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The metamorphic rock (soapstone) has been used since Stone age, even it plays a significant role in the economy of 

numerous countries. Currently, it is often used for architectural applications such as artefacts, cooking appliances, 

countertop and slab. Apart, it produces a massive amount of waste powder during the extraction phase and plant 

processing which is unavoidable. Resulting in a large amount of recyclable material landfilled or released to the 

environment annually that could be problematic in terms of environmental perspective. 

To diminish its adverse impacts and ensure sustainability; it would be beneficial to thrive a new technique to recycle 

these industrial wastes in construction applications.  

Based on previously published results; soapstone (Mg3Si4O10(OH)2) is poorly reactive in alkaline-activation owing to 

its chemical structure and a lack of amorphous components. As a result low mechanical properties which cannot be used 

for construction applications. Therefore, these types of materials necessitate co-binder, thermal curing at high 

temperature and high alkalinity to achieve high strength alkali-activated material.  

Experimental and statistical investigates were conducted to observe the effects partially replacing of soapstone (talc) 

with co-binders (i.e., metakaolin, lime, stone wool, and silica fume), and fibers on the hardened-state properties. The 

variables used in the analyses were the concentration of virgin steel fibers or basalt fibers (dosages = 0.5% and 1%), the 

proportion of metakaolin, stone wool or silica fume used to replace soapstone (20 wt. %) and lime by 5 wt. %. The 

effects of employing fibers at two dosages with co-binders in 20 mix compositions were investigated. The designed 

mixtures were activated by using an alkali solution, which contains NaOH (10M) and sodium silicate (molar ratio of 

SiO2/Na2O = 2.5). The samples were treated by thermal curing at 60 °C for 24 hours, and placed under ambient 

conditions (24°C and 35% RH).  

The findings showed that using co-binders and fibers were different behaviors on the hardened-state properties, however, 

the metakaolin reinforced mix composition with 0.5% basalt fibers improved compressive strength about 25 MPa after 

28 days. This strength enables the use of the proposed binders for construction applications. 

 

Keywords: Soapstone, alkali activation, geopolymer, thermal curing, 28 days curing, mechanical strength, durability.   
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and fibers on the hardened-state properties of the alkali-activated magnesium 
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SYMBOLS AND ABBREVIATIONS 

 

ASTM   American society for testing and materials 

AAM   Alkali-activated material 

Al  Aluminum 

Al₂SiO₅  Aluminosilicate 

˚C  Degree in Celsius 

CaO  Calcium oxide 

CO2  Carbon dioxide 

C-S-H  Calcium Silicate Hydrate 

𝜎𝑐  Compressive strength 

d  Particle size 

DTG  Differential thermogravimetry 

EN  European standard  

𝜎f  Flexural strength 

GHG  Greenhouse gas 

GPa  Giga Pascal 

kN  Kilonewton 

LOI  Loss of ignition 

LM  Lime 

µm  Micro meter                              

M  Molarity 

MK  Metakaolin 

mm  Millimeter       

MPa  Mega Pascal                               
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N  Newton 

NaOH  Sodium hydroxide 

Na2SiO3  Sodium silicate  

OPC  Ordinary Portland Cement 

OH-  Hydroxyl ions 

RH  Relative humidity 

SCM  Supplementary Cementitious Materials  

SF  Silica fume 

SFRC  Steel Fiber Reinforced Concrete 

SW  Stone wool 

TGA  Thermogravimetric analysis 

UPV  Ultrasonic Pulse Velocity 

WBCSD  World Business Council for Sustainable Development 

Wt. %  Weight in percentage 

XRF    X-ray fluorescence 
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1. INTRODUCTION 

1.1 Background 

A large amount of ordinary Portland cement (OPC) is being manufactured all over the 

world. It was reported that around 3 billion tons of OPC was produced in 2012. World 

Business Council for Sustainable Development (WBCSD) reported that OPC demand 

would reach to 3.7- 4.4 billion tons by 2050. OPC is one of the major sources of releasing 

CO2 emission in the atmosphere called greenhouse gases (GHG). Globally, OPC received 

high demand due to its high mechanical performances although production of one ton of 

OPC emits one ton of carbon dioxide in the atmosphere; therefore, it should be thought 

of strive to minimize the adverse environmental impacts. The uses of technologies and 

any kind of invention that can result in reducing greenhouse gases emission have recently 

received considerable attention. (Schneider et al., 2011; Benhelal et al., 2013; Imbabi et 

al., 2012). 

