a
subset (Chandrashekar & Sahin, 2014, p. 18). known wrapper algorithms are: the se-
quential selection kind, Sequential Feature Selection (SFS) and Sequential Floating For-
ward Selection (SFFS), and the Heuristics search algorithms such as the Genetic Algo-
rithm (GA) (Goldberg, 1989).

Sequential selection algorithms are from iterative nature, either they start with an empty
set adding one by one the features that achieve the highest objective function value,
or they can start by having the complete set of variables removing features based on
the lowest decrease in the performance of the predictor, such as Sequential Backward
Selection (SBS). The disadvantages of sequential selection algorithms is the production
of nested subsets, this can happen due to the unconditional forward inclusion, possibly
including two high correlated variables. Nevertheless, there have been modifications to
the approach to deal with this issues such as the Asaptative Sequential Forward Floating
Selection (ASFFS) algorithm, which in theory should produce better results than the
common SFES, but in practice, there is evidence that suggests, these results are dependent
on the data distribution and the objective function (Chandrashekar & Sahin, 2014, p. 19-
20).

The main disadvantage of Wrapper methods is the number of calculations necessary
to achieve a subset of features. The predictor produces a fresh model for each sub-set
evaluation, i.e., the predictor is trained for each sub-set and evaluated to extract the
accuracy of the classifier. If the amount of samples is vast, much of the execution of the
algorithm is spent training the predictor (Chandrashekar & Sahin, 2014, p. 20).

3.3.1.3 Embedded Methods The embedded methods are combinations of the filter
and wrapper methods. These methods have the aim to increase performance in the task
of reclassifying multiple feature combination subsets done in wrapper methods, incor-
porating as part of the training process the feature selection.

In contrast to filter and wrapper approaches, in embedded methods, the learning part
and the feature selection part cannot be separated, the structure of the class of functions
under consideration plays a crucial role.

Embedded methods comprehend; Forward-Backward Methods, forward with Least Squares
and Decision Trees. Backward weight based, Recursive Feature Elimination (RFE). For
this thesis is relevant to go deeper to feature selection by embedded methods as an op-
timization problem. A linear model can be interpreted as a result of the minimization
problem represented in Formula 6.

m

mianL(W-xk + b, y) + CQ(w) (6)

w,b m
k=1

In this equation, L (f (xx) , yx) represents the loss function from f(x) = (w-x+b) at the
point fo training (X, yx). And the penalization term Q(w) gets an empirical trade-off
balancing coefficient C'

The empirical loss can be calculated in different manners, using LP Lebesgue spaces

31

metrics®, for example:

1. The ¢, hinge loss

Ui hinge (W-x +0,y) :=[1 —y(w-x+b)[4 (7)
2. The /5 loss
b(w-x+b,y) = (W-x+b—y)’ (®)
3. The Logistic loss
C1ogistic (W - x +b,y) :=log (1 + e_y(w'x+b)))

Likewise, the penalizing them Q(w) from Formula 6 can be understood, for example, as:

1. The ¢y norm
Q(w) = lo(w) (10)

the function /;(w) contains the number of non-zero coordinates of w.

2. The ¢; norm

Qw) =Y |wil (11)
i=1

In this thesis, one important method used for feature selection is the embedded method
Least Absolute Shrinkage and Selection Operator (LASSO). LASSO technique tries to
solve the minimization problem represented by Formula 12, who uses the /5 loss function
and a constraint on the parameters of the /; norm.

min > (WX, — yi)° (12)

w,b

NE

1

i

This method being subject to > " | |w;| < 09, and thus, the use of this /; norm constraint
produces a sparse model (Lal, Chapelle, Weston, & Elisseeff, 2006, p. 14-17). This method
gave the best results regarding feature selection, allegedly because it produces a sparse
model, and moreover, it has been known empirically to be very effective.

3.3.2 Regression

Supervised machine learning algorithms, i.e., using parts of known datasets as training
data, can solve either a regression or classification tasks, the difference between these
two tasks relies on the estimation from the predicted variable; in regression the output

4P spaces are an important class of Banach spaces in functional analysis, they are used in many fields
due to their key role on analysis of measure and probability spaces.

32

variable is numerical or continuous, in comparison to a classification task where the out-
put variable is categorical. Having this in mind, in this thesis work, the output variables,
the PM are continuous, so the algorithms explored solve regression tasks.

Various techniques can do regression, it can be done by SVM, by neural networks, re-
gression trees, gradient boosting, k-nearest neighbors algorithm and many others. it is
also possible by “simple” linear regression that consist of a simple model where given
the point of an independent variable and one dependent variable, in other words, dots in
a plane, the task of regression is to find a straight line where the total vertical distance
from all the dots in the plane to the straight line is the lowest possible, meaning that with
this line, one could predict the value of the dependent variable value of a given new value
for the independent variable. This being a straightforward and basic explanation of re-
gression, for this thesis it is relevant to explain the LASSO method for regression, this
because LASSO method reveals handy information about the estimators and its influ-
ences on best subset selection (Tibshirani, 1996; Kim, Koh, Lustig, Boyd, & Gorinevsky,
2007; Friedman, Hastie, & Tibshirani, 2010), especially relevant for this thesis.

3.3.3 Clustering

The two algorithms mentioned in the introduction to the machine learning background
were K-means and spectral clustering. The K-means algorithm works by creating clus-
ters of data separating samples in a given n number of groups of similar variance; it can
be seen as solving the minimization problem of sum of squares between the clusters.
The algorithm is known to scale appropriately to a large number of samples, and it has
been used in many domains (Arthur & Vassilvitskii, 2007).

Spectral clustering produces a low-dimension embedding of the affinity matrix among
samples, accompanied by a K-means in the low dimensional space. It is especially useful
if the affinity matrix is sparse. It works properly for a small number of clusters but is
not advised when handling many clusters (von Luxburg, Belkin, & Bousquet, 2008).

3.3.4 Neural Networks

The concept of neural networks uses various analogies from biological neural networks,
that is where they got the name from, in reality, a neural network refers to any layered
connected structure of networks, They are very popular on the machine learning field
because they have proven to be effective in various tasks. The distinction between a
"normal” neural network and a deep neural network relies on the number of hidden
layers.

What is a neural network?, it starts by the fundamental block called perceptrons (the
analogy of a neuron), when connected these compose hierarchical models also known
as neural networks as seen in Figure 10. The key to the learning in neural networks
is backpropagation (LeCun, Bottou, Orr, & Miiller, 2012; E. Rumelhart, E. Hinton, &
J. Williams, 1986), and gradient descend techniques, where the internal states of the
neurons are punished or rewarded (by supervised learning) propagating from the output
layer and through all the hidden layers, in this way updating and approaching their
values to the desired output of the model.

33

In this thesis work, the Multi-Layer Perceptron (MLP), a neural network with many lay-
ers, and with back-propagation provide outstanding results. The MLP is a supervised
learning algorithm that learns a function by training on a dataset. Given a set of fea-
tures and a target, it can learn a non-linear function approximator for regression. It is
characterized for having one or more non-linear layers between the input and the output
layer, called hidden layers.

Hidden

Input Q
/

// - X"

/////-Qf
Sa

Figure 10: Classic representation of a neural network with one hidden layer,

Output

2

X

In neural networks and even more in deep learning, there is the problem of over-fitting.
What are under-fitting and over-fitting? As their names suggest when a network is
trained "too much” it may risk just memorizing the inputs and not being able to predict
the output of new given input accurately. So under-fitting is the opposite situation,
where the network does not have enough information to predict accurately. Techniques
as adaptive learning rates, batching, and regularization is used to prevent overfitting.

Sequence modeling creates models based on samples that have multiple data points, for
example, the PM of a specific revision in a software project, a more general example could
be the problem of self-parking car, the instructions to achieve the desired outcome need
to be modeled based on all the combination of previous movements. Sequence Modeling
may be relevant to our quantitative data approach because it is meant to model a data
set of many examples with the particularity that each example has multiple data points
assuming that these data points interact with each other in complex ways, This could
be the case if one assumes that the past states of the system influence the present and
the future of itself, which, after some experiments and reflection, may not be the most
accurate way to understand the LTE L2 software system, it is correct that its components
are highly related, but the measurement of one point in time probably doesn’t affect the
next measurement.

3.4 Visualization technology

The visualization of multivariate data is a complete ongoing field of research counting
on different applications, luckily, there exist environments that facilitates and simpli-
fies the data science work by a great extent, in this thesis, all code is done in python to
processes the raw data, as well as for the data exploration and graphical representation

34

of the results, the later is done in jupyter notebook’, the web-based interactive compu-
tational environment, using Python as programming language. this choice reflects on
the flexibility of re-running individual code snippets, which allows agile testing of ideas,
(i.e., new graphs ideas, models, feature selection algorithms, etc.)

1 lot
| \

b
wd /

—

o

javascript v -
g T / Matplotlib

P _— L \ bgplot _—
ipyleafle e L.
J RYENIECIS altair
., S

| - |

~

_— seaborn
oo B e =

\

Figure 11: adaptation the Python Visualization Landscape slide from VanderPlas (2017),
taken from (Rougier, 2019).

I Vellowbrick
\ \
agpy scikit-plot

As python is the primary programing language, the task of choosing the most adapted
visualization technology will be determined by coupling level from other essential li-
braries used for handling the data. The excellent landscape overview of the coupling
level from python visualization related libraries done by VanderPlas (2017) can be seen
in Figure 11. We can observe how libraries work together and how close they are related,
taking into account that Pandas® is the main library choice to handle the data processing
and transformation, the natural starting point to explore would be all libraries related to
matplotlib.

There is a sample of a scatterplot matrix done with both libraries, the one done with
seaborn library in Figure 12 and the one done with plotly in Figure 13. The decision
relays on balance between more interactivity and easy usage from plotly compared to a
more stable, well known and mature library as matplotlib

Shttps://jupyter.org/about
Shttps://pandas.pydata.org/

35

uuuuuuu

- /\ / / w pt gt et

EEEEEEEE
T
AN A 8 A I S
TEEEEEEE
EEEEEEEE
1141117
BEEEEEEE

‘‘‘‘‘‘‘‘

aaaaaaa

Figure 12: Example of a scatterplot matrix with regression line using seaborn

The main library in which the visualizations are presented is seaborn’, this decision was
made by the following reasons:

« Itis based on the well known, fast, and well documented 2D plotting library mat-
plotlib®.

+ The high coupling it was with Pandas, which is the main library used to handle
the data

« It is user-friendly and with very few code (in comparison to for example bokeh), it
creates very aesthetic appealing graphs.

« It contains a vast functionality to create multiple graphs, and it is simple and very
well documented.

"https://seaborn.pydata.org/
®https://matplotlib.org/

36

Scatterplot Matrix (SPLOM) for Diabetes Dataset
Data source: [1]

T 15-

E 10 :

g ! : :
3 I H :
o 0- . : -

.
H :
g H H
E H i
(]
b - . - - -
E T Toams 1 ﬂ:’,!-. - o ¥y, o . rdad e
: : %ﬁﬁ byl Pl B GGl
o i H . L o R ra
5 - RS "33'. Ty g P e
2 ' N - Y bHA
£
= [— [[— ascanin ro— .
@
@
c
= . . . i P v
z a3t . i - e, o0 S . —t
z PR sOpGEs i e 0)
c . : .‘%] -éf.lv?- . . ¢ BT .
3 i3 . o . B e o
E e g e e ad bells
3 i oS Ny e Blr v Lt
2 sied le. e . fdRe. i,
S8 A B X O TR &
PR L N - H S H A s ans *
sz, o ° : At i > . e k.
= Tt P o ST REL AN : I &
s . 5 LS . HEa . s - g
= i "‘»ﬁ"% LI o BB oA sy %ﬁ ol
c
2 . - - -
% - l. nF. I.. .qn
g e 4 " . e
= i s Bl Bl
z n N 2 . i
2 PoCuEERL. fnEsn o 0 ﬁd%r
o
1 v oy - - - i
o i e o a— fane .
o o L gmh H e |
= : "G H e
A . e L
PR, e ShEiert . i
0 530 100 0 50 100 0 500 1] 20 40 60 80
Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabPedigreeFun Age

Figure 13: Example of a scatterplot matrix using plotly taken from (plot.ly, n.d.).

The drawbacks or compromises from this choice, are in interactivity possibilities from
the graphs, it is clear, that new promising libraries as plotly’ can create interactive graphs
with great flexibility and simplicity, it can be to a great extent much slower than mat-
plotlib or bokeh. Also with the current choice of matploblib based library seaborn, it is
possible to add interactivity with some effort using mpld3, which is a comprehensible
compromise for a library that is fast and easy to use.

*https://plot.ly/

37

4 Model Creation Process

Following the DSRP, the second activity addresses the question What would a better
artifact accomplish?. In the case of this research, the question to address is: What would
the improved predictive model accomplish better than the other various testing protocols
and tools Nokia has today running at the Research and Development (R&D) level?

The expected benefits of this new artifact are a better estimation of the affectation re-
garding DL throughput of the system before committing a new change of code to the
production branch. The evaluation of this better estimation is not to be compared, yet it
would provide another estimation on top of the ones already inferable by all the testing
practices are currently done at the R&D process.

The overall design for constituting the proposed approach can be seen in Figure 14, the
process starts by the data recollection, the data pre-processing, the exploratory analysis
and finally the model creation, each of these steps will be explained in detail further on.
The process is designed to allow a continuous integration of a new selection of most
relevant data at the pre-processing step; it also needs to be flexible to the fluctuation in
the availability from some tools in a development environment.

Data Recollection Data Preprocessing
! Greproces opt, Opt,,
preprocess Opf, Opt,,

- traces

preprocess opt, e ort,
PM

.. preprocess Opt,
functions ort; 4

- preprocess

v v v v v v v

traces ort, ort,
svn PM FP Trace PM FP Trace + . Y
data data data data data data data | . Test configuration B

Joint Joint

Complete sample
p P Data, Data,

Explorative Analysis N ////\\/ Model Creation
3

4
Correlation analysis N

e
ter

Figure 14: Predictive model creation process approach, overall architecture.

The architecture represented in Figure 14 enables a continuous modeling and analysis
of different system properties, and is it the current outcome of the Cycle 2 (2.3) of this
DSR process.

38

4.1 Data Recollection

The data collected using the existing environment for SCT is to be used by gathering
details such as the SW release, the revision, the information about the specific software
and hardware configuration, in order to eventually create a data trend.

The preparation of the data is essential prior to its analysis, The data used for in this
work comes from three different levels of abstraction, all related by coming from the
same SUT; The first level data comes out of the tests results from the throughput related
measurement indicators; The second level data belongs to the performance test results at
individual function-level performance in the L2 software obtained by profiling using the
perf tool. Moreover, the third level data is gathered from the results of the tracing test;
this being event-level data contains information about resources and time used during
the event calls.

There is a need to pre-process the relevant data from the test results and to prepare it
for the desired analysis. To do the prepossessing, Python with pandas and Hierarchical
Data Format 5 (hdf5) library was used to processes and filter fast and easily the data and
to compress the results of the pre-processed data to maintain a controlled size from all
the data collection process.

4.1.1 Data-flow Process

The processes of collection the quantified data from the three different layers is done by
running three times each of the two test suites selected for the study, having a total of
six test runs per the software revision. The script used for the axiomatization of the test
runs was designed to obtain as many data as possible. Also, it is executed continuously
as soon as a new software revision is available. The decision of gathering the test results
by three separate test runs, using on each of those runs specially designed tools, was
because such tools are also part of the development processes. Thus they are likely to
fail for short periods, this being normal for systems under development. Taking into
account this possible intermittent availability of the tools, the separation of the test runs
will permit that in some cases at least the partial recollection from the full six tests
samples.

This prompt a need to deal with absences of some system layer’s data samples, such
revision samples that are not complete then will not be used for the model creation, but
will indeed enrich the exploratory analysis of the pre-processed data.

The outcome of Cycle 1 (2.3) of this DSR process is represented in Figure 15. There are
two different test scenarios where the data is collected, these were selected to compare
different hardware design, these two test configurations work with a multiple eNodeB
hardware architecture designs, and they differ in the number of eNodeB pools, as well
as the objectives of the test. They were chosen as a starting point for this thesis work,
and to compare the difference between the samples from one another.

39

Data Recollection
1

,I Software system repository I
Collect New ’
r —

-
-,

A SUT

-
, ~

e . Test configuration A v Test configuration B
P
new SW Profili Tracin, ili Traci
revision P. measurements rofiling ing Performance Profiling racing
test test test measurements test test
svn PM FP Trace PM FP Trace
data data data data data data data

Complete sample

Figure 15: First Step, Continuous Data Collection.

Each entity in Figure 15 is color mapped to each layer of the system, following the layered
benchmark framework from Muller (2007); blue color is assigned to PM that represent
the service layer of the system, green color is assigned to the function-level profiling
data, that represents the hardware layer of the system, and finally the orange color is as-
signed to the event-level tracing data that for this works represents the operative system
or middleware layer of the system.

This step recollects all the raw data coming from the test runs, saving them by date in
a database, and ready to be fetched in the data preprocessing step to generate a dataset
from different features joined by revision number.

4.1.2 Automating Data Collection

In order to have better predictive power, a model requires more historical data points,
meaning the proper collection of various tests results during the evolution of the de-
velopment needs to be efficient in the number of tests runs. An always ongoing script
checks updated the software repository looking for a newer revision as the one from
the last recollection data. This goes with the principle of CI, thus creating an automated
continuous new revision data collection.

4.2 Data Pre-processing and Filtering

The organization from the different preprocessing options can be appreciated in Figure
16, after the raw data is stored in a joint database, the pre-processing data functions can
access and transform the data, always maintaining the raw data, this at least during the
exploration for the best data transformation. As seen in Figure 16 for each layer: down-

40

link performance measurements, function-level profiling data, and event-level tracing
data. Different pre-processed data outputs are generated and equally stored, in order
to be used by a continuous exploratory analysis or to be joint to start a model creation
instance.

Data Preprocessing

2
preprocess Opt, . Optn
PM
preprocess Opt
" functions Opt, Pl
preprocess Opt
- traces Opt Pty
Test configuration A
preprocess Opt, e Opt,
PM
. preprocess Oopt Opt
functions Ph m
"~ preprocess Opt
traces Ort, 4
y
Test configuration B
Joint Joint
- Data, Data,

- %

Figure 16: Second Step, Continuous Data Pre-processing.

This organization of the data allows for the maximum flexibility regarding missing revi-
sion samples, or eventual errors in the sample taking test executions. This way, the data
from any of the three layers, even if the other data is missing or corrupted, can be used
to the exploratory analysis with linear regression, to be done for each layer.

First, the joining process from all the samples horizontally by the revision is automated
to start having some descriptive statistic from the layer divided dataset, that will take
part in the exploratory analysis.

In this step, the three preprocessing options were implemented for the function-level
data, two for the event-level traces, and only one the down-link throughput PM.

For the down-link throughput PM data the following pre-processing was done by joining
all the 13 PM values by PM names, taking into account that these thirteen PM measure
related down-link throughput performance characteristics multiple times during the test
run. The outcome dataset could be represented as the following matrix; pm meaning
performance measurement, and n the number of different revision from the sampled
function-level data:

pmoo pmoe1 ... P12

pmio pmii ... PMii2
P = .

pPmno pmn,l <o PMp a2

For the function-level data the following pre-processing was done:

41

4.2.1 Function-level Pre-processing Options

the first preprocessing option was to join all the functions by HPC events, these were
six different events that the hardware allows us to record, so the outcome data could be
represented as the following matrix; he meaning hardware event, and n the number of
different revision from the sampled function-level data:

he(]’o h6071 h€072 h€0’3 h€0’4 h€0’5
h6170 h€1,1 h61’2 h€1’3 h€174 h6175

h€n70 h€n71 h6n72 h€n73 h€n74 h6n75

the second preprocessing option was made by joining all functions by hardware event
and core, into one value, in other words the columns from hardware events and core were
dropped, and then the common function names values were added up, so the outcome
data could be represented as the following matrix; f meaning function, n the number of
different revision from the sampled function-level data, and m the number of common
functions through all revision samples:

foo foi o fom
F9 — fl.,O].Cl,l S fl,m
fn,O fn,l s fn,m

the third preprocessing option was made by letting values be combinations of func-
tions name, hardware event and core, then only the combination values that existed in
all revision samples were joined together so the outcome data could be represented as
the following matrix; fhe meaning function hardware event and core, n the number of
different revision from the sampled function-level data, and p the number of common
function hardware event and core through all revision samples:

fhe(),o fh€071 Ce fheo’p

he he ... fhe
3 f ‘1,0 f 1,1 fhei,
fheno fhent ... fhen,

It is important to state that /' is smaller than "2, F'2 being smaller than F'3, also that
m << p, in other words, the more high dimensional data is generated by preprocessing
option three and is represented by F'2 matrix.

4.2.2 Event-level Pre-processing Options

For the event-level data the following pre-processing was done:

the first preprocessing option was to filter four events that had been marked as of interest
due to experts advise, the outcome dataset could be represented as the following matrix;

42

se special event, and n the number of different revision from the sampled event-level
data:
86070 86071 86072 86073

S1,0 S€1,1 S€i2 S€i13
E = .

5€n0 S€n1 S€na S€n3

the second preprocessing option is similar to the second function-level pre-processing
option, it is done by joining all event times by event name, then only the event names that
are common to all revision samples remained in the dataset so the outcome data could be
represented as the following matrix; e meaning event, n the number of different revision
from the sampled event-level data, and m the number of common functions through all
revision samples:

€00 €01 --- €om

€10 €11 --- €1m
E2=| .

€n0 €n1 --- Enm

Again it is good to state that matrix £ smaller £'2, so the more high dimensional data is
generated by preprocessing option two.

The creation of different pre-processing options is done iteratively and are evaluated to
previous options to assess their usefulness, this in the style of DSR. These are the ones
created at the moment of the writing of this thesis.

As one can observe in Figure 16, that all the preprocessing option can be combined to
construct a predictive model that will help asses which combination of options gives the
better results, this implies 11 possible combinations at the moment:

.P+E
. P+ E2
. P+F
. P+ F2
. P+ F3
- P+F+E
P+ F24+E

P+F3+FE

P+ F2+4+ E2

P+ F3+ E2

43

These different pre-processing options from raw data and its combinations are the cur-
rent outcome from the Cycle 3 (2.3) from this DSR process.

In the next part of the chapter, Only details from the data pre-proceed in the combination
P+F+E will be presented, this due to the low dimensionality of the data on this pre-
processing options, allowing a more accessible presentation of the datasets.

4.2.3 Down-link Throughput Performance Measurements Data

The PM coming from two different test configurations chosen by experts, these mea-
surement record key properties emerging at the different context where the down-link
throughput is affected. It is important to that these PM are meet as they are defined in
the requirements from the 3GPP (3GPP 36.425, 2019).

As one can see in Figure 15 the PM results are collected from the SUT in the test envi-
ronment, in the two different test configurations, always in the same revision or state of
the system.

After the data collection and "vertical union” we can observe basic descriptive analytics
from the PM from test configuration A in Table 1. likewise the basic descriptive statistics
from test configuration are found in Table 2.

Table 1: Descriptive statistics from the test A PM dataset.

A B C D E F G H I J K L M

count 2.01e+02 2.01e+02 2.01e+02 2.01e+02 2.01e+02 2.0le+02 2.01e+02 2.0le+02 2.01e+02 2.01e+02 2.01e+02 2.01e+02 2.01e+02
mean 3.15e+10 2.46e+07 3.27e+06 4.84e+09 7.05e+09 7.09e+09 4.87e+06 3.78e+07 3.78e+07 8.52e+06 1.10e+06 4.68e+06 7.09e+09
std 2.83e+09 3.86e+06 2.93e+05 4.09e+08 8.42e+08 8.46e+08 4.12e+05 3.20e+06 3.20e+06 7.15e+05 9.34e+04 3.95e+05 8.46e+08
min 2.34e+10 1.55e+07 2.50e+06 3.74e+09 4.33e+09 4.36e+09 3.77e+06 2.91e+07 2.91e+07 6.66e+06 8.66e+05 3.66e+06 4.36e+09
25% 2.89e+10 2.10e+07 3.00e+06 4.46e+09 6.24e+09 6.26e+09 4.49e+06 3.48e+07 3.48e+07 7.86e+06 1.02e+06 4.32e+06 6.26e+09
50% 3.35e+10 2.74e+07 3.48e+06 5.13e+09 7.61e+09 7.65e+09 5.16e+06 4.00e+07 4.00e+07 9.02e+06 1.17e+06 4.96e+06 7.65e+09
75% 3.38e+10 2.77e+07 3.51e+06 5.17e+09 7.74e+09 7.77e+09 5.21e+06 4.04e+07 4.04e+07 9.10e+06 1.18e+06 5.01e+06 7.77e+09
max 3.49e+10 2.88e+07 3.62e+06 5.33e+09 8.18e+09 8.22e+09 5.37e+06 4.17e+07 4.17e+07 9.39e+06 1.22e+06 5.16e+06 8.22e+09

In test configuration A there are 201 samples, meaning 201 different states in time where
new code has been added and modified the performance of the DL throughput. We can
observe the values are in different scales of magnitude.

Table 2: Descriptive statistics from the test B PM dataset.

A B C D E F G H I J K L M

count 1.92e+02 1.92e+02 1.92e+02 1.92e+02 1.92e+02 1.92e+02 1.92e+02 1.92e+02 1.92e+02 1.92e+02 1.92e+02 1.92e+02 1.92e+02
mean 5.39e+10 1.54e+06 7.86e+05 9.17e+09 1.51e+06 3.09e+07 9.20e+06 7.16e+07 7.16e+07 4.49e+06 1.75e+06 7.03e+06 3.09e+07
std 1.64e+08 1.16e+04 3.22e+03 2.82e+07 6.22e+03 8.76e+04 2.83e+04 2.20e+05 2.20e+05 1.35e+04 5.40e+03 2.16e+04 8.76e+04
min 5.35e+10 1.52e+06 7.78e+05 9.10e+09 1.49e+06 3.07e+07 9.14e+06 7.11e+07 7.11e+07 4.45e+06 1.74e+06 6.98e+06 3.07e+07
25% 5.37e+10 1.53e+06 7.83e+05 9.14e+09 1.50e+06 3.08e+07 9.18e+06 7.14e+07 7.14e+07 4.47e+06 1.74e+06 7.01e+06 3.08e+07
50% 5.39e+10 1.53e+06 7.86e+05 9.16e+09 1.51e+06 3.09e+07 9.19e+06 7.15e+07 7.15e+07 4.48e+06 1.75e+06 7.02e+06 3.09e+07
75% 5.40e+10 1.55e+06 7.88e+05 9.18e+09 1.51e+06 3.10e+07 9.22e+06 7.17e+07 7.17e+07 4.50e+06 1.75e+06 7.04e+06 3.10e+07
max 5.44e+10 1.56e+06 7.95e+05 9.25e+09 1.52e+06 3.12e+07 9.28e+06 7.22e+07 7.22e+07 4.53e+06 1.76e+06 7.09e+06 3.12e+07

In test configuration B, there are 192 samples, meaning 192 different states in time where
new code has been added and modified the performance of the DL throughput. We can
also observe the values are in different scales of magnitude.

The number of samples between both test configurations is different due to minor un-
availabilities and failing states from the test during the developing process.

44

4.2.4 Function-level data

The profiling of the CPU performance by the individual functions from the source code
is done using the perf. The results from the hardware events are counting how many
times these six registers in the CPU were overflowed and as a result, triggering an event
to be collected as a sample. This gives us information about how many times an event
was triggered over a period of time. The recorded events may have different costs in
time, for example, it is known that the L2 cache refill level can take up to ten times more
time than the L1 cache refill event.

There are six events registered who measure all functions that overflow any of the as-
signed registers to the particular event on any of the processor’s cores. This is recorded
by perf and used to make an exploratory analysis and the predictive model creation.

This six types of cache refills and memory reads were selected to be used in this study are
based on an expert evaluation of the behavior of the inspected system, who concluded
that these six HPC are likely to be the best indicators of the overall system performance.
The selection of the appropriate HPC are system-specific, and no single set of HPC could
be generalized to have useful indicators of meaningful performance change in all systems
(Laivamaa, 2019, p. 45).

Table 3: Descriptive statistics from the test A low-dimensional function-level dataset,
pre-processing option 1, matrix F'.

he0 hel he2 he3 he4 he5
count 223.000000 223.000000 223.000000 223.000000 223.000000 223.000000
mean 2400.511211 6990.502242 9669.461883 844383.053812 1678.573991 133510.183857
std 128.126446 348.543364 540.127277 11278.703736 85.052144 13401.535269
min 1982.000000 5834.000000 8079.000000 821385.000000 1194.000000 103775.000000
25% 2322.000000 6919.500000 9736.000000 836966.000000 1694.000000 128349.500000
50% 2427.000000 7075.000000 9821.000000 840033.000000 1703.000000 128608.000000
75% 2501.500000 7208.000000 9876.500000 846921.500000 1717.000000 128895.000000
max 2632.000000 7492.000000 10276.000000 880898.000000 1766.000000 177609.000000

Table 4: Descriptive statistics from the test B low-dimensional function-level dataset,
pre-processing option 1, matrix F'.

he0 hel he2 he3 he4 he5
count 179.000000 179.000000 179.000000 179.000000 179.000000 179.000000
mean 1912.441341 4646.134078 6739.256983 785195.592179 582.178771 81085.586592
std 89.808352 190.199345 197.915090 3304.728044 20.759495 1711.098703
min 1204.000000 2833.000000 4502.000000 771373.000000 311.000000 58435.000000
25% 1852.000000 4562.000000 6685.000000 782928.500000 581.000000 81104.500000
50% 1923.000000 4644.000000 6714.000000 784369.000000 584.000000 81218.000000
75% 1971.500000 4747.000000 6758.500000 787642.000000 586.000000 81317.000000
max 2055.000000 5161.000000 7024.000000 794325.000000 597.000000 81688.000000

223 samples for test configuration A were collected, basic descriptive stats are found
in Table 3. likewise 179 samples for test configuration B where collected, see Table 4.
Looking at these statistics we can start to observe that in test A all the mean values
from the he are greater than in test B, but in different proportions, he3 measure is barely
greater, in contrast to he4, where test A measures more than three times greater than

45

test B, also its standard deviation indicates that in test A this value has four times more
variability.

4.2.5 Event-level data

For every state of the system or in this case for every revision taken into account for the
study, event-level quantified data coming from the tracing tools, is collected from both
test configuration A and test configuration B, descriptive statistics in Table 5 and 6.

Table 5: Descriptive statistics from the test A event tracing dataset, pre-processing option
1, matrix E.

el el e2 e3
count 203.000000 203.000000 203.000000 203.000000
mean 76.744483 1386.062158 81.641128 184.424291
std 14.573080 367.564016 13.704333 51.838818
min 28.809000 294.625000 39.738000 34.867000
25% 78.131000 1447.381000 83.859500 200.859500
50% 81.853000 1499.481000 85.635000 201.368000
75% 82.932000 1518.996000 88.712000 203.898500
max 91.094000 1785.410000 91.412000 211.855000

Table 6: Descriptive statistics from the test B event tracing dataset, pre-processing option

1, matrix E.

el el e2 e3
count 174.000000 174.000000 174.000000 174.000000
mean 63.542218 1239.605575 63.422845 194.376075
std 13.615645 257.278557 15.212970 37.704427
min 20.427000 274.187000 33.625000 25.587000
25% 57.559750 1155.819500 55.651000 200.430750
50% 60.936000 1222.845000 56.993000 201.349000
75% 69.366250 1470.426000 60.957000 206.567750
max 82.758000 1505.817000 89.413000 216.757000

For test configuration A 203 samples and 174 samples for test configuration B, in contrast
to the function-level, the test configuration B have in general lower values for all the four
analyzed events.