Utilization of side streams such as (talc, stone wool, and silica fume, etc…) could play an 

essential role in terms of reducing the adverse effects of OPC utilization, mainly in the 

construction area. The world population is growing, and there will be a higher demand 

regarding construction materials and the materials produced by conventional methods are 

not adequate to fulfil this demand. (Abdollahnejad et al., 2018; Wickler, 2018; Sivrikaya 

et al., 2014). 

Soapstone has been used for artifacts and architectural applications since many years ago. 

Soapstone quarries and processing plants produce a massive quantity of waste powder, 

which is unavoidable. A large amount of recyclable material landfilled or released to the 

environment annually that could be problematic in terms of environmental perspective. 

Soapstone has two main components are SiO2 (39 wt. %.) and MgO (38 wt. %), however, 

magnesium aluminosilicate binders are poor reactive in alkali activation due to its 

chemical structure and a lack of amorphous components. As a result, their mechanical 

properties are shallow in terms of construction applications. The mechanical 

performances of these materials could be improved by using co-binders, thermal 

treatment, and high alkalinity. Also, employing fibers and admixtures in the alkali-

activated magnesium aluminosilicate binders could be sufficient to minimize the 

efflorescence (Abdollahnejad et al., 2018).  
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1.2 Aim and objectives 

The aim of the research is to analyze the effects of co-binders and fibers on the hardened 

properties of alkali activated magnesium aluminosilicate binders from soapstone waste, 

to thrive as a substitute to the use of conventional cement (OPC) in the manufacture of 

concrete. 

 

 Optimization of the mix compositions of alkali activated magnesium binders from 

soapstone with partial replacement of different co-binders. 

 

 Utilizing two different types and dosages of fibers in order to investigate the effects 

on hardened-state properties. 

 

 Evaluation of the performance of alkali-activated magnesium binders with respect 

to the hardened-state properties. 
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2 LITERATURE REVIEW 

2.1 Alkali activated materials  

Alkali-activated materials are categorized by two to three-dimensional Si-O-Al structure. 

They represent a different cementitious material which is capable of delivering ceramic 

and zeolitic characteristics. However, they do not exist in traditional material (Petermann 

et al., 2012). 

Typically, there are two types of binding systems (calcium silicon and aluminosilicates) 

which are classified in terms of chemical composition and mechanism of reaction. Their 

reaction mechanisms are quite different in compare to Ordinary Portland Cement (Gao, 

2017). 

Fig. 1, presents the two key components of alkali-activated system: a cementitious 

component and an alkali activator. Alkaline salts or caustic solution are often used as an 

alkali activator. According to Glukhovsky, activators are classified by six groups in terms 

of chemical compositions, such as caustic solution, slightly acid, silicates, aluminates, 

aluminosilicates, and non-siliceous. (Glukhovsky, 1994; 1967). Cementitious components 

used to produce an alkali-activated cement could be classified into two subgroups, a 

material with intrinsic hydraulicity (OPC, and metallurgical slags) or pozzolanic 

materials (silica fume and volcanic ashes). In many cases, pozzolanic materials used as 

supplementary materials to increase strength, density and decreasing efflorescence 

(Garcia-Lodeiro et al., 2014; Concrete countertop institute, 2018). 

 

Fig 1. Classification of alkali-activated materials system. (Garcia-Lodeiro et al., 2014). 



   

10 
 

2.2 Mechanism and Models of geo-polymerization  

The activation mechanism for aluminosilicate materials was proposed by Glukhovsky in 

1959, it carries out by exothermic process of dissolution. Duxson et al. (2007) proposed 

another model of the mechanism of geo-polymerization, which has five steps: 1) 

dissolution; 2) speciation equilibrium; 3) gelation; 4) Reorganization; 5) polymerization 

and hardening. 