4.3 Exploratory Analysis

To start the exploratory process towards a relevant solution and a contribution to the
domain of quantified software engineering, the visual representation of the data coming
from the three different system layers, the hardware, service and applications layer data
and the possible relations between both function level and requirements level test results,
is to be done using jupyter notebook (as it allows easy sketching). As is shown in Figure
17 the exploratory analysis notebooks (this means the code and the functions running

46

on jupyter notebook) have continuous access to the preprocessed data, coming from the
previous step of the architecture, allowing to generate new correlation analysis with the
aim of unveiling hidden relations in-between layers.

Explorative Analysis

3
B I Correlation analysis I

Figure 17: Third step, Continuous Exploratory Analysis.

The multi-variable scatter plot is used to see and observe correlations between multiple
variables easily, it is preferred over a correlation heat-map because it also allows us to
see clustering information as well as it allows to draw a simple linear regression line,
all this information packed in a singular visualization provide a good dense amount of
information to analyze, in these case between PMs, cycles used by functions, etc.

This is the current outcome of Cycle 4 (2.3) from this DSR process. that allows the
exploration of inside relations from the different layer’s data, results from this step of
the overall process can be found in Section 5.1.

47

4.4 Model Creation

As seen in Figure 18 following the process of joining the three preprocessed data, into
one complete frame to start the model creation part of the overall process. The idea is
to compare the recall and accuracy of the models to update the preprocessing options,
or to perform new transformations that following the DSRP allows the artifact to be
improved.

. / Model Creation

4
D —() *

PM2,
PM3,
: | ML
e D PM2, PMI,,
FP Datay PMS3, PM2,.,
— ; e PM3,
FP Dar / x :
e : Z% I\
/)/ ! Trace Daay,
() :
/(,,,/ mecnmm ‘

Figure 18: Fourth Step, Continuous Model Creation and Evaluation.

The model creation part, also takes part in a notebook, where the results of the model
can be easily accessible, the process is also designed to be able to train a model, and
save it until new samples are collected, in this way also promoting a continuous model
training, thus also a continuous model creation process.

45 Feature Selection

The feature selection is one of the key processes to discover predictive power on the
model creation process — three feature selection methods were implemented on the
model creation pipeline of this thesis.

« the Filtering method using Pearson’s correlation criteria to eliminate the features
that didn’t provide much information, see Section 3.3.1.1

+ the Embedded method using importance weight from Random Forest Regressors
(RFR), see Section 3.3.1.3

« and the Embedded method seen as an optimization problem using linear model
LASSO. see Section 3.3.1.3

48

From the three methods finally the last one was the only one which its feature selec-
tion eventually lead up to a model that had considerable predictive power, this being an
empirical research, will try further to discuss and hypothesize why LASSO performed
better than the other in the task of feature selection, with this particular kind of data,
see Section 6.1.

After the feature selection step from the pre-processing options combinations, only four
were able to continue toward the model creation step:

« P+ E, (did not pass feature selection)

« P+ E2,(did not pass feature selection)

P + F, (did not pass feature selection)

P + F2, (did not pass feature selection)

« P+ F3, (good results)

P + F + E, (did not pass feature selection)

P+ F2 + FE, (did not pass feature selection)
« P+ F3+ E, (good results)

o« P+ F2+ E2,(don’t have good results)

P+ F3 + E2, (good results)

4.6 Algorithms

The python library scikit-learn provides a handful of machine learning algorithms in-
tending to achieve a complete data science project, including feature selection, model se-
lection, data preprocessing, and many algorithms for regression (Pedregosa et al., 2011).
The algorithms used in this thesis work will be presented in this section, with a brief code
snippet displaying the parameter used for the model training. These parameters, even
though are selected by an exhaustive hyper parametric search method, the set used by
this method was discovered empirically until the best set of parameters produced stable
results. After this process, a reduced set from parameters options were chosen for each
algorithm.

This is the current outcome from Cycle 5 (2.3) from this DSR process. It presents in both
test configurations, the results of the generated predictive models using the different
tested algorithms comparing their predictive power, measured as a higher 72 score. The
choice of these algorithms was made empirically, and they were selected as a sample of
the different techniques and methods that can be relevant to construct a predictive model
in the LTE L2 software system. Also, they are meant to compose a comparison basis
for future implementation of other relevant algorithms as research keeps on advancing.
The set of possible parameters for these algorithms was also chosen empirically and then
iteratively in the style of DSR, and it was evaluated based on their r? scores.

49

4.6.1 Multi-layer Perceptron

The multi-layer perceptron algorithm, Section 3.3.4, was implemented using exhaustive
Hyper parameter search, in order to look for the best combinations of parameters, the
most important parameters identified in this thesis work are, the maximum amount of
iterations, the activation function on the neurons, i.e., relu, identity, etc. The number of
hidden layers and the learning rate.

Listing 1: Multi-layer perceptron with hyper parameters search

from sklearn.neural_network import MLPRegressor

param = {'max_iter':[160],
'activation':['relu’','identity'],
'learning_rate':['adaptive'],
'n_iter_no_change':[100],
'hidden_layer_sizes':[(1000,)]1}

model = MLPRegressor()
grid_search = GridSearchCV(model, param_grid=param, cv=7, iid=False)

start = time()

rs = grid_search.fit(in_train, out_train)

mlp_prediction = rs.predict(in_test)

print ("GridSearchCV took %.2f seconds for %d candidates"
" parameter settings." % ((time() - start)))

report(grid_search.cv_results_)

print(rs.score(in_test,out_test))

As we can see the Code 1 the use of the Grid Search with Cross Validation method, to
select the best combination of parameters.

4.6.2 K-neighbors

The idea behind the nearest neighbor methods is to get a predefined amount of train-
ing samples nearest in distance to the new data point and predict the label of these.
The number of samples is a user-defined constant like k-nearest neighbor learning rate.
The distance can be measured by any metric: standard Euclidean distance is the most
common choice. Neighbors-based methods are recognized as non-generalizing machine
learning methods since they “remember” all of its training data.

Listing 2: Kneighbors with hyper parameters search

from sklearn.neighbors import KNeighborsRegressor
from sklearn.model_selection import GridSearchCV
from time import time

param = {'n_neighbors':[20,18] ,'weights':['uniform', 'distance'],
"algorithm":['ball_tree', 'kd_tree', 'brute'l,'p':[4]1}

N_neighbors = 5
accuracies = []
model = KNeighborsRegressor (n_neighbors=N_neighbors, weights='distance')

grid_search = GridSearchCV(model, param_grid=param, cv=7, iid=False)

start = time()

rs = grid_search.fit(in_train, out_train)
kneighbors_prediction = rs.predict(in_test)
report(grid_search.cv_results_)

50

As we can see the code Extract 2, the most influential parameter found are the number of
neighbors, the weights, and the style of algorithm, taking into account that the number
of samples is not very high, brute force is an option.

4.6.3 Random Forest

In the random forest algorithm, all trees in the ensemble are built from a sample drawn
with replacement from the training set. Also, when splitting a node through the creation
of the tree, the split that is chosen is not the best split anymore. Instead, the split that
is selected is the best split among a random subset of all the features. The result of
this randomness increases the bias of the forest, but due to the averaging, the variance
decreases, compensating for the increased bias and generating a better model.

Listing 3: randomForest with hyper parameters search

from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross_val_predict, GridSearchCV

param = {'random_state':[5,10,3],"max_depth":[40,50,60], 'n_estimators': [700,500]}
model = RandomForestRegressor()

grid_search = GridSearchCV(model, param_grid=param, cv=7, iid=False)

rs = grid_search.fit(in_train, out_train)

rfr_prediction = rs.predict(in_test)

report(grid_search.cv_results_)
print(rs.score(in_test,out_test))

As we can see the code Extract 3 the most critical parameter found empirically are the
random state, the max depth of the trees, and the number of estimators.

4.6.4 Gradient Boosting

Gradient Boosting constructs an additive model in a forward stage-wise fashion; it allows
for the optimization of arbitrary differentiable loss functions. In each stage, a regression
tree is fit on the negative gradient of the given loss function.

Listing 4: gradientBoosting with hyper parameters search

from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import GridSearchCV

param = {'loss':['ls'], 'learning rate':[0.1,0.2,0.15], 'n_estimators':[100],
'alpha':[0.9,0.85], 'max_depth':[3,5]}

model = GradientBoostingRegressor(n_estimators=100)

grid_search = GridSearchCV(model, param_grid=param, cv=7, iid=False)
rs = grid_search.fit(in_train, out_train)

gbr_prediction = rs.predict(in_test)

report(grid_search.cv_results_)
print(rs.score(in_test,out_test))

As we can see the code Extract 4, the most effective loss function found is ’ls’, meaning
least squares, the learning rate in a range from 0.1 to 0.2, and the max depth from the
regression trees.

51

4.6.5 Support Vector Machines

Support Vector Machines can be extended to solve classification and regression prob-
lems; the later is called Support Vector Regression (SVR). The model produced depends
on a subset of the training data because the cost function of the model does not take into
account any training data near to the model prediction.

Three implementation of SVR, provided by scikit-learn library, was explored in the model
creation step:

The Epsilon Support Vector Regression, who has C (penalty) and epsilon as free param-
eters

Listing 5: svr with hyper parameters search

from sklearn import svm
from sklearn.model_selection import GridSearchCV

param = {'cache_size':[1000],
'degree': [40],
'kernel':['rbf','linear','sigmoid'],
'tol':[1e-3],
'C':[4.0,5.0,4.5],
'epsilon':[0.1,0.09,0.11]
}

model=svm.SVR(cache_size=1000, degree=40, kernel='rbf',tol=1le-3, C=5.0 ,epsilon=0.1)
n_iter_search = 400
grid_search = GridSearchCV(model, param_grid=param, cv=10, iid=False,scoring='r2')

rs = grid_search.fit(in_train, out_train)
SVR_pred = rs.predict(in_test)
report(grid_search.cv_results_)
print(rs.score(in_test, out_test))

As we can see the code Extract 5, the exhaustive hyper-parametric search is focused on
the choice of the kernel, the C penalty parameter in the range of 4.0 to 5.0, and the ep-
silon parameter, which specifies the epsilon-tube within which no penalty is associated
in the training loss function with points predicted within a distance epsilon from the
actual value (Pedregosa et al., 2011).

The Nu Support Vector Regression uses a parameter nu to control the number of support
vectors. Nu replaces the parameter epsilon of epsilon-SVR.

Listing 6: nuSVR with hyper parameters search

from sklearn.model_selection import GridSearchCV
from sklearn import svm
from sklearn.svm import NuSVR

param2 = {'gamma':['scale'],
'degree': [20],
'kernel':['rbf', 'sigmoid'],
'tol':[1le-5,1e-3,1e-6,1e-7],
'nu':[0.8,0.9,0.95],
'Cc':[0.4,0.5,0.6,0.7]
}

regr = NuSVR(gamma='scale', C=0.4, nu=0.9, cache_size=500)

grid_search = GridSearchCV(regr, param_grid=param2, cv=5, iid=False,scoring='r2')
rs = grid_search.fit(in_train, out_train)

nuSVR_pred = rs.predict(in_test)

report(grid_search.cv_results_)

print(rs.score(in_test, out_test))

52

As we can see the code Extract 6, the set of parameters to look for the most optimal
combination consists of, two kernel choices, the Tolerance for Stopping Criterion (tol),
the C penalty, in the range from 0.4 to 0.7, and the nu parameter, that sets an upper
and lower bound on the fraction of training errors and the fraction of support vectors
respectively (Pedregosa et al., 2011).

The Linear Support Vector Regression who has flexibility in the choice of penalties and
loss functions.

Listing 7: linealSVR with hyper parameters search

from sklearn.model_selection import GridSearchCV
from sklearn.svm import LinearSVR

param = {
'tol':[le-4,1e-5,1e-3,1e-6,1e-7],
'dual': [False,True],
'loss':['squared_epsilon_insensitive'] ,
'c':[1.0,2.0,3.0,0.8],
'epsilon':[0.1,0.09,0.06,0.08,0.07,0.05,0.04,0.03]
}

regr = LinearSVR(random_state=0, tol=1le-5)

grid_search = GridSearchCV(regr, param_grid=param, cv=5, iid=False,scoring='r2')
rs = grid_search.fit(in_train, out_train)

linealSVR_pred = rs.predict(in_test)

report(grid_search.cv_results_)

print(rs.score(in_test, out_test))

As we can see the code Extract 7, the set of parameters that are believed to have a good
combination of them regarding the performance of the model are; the tol, the choice of
solving the dual or primal optimization problem, the C penalty, and the epsilon in the
loss function.

4.6.6 Lasso, LassolLars and ElasticNet

The LASSO is a linear model that predicts sparse coefficients. It is helpful in some circum-
stances due to its inclination to favor solutions with less non-zero coefficients, reduc-
ing the number of features upon which the provided solution is dependent, see Section
3.3.1.3. It has proved to be highly effective in this thesis work, especially using Cross
Validation (CV).

For high-dimensional datasets including several collinear features, LassoCV is most fre-
quently superior. However, LassoLarsCV has the advantage of exploring important val-
ues of the alpha parameter, and if the number of samples is tiny compared to the number
of features, it is often faster than LassoCV (Pedregosa et al., 2011).

The Lasso method with Cross validation.

Listing 8: Lasso Cross Validation with hyper parameters search

from sklearn.linear_model import LassoCV

from sklearn.model_selection import GridSearchCV
from time import time

1s = list(range(3,15))

param = {"cv": 1ls, "max_iter": [3000],
'fit_intercept': [True,False],
'selection':['random','cyclic'] }

53

model=LassoCV()

grid_search = GridSearchCV(model, param_grid=param, cv=5, iid=False)
start = time()

rs = grid_search.fit(in_train, out_train)

lasso_pred = rs.predict(in_test)

report (grid_search.cv_results_)

print(rs.score(in_test,out_test))

As we can see the code Extract 8, the most changing parameter is the number of Cross
validations to try with the model, they are in a range of (3, 15).

Lasso using Least-angle Regression (LARS) algorithm, LARS is specially made for high
dimensional data, similar to forward stepwise regression. At each step, it finds the fea-
ture most correlated with the target. When multiple features have equal correlation,
instead of continuing along with the same feature, it proceeds in a direction equiangular
between the features (Pedregosa et al., 2011).

Listing 9: Lasso Lars Cross Validation with hyper parameters search

from sklearn.linear_model import LassoLarsCV
from sklearn.model_selection import GridSearchCV
from time import time

1s = list(range(3,15))

param = {"cv": 1ls, "max_iter": [1000]}

model=LassoLarsCV()

grid_search = GridSearchCV(model, param_grid=param, cv=5, iid=False)
rs = grid_search.fit(in_train, out_train)

lassolars_pred = rs.predict(in_test)

report(grid_search.cv_results_)
print(rs.score(in_test,out_test))

As we can see the code Extract 9, mostly the default parameters are chosen except for
fixed max iteration number at 1000, and the number of cross validations to try in the
model. from 3 to 15.

ElasticNet is a linear regression model trained with both ¢; and ¢, norm regularization
of the coefficients, see Section 3.3.1.3. This combination allows for learning a sparse
model where few of the weights are non-zero like Lasso, while still maintaining the
regularization properties of Ridge. Like Lasso and LassoLars, ElasticNet is done with
CV, to perform iterative fitting along a regularization path (Pedregosa et al., 2011).

Listing 10: Elastic Net Cross Validation with hyper parameters search

from sklearn.linear_model import ElasticNetCV
from sklearn.model_selection import GridSearchCV
from time import time

1s = list(range(3,15))
param = {'11_ratio':[.02,.05,.01],"cv": 1s,
"max_iter": [3000],'fit_intercept': [Truel,
'selection':['random', 'cyclic'] }
model=ElasticNetCV()

grid_search = GridSearchCV(model, param_grid=param, cv=5, iid=False)

rs = grid_search.fit(in_train, out_train)
elasticNet_pred = rs.predict(in_test)

54

report(grid_search.cv_results_)
print(rs.score(in_test,out_test))

As we can see the code Extract 10, on top of the CV parameters being tested by the
numbers from 3 to 15, the ¢, ratio, who scales and balances the penalty between ¢, and
(1. this parameter is in the range of 0.01 to 0.05 means that the penalty is mostly the /5.

55

5 Results

This chapter contains various results from the different iterations and preprocessing
choices. It first shows the Exploratory Data Analysis (EDA) from the first data pre-
processing option for the thesis, this done in the first cycles of the research and also due
that the EDA for other iterations is visually impossible taking into account the number
of features can be more than 2000. Both test configurations analysis are shown, analysis
the evolution of the features through revision time.

The results of the model creation process are presented for the two test configurations,
and for each of them the four models that were created up to the moment of the writing
of this thesis, it is meant to show the iterative evolution of the DSR evaluation process,
as every new model outperforms the others.

5.1 Exploratory Analysis Test A

It is very useful to start looking at the correlations between our three different datasets,
the PM dataset, the function-level dataset, and the event-level dataset.

revision

0.90

0.30

revision

Figure 19: Correlation heat-map from PM dataset test configuration A

56

5.1.1 Performance measurements first part

20 20
20

15 15 15

10 oo .. v
i 0.5 o 05 0 @
. . @ 0 @i -

0.0 @ 0.0
0.0
05 -05

790000 800000 790000 800000
revision revision

790000 800000
revision
20

15

1.0 . o ‘ e /’y %
o 05 "".”’_ w 05 ——"-ﬁ—/ L o5 [T} o 05 v @

0.0 0.0

-0.5 -0.5

=-1.0
790000 800000 790000 800000
revision revision

790000 800000 790000 800000
revision revision

Figure 20: First seven PM evolution through revisions in test A

The correlation heat-map in Figure 19 shows that all the thirteen PM are highly cor-
related, suggesting they might be measuring the same or very similar properties from
the L2 system, it also suggest that the predictive model has only to predict one output
variable.

Taking a deeper look at the data points of the first six PM from test configuration A,
Figure 20, in relation to it’s evolution through time, i.e their change in different revisions,
it is clear that all are sightly increasing thought time, but more interestingly it look as
they measure the same property of the system, looking at the complete scatter matrix in
Annexes .1, one can see how the regression line tend to have a perfect slope of 1.

The idea behind this visualization is that it allows to look for clusters of points, on top of
the correlation values, which can be done by a heat-map. looking at the positions of the
samples as dots enables us to distinguish where code modifications made a significant
change in the performance measurement. If we observe with detail, the organization of
the dots, for this test configuration, they have primarily 2 clusters, samples in the first
cluster are very close to the maximum value through all revisions (from 0.8 to 1.0). And
samples in the second cluster then to be close below the average value (from 0.3 to 0.5).
One can also see there are two points who are very close to 0 in all the six PM values.

The simple regression line in this exploratory analysis, can already give some predictive
power, and as trend shows that, there performance values are sightly increasing through
time, which coincides with other observations from the system already known in Nokia.

57

5.1.2 Performance measurements second part

2.0 20
20

15 1.5 15

10 A 1.0 - - 10 Y
0.0 L 00 - -
. 0.0
-0.5
-0.5 -0.5
-1.0
1.0 -1.0
790000 800000 790000 800000 790000 800000
revision revision revision
2.0 2.0 2.0 15
1.5 15 15
1.0
10 /hk’ 1.0 /‘“‘ 10 ’/’f"" %
0.5

0.0 0.0

-0.5 0.0
-0.5 -0.5

-1.0

- -1.0 -0.5
1.0 -1.5

790000 800000 790000 800000 790000 800000
revision revision revision

790000 800000
revision

Figure 21: Last six PM evolution through revisions in test A

Continuing looking deeper at the remaining six PM, the observations are similar as the
first six, all are sightly increasing thought time and its seem they are measuring the same
property of the system, looking the complete scatter matrix in Annexes 48. the slopes
of the regression lines tend to be 1.

Another remark from the behavior of the PM in test configuration A is that they have
a threshold behavior after the mean value through all the samples, in other words the
samples are never found in the range of 0.5 to 0.8, this means that the system makes the
behavior jump directly to greater than 0.8 when the samples value approaches 0.5, and
the same is through in the other direction.

Even though their graphs look very similar, £, F' and M are more similar between them
selves, and this can also be seen by the heat-map matrix in Figure 19.

58

5.1.3 Function-level data

¥
1.0 0.85
8 0.9 3 &
0.8 L 4 - 2 o o
g 0.80 > &
3 o aagee— 3 08 o —— i
2 fE°: 2 ka 2
0.6 2 o & .
] 07 # 0.75 ‘
0.4
0.6 0.70

0.2

0.6
0.36
0.975
0.5
0.35

03 \7‘}:‘*\
w -
2 g

033

0.950

0.4
0.925
<t

£
0.900

02

0.875 032

0.1 0.850 0.31

0.0
785000 790000 795000 800000 805000
revision

785000 790000 795000 800000 805000 785000 790000 795000 800000 805000
revision revision

Figure 22: Function-level dataset evolution through revisions in test A.

From test configuration A, function profiling data, is clear that different hardware events
are being trade off for others, the he0, the top scatter plot, is slightly growing thought
revision evolution time, one can observe some weak clustering formations, as the trans-
parency of the dots let us see where they are repeated most often. the graph shows how
the values of the heO were high at the first revision, then the decreased and when back
to being high by the last revision sampled in the data.

The hel hardware event by the regression line it indicates is decreasing trough time, and
there is almost no clustering formation, the points look evenly distributed. this can be
also appreciated in the diagonal from the scatter plot matrix found in the Annexes .2.

The he2 shows clearly at least three clusters, similar to he(, but in this case more pro-
nounced and delineated. The he3 is increasing rapidly and has mostly one predominant
cluster, also most of the values are below 0.5. The he4 and heb are both is decreasing,
but the former has a more variance in its values, and the later has a compact form and
less decrease by its slope.

59

5.1.4 Event-level data

1.0 1.0
0.8 0.8
0.6 0.6
2)
0.4 04
02 0.2
0.0 0.0
1.2
1.0
1.0
0.8
0.8
0.6 0.6
(32)
S 04 @
0.4
0.2
0.2
0.0
-0.2 0.0
785000 790000 795000 800000 805000 785000 790000 795000 800000 805000
revision revision

Figure 23: Event-level dataset evolution through revisions in test A.

Continuing the analysis of the results from test configuration A, the event-level data
collected by tracing. The el and e3 are both slowly increasing through-time. el shows
looks more like a normal distribution with the exception of a cluster formation by the end
where its value tends to be constant, e3 is less normally distributed and has two centers
of values in 0.4 and 0.6, this can be appreciated at the diagonal from the complete scatter
plot matrix in Annexes 50.

The event e2 is increasing and has two centers, in early revision at 0.4 and in the newer
revisions at 0.8. The event €0 is the only one decreasing in time compared to its past. A
common pattern in all the four events is that the latests revisions maintain a constant
value in all the times from each of the four events, this behavior is not seen on the past,
this indicates a remarkable change in the system and how this events are measured.

60

5.2 Exploratory Analysis Test B

In this section the similar analysis is done to test configuration B dataset.

Looking at the heat-map matrix from the PM in Figure 24, all the down-link throughput
variables are highly correlated with the exception of B, it is still positively correlated
but only by 0.4 to most of the other variables. Another special variable is C' who is
correlated to the others by 0.75 but by it’s correlated by 0.9 to B.

revision

-0.6

revision A B C D E F G H I] K L M

Figure 24: Correlation heat-map from PM dataset test configuration B

61

5.2.1 Performance measurements first part

780000 0000 THO000 00000 TE0000 D000
reision rewisian 5

15

10 1.0 0
aqa

=14
TR0 BOO000 ranooe E0DDOO
v 30000 BO0000 TH0000 BOOCOD TROOO) BOOOOO
ervisiar rewigion revision revision

Figure 25: First seven PM evolution through revisions in test B.

Taking a deeper look at the data points of the first seven PM from test configuration A
in relation to it’s evolution through time, i.e their change in different revisions, it is clear
that all are sightly increasing thought time, but more interestingly it looks again also
in test configuration B, as they are measuring a similar property of the system, looking
at the complete scatter matrix in Annexes .4 The PM B seem to be the only one who
behaves differently similar to having a threshold value when after the other PM values
arrive to a certain high point, B overflows and starts counting again, a very particular
behavior, hard to comprehend without look into the properties each of these PM are
actually measuring in the system.

By the distribution of samples in the graph one can observe the shapes they form are
very similar, with the exception of B, which has could be understood as representing
two normal distribution, once centered in 0.25 and the other one in 0.7, this can be
appreciated by the diagonal of the matrix found in the Annexes .4.

62

5.2.2 Performance measurements second part

Figure 26: Last six PM evolution through revisions in test B.

From test configuration B, performance measurement data results from the last six PM
plus B.it is clear again that all are sightly increasing thought time, their behavior is
very similar to the first seven seen before, looking the complete scatter matrix diagonal
in Annexes 52 The B seem to be the only one who behaves differently, and one can
see how it reflects two normal distribution, compared mostly only one for the other six
variables.

Even though their graphs look very similar, D, G, H, I, K and L graphs are more similar
between them selves, and this can also be seen by the heat-map matrix in Figure 24.

63

5.2.3 Function-level data

1.2

0.90 0.94
11
0.92
10 - 0.85
w» 5 0.90
g 0o £, = 0.80 - « 3 $ '
—t
< os N 2 e T ——— £ a8 T 8
L 5 ¢ & ‘ﬁ\
o7 f; 0.75 0.86 % ¥
0.6 0.70 0.84
0.5 0.82
1.0 1.00
1.01
[4
0.8 ‘ 0.98 1.00
0.96 b, 099 ol b
2 0.6 g . < x 2 \ e
2 i £ 098 y ol
Ly * -
0.94 g \
9 e 0.97 ¥ |
0.4
0.62 0.96
02 0.95
790000 795000 800000 790000 795000 800000 790000 795000 800000
revision revision revision

Figure 27: Function-level dataset evolution through revisions in test B.

From test configuration B, function-level profiling data, is not clear that different hard-
ware events are being trade off for others, as its the case for test configuration A. The
results show that in this test configuration all the hardware event are decreasing in dif-
ferent proportions. The he0, in the top of Figure 27, is showing clustering formations,
and overall its performance value came from high to low, and then started increasing
again. The graph shows how the values of the hel are very disperse and its observable
how the regression line has a greater interval of variance, implying it can’t explain a
great deal of its variance.

The he2 hardware event by the regression line it indicates is decreasing trough time,
there is strong formations and shapes in the graph, similart to /e0. its values were high
in early revision then went low, and then starting increasing again. the complete matrix
found in Annexes .5 shows how most of the six hardware event are positively correlated
with the exception of hel with he0, he2, he3 and he4.

The he3 has two clusters, and its decreasing faster than the other hardware events. The
he4 has the particularity of its values being separated by the same gap, showing that its
possible values have a different precision, they can only be at particular distances from
one another. the heb is decreasing as well as the other hardware events.

64

1.0 1.0
0.8 0.8
0.6 0.6
o ~—
[0} [0}
0.4 0.4
0.2 0.2
0.0 0.0
1.2
1.0 10
0.8 0.8
0.6 0.6
N (3o}
© 04 ® 04
02 02
0.0
0.0
-0.2
-0.2
785000 790000 795000 800000 785000 790000 795000 800000
revision revision

Figure 28: Event-level dataset evolution through revisions in test B.

5.2.4 Event-level data

Continuing the analysis of the data exploration from test configuration B, the event-
level data collected by tracing. The €2, e3 and e4 are both increasing through-time. e2
and e3 have a similar positive slope at their regression lines, both show strong cluster
formations, but in rather different values and times. taking a lot at the complete scatter

plot matrix in Annexes .6, events e0 and el are positively correlated, equally as e2 and
ed.

The event e0 variance is relatively constant through time, and is the only one who is
not increasing, but rather slowly decreasing. There is no constant values after a specific
revision as it was observed on test configuration A.

65

5.3 Predictive Models

There are 11 combinations from the explored preprocessing options for the function-
level and event-level quantified data in regards to the DL PM. From these 11 only in 4 a
model could be build passing through the feature selection process, see Figure 29 in the
remaining 6 all features were removed by the feature selection process, showing already
that they had no predictive power.

|| preprocess |Pj |P] |PJ |PJ 2
F F3 F3 F3

preprocess
" functions

preprocess
-~ traces E E E2
Tést configuration A
— | preprocess [
gt RDRERERERD
. preprocess
functions F F3 F3 F3
" preprocess
traces E E E2
\/ A\ A\ v

Test configuration B

F+E F3+E F3+E2 F3

/

Figure 29: The four combinations presented on this thesis

The results from those four configurations are presented in this chapter, only two showed
greater than 0.4 r*scores.For each viable preprocessing combination, 10 model were
trained, this processed was done for both test configuration A and B, having in total an
automatic creation of 80 predictive models.

Then models were trained using 75% of the dataset and they were tested using the re-
maining 25%, the data-set separation was done randomly, meaning the first 75% of sam-
ples is not always used for the training, but is rather different every time the processes
is initiated, this to avoid, choosing by chance samples that happen to train the model
better than the rest.

For each combination of data preprocessing options, two graphs and one table are pre-
sented;First A feature importance graph, displaying for the current models, the 20 most
informative features, i.e the ones that provide more predictive power to the model. Sec-
ond a table comparing the Coefficient of Determination (r?) Explained Variance (EVS),
Mean Squared Error (MSE), Mean Absolute Error (MAE) and the Max Error (ME) score
metrics for each of the 10 algorithms, the table is sorted from the greatest 2 score to the
smallest. Finally, a third graph plotting the test values from the dependent variable, the
PM A, in light blue, and joining the points by a continuous line, at the same time plotting
the predicted values by six of the then algorithms' joint together by doted lines. This
graph is relevant because it presents the results for the task of predicting values, and can
provide a visual insight of what data are the model actually generating, something not
possible by looking merely at metrics scores.

This due to readability, the results of similar methods are just showed once, only LassoCV, no Elastic-
NetCV or LassoLarsCV, and it is the same case with SVR, no nuSVR or linealSVR presented in the graph,
nevertheless its results can be seen in the table comparing the metrics scores

66

5.3.1 First Results

It is relevant to show the first result from the predictive model creation process, as we
can see in Figure 30. the predictions made, by at the moment the four used algorithms,
were very close to the target PM A variable, meaning the results of the 72 scores where
also very high, this was surprising at first glance, but it was due to leaving the other
PM variables in the training set, thus enabling the model to have a very high predictive
power, clearly because one of the variable from the PM group can be easily predicted by
the others taking into account how highly correlated they are with one another. After
this first experience, the other output variables where eliminated from the joint dataset,
by this allowing a real exploration of the predictive potential from the others systems
layers in regards the down-link throughput.

cols
A
Kneighbors
RandomForest
@ GradiendBoost
@ MLPerceptron

5.36 1
790192.0790252.0790272.0790281.0790291.0790293.0790298.0790341.0790439.0790480.0790531.0790538.0790555.0790588.0790601.07906 23.0790646.07906 55.0790690.079074 3.0790780.0790822.0
revision

Figure 30: First iteration of the model prediction for PM test A

5.3.2 Test Configuration A

In this section results for test configuration A are presented, 40 models in total, from 4
combinations of pre-processing options.

5.3.2.1 Models '+ FE With 164 samples, the model F'+ E is characterized by its re-
spective preprocessing choices, 4 event-level specially chosen variables, and 6 function-
level variables, these grouped together by each HPC type of event, recorded by profiling,
see Section 4.2.1.

o -
) S

s

index
- o - @
a & = a

3

@
S

o
o
o
o
)
o
w

3

o
~

Figure 31: Feature importance ranking for F' + E dataset in Test A.

coef

o
o

o
o

o
3

o
o

67

In Figure 31, one can see only the 10 most important features, taking into account that’s
the total number of input features for this model ' + F.