In geo-polymerization mechanism has three phases to be achieved geo-polymer. Firstly: 

the dissolution of solid Al₂SiO5 occurs, when the alkali activator solution adds. Resulting 

in the formation of the aluminate and silicate monomers. Secondly: the condensation 

happens, when these formed monomers merge due to co-distribution of the oxygen 

molecules to build “oligomers” as well as organize bigger networks. Besides, the water 

leaves out from the structure that spends in the hydrolysis method. Lastly, when the mix 

becomes saturate excessively with Al₂SiO gel. (i.e., which is primarily abundant with Al 

bonds). Where re-arrangement processes go on; silicates disintegrate to the mix, and they 

establish to the aluminosilicate gel, abundantly. Thus it leads to increase the connectivity, 

and then geo-polymer gel begins to toughen (Provis et al., 2014; Duxson et al., 2007). 

These processes are described in Fig 2 

 

Fig 2. Theoretical model for geopolymerization (Duxson et al., 2007). 
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By several factors: geo-polymerization activities are managed the dissolution rate; the 

quantity of reactive phase in the source material, source material the mix’s alkalinity, 

temperature of curing, particle size, the alkalinity of the mix, liquefied silicate’s quantity 

that could be offered by the alkaline solution, and temperature of curing (Adam et., al 

2006; Provis et., al 2014).  

When an alkali solution reacts with particles resulting in dissolution process starts 

(Fernandez-Jimenez et al., 2005). And then the reaction products form together inner side 

and outer side of the domain until the completion of particles of ash or nearly totally 

consumed (Fig. 3a-c). Simultaneously, precipitations of reaction products take place, 

when an alkali activator solution enters in the bigger networks and refills the inner space 

with the reaction product, developing a thick Matrix (Fig. 3b). Consequently, a huge 

precipitation of reaction products, several portions of minor particles enclose with the 

products providing crust which avoids the interaction with alkali activator solution (Fig. 

3e), resultant an non-reacted fly ash particle. Therefore, various morphologies could co-

exist in a same gel: non-reacted fly ash particles, atoms attack by the alkali activator 

solution, however, which sustain their spherical shape, reaction product and others (Fig. 

3d). 

  

Fig 3. A descriptive model of the geopolymer of fly ash (Fernandez-Jimene et al., 2005) 

 

A reaction structure for the polycondensation process of geo-polymerization from Al−Si 

material materials was proposed by (Xu, 2002, p. 71).  
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Al−Si material(s) + MOH(aq) + Na2SiO3 (s or aq) (1.1) 

 

Al−Si material(s) + [Mz (AlO2 )x (SiO2 ) ⋅ nMOH ⋅ mH2O]⋅ gel  (1.2) 

 

Al−Si material(s) + [Ma (AlO2 )a (SiO2 )b ⋅ nMOH ⋅ mH2O]⋅ gel  (1.3) 

 

Geo-polymers with an amorphous structure 

 

In reaction 1 (Equation. 1.1) and 2 (Equation. 1.2), the number of aluminosilicate 

materials used depends on the size of particle, dissolution of aluminosilicate constituents 

and the concentration of the alkali activator solution.  

The development of [Mz(AlO2)x(SiO2)y·nMOH·mH2O] gel, which fundamentally 

depends on the size of dissolution of Al-Si materials, is an essential step in the 

development of an amorphous structure of geo-polymer (reaction 3). In 2006, Provis had 

proposed the basic model of reaction processes in the geo-polymerization of metakaolin 

or fly ash (Al−Si constituents). In fig. 4 shows the model of proposed reaction sequence 

of geopolymerization 
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Fig 4. Offered reaction arrangement of geo-polymerization (Provis, 2006, p. 206) 

2.3 Geopolymer chemical structure 

It is generally defined as the phase of aluminosilicate gel; SiO4 and AlO4 tetrahedral are 

bonded covalently by distribution all oxygen molecules. By co-ordinating alkali cations, 

resulting in negative charge of the aluminate groups (Kanuchova et al., 2015). To retain 

the neutrality of the chemical structure; the existence of cations is significant. On the other 

hand, it is supposed that asides from given a charge-balancing role, the incorporation of 

cation is important to control the integrity of structure of the final product, the Na+ion 

affect the brittleness of geo-polymers (Yun-ming et al., 2016).  