The results for the 10 created models can be seen in Table 7. It is clear that the models are

arbitrarily bad, the table shows LassoLarsCV having the least worst score, and nuSVR
having the worst score overall, this results are only useful as an example of a combination

of pre-processing options that provides no predictive power.

Table 7: Model evaluation by metrics for F' + F dataset in Test A.

algorithm\score R2 EVS MSE MAE ME
LassoLarsCV -0.050288 -0.050276 0.097545 0.287545 0.682958
linealSVR -0.070363 -0.069759 0.099409 0.293362 0.676207
RandomForest -0.132926 -0.104515 0.105220 0.272891 0.712521
MLPerceptron -0.133967 -0.130312 0.105316 0.303227 0.674479
ElasticNetCV -0.155178 -0.150113 0.107286 0.306634 0.671555
GradiendBoost -0.169759 -0.169754 0.108641 0.277329 0.706247
LassoCV -0.170535 -0.164307 0.108713 0.309004 0.669728
Kneighbors -0.276653 -0.276478 0.118568 0.316299 0.753851
SVR -0.280083 -0.276832 0.118887 0.309330 0.753588
nuSVR -0.565828 -0.564863 0.145425 0.336177 0.796853

The Figure 32 shows us the values predicted by the models, and it is visible that these

predicted values have not even a tendency similar to the target output variable A.

08

06

vals

04

02

0.0

0 r1 r2 r3 r4 r5 6 17 r8 19 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24 r25 r26 r27 r28 r29 r30 r31 r32 r33 r34 r35 r36 r37 r38 r39 rd0
revision

Figure 32: Prediction graph for F' + E dataset in Test A.

68

cols
A
MLPerceptron
LassoCV
SVR_pred
Kneighbors
RandomForest
GradiendBoost

5.3.2.2 Models F'2 + E2 With 181 samples, the model F'2 + E2 is characterized by
having more features than the previous dataset, 25 function-level and 15 event-level
variables respectively, see Section 4.2.1. After the feature selection process 18 variables

remained in the dataset, see Figure 33.

index

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Figure 33: Feature importance ranking for F'2 + E2 dataset in Test A.

The result from the 10 algorithms can be seen in Table 8, The SVR algorithm performs
the best compared to the others, but the 72 scores are still no even at 0.3 to claim a weak
correlation, it is important to note that the results are still better than the first models

with F' + E.

The Figure 34, shows the slow evolution of the models predictive power in regards the
target output variable, as it can be seen the predicted values are far from the real values,

but they are better compared to models generated by F' + E.

vals

04

0.3

0.2

Table 8: Model evaluation by metrics for F'2 + E2 dataset in Test A.

algorithm\score R2 EVS MSE MAE ME
SVR 0.119278 0.124809 0.052892 0.194819 0.591568
MLPerceptron 0.071312 0.082474 0.055772 0.208509 0.577491
ElasticNetCV 0.067469 0.103687 0.056003 0.221200 0.492699
LassoLarsCV 0.051531 0.079722 0.056960 0.219532 0.518429
nuSVR 0.051515 0.052527 0.056961 0.198893 0.625885
LassoCV 0.046352 0.083672 0.057271 0.222166 0.496566
linealSVR 0.033483 0.067527 0.058044 0.222019 0.522300
Kneighbors 0.004601 0.054448 0.059778 0.226316 0.513256
RandomForest -0.042536 -0.009378 0.062609 0.228524 0.492562
GradiendBoost -0.227512 -0.082850 0.073718 0.243455 0.512528

revision

0 r1 r2 r3 rd r5 r6 r7 r8 r9 r10r11r12r13 r14 r15r16 r17 r18 r19 r20 r21 r22 r23 r24 r25 r26 r27 r28 r29 r30 r31 r32 r33 r34 r35 r36 r37 r38 r39 r40 r41 r42 r43 rd4 r45

Figure 34: Prediction graph for F'2 + E2 dataset in Test A.

69

cols
A
MLPerceptron
LassoCV
SVR_pred
Kneighbors
RandomForest
GradiendBoost

5.3.2.3 Models F'3 + E2 With 147 samples, the model F'3 4+ E2 has the most high
dimensional dataset from all the combinations of pre-processing options, it has 3844
function-level and 15 event-level variables respectively, see Section 4.2.1. After the fea-
ture selection process 28 variables remained in the data-set, see Figure 35.

2799
f1374
419
888
f2972
f1468
953
3664
f2959
f46
1983
f2941
382
f1056
1194
2783
f2048
2530
2522
3308

index

f T
0.00 0.02

Figure 35: Feature importance ranking for '3 + E2 dataset in Test A.

T T
0.04 0.06

T
0.08

coef

T
0.10

T
0.14

T
0.16

70

The results from this models, Table 9, are the first results that pass the mark of 0.4 at the
r? scores, the SVR algorithm having the best r* score with 0.45 and a EVS of 0.53.

Table 9: Model evaluation by metrics for F'3 + E2 dataset in Test A.

algorithm\score R2 EVS MSE MAE ME
SVR 0.451518 0.537036 0.045970 0.187749 0.472182
linealSVR 0.438116 0.510825 0.047093 0.190477 0.493658

MLPerceptron 0.400454 0.468057 0.050250 0.194917 0.541518
ElasticNetCV 0.317200 0.466752 0.057227 0.212921 0.519018
nuSVR 0.236894 0.398550 0.063958 0.214805 0.536903
LassoCV 0.201500 0.402095 0.066925 0.226555 0.594409
LassoLarsCV -0.129905 0.244770 0.094701 0.265511 0.693255
GradiendBoost -0.303812 0.336924 0.109276 0.255601 0.683560
Kneighbors -0.351354 0.237821 0.113261 0.280853 0.630779
RandomForest -0.427148 0.232879 0.119613 0.276182 0.688922

The predicted values from the MLPerceptron, LinearSVR and SVR show a closer resem-
blance to the real values from the output variable as seeing in Figure 36.

. A,
-‘Z‘:‘x& 1
o 18 Bt L
A B NG T D o0 »
ST AR B A2 S R ;e
o J AL A . p Se 4
- \ . ®
P e A% g .
BT,
06 L] o @ o ®
o = “-:, o cols
% .9 ». A
2 . ®.0.:@ e ® MLPerceptron
< [28 [5 8 ‘.‘ Y A LassoCV
® SVR pred

0.4
Kneighbors
® RandomForest
GradiendBoost

0.2

0.0

0 r1 2 3 r4 5 6 7 8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24 r25 r26 r27 r28 r29 r30 r31 r32 r33 r34 r35 r36

revision

Figure 36: Prediction graph for F'3 + E2 dataset in Test A.

5.3.2.4 Models F'3 With 155 samples, the model F'3 model is the same dataset as the
previous model without the event-level data, this allowing 8 more samples in the dataset,
this due to the joint process from the different layer data-sets, the fact of not having the
event-level data, allowed to consider samples that where not found in the tracing dataset,
see Section 4.2.1. After the feature selection process 39 variables remained in the data-

set, see Figure 37

71

419
f1374
f3664
fees —
1468 I
2072 —
f2799
1083 [

46 I——
13308 ——
12522 [——

1953 —
12530 —
12050 [—
2048
1194
2783

86
1264
1056

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
coef

index

Figure 37: Feature importance ranking for F'3 dataset in Test A.

The results from these models are the best from all other results presented in this thesis,
they can be found in Table 10. All algorithms had a performance greater than 0.4 with
the exception of 0.37 by RandomForestRegressor. The LassoLars with CV showed a 7
score of .67, this means it can explain up to 67% of the down-link throughput variables,
in this case represented by the PM A.

Table 10: Model evaluation by metrics for F'3 dataset in Test A.

algorithm\score R2 EVS MSE MAE ME
LassoLarsCV 0.674512 0.693834 0.021510 0.126017 0.282649
LassoCV 0.670392 0.690731 0.021782 0.127372 0.291076
ElasticNetCV 0.659905 0.674282 0.022475 0.127292 0.328937
linealSVR 0.655410 0.675260 0.022773 0.133383 0.284140
SVR 0.649235 0.658767 0.023181 0.125371 0.324472
nuSVR 0.634508 0.648006 0.024154 0.120253 0.383465
MLPerceptron 0.584733 0.600312 0.027443 0.144896 0.341411
Kneighbors 0.558267 0.559404 0.029192 0.133536 0.461449

GradiendBoost 0.432479 0.450120 0.037505 0.149261 0.393780
RandomForest 0.379491 0.396336 0.041007 0.169142 0.458324

In the final Figure 38 it is very clear how all models follow the form from the output
variable, finally showing the final state of evolution from the continuous model creation
improvement.

72

0.8 .
R . p cols
Dok 4 A
g @® MLPerceptron
‘. LassoCV
® Kneighbors
RandomForest
@ GradiendBoost
SVR_pred

vals

06 ¢
~

04

.
02 ¢

0 rt r2 r3 r4d 5 6 r7 8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24 r25 r26 r27 r28 r29 r30 r31 r32 r33 r34 r35 r36 r37 r38
revision

Figure 38: Prediction graph for F'3 dataset in Test A.

5.3.3 Test Configuration B

In this section results for test configuration B are presented, 40 models in total, from 4
combinations of pre-processing options.

5.3.3.1 Models '+ E With 126 samples, the model F'+ F is characterized by its re-
spective preprocessing choices, 4 event-level specially chosen variables, and 6 function-
level variables, these grouped together by each HPC type of event, recorded by profiling,
see Section 4.2.1.

o @
N S

S

index
3 B ® = Gl

2

m
o 8
(=3

|

Figure 39: Feature importance ranking for F' + F dataset in Test B.

In Figure 39, one can see only the 10 most important features, taking into account that’s
the total number of input features for this model F' + FE.

The results for the 10 created models can be seen in Table 11. It is clear that the models
are arbitrarily bad, the table shows LassoLarsCV having the least worst score, and Gradi-
entBoosting has the worst score overall, this results, similar as with test configuration A,

73

are only useful as an example of a combination of pre-processing options that provides
no predictive power.

Table 11: Model evaluation by metrics for F' + E dataset in Test B.

algorithm\score R2 EVS MSE MAE ME

LassoLarsCV -0.000138 0.000000 0.038278 0.167782 0.364293
ElasticNetCV -0.000138 0.000000 0.038278 0.167782 0.364293

LassoCV -0.000138 0.000000 0.038278 0.167782 0.364293
SVR -0.052613 -0.049162 0.040286 0.169637 0.420303
linealSVR -0.094629 -0.067299 0.041894 0.171447 0.383784
Kneighbors -0.110703 -0.109941 0.042509 0.181838 0.370947
MLPerceptron -0.126511 -0.102670 0.043114 0.173749 0.403157
nuSVR -0.275005 -0.266339 0.048797 0.179123 0.674126

RandomForest -0.538349 -0.481676 0.058876 0.196433 0.494961
GradiendBoost -0.706466 -0.678994 0.065310 0.203941 0.538791

The Figure 40 shows us the values predicted by the models, and it is visible that these
predicted values have not even a tendency similar to the target output variable A. This
is useful to see the evolution of the model creation process.

0.7
06 g)
19 °
: &
05 u . i - .
:' ®--@ 0..“".., .' cols
0s y T e e e A
. 3 > g ‘e MLPerceptron
@ @ -"ul@.. y P B @t L0 ° P
3 0::8.n. B il 800 ‘_A‘.‘ e Lo gl.00 a. a0 R y . 9, LassoCV
LR SR T C o e R 00y, @90 009 O "® @ SVRpred
03 @ e, ..‘~ .‘... ‘..'.':.‘ \v Kneighbors

® RandomForest
GradiendBoost

0.2

0.1

0.0

0 M 2 3 r 5 B 7 B8 9 10 1 r12 M3 M4 5 6 r17 r18 r19 r20 r21 r22 23 r24
revision

25 r26 r27 r28 r29 r30 r31

Figure 40: Prediction graph for F' + E dataset in Test B.

5.3.3.2 Models ['2 + E2 With 184 samples, the model F'2 + E2 is characterized by
having more features than the previous dataset, 10 function-level and 15 event-level
variables respectively, see Section 4.2.1. After the feature selection process 18 variables
remained in the dataset, see Figure 41.

74

index
3

0.0 0.1 0.2 0.3 0.4 0.5 0.6
coef

Figure 41: Feature importance ranking for F'2 + E2 dataset in Test B.

The result from the 10 algorithms can be seen in Table 12, the results are still better than
the first models with F'+ E, but they are worst than the ones from test configuration A.

Table 12: Model evaluation by metrics for F'2 + E2 dataset in Test B.

algorithm\score R2 EVS MSE MAE ME

Kneighbors -0.037854 -0.031083 0.041027 0.169202 0.433864
ElasticNetCV -0.090130 -0.066591 0.043093 0.171418 0.473031
LassoLarsCV -0.105345 -0.075251 0.043695 0.171841 0.486177

nuSVR -0.121526 -0.121032 0.044334 0.176288 0.462097
SVR -0.125938 -0.115034 0.044509 0.175289 0.481514
MLPerceptron -0.136977 -0.086553 0.044945 0.172772 0.506106
LassoCV -0.157273 -0.121906 0.045747 0.176219 0.500182
linealSVR -0.164655 -0.103804 0.046039 0.175156 0.513932

GradiendBoost -0.238768 -0.190531 0.048969 0.175452 0.568894
RandomForest -0.332509 -0.293583 0.052675 0.185253 0.602771

The Figure 42, shows the evolution of the models predictive power in regards the target
output variable, they are arbitrarily bad, as their 7? scores suggest.

08
[] [
° - e :.- e
06 &) R SR e
N : L A R
8 - 105 . Y Y RN :'a 2._° Lo n" el e cols
2/ $ia® gt 0. R e ¥ 2. i A
. 8 X ol 8ed Boig ¥ e e e e E Tl o Wuresenon
¢ 0.4 ‘ ' * n LI .". "‘:' s ® '&\ ‘!'\'.' v, ‘:’.’ 3‘.’ ‘o°n ‘e LassoCV
’ . 3 -] N € To.g q ® SVR_pred
‘e ¢ Kneighbors

@® RandomForest
GradiendBoost

02

0.0

0 r1 r2 r3 r4 r5 6 r7 r8 r9 r10r11r12r13 14 r15r16 r17 r18 r19 r20 r21 r22 r23 r24 r25 r26 r27 r28 r29 r30 r31 r32 r33 r34 r35 r36 r37 r38 r39 r40 r41 r42 r43 r44 r45
revision

Figure 42: Prediction graph for F'2 + E2 dataset in Test B.

75

5.3.3.3 Models F'3 + E2 With 160 samples, the model F'3 4+ E2 has the most high
dimensional dataset from all the combinations of pre-processing options, it has 2363
function-level and 14 event-level variables respectively, see Section 4.2.1. After the fea-
ture selection process 34 variables remained in the data-set, see Figure 35.

43

f1580
329
f2138
f1780
f2310
f1179
f2230
f41
f1055
1482
736
622
705
393
f1625
f610
839
f1709
f1037
f1227
f T T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
coef

index

Figure 43: Feature importance ranking for F'3 + E2 dataset in Test B.

The results from this models, Table 13, are the first results that all 72 scores are positive
and 6 pass the mark of 0.4, the Multi-layer perceptron algorithm has the best 1 score
with 0.58 and a EVS of 0.58. In comparison to test configuration A, the results with this
combination of preprocessing options are better, implying results variance depending on
the test scenarios where the data was recollected.

Table 13: Model evaluation by metrics for F'3 + E2 dataset in Test B.

algorithm\score R2 EVS MSE MAE ME
MLPerceptron 0.584798 0.587412 0.016331 0.099638 0.302688
linealSVR 0.547794 0.547956 0.017787 0.104087 0.322929
SVR 0.499271 0.523452 0.019695 0.111203 0.327180
ElasticNetCV 0.459393 0.502902 0.021264 0.115091 0.354204
LassoCV 0.411017 0.448779 0.023166 0.119077 0.368606
LassoLarsCV 0.405961 0.429946 0.023365 0.116465 0.379009
nuSVR 0.328046 0.417269 0.026430 0.129131 0.377336
Kneighbors 0.317803 0.319057 0.026833 0.127591 0.446919

GradiendBoost 0.268061 0.297659 0.028789 0.125585 0.396206
RandomForest 0.126963 0.154322 0.034339 0.145061 0.422461

The predicted values from the SVR, LinearSVR and MLPerceptron, similar as in test con-
figuration A, have the best r? scores and they show an even closer resemblance to the
real values from the output variable, see Figure 44.

76

0.8
07
0.6

0.5
cols
A

@® MLPerceptron
LassoCV

® SVR_pred
Kneighbors

® RandomForest
GradiendBoost

vals

0 1 12 r3 r4 5 6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24 r25 r26 r27 r28 r29 r30 r31 r32 r33 r34 r35 r36 r37 r38 r39
revision

Figure 44: Prediction graph for F'3 + E2 dataset in Test B.

5.3.3.4 Models F'3 With 164 samples, the model '3 model is the same dataset as the
previous model without the event-level data, this allowing 4 more samples in the dataset,
this due to the joint process from the different layer data-sets, the fact of not having the
event-level data, allowed to consider samples that where not found in the tracing dataset,
see Section 4.2.1. After the feature selection process 36 variables remained in the data-
set, see Figure 45

1580
11055
1329
1179
1625
2230
11780 I——
f2283 [—
41—
§ 2138 —
£ f482 I—
1393 —
705 —
1448 I
1067
12310
1622
1377
1551
1662

0.00 0.02 0.04 0.06 0.08 0.10 0.12
coef

Figure 45: Feature importance ranking for '3 dataset in Test B.

The results from these models almost as good as the previous presented in models F'3 +
E?2, they can be found in Table 14. Seven algorithms had a performance greater than 0.4.
The linealSVR has a r? score of (.54, this means it can explain up to 54% of the down-link
throughput variables, in this case represented by the PM A.

In the Figure 46 it is clear how most models follow the form from the target output
variable, showing the current state of predictive power in test configuration B.

Table 14: Model evaluation by metrics for F'3 dataset in Test B.

algorithm\score R2 EVS MSE MAE ME
linealSVR 0.545412 0.602935 0.019907 0.109323 0.321150
ElasticNetCV 0.508825 0.552283 0.021509 0.114063 0.316024
nuSVR 0.504390 0.542753 0.021703 0.117800 0.330222
MLPerceptron 0.497121 0.537165 0.022022 0.120163 0.346045
SVR 0.492214 0.539623 0.022237 0.118698 0.293016
LassoLarsCV 0.453925 0.501895 0.023913 0.118748 0.328816
LassoCV 0.435644 0.482747 0.024714 0.121355 0.334910
Kneighbors 0.172196 0.300014 0.036251 0.157813 0.440875

RandomForest 0.125728 0.216587 0.038286 0.157815 0.504521
GradiendBoost 0.050610 0.163337 0.041575 0.164075 0.489410

0.8

0.7 °
] -
h)
06 g ’ o
R AR)
. ® ®: o e
05 ¢ s Ie 0N t g
W ¢ = [B
g 53 ‘s3 - I
04 3 &\ g o e : 5: h
1 2 y . .
° { L : 3 f s
: «Da v E
03 [T, ; > % 4 .'. L
A ® oA 5% @
LR p LT (e 3]
02 @ g J g C o
o ®

[IEENans

0.1

0 r1 r2 3 r4 5 6 17 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24 r25 r26 r27 r28 r29 r30 r31 r32 r33 r34 r35 r36 r37 r38 r39 r40
revision

Figure 46: Prediction graph for F'3 dataset in Test B.

5.4 Model creation Process Evaluation

77

cols
A
MLPerceptron
LassoCV
SVR_pred
Kneighbors
RandomForest
GradiendBoost

The model creation process evaluation is done by comparing the results of new cre-
ated models to previous ones, after this work, there exist already reference models to be
compared with, in the case of a continuation of the use of this approach to increase the
understanding of different layers to a global property of the LTE L2 system. This is the
current outcome from Cycle 6 (2.3) from this DSR process, by the constant evaluation

the models and the architecture of the whole process.

78

6 Discussion

6.1 Model Creation Process

The feature selection part of the process as well as the raw data pre-processing were the
crucial parts of the process that either lead up to a model with non-predictive power or
one who does. It is interesting to discuss the different characteristics from the decisions
on these two steps that allowed a positive outcome at the final predictive model.

6.1.1 Raw Data Preprocessing

The pre-processing options that showed better results have a much higher dimension-
ality than the ones who showed very weak or were not even able to show any results.
This is in agreement by other research done in Nokia by Laivamaa (2019), in which the
author states how despite having a dataset with a large number of features, more than
2000, the anomaly algorithm performed better with this dataset morphing rather than a
most current low-dimensional dataset.

The difference between having a low dimensional dataset and a high dimensional is the
system’s precision level to take into account. For example, the analysis of a car by how
many doors, tires and cylinders in the motor has a different utility than describing the
same car very detail characteristics, for example, the material, radio, texture, weight
of the tire; many details and parts that make up a functioning car motor. The LTE L2
system, at least at the function-level layer, seems to be more usefully described by high
dimensional data, every function combined with the CPU core it executing it and also
the special hardware event it can trigger.

6.1.2 Feature Selection

The feature selection decision for LASSO with cross-validation was driven mostly by
empirical results; it was the one in which it has a feature reduction produced a model
with real predictive power. Filtering methods as well as other embedded methods were
tried, but their results were not successful, this does not mean they are not adapted for
this kind of study, this means at the current level of experimentation and research of
this thesis they showed no usefulness. This may require a deeper understanding and
adaptation to be effective.

Another feature selection algorithm used was linear SVR which in theory is not con-
ceptually very distant from the LASSO method, this method was proven to reduce the
features by approximately half, and it was used when the LASSO features selection al-
gorithm would have eliminated almost all features from the model. This is already an
indicator that the specific pre-processed dataset combination cannot generate a model
with good predictive power, but despite this, the model creation process was continued,
and as expected those model had little or no existing predictive power.

It is interesting to state that the reduced features after a successful feature selection

79

process, tend not to be correlated between them, which makes sense if understood as
it eliminates redundant variables that do not offer new information, this can be seen in
Annexes 55 and .8.

6.2 Research Questions Answers

« Main R(Q): How can we implement a predictive model to fulfill the future needs
based on the quantified data collected from different sources from the LTE L2
system?

The answer to the main R() is the proposed architecture for the whole process
required to create a useful predictive model, see Figure 14, in this case, to under-
stand relations and dependencies from different system layers and the down-link
throughput emergent system property. This approach can be used to analyze other
emergent properties of the system as well, modifying the data recollection step to
meet the new requirement needs.

« R(Q)2: What are most essential elements affecting the down link throughput in
LTE L2 system?

After the model creation process and looking at the ones with most predictive
power, for test configuration B, 34 functions were identified out of 2363. The val-
ues from these functions can be multiplied by the values of their corresponding lin-
ear coefficients generated by a linear predictive model such as LASSO, thus being
able to explain up to 54% of the variances from down-link throughput variables.
For test configuration A, 28 functions were identified out of 3844. The values from
these functions can also be multiplied by the values of their corresponding linear
coefficients generated by a linear predictive model, thus also being able to explain
up to 67% of the variances from down-link throughput variables in this test con-
figuration. The similarity of the r? scores suggests that the performance could
similar for other test configurations.

« RQ3: How can we evaluate and present the predicted model to ensure it fulfills
the future needs?

The evaluation of the generated predicted models is done by comparison to the
past generated predictive models, having in the architecture of the whole model
creation process a base method to compare new models to referent ones.

« RQ3.1: How good can functions-level performance data predict and model
down-link throughput related PM?

The function-level high-dimensional data produces models with good predictive
power, in both test configuration the generated model can explain up to 58% and
67% of the variation on the down-link throughput performance measuring vari-
ables, this is on the range from moderate to strong predictive power whose 7
scores are in the range from 0.5 to 0.7.

« RQ3.2: How good can tracing signals performance data predict and model
down-link throughput related PM?

The actual event tracing pre-processing choices alone do not produce a model
with any predictive power, nevertheless, in test configuration B being joint with

80

the proper function-level dataset(/'3 4+ E2), it improved the results slightly from
the predictive models, compared to the models generated by the same function-
level dataset alone(F'3). This does not mean that event-level quantified data alone
cannot produce a model with predictive power but rather the adequate handling
of this data, if it exists, has not been found.

6.3 Validity of Results

Threats to the validity can appear from changing or unstable test results data; this means
that running the same test at the same revision could provide different results. This
threat is believed to be relatively low as the tests seem to be stable in the testing envi-
ronment, nevertheless to deal with this threat, in the exploration analysis step the test
results datasets were constructed in two manners. In one hand, it was done by averaging
multiple same revision test results. And on the other hand, they were joint by the first
occurrence, meaning without averaging. The results from the predictive models were
unchanged.

The risk for over-fitting is always present in machine learning, that is why CV was used
in feature selection and in the model creation when available, to ensure the model is
not just memorizing the data. To ensure accurate results from the predictive models,
the separation from training data (75%) and test data (25%) was done randomly, in other
words, the training values were not always the first values by revision, with this avoiding
a non representative performance of the model due to the static selection of the training
data.

6.4 Future Work

After various attempts on combinations from differently pre-processed data, features
coming from the function-level performance data were identified to explain the variance
from the target variable that represents the DL throughput from the L2 software system.
Providing a prove of concept. The complex relationships of data coming from two layers
of a telecommunications system such as the SOI studied in this work can be discovered
by the creation process of a predictive model, the critical aspects from this process are,
the raw data pre-processing, and the feature selection.

Having this as a basis, the research of the affectation of other tests configurations to
the down-link throughput can be the next step. Another next step is the further explo-
ration of raw-data morphing or pre-processing that will enable the creation of a better
predictive model, the actual results of 58% to 67% of variance explained leave room for
improvements.

The exploration of the affectation of other emergent properties of the LTE L2 system, by
analysis of other PM related to other properties can be beneficial to learn more about
the effectiveness of this approach.

The integration of this continuous generation of predictive models can be integrated to
the CI pipeline, by rapidly testing the selected functions to obtain an estimate of the
affectation of the new code changes to the target system property, in the case of this

thesis, the down-link throughput.

81

82

7 Conclusions

The use of a predictive model to address the inherent complexity growth and be able to
increase the predictability of a complex system’s performance was explored in this work.
Having positive results and much room for improvement of such results. The model cre-
ation process proposed architecture was driven multi-layer data approach. The creation
of such model was possible by joining up together quantified data coming from different
layers exploring the transformations of the different datasets, and an appropriate feature
selection step, identifying from all the variables in the dataset, which ones can predict
the down-link throughput, represented by PM associated to its performance.

The results, after various iterations and attempt with different pre-processing approaches
and feature selection techniques, of the best predictive models were moderate approach-
ing high predictive power, implying that the steps of feature selection and pre-processing
are the most sensible. The exploration and use of various data visualization techniques
to present the predictive power of the created models effectively was done. As well as
a technical exploration of the best adapted tools to manage the automated creation of
various visualizations.

The ability to obtain a quick estimate of the impact of new software functions and code
modifications before its integration to a release and finished is possible by the approach
proposed by this thesis. This is enabling a whole range of benefits such as a better plan-
ning of the future requirements, an accurate description of the quality attributes, and
a better characterization of the system in development. A proof of concept has been
presented, showing that this kind of analysis is possible and that a quantified software
engineering focus is beneficial to have a better understanding of the actual state of the
developed system. There is much future work to be done in order to consolidate and
improve the current results of the continuously generated models.

7.1 Summary

The research for a more accurate model for a complex system such as the LTE L2 was
carried out by DSR methodology, defining the requirements of the process that has an
outcome a useful predictive model. First, an introduction to the problem was presented,
defining its scope as the LTE L2 system, and stating the desired contribution of a deeper
understanding of the affectation between different layers enabled by the generated ar-
tifact.

The research questions were stated as a guide for the DSR process. The background, from
an understanding of the LTE system to different machine learning an visualization tech-
niques, was conducted. A model creation process was proposed and constructed itera-
tively, consisting of four steps; Data recollection, pre-processing, exploratory analysis,
and the model creation. In this process, feature selection algorithms, pre-processing data
options, and different algorithms were explored and empirically selected. The results of
the exploratory analysis and the predictive models were also presented iteratively, up
to the best current predictive model. The answers to the research questions were stated,
and positive results were found in the constructed models. On the four different pre-
processed data combinations 10 algorithms were compared and the models trained with

83

the best combinations were able to explain the variance from the down-link throughput
performance variables up to 54% and 67% respectively in the two system configurations
studied, these results provide a comparative basis towards a constant improvement of
the predictive model creation process.

84

8 References

3GPP 36.321, T. (2019, May). Evolved Universal Terrestrial Radio Ac-
cess (E-UTRA); Medium Access Control (MAC) protocol specification. Retrieved
from https://www.etsi.org/deliver/etsi_ts/136300_136399/136321/15.05
.00_60/ts_136321v150500p.pdf

3GPP 36.322, T. (2018, July). Evolved Universal Terrestrial Radio Ac-
cess (E-UTRA); Radio Link Control (RLC) protocol specification. Retrieved
from https://www.etsi.org/deliver/etsi_ts/136300_136399/136322/
15.01.00_60/ts_136322v150100p . pdf

3GPP 36.323, T. (2019, May). Evolved Universal Terrestrial Radio Access
(E-UTRA); Packet Data Convergence Protocol (PDCP) Specification. Retrieved
from https://www.etsi.org/deliver/etsi_ts/136300_136399/136323/15.03
.00_60/ts_136323v150300p. pdf

3GPP 36.425, T. (2019, May). Telecommunication management; Performance Man-
agement (PM); Performance measurements Evolved Universal Terrestrial Radio Access
Network (E-UTRAN). Retrieved from https://www.etsi.org/deliver/etsi_ts/
136300_136399/136323/15.03.00_60/ts_136323v150300p . pdf

Arthur, D., & Vassilvitskii, S. (2007). k-means++: The Advantages of Careful Seeding. ,
11.