In 1979, Davidovits formed and applied the term geo-polymer. For the chemical term of 

geo-polymers based on silico-aluminates, poly (sialate) was proposed. Sialate is stood for 

silicon-oxo-aluminate. Polysialates are chain and ring polymers with Si4+ and Al3+ in 

IV-fold coordination with oxygen and range from amorphous to semi-crystalline. The 

amorphous to semi-crystalline three-dimensional silico-aluminate structures were named 

geo-polymers of the types as shown in fig. 5 (Davidovits, 2002).  

 

 

Fig 5. Terminology of geopolymer  (Davidovits, 2002). 
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2.4 Some issues that affect the properties of alkali-activated materials 

2.4.1 Alkali activator ratio and pH 

Mostly the mechanical properties are influenced by alkali activator ratio. The geo-

polymer mixture involves a source material to alkali solution ratio by three resulting in 

gel formation (Xu et al., 2000). The relationship between porosity and alkali activator 

ratio; by an increment in alkali activator ratio could decrease in value of porosity, 

however, could be an increment in mechanical properties of waste catalyst metakaolin 

based alkali activated composites (Cheng et al., (2015).   

The compressive strength of fly ash improved by reducing activator ratio which is 

partially owing to hydroxide ions which assists in quick dissolution. The usage of highly 

alkali sodium hydroxide leads to help in dissolving the source material quickly. Likewise, 

the significance of water in geo-polymerization cannot be overemphasized as it 

hydrolyses Al3+ and Si4+ ion (Zuhua et al., 2009). 

The solution of alkali activator with low silica content such as sodium hydroxide could 

help to increase the strength of mixture even at a higher ratio of alkali activator (Provis et 

al., 2009). Although working with nano-silicate metakaolin based composites, it 

established that variations existed in the compressive strength of the product accordingly 

by increasing the ratio of alkali activator (Gao et al., 2014). The significance of ratio 

solid-liquid to geopolymerization mixture and decided that the formation of geopolymer 

can increase when the ratio of alkali activator is high (Yao et al., 2009). 

Using alkali activators without any sodium silicate could be poor influences on 

mechanical properties. However, it contributes to the main role in the polymerization 

reaction (P.Torgal et al., 2008). 

In geopolymerization, one of the pressing issues is the concentration of alkali activator 

regardless of the types of activating solution used, by increasing the concentration of 

alkali activator resulting increasing the rate of reaction (Petermann et al., 2012; 

Fernandez-Jimenez et al., 1999). 

By increasing the molar concentration of sodium hydroxide, consequently, it will be 

increasing the number of dissolved silicates (Panagiotopoulou et al. 2007). Granizo et al. 

(2007) reported that by increasing the sodium concentration in the alkali activator; the 

flexural strength is improved. However, it exceeds to 12M; it reduces the flexural strength 

because of crystallization formation of faujasite which is caused by extra sodium.  
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2.4.2 Curing Conditions 

Jansen and Christiansen, (2015) reported that by increasing or decreasing temperature; it 

influences the strength of mix composition. 

Many types of research asserted that mechanical strength could be increased while curing 

at high temperature. However, there is a certain limit if it reaches above; the strength of 

the mixture will start to reduce (Lemougna et al., 2016).  

The suitable curing temperature is 60°C with an extreme being 100 oC regardless of the 

mixture. Moreover, curing could either be the higher or irregular one, and some factors 

must be taken into account during curing; for instances alkali activator ratio, the molar 

ratio in addition to the resting period (Al Bakria et al., 2011). 

Curing at higher temperature improves the fast dissolution of metakaolin thus reducing 

the time required for setting. Moreover, it is also to be noted that an increase in 

temperature consistently means that there would be decreasing in polymerization rate of 

the materials and this will be reflected in alkali-activated mixture properties (Mo et al., 

2014). 