Asthana, A., & Olivieri, J. (2009, May). Quantifying software reliability and readiness.
In 2009 IEEE International Workshop Technical Committee on Communications Quality
and Reliability (pp. 1-6). Naples, FL, USA: IEEE. Retrieved from http://ieeexplore
.ieee.org/document/5137352/ doi: 10.1109/CQR.2009.5137352

Athanasiou, D., Nugroho, A., Visser, J., & Zaidman, A. (2014, November). Test Code
Quality and Its Relation to Issue Handling Performance. IEEE Transactions on Soft-
ware Engineering, 40(11), 1100-1125. Retrieved fromhttp://ieeexplore.ieee.org/
document/6862882/ doi: 10.1109/TSE.2014.2342227

Benaissa, N., Bonvoisin, D., Feliachi, A., & Ordioni, J. (2016). The PERF Approach
for Formal Verification. In T. Lecomte, R. Pinger, & A. Romanovsky (Eds.), Reliabil-
ity, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Cer-
tification (pp. 203-214). Cham: Springer International Publishing. Retrieved from
https://link.springer.com/chapter/10.1007/978-3-319-33951-1_15

Chandrashekar, G., & Sahin, F. (2014, January). A survey on feature selection methods.
Computers & Electrical Engineering, 40(1), 16—28. Retrieved from https://linkinghub
.elsevier.com/retrieve/pii/S0045790613003066 doi: 10.1016/j.compeleceng
.2013.11.024

Chen, T.-H., Syer, M. D., Shang, W,, Jiang, Z. M., Hassan, A. E., Nasser, M., & Flora,
P. (2017, May). Analytics-Driven Load Testing: An Industrial Experience Report on
Load Testing of Large-Scale Systems. In 2017 IEEE/ACM 39th International Conference
on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP) (pp. 243-
252). Buenos Aires, Argentina: IEEE. Retrieved fromhttp://ieeexplore.ieee.org/
document/7965448/ doi: 10.1109/ICSE-SEIP.2017.26

https://www.etsi.org/deliver/etsi_ts/136300_136399/136321/15.05.00_60/ts_136321v150500p.pdf
https://www.etsi.org/deliver/etsi_ts/136300_136399/136321/15.05.00_60/ts_136321v150500p.pdf
https://www.etsi.org/deliver/etsi_ts/136300_136399/136322/15.01.00_60/ts_136322v150100p.pdf
https://www.etsi.org/deliver/etsi_ts/136300_136399/136322/15.01.00_60/ts_136322v150100p.pdf
https://www.etsi.org/deliver/etsi_ts/136300_136399/136323/15.03.00_60/ts_136323v150300p.pdf
https://www.etsi.org/deliver/etsi_ts/136300_136399/136323/15.03.00_60/ts_136323v150300p.pdf
https://www.etsi.org/deliver/etsi_ts/136300_136399/136323/15.03.00_60/ts_136323v150300p.pdf
https://www.etsi.org/deliver/etsi_ts/136300_136399/136323/15.03.00_60/ts_136323v150300p.pdf
http://ieeexplore.ieee.org/document/5137352/
http://ieeexplore.ieee.org/document/5137352/
http://ieeexplore.ieee.org/document/6862882/
http://ieeexplore.ieee.org/document/6862882/
https://link.springer.com/chapter/10.1007/978-3-319-33951-1_15
https://linkinghub.elsevier.com/retrieve/pii/S0045790613003066
https://linkinghub.elsevier.com/retrieve/pii/S0045790613003066
http://ieeexplore.ieee.org/document/7965448/
http://ieeexplore.ieee.org/document/7965448/

85

Dahlman, E., Parkvall, S., & Skold,]J. (2011). 4g LTE/LTE-Advanced for Mobile Broadband.
Retrieved 2019-03-30, from http://site.ebrary.com/lib/alltitles/docDetail
.action?docID=10483471 (OCLC: 838879409)

E. Rumelhart, D., E. Hinton, G., & J. Williams, R. (1986). Learning Representations by
Back Propagating Errors. Nature, 323, 533-536. doi: 10.1038/323533a0

Fitzgerald, B., & Stol, K.-J. (2017, January). Continuous software engineering: A
roadmap and agenda. Journal of Systems and Software, 123, 176-189. Retrieved from
https://linkinghub.elsevier.com/retrieve/pii/S0164121215001430 doi:
10.1016/j.js5.2015.06.063

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for Generalized
Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1). Retrieved
from http://www. jstatsoft.org/v33/i01/ doi: 10.18637/jss.v033.i101

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning
(1st ed.). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc. Retrieved
from https://dl.acm.org/citation.cfm?id=534133&qualifier=LU1043988

Gregg, B. (2016, March). The Flame Graph. Queue, 14(2), 10:91-10:110. Retrieved from
http://doi.acm.org/10.1145/2927299.2927301 doi: 10.1145/2927299.2927301

Gregg, B. (2019, May). Stack trace visualizer. Contribute to brendangregg/FlameGraph
development by creating an account on GitHub. Retrieved 2019-05-31, from https://
github.com/brendangregg/FlameGraph (original-date: 2011-12-16T02:20:53Z)

Guyon, I, & Elisseeff, A. (2003, March). An Introduction to Variable and Feature
Selection. J. Mach. Learn. Res., 3, 1157-1182. Retrieved from http://dl.acm.org/
citation.cfm?7id=944919.944968

Hevner, A., & Chatterjee, S. (2010). Design Science Research in Information Systems.
In Design Research in Information Systems (Vol. 22, pp. 9-22). Boston, MA: Springer US.
Retrieved from http://1link.springer.com/10.1007/978-1-4419-5653-8_2 doi:
10.1007/978-1-4419-5653-8_2

Hevner, A. R, March, S. T., Park, J., & Ram, S. (2004). Design Science in Information
Systems Research. , 32. Retrieved from https://wise.vub.ac.be/sites/default/
files/thesis_info/design_science.pdf

Hoang Thuan, N., Drechsler, A., & Antunes, P. (2019). Construction of Design Science
Research Questions. Communications of the Association for Information Systems, 332—
363. Retrieved from https://aisel.aisnet.org/cais/vol44/iss1/20 doi: 10
.17705/1CAIS.04420

Holma, H., & Toskala, A. (2009). LTE for UMTS: OFDMA and SC-FDMA Based Radio
Access. Retrieved from https://www.wiley.com/en-us/LTE+for+UMTSY3A+0FDMA+
and+SC+FDMA+Based+Radio+Access-p-9780470745472

Javidian, M. A., Jamshidi, P., & Valtorta, M. (2019, February). Transfer Learning for
Performance Modeling of Configurable Systems: A Causal Analysis. arXiv:1902.10119
[cs]. Retrieved from http://arxiv.org/abs/1902.10119 (arXiv: 1902.10119)

http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10483471
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10483471
https://linkinghub.elsevier.com/retrieve/pii/S0164121215001430
http://www.jstatsoft.org/v33/i01/
https://dl.acm.org/citation.cfm?id=534133&qualifier=LU1043988
http://doi.acm.org/10.1145/2927299.2927301
https://github.com/brendangregg/FlameGraph
https://github.com/brendangregg/FlameGraph
http://dl.acm.org/citation.cfm?id=944919.944968
http://dl.acm.org/citation.cfm?id=944919.944968
http://link.springer.com/10.1007/978-1-4419-5653-8_2
https://wise.vub.ac.be/sites/default/files/thesis_info/design_science.pdf
https://wise.vub.ac.be/sites/default/files/thesis_info/design_science.pdf
https://aisel.aisnet.org/cais/vol44/iss1/20
https://www.wiley.com/en-us/LTE+for+UMTS%3A+OFDMA+and+SC+FDMA+Based+Radio+Access-p-9780470745472
https://www.wiley.com/en-us/LTE+for+UMTS%3A+OFDMA+and+SC+FDMA+Based+Radio+Access-p-9780470745472
http://arxiv.org/abs/1902.10119

86

Kim, S.-J., Koh, K., Lustig, M., Boyd, S., & Gorinevsky, D. (2007, December). An Interior-
Point Method for Large-Scale -Regularized Least Squares. IEEE Journal of Selected Topics
in Signal Processing, 1(4), 606—617. Retrieved from http://ieeexplore.ieee.org/
document/4407767/ doi: 10.1109/JSTSP.2007.910971

Kojouharov, S. (2019, March). Cheat Sheets for Al, Neural Networks, Ma-
chine Learning, Deep Learning & Data Science. Retrieved 2019-05-05, from
https://becominghuman.ai/cheat-sheets-for-ai-neural-networks-machine
-learning-deep-learning-big-data-science-pdf-£22dc900d2d7

Laivamaa, T. (2019). Ewvaluation of machine learning algorithms for detecting soft-
ware performance anomalies (Master’s thesis, University of Oulu, Faculty of Informa-
tion Technology and Electrical Engineering, Department of Information Processing Sci-
ence, Information Processing Science). Retrieved from http://urn.fi/URN:NBN:fi:
oulu-201903071288

Lal, T. N., Chapelle, O., Weston, J., & Elisseeff, A. (2006). Embedded Methods. In

I. Guyon, M. Nikravesh, S. Gunn, & L. A. Zadeh (Eds.), Feature Extraction (Vol. 207, pp.

137-165). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved fromhttp://link

.springer.com/10.1007/978-3-540-35488-8_6 doi: 10.1007/978-3-540-35488-8
6

LeCun, Y. A, Bottou, L., Orr, G. B., & Miiller, K.-R. (2012). Efficient BackProp. In
G. Montavon, G. B. Orr, & K.-R. Miiller (Eds.), Neural Networks: Tricks of the Trade: Sec-
ond Edition (pp. 9-48). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from
https://doi.org/10.1007/978-3-642-35289-8_3 doi: 10.1007/978-3-642-35289
-8 3

LTE. (nd.). Retrieved 2019-03-30, from https://www.3gpp.org/technologies/
keywords-acronyms/98-1te

LTE-Advanced. (n.d.). Retrieved 2019-03-30, from https://www.3gpp.org/
technologies/keywords-acronyms/97-1te-advanced

Maldonado, E. d. S., Shihab, E., & Tsantalis, N. (2017, November). Using Natural
Language Processing to Automatically Detect Self-Admitted Technical Debt. IEEE
Transactions on Software Engineering, 43(11), 1044-1062. Retrieved from http://
ieeexplore.ieee.org/document/7820211/ doi: 10.1109/TSE.2017.2654244

Mens, T. (2008). Introduction and Roadmap: History and Challenges of Software
Evolution. In Software Evolution (pp. 1-11). Berlin, Heidelberg: Springer Berlin Hei-
delberg. Retrieved from https://doi.org/10.1007/978-3-540-76440-3_1 doi:
10.1007/978-3-540-76440-3_1

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
Representations of Words and Phrases and their Compositionality. , 9.

Molnar, I. (2009). Performance Counters for Linux, v8. Retrieved from https://
lwn.net/Articles/336542/

Motakis, A., Spyridakis, A., & Raho, D. (2013, May). Introduction on performance
analysis and profiling methodologies for KVM on ARM virtualization. In T. Riesgo &
M. Conti (Eds.), (p. 87640N). Grenoble, France. Retrieved from http://proceedings
.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2018086 doi: 10
.1117/12.2018086

http://ieeexplore.ieee.org/document/4407767/
http://ieeexplore.ieee.org/document/4407767/
https://becominghuman.ai/cheat-sheets-for-ai-neural-networks-machine-learning-deep-learning-big-data-science-pdf-f22dc900d2d7
https://becominghuman.ai/cheat-sheets-for-ai-neural-networks-machine-learning-deep-learning-big-data-science-pdf-f22dc900d2d7
http://urn.fi/URN:NBN:fi:oulu-201903071288
http://urn.fi/URN:NBN:fi:oulu-201903071288
http://link.springer.com/10.1007/978-3-540-35488-8_6
http://link.springer.com/10.1007/978-3-540-35488-8_6
https://doi.org/10.1007/978-3-642-35289-8_3
https://www.3gpp.org/technologies/keywords-acronyms/98-lte
https://www.3gpp.org/technologies/keywords-acronyms/98-lte
https://www.3gpp.org/technologies/keywords-acronyms/97-lte-advanced
https://www.3gpp.org/technologies/keywords-acronyms/97-lte-advanced
http://ieeexplore.ieee.org/document/7820211/
http://ieeexplore.ieee.org/document/7820211/
https://doi.org/10.1007/978-3-540-76440-3_1
https://lwn.net/Articles/336542/
https://lwn.net/Articles/336542/
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2018086
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2018086

87

Moutsatsos, 1. K., Hossain, 1., Agarinis, C., Harbinski, F., Abraham, Y., Dobler, L.,
... Parker, C. N. (2017). Jenkins-CI, an Open-Source Continuous Integration Sys-
tem, as a Scientific Data and Image-Processing Platform. SLAS DISCOVERY: Advanc-
ing Life Sciences R&D, 22(3), 238-249. Retrieved from https://doi.org/10.1177/
1087057116679993 doi: 10.1177/1087057116679993

Muller, G. (2007). How to Characterize SW and HW to Facilitate Pre-
dictable Design? Retrieved from https://www.gaudisite.nl/info/
PerformanceEngineering.info.html

Offnfopt. (2015, May). English: Diagram of OSI model. (This image includes several
translations). Retrieved 2019-04-10, from https://commons.wikimedia.org/wiki/
File:0S8I_Model_vl.svg

Olivieri, J. (2012, March). Hardware and software readiness: A systems approach.
In 2012 IEEE International Systems Conference SysCon 2012 (pp. 1-6). Vancouver, BC,
Canada: IEEE. Retrieved from http://ieeexplore.ieee.org/document/6189444/
doi: 10.1109/SysCon.2012.6189444

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... Duch-
esnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12, 2825-2830.

Peffers, K., Tuunanen, T., Gengler, C., Rossi, M., Hui, W., Virtanen, V., & Bragge, J.
(2006). The design science research process: A model for producing and present-
ing information systems research. In Desrist international conference on design sci-
ence research in information systems and technology, claremont, ca, usa, february 24-
25, 2006 (pp. 83-106). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.469.2936

Piippo, P. (2018). Automatic capacity test case result analysis from CPU loads (Master’s
thesis, University of Oulu, Faculty of Information Technology and Electrical Engineer-
ing, Computer Science and Engineering). Retrieved from http://urn.fi/URN:NBN:
fi:oulu-201812083252

plotly. (n.d.). Scatterplot Matrix. Retrieved 2019-05-22, from https://plot.ly/
python/splom/

Rougier, N. P. (2019, May). Adaptation of jake VanderPlas graphic about python visu-
alization landscape: rougier/python-visualization-landscape. Retrieved 2019-05-22, from
https://github.com/rougier/python-visualization-landscape (original-
date: 2017-06-12T17:19:26Z)

Schmidt, F., Niepert, M., & Huici, F. (2018, February). Representation Learning for
Resource Usage Prediction. arXiv:1802.00673 [cs]. Retrieved from http://arxiv.org/
abs/1802.00673 (arXiv: 1802.00673)

Shang, W., Hassan, A. E., Nasser, M., & Flora, P. (2015). Automated Detection of Perfor-
mance Regressions Using Regression Models on Clustered Performance Counters. In
Proceedings of the 6th ACM/SPEC International Conference on Performance Engineering -
ICPE ’15 (pp. 15-26). Austin, Texas, USA: ACM Press. Retrieved from http://d1l.acm
.org/citation.cfm?doid=2668930.2688052 doi: 10.1145/2668930.2688052

https://doi.org/10.1177/1087057116679993
https://doi.org/10.1177/1087057116679993
https://www.gaudisite.nl/info/PerformanceEngineering.info.html
https://www.gaudisite.nl/info/PerformanceEngineering.info.html
https://commons.wikimedia.org/wiki/File:OSI_Model_v1.svg
https://commons.wikimedia.org/wiki/File:OSI_Model_v1.svg
http://ieeexplore.ieee.org/document/6189444/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.469.2936
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.469.2936
http://urn.fi/URN:NBN:fi:oulu-201812083252
http://urn.fi/URN:NBN:fi:oulu-201812083252
https://plot.ly/python/splom/
https://plot.ly/python/splom/
https://github.com/rougier/python-visualization-landscape
http://arxiv.org/abs/1802.00673
http://arxiv.org/abs/1802.00673
http://dl.acm.org/citation.cfm?doid=2668930.2688052
http://dl.acm.org/citation.cfm?doid=2668930.2688052

88

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of
the Royal Statistical Society. Series B (Methodological), 58(1), 267-288. Retrieved from
http://www.jstor.org/stable/2346178

Toupin, D. (2011, January). Using Tracing to Diagnose or Monitor Systems. IEEE
Software, 28(1), 87-91. Retrieved from https://ieeexplore.ieee.org/abstract/
document/56725237ALU=LU1043988 doi: 10.1109/MS.2011.20

TracingBook - TracingWiki. (2009, February). Retrieved 2019-03-30, from
https://web.archive.org/web/20090224184220/http://1tt.polymtl.ca/
tracingwiki/index.php/TracingBook

VanderPlas, J. (2017). Python’s Visualization Landscape (PyCon 2017). Retrieved
2019-05-22, from https://speakerdeck.com/jakevdp/pythons-visualization
-landscape-pycon-2017

von Luxburg, U., Belkin, M., & Bousquet, O. (2008, April). Consistency of spec-
tral clustering. The Annals of Statistics, 36(2), 555-586. Retrieved from http://
projecteuclid.org/euclid.aos/1205420511 doi: 10.1214/009053607000000640

Yu, C. H. (2017, November). Exploratory Data Analysis (Tech. Rep.). Oxford University
Press. Retrieved from http://www.oxfordbibliographies.com/display/id/obo
-9780199828340-0200 (type: dataset) doi: 10.1093/0bo/9780199828340-0200

Zimmermann, H. (1980, April). OSI Reference Model - The ISO Model of Archi-
tecture for Open Systems Interconnection. IEEE Transactions on Communications,
28(4), 425-432. Retrieved fromhttps://ieeexplore.ieee.org/document/1094702
7ALU=LU1043988 doi: 10.1109/TCOM.1980.1094702

http://www.jstor.org/stable/2346178
https://ieeexplore.ieee.org/abstract/document/5672523?ALU=LU1043988
https://ieeexplore.ieee.org/abstract/document/5672523?ALU=LU1043988
https://web.archive.org/web/20090224184220/http://ltt.polymtl.ca/tracingwiki/index.php/TracingBook
https://web.archive.org/web/20090224184220/http://ltt.polymtl.ca/tracingwiki/index.php/TracingBook
https://speakerdeck.com/jakevdp/pythons-visualization-landscape-pycon-2017
https://speakerdeck.com/jakevdp/pythons-visualization-landscape-pycon-2017
http://projecteuclid.org/euclid.aos/1205420511
http://projecteuclid.org/euclid.aos/1205420511
http://www.oxfordbibliographies.com/display/id/obo-9780199828340-0200
http://www.oxfordbibliographies.com/display/id/obo-9780199828340-0200
https://ieeexplore.ieee.org/document/1094702?ALU=LU1043988
https://ieeexplore.ieee.org/document/1094702?ALU=LU1043988

89

A Appendix

Performance measurements scatter matrix, test A

aaaaaa

aaaaaa

uuuuuu

ElEE R
e 111111
0 I I

aaaaaaaa

Figure 47: First seven PM scatter plot matrix with simple linear regression in test A.

The first seven PM are all highly correlated with some particular behavior in the PM B, it
behaves as it has some threshold that triggers a change in its value, this could be similar

to the behavior of a car gearbox

ffffffff

Figure 48: Last six PM scatter plot matrix with simple linear regression in test A.

Almost all performance measurements are highly correlated, one could conclude that
they are actually measuring the same property of the system.

91

Function-level scatter matrix by processor event, test A

802000
800000
798000

£

§ 796000
794000

792000

032
031

785000 790000 795000 800000 805000 0.0 05 10 15 05 10 07 08 09 00 02 04 06 08 08 09 10 032 034 036
revision he0 het he2 he3 hed hes

Figure 49: Function-level dataset scatter plot matrix with simple linear regression in test
A.

92

Event-level scatter matrix by selected events, test A

802500
800000
797500
795000

revision

792500

790000

787500

785000 790000 795000 800000 805000 0.0 0.5 1.0 0.0 0.5 1.0 -0.5 00 0.5 1.0 15 -05 0.0 0.5 1.0 15
revision e0 el e2 e3

Figure 50: Event-level dataset scatter plot matrix with simple linear regression in test A.

93

Performance measurements scatter matrix, test B

aaaaaa

aaaaaa

aaaaa

790000 800000
‘‘‘‘‘‘‘‘

Figure 51: First seven PM scatter plot matrix with simple linear regression in test B.

The first seven PM are all highly correlated with some particular behavior in the PM B, it
behaves as it has some threshold that triggers a change in its value, this could be similar

to the behavior of a car gearbox

706000 2 \« A N & v, A o
Sy [r o - " - (o £1”
- vy /%J:/ /éV /;{./ /&J;/ /é;;/ /g/
: .
8 794000 o
{
2000 @ -y 1% -y -
- et o ¢ B ¢ o *

790000 800000
yyyyyyyy

Figure 52: Last six PM scatter plot matrix with simple linear regression in test B.

Almost all performance measurements are highly correlated, one could conclude that
they are actually measuring the same property of the system.

95

Function-level scatter matrix by processor event, test B

708000
- a o) . | X ¢
. " o) . Loa® oo
2 S RN “ x -
g s - . A
B 4)
782000 L s . oy "~ F "N,
790000
12
T
10 %

"

o R - ofs g & .3 e
B o T -5 /%i‘/ B » /‘;,./ /-&/
§ ; < s b d

790000 795000 800000 050 075 100 125 08 08 1.0 080 085 090 085 100 00 05 10 0% 0es 100 084 096 088 100 102
revision he0 het he2 he3 hed

Figure 53: Function-level dataset scatter plot matrix with simple linear regression in test
B.

96

Event-level scatter matrix by selected events, test B

800000

798000

796000

revision

794000

792000

790000

el

e2

e3

-0.2

785000 790000 795000 800000 -0.5 0.0 0.5 1.0 15 -05 0.0 05 1.0 15 -0.5 0.0 05 1.0 15 -0.5 0.0 05 1.0 15
revision e0 el e2 e3

Figure 54: Event-level dataset scatter plot matrix with simple linear regression in test B.

v
Selected features correlation heat-map for F'3, test A

011 016 01900120029 0.11 019 014 0.1 00850043 0.22 [FX
186 - 0.19 0.0990.0820 0.0423X53' 0.18 0.023 0.12 0.13 0.17 ST 0.14 Fi8#10.091 0.12 0.17 0.053 0.21 0.07 0.024 0.21 0.17
82 0.15 0.0250.05701110.017[¥¥ 0.2 0.073 0.14 6 00970019 016 0.16 0.0740.077 0.13 [[RL0.0670.093

419 - 0.1 0.082 0.15 . . 0.14 B2 3 18 0.0570.0870.0840.

f46 SR 0.19 (X9 -0.19 0.24 0.097 0.13 013 0.15 KIRE 0.027 0.15 0.11 0.18 0.093 0.18 0.07

f527 -SURED.0098) 8 90.18 RLY

619

[ELER -0.22:0.09 X 190.0370.02 0.38 BT 0.48 ORI

033 013 0.35 0.27 0.23

0.18 0.1 017 0.24 018 0140

0.13 0.0850.0580.094 0.15 0
1016-0.13 012 02 0.22 0.18 0.1 (XEE 0.1 0.023) 0.091 0.19 0.07 0.12 {i8E0.0870.072 0.22 0.17 0.18 0.14-

1056 - 0.13 0.13 0.07: LB 0.34 0.17 0.0770.09] 0.35 0.078 0.14 {URE] 0.23-
0.13 0.12 0.063 0.31 (1110.097 0.12 0.0640.063 0.13 0.16 0.1 0.12 0.16 [RERNIEEY 0.23 0.33

1194 -0.15 0.17 0.14 0.14 0.24 019 035

1229 FBER10.024 0.13 0.38 0.18 0.07 0.078 013 0.056 0.47 0.11 .13 0.23 @ 0.0 302 017 0.11 . 0.21 0.052 o.u-
0.19 0.0410.089 0.23 [URE] 0.24 027

0.14 {8¥ 0.14 0.16 012 0.14 0.12 0.056
1264 SRR 0.22 0.48 0.076-0.09 -0.1 [RIMEER0.075
1374 -0.0270.0910. 0.35 f0BF1 0.33 0.13 0.087 0.23 0.31 0.11 0.16 0.06
1468 - 0.15 o.lzio.w 0.1 FEGRER 0.13 0.0050.01“0 8 0.12 [X74-0.16 -0.19-0.094(X73 o.u-o.la nslﬂo.zz 0.11 0. JLE-0.17
35 0.058 0.22 0.32 0.42 0.23 0.250 025 0.28 0.31 0.15 0.13 0.088 051 0.14 0.17 0.14 0.13 013 031 0.14 0.16 0.079 0.27 (XA

0.098 0.12 0.091 0.3 0.078 0.16 RBERLE 0.39 0.16

0.38 0.23

1983 -0.11 0.17 0.16 0.057FRE 0.46
12048 - 0.18 0.053 0.16 0.087LL: 0.36 0.04 0.27 0.094 0.17 0.057 0.4 0.18 0.16 0.17 0.35 0.28 [ERUN 0.19 0.099 0.25 BNLE 0.35- X0 011 011 021 0.24 019 . 0.15 0.01
0.072 0.26 0.13 012 011 0.05 0.0850.057 0.12 0.079 0.17 20.22

.o.zz 0.22 0.0720%1 mom
1 60.

0.1 0.0590 .048 0.16 0.06

2001 034 0.074

0.14 0.23 0.15 0.18 0.18 0.076 0.22 11 0. 0.31 0.19 IS 0.2
)ULE 0.14 0.04 0.150.099 0.2 [N

12164 -0.093 0.21 0.0740.08

2192 - 0.18 0.07 0.0770 017 013 0.05 0.19 KECREE0.068 0.18

2224 -0.07 013 LBT 0.22 .11 . 0.1 0.081 0.11 f8 0.13 0.25 m

2248 0.0248 B¥J 0.11 0.098 0.17- VBT IEE10.044 0.11 n,lz.a.zz 0.1 110,085 X 7720.06€ X 0.2 4 17/-0.11-0.0920.084 -0 0,031 @

2522-0.11 0.21 0.067 0.17—.0,61 RFY 0.38 0.15 033 025 0.47 0.23 0.18 0.11 0.38 WX 051 035 0.26 0.22 0.1 0.1 [N m {8E10.0180.0950.0480.041 0.19 0.36 02 0.17 0.22 MRERNLE 0.42 0.31

£0.04100EH] 0.12 0.52 0.14-0.00910.13 0.22 m i 0.15 0.13 0.18 0.31 .25 0. 0.16 MEZRET 0.14 0.12
0.14 0.11 -0.08 0.0720.059EEIRRE] 0.15 012 0.1 0.14 0.0610.09 0.0720 0.17

0.17 GXEX 014 0.22

2774 . 2 0.046 0.15 0.17 0.11 0.12 (XU£0.016{0/:£0.018 0.13 0.12 0.068 0.19 0.1 0.1 0.12 -0.061: 0.12

2783 0.087- 0.13 0.14 011 0.11 0.03 0.0480.0780.095 0.18 0.1 0.068[§SUN0.0530.078 0.0

0.098 051 0.13 0.07: £08£10.048 0.31 0.14 0.19 0.053JBWN0.052 0.12 0.12 0.18
70.09 0.1 0.063 0.12 0.0420.023 0.12 n 0.13 0.21 0.05 0.16 [i£7.0.0410.0390.061 0.1 0.0780.052| 0.071 0.12
2941-0.14 0.15 XY 0.2 (i] 02 0.0190.084 0.2 0.13).020f8¥]0.091 0.22 0.31 0.24 0.085 0.17 0.06 LXLZ 0.19 0.25 0.094 0.110 0.12 0.071{88W 0.2 0.0160.059 0.12 R 0.25 0.18

2799 -0.11 0.19 0.082 0.16

03 011 014 019 0.057 0.13 LFY 0.36 0.15 KR8] 0.12 012 012 0.2 JSNN0.04 0.24 0.15 ERFD.0025027 0.2
0.1 0.7 0.0411117/:0.0780.021 0.16.0.12 0.2 0 0.18 1 .090.00950.06 0.1
mzw 022 0.12 0.11 0.089FXE] 0.16 0.079 0.15 0.079 0.05 0.17- 10.17 J17£10.061-0.15. 50.059 0. 9,069 0.18 0.11

011 0.25 027 013 0.15-0.23 -0.1 0.053 0.27 0.018 0.17 0.19 BREYC 0.22 0.160 .12 015 0 - 0.16 0.12
1 12 -0.16

2959 - 0.1 0.18 0.064 0.14

1-024 -01 [F34-0.14 %20 -0.14 -0.17-0.07% -0.15

[BCR0.065-0 -0.06€" -0.15 0.11 -0.14

3596 -0.052 0.18 0.068 0.14 . : 0. 3 0.29 0.24 0.23 014 0.24 WNIE 0.39 0.023 0.38 0.34 0.22 0.068 0.14 0.42 0.14 . 0.25 0.27 0.19 0.18 0.16 FISERIREY 0.27

3664 - 015 0.13 .052 0.23 (UREY 0.12 0.054 0.17 0. 33-0 27 0.16 0.23 (wum 0.18 0.22 031 012 U 02 0.0540.18 02 W 0.11 0.12 JRTRORE 0.27

146 186 1382 1419 1527 (619 1888 1904 1953

Figure 55: Selected features correlation heat-map for F'3 in test A.

97

-0.50

-0.25

0.00

-0.25

.8

Selected features correlation heat-map for F'3 + E2, test B

-0.088

-0.077 -0.12 0.17 X 031 LEH 0.022 0.16 [LXEN -0.11 -0.074

1 .

-0.084-0.093

: Z 1 019 0150 095 0 m P 0.031
.15 0. 017 012 1 0.003 [KRY 027 [FFY 021
11037 2 0. 011 035 015 1 —007770059 o3 K
11055 - 0.08 0.054[FEN 0.18 X 0.064 0,081 0.42 L00:E10.093 0.38 [0.22 [OENS
11067 6 .029 0. E 0.37 FoNE m -0.077 0
1179 0 - t ¥ 0.7 m -0.16 -0.089

fn227- 018 01 011 01 o1 [f PP® 021 03 034 FNEE 022 14 0.
LELF 0076 -0.16 [X E 0 0.03: . X
114820041 0.12 [KXPY 0.17 0,034 0.14 002 017 0. F T PR 0,046 ST 0.085 0.094 0.076 0.15 0.042 K1)

f1551- 0.11 0.031 K 0.2 CVONRER 1 023 -015

11580 & 0 0.19 ! 0 -0.19 0.076 80}

11625 - O - : 021 BER 0. 013 0.079 -0.18

1709)] . . X 0.059
f1748 - 011 .089 &
f1780 - 0.14

138 P 017 Fo07 LXET] 017 013 -0 m 0.14 X1 —um@ 0
12230-0.046 012 0.093 0.11 » o M'“ 16 [XT5d 016

2310 013 0.24 0.061

2331 . .069 0 8 0.C E (REY 0.077 KEER 0.0 -0.081-0.088 .059 0.039 FURPAIEES

1 129 191 f329 1345 f377 1393 f610 f622 f662 705 736 (836 (839 f1037 f1055 f1067 1157 1179 1227 F1270 1482 1503 1551 F1580 f1625 f1709 f1748 f1780 f1783 f2138 £2230 12310 12331

Figure 56: Selected features correlation heat-map for '3 + E2 in test B.

98

-0.50

-0.25

0.00

025

	Abstract
	Foreword
	Abbreviations
	Contents
	Introduction
	Problem Definition
	Contribution
	Scope of the thesis

	Research method
	Design Science Research Process
	Research Questions
	Cycles

	Background
	LTE
	LTE Architecture
	LTE Radio Protocols
	The Testing Environment

	Quantified Data Modeling
	Layered Benchmark Approach
	Performance Measurements
	Profiling Technique
	Tracing Technique

	Machine Learning
	Feature Selection
	Regression
	Clustering
	Neural Networks

	Visualization technology

	Model Creation Process
	Data Recollection
	Data-flow Process
	Automating Data Collection

	Data Pre-processing and Filtering
	Function-level Pre-processing Options
	Event-level Pre-processing Options
	Down-link Throughput Performance Measurements Data
	Function-level data
	Event-level data

	Exploratory Analysis
	Model Creation
	Feature Selection
	Algorithms
	Multi-layer Perceptron
	K-neighbors
	Random Forest
	Gradient Boosting
	Support Vector Machines
	Lasso, LassoLars and ElasticNet

	Results
	Exploratory Analysis Test A
	Performance measurements first part
	Performance measurements second part
	Function-level data
	Event-level data

	Exploratory Analysis Test B
	Performance measurements first part
	Performance measurements second part
	Function-level data
	Event-level data

	Predictive Models
	First Results
	Test Configuration A
	Test Configuration B

	Model creation Process Evaluation

	Discussion
	Model Creation Process
	Raw Data Preprocessing
	Feature Selection

	Research Questions Answers
	Validity of Results
	Future Work

	Conclusions
	Summary

	References
	Appendix
	Performance measurements scatter matrix, test A
	Function-level scatter matrix by processor event, test A
	Event-level scatter matrix by selected events, test A
	Performance measurements scatter matrix, test B
	Function-level scatter matrix by processor event, test B
	Event-level scatter matrix by selected events, test B
	Selected features correlation heat-map for F3, test A
	Selected features correlation heat-map for F3+E2, test B