A large part of moisture which is needed for geopolymerization; it losses while curing of 

fly ash geopolymer at high temperature thus reduction in the mechanical properties 

(Chindaprasirt et al., 2007). By increasing the curing temperature above, 60 oC could not 

agree to an improvement in compressive strength for fly ash geopolymers. The strength 

of a geopolymer is also related to the curing time. (Hardjito et al., 2004). 

To get maximum strength; using metakaolin based geopolymer should be cured at 75 oC 

for 4 hours (Kirschener et al., 2004). To curing rapidly or heated at a higher temperature; 

it would be affected negatively the properties of the final product (Van Jaarsveld et al., 

2002).  

Vijai et al., (2010) reported that the hot cured fly ash based aluminosilicate binders were 

registered higher compressive than ambient curing geopolymer. Also, by comparing 

cured samples between 7 days and 28 days, the obtained results showed that compressive 

strength was not improved extensively after seven days.  

The curing temperature has an essential influence on the compressive strength of 

metaklaolin based composite. At room temperature; the compressive strength of 

metakaolin pastes was prolonged. It could be influenced to improve by increasing curing 

temperature; however, curing at a moderate temperature below 100 oC could suitable in 



   

16 
 

terms of mechanical properties. Curing at a higher temperature and with short curing time 

influences to good strength as well as robust structured, however curing at a lower 

temperature with longer time improves the strength (Liew et., al 2013). In fig. 6, shows 

the effects of curing temperature on the compressive strength. 

 

Fig 6. Effects of curing at different temperatures and time on compressive strength 

(Liew et., al 2013). 

Khale et al., (2007) highlighted that to cure the mixture at higher temperature 

continuously; thus, it leads to a structural failure. Vu et al., (2012) reported that an 

alteration in the hydration reaction due to the curing temperature, which results in affected 

the microstructure of the concrete. Taylor (1997) revealed the when the temperature is 

increased resulting in a fast rate of concrete gel hydration. 

Escalante-Garcia and Sharp (1998) reported that by the increase in temperature; the pore 

size and density of the cement paste could be increased. Due to the quick change in the 

microstructure distresses the mechanical properties of the concrete in that way makes 

them weaker. Owing to the rapid absence of water causes the mix composition to squeeze, 

shrink, and sometimes cracks because of the inadequate geopolymerization process 

(Cervera et al., 2002). 

The curing effect at different temperatures (30 ˚C, 40 ˚C, 50 ˚C, 60 ˚C, 75 ˚C and 90 ˚C) 

on compressive strength of the metakaolin based alkali activated material, then samples 

were treated at different temperature at the same duration, however, it was observed 

different compressive strength values 18 MPa, 14 MPa, 13 MPa were obtained at 
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temperatures 60 ˚C, 75 ˚C, 90 ˚C respectively, finally they were concluded that the 60 ˚C 

temperature was good in order to get higher strength and low porosity. 

 

2.4.3 Chemical composition 

The ratio of binder amount of the aluminates and silicates in the inclusive mixture has a 

significant role in influencing on the final product (gel) properties. 

To achieve good strength and durability, some molar ratios are suggested by Davidovits 

(1999) on the basis of his working of zeolite chemistry are: SiO2/Na2O = 1.85; SiO2/Al2O3 

from 3.5–4.5, Na2O/SiO2 from 0.2–0.48, Na2O/Al2O3 from 0.8–1.6; and H2O/Na2O from 

10–25. 

The optimal changing ratios provide an indication to the significance of reactive stage of 

the combining ingredients compared to the molar ratio of the original constituent material, 

the creative material used has a variable quantity of reactive aluminates and silicates. 

(Pacheco-Torgal et al., 2008).  

 

2.5 Fiber-reinforced alkali-activated materials 

Some studies have been carried out on fiber reinforced geopolymers and the distribution 

in the mixture effect on the mechanical strength of geopolymers. The significant 

improvement had been observed in the hardened state properties by adding fibers than 

plain geopolymer (Silva et al., 2003; Alomayri et al., 2014a, Natali et al., 2011). 

The cementitious materials are mainly brittle behavior and fundamentally weak in terms 

of tensile force while low tensile could be caused by sudden failure due to the propagation 

of cracks. By using steel fibers as a reinforcement which is quite commonly used to 

improve the tensile strength of cementitious composites (Neville et al., 2004).  

Fiber-reinforcement could be helped to avoid the macro and micro-cracks over a fiber 

bridging effect; likewise, it alters the post-cracking impact of the material, from an 

inflexible breakage manner to a flexible way owing to its improved strain energy 

dissipation ability. Furthermore, different types of fibers have different properties, for 

instance by using basalt fibers in the mixture could play a significant role to resist the 

alkali, acidic and salt attack by comparison with glass and aramid fibers. (Samal et al., 

2015; Timakul et al., 2016). 
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By using 2, 3 and 5 wt. % of steel fibers, the flexural strength was recorded 11 MPa and 

9 MPa for the mixture of steel and the plain mixture of boroaluminosilicate geopolymers 

respectively. The maximum and minimum of steel reinforced mixtures on the flexural 

strength were registered by around 47% and 5% respectively as compared to the plain 

mix (Nazari et al., 2015). 

 

2.6 Binder 

2.6.1 Soapstone  

Soapstone is one type of metaphoric rock which contains a large amount of talc, around 

50%. Mostly it is used in kilns and other refractory purposes since, its melting point is 

about 1630 0C (Indian Mineral, 2012). It is the hydrated layer of magnesium silicate, and 

the chemical formula is Mg3Si4 O10 (OH)2. It could be used as a raw material in cement, 

while magnesium interacts with phosphate. Thus, it provides cementitious material. 

Magnesium oxide-based specimens from talc have given positive outcomes regarding 

compressive strength and linear shrinkage (Sabouang et al., 2014). 

 

2.6.2 Metakaolin  

It is manufactured by heated china clay or mineral kaolin to a temperature around 800 °C. 

It has good characteristics, such as absorbability, high specific area, and strong 

coordinative bond (Chen et al., 2016; Concrete society, 2018). This material is being used 

as supplementary material in the construction field. It is useful in gaining high mechanical 

strength, toughness, and excellent durability performances, such as high resistance to 

chemicals. Metakaolin production process releases 80-90% CO2 emission than OPC 

(Rovnanik, 2010). Metakaolin becomes cementitious material with high mechanical 

strength through poly-condensation reaction while it is activated by alkali OH (Granizo 

et al., 2004).  

 

2.6.3 Lime 

It is formed by burning a source of limestone or magnesium limestone between 850 °C, 

and 1200 °C. Through the following chemical reaction, calcium hydroxide Ca(OH)2 is 

formed (Ingham, 2013). 

CaO(s) + H2O (l)     Ca (OH)2 (s) 
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2.6.4 Stone wool 

It is an inorganic fibrous substance that considered as waste which is formed by steam 

blasting and cooling molten glass. It has many applications such as insulation, and fire 

protection (Milena et al., 2006). Stone wool occupies large space while landfilled. 

Landfilling of stone wool is not an eco-friendly method for disposal (Chen et al., 2006). 

There is an option to tackle this waste by melting, compressing or reprocessing it. It can 

be used as supplementary cementitious materials (SCM) such as being used as a substitute 

for OPC in the concrete, to improve the mechanical performances (Ramachandran et al., 

2001). 

 

2.6.5 Silica fume (SF) 

It is a grey powder with finest non-crystalline silica and produced by smelter processes at 

a temperature of 2000°C in the silicon-based industries. The particle size is less than 1 

micrometer, the bulk density is between 130 to 430 kg/m3, the specific gravity is 2.2, and 

the specific surface area is 15000 to 30000 m2/kg (Holland, 2005). 

 

2.7 Alkali activator 

In geopolymerization, a chemical activator is needed that can influence the precipitation 

and crystallization of the Al and Si constituents in the solution. The alkali hydroxide ions 

perform as catalysts for the reactivity of the elements, whereas the metal cations help to 

make a structural element and stabilize the negative framework reinforced by the 

tetrahedral aluminium network (Petermann et al. 2012).  

 

2.7.1 Sodium Hydroxide 

NaOH is mainly used in geopolymerization due to its cost-effectiveness and being 

reachable, and less viscose. (Vickers et al., 2015). It could be used as a solid or liquid 

form (National Center, 2018).  

 

2.7.2 Sodium Silicate  

Sodium silicate has some familiar names such as “water glass” or “liquid glass”. Sodium 

silicate used as an activator to activate the aluminosilicates in the binders, and it is 

available in liquid and solid form (Phoo-ngernkham et al., 2015). 
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2.8 Fiber 

2.8.1 Steel  

Steel fibers have two types, such as carbon and stainless steel which are manufactured 

from virgin steel and recycled steel. Their effectiveness is based on type, length, 

configuration and diameter. Steel has higher elastic modulus than polypropylene. It is 

mostly used in concrete to get improvement. Steel fiber reinforced concrete (SFRC) is 

mainly used in industry for tunnel lining and road paving. Moreover, the primary purpose 

of the steel fiber is to increase the hardness of concrete. It has excellent characteristics as 

a composite material such as tensile, shear strength, toughness, and crack resistance. Frost 

damage could be improved by using steel fibers. It can be distributed in all direction of 

concrete mix which resulted in blocking the growth of micro-cracks due to evaporation 

of water from concrete that can result in shrinkage. In addition, these fibers can prevent 

plasticity and drying shrinkage. SFRC has higher flexural strength and toughness in 

compare to conventional reinforced concrete (Behbahani et al., 2011; Lau et al., 2006). 

 

2.8.2 Basalt  

Basalts fibers could be produced by two methods Junkers and the spinneret. The 

manufacturing process of basalt fiber takes place at 1400 °C, and in most cases, the 

diameter of the filament is between 9 to 13μm (Araújo, 2011). Basalt fibers of high 

strength and high elastic modulus with great shock resistance (Hu and Liu, 2010). Basalt 

fibers are useful in making the mortar denser, preventing floating and sinking in concrete 

(Kiisa et al., 2016). 

 

2.9 Sand 

Aggregate can play a crucial role in determining the rigidity and stiffness of concretes, 

and giving concretes their volumetric stability). Based on the CEN-Standard, standard 

sand should have specific grain size distribution ranges between 0.08 and 2.00 mm 

(Hajimohammadi et al., 2018; Normen sand, 2019).  
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3 MATERIALS AND EXPERIMENTAL METHODS 

3.1 Materials and mix design 

In this thesis, in total twenty mix compositions are prepared and tested. The used materials 

were soapstone, metakaolin, lime, stone wool, silica fume and various type and content 

of fibers.  

Table 1. Shows the designed mix compositions. The main part of the binder is soapstone 

from a Finnish company (Tulikivi). Table 2. Depicts the chemical compositions of 

precursors. Steel and basalt fibers were used in the mixtures, and their specifications are 

mentioned in Table 3.  

Table 1. Mix compositions of soapstone containing different co-binders 

 

3.2 Chemical compositions  

Table 2, shows the chemical compositions of the used materials which were determined 

by X-ray fluorescence (XRF). 

 

 

Mix 
Soapstone 

(%) 

Metakaolin 

(%) 

Lime 

(%) 

Stone 

wool 

(%) 

Silica 

fume 

(%) 

 

 

Sand 

(%) 

Sodium 

hydroxide 

(10M) 

(%) 

 

Sodium 

silicate 

(2.5M) 

(%) 

 

 

Steel 

fiber 

(%) 

 

Basalt 

fiber 

(%) 

1 80 20 0 0 0 100 32 68 0 0 

2 95 0 5 0 0 100 32 68 0 0 

3 80 0 0 20 0 100 32 68 0 0 

4 80 0 0 0 20 100 32 68 0 0 

5 80 20 0 0 0 100 32 68 1 0 

6 95 0 5 0 0 100 32 68 1 0 

7 80 0 0 20 0 100 32 68 1 0 

8 80 0 0 0 20 100 32 68 1 0 

9 80 20 0 0 0 100 32 68 0 1 

10 95 0 5 0 0 100 32 68 0 1 

11 80 0 0 20 0 100 32 68 0 1 

12 80 0 0 0 20 100 32 68 0 1 

13 80 20 0 0 0 100 32 68 0.5 0 

14 95 0 5 0 0 100 32 68 0.5 0 

15 80 0 0 20 0 100 32 68 0.5 0 

16 80 0 0 0 20 100 32 68 0.5 0 

17 80 20 0 0 0 100 32 68 0 0.5 

18 95 0 5 0 0 100 32 68 0 0.5 

19 80 0 0 20 0 100 32 68 0 0.5 

20 80 0 0 0 20 100 32 68 0 0.5 
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Table 2. Chemical compositions. 

Element/oxide, (wt. %) Soapstone Metakaolin Lime  Stone wool Silica fume 

SiO2 38.39 53.0 1.69 40.4 93.40 

Al2O3 1.61 44.5 0.325 15.8 0.75 

Fe2O3 0.14 0.4 0.384 9.2 1.24 

Na2O 16.59 0.3 - 1.4 0.39 

K2O 0.06 0.1 0.0504 0.4 1.25 

P2O5 0.03 0.1 0.00788 0.1 - 

TiO2 0.14 1.4 - 0.8 0.02 

MgO 37.96 - 2.40 12.6 1.02 

SO3 0.35 - 0.104 - - 

CaO 1.74 - 79.7 17.4 1.39 

CrO3 0.60 - - - - 

MnO 0.21 - 1.12 - - 

NiO 0.32 - - - - 

Cl - - 0.0267 - - 

LOI (525 °C) 21.3 0.3 - 2.4 1.69 

LOI (950 °C) - 0.6 14.212 - 2.31 

d10 [µm] 2.6 0.6 1.692 0.7 4.7 

d50 [µm] 24.0 1.3 8.062 6.9 12.53 

d90 [µm] 124.8 7.5 38.26 33.6 21.85 

 

 

3.3 Fiber specifications 

The physical and mechanical properties of the two types of used fibers are listed in Table 

3 used in the mix compositions. Fig. 7, shows the length of fibers which were used in the 

designed mix compositions. 

Table 3. Physical and mechanical properties of the used fibers. 

Fibers Length 

(mm) 

Diameter 

(mm) 

Density 

(kg/m2) 

Elastic modulus 

(GPa) 

Tensile strength  

(MPa) 

Elongation at 

break (%) 

 

Steel 13 0.03 7.88 200 2200 3 

Basalt 6 0.018 2.65 100 4500 3.1 

 

   

  

LOI* = Loss on ignition 

d10* = Diameter of particle  
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a)                                                                                b) 

Fig 7. Used fibers: a) Steel 12 mm; b) Basalt 6 mm 

 

3.4 Alkali activators 

The two alkali activators were used which was total around 32%. Table 1. Shows the 

dosages of alkali activators. The molar ratio of sodium silicate molar ratio is 2.5 

(SiO2/Na2O=2.5), and sodium hydroxide with a molarity of 10M. 

 

3.5 Aggregate 

Standard sand (according to EN 196-1) was used in the designed mix compositions. The 

grain size distributed between 0.08 and 2.00 mm. 

 

3.6 Preparation of specimens 

In the first step of mixing, materials are measured according to Table 1. The dry binder 

was mixed for 3 minutes with minimum speed. Then alkali activator (NaOH and Na2SiO3) 

were added to the mix composition. After that, it was mixed for a further 3 minutes to get 

good homogeneity. For reinforced mixtures, fibers were added gradually in the last step 

after addition of alkali activator. 
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Fresh concrete filled in the moulds (40x40x160 mm) and placed on the jolting table with 

the purpose of compaction of concrete according to EN 196-1. The samples were labelled 

and placed in the oven at 60 °C for 24 hours. After 24 hours, the specimens were 

demolded and exposed to an ambient conditions (24°C and RH 35%) until the test date. 

Fig. 8, represents the effects of replacing soapstone with four different co-binders. 

     Metakolin                   Lime                  Stone wool             Silica fume 

 

   

 

 

  

    

 

 

 

 

 

 

Fig 8. Visual monitoring of the plain mix compositions with four different co-binders. 

 

3.7 Test procedures 

3.7.1 Flexural strength  

According to the ASTM C78, the flexural test was carried out, and Zwick Z100 material 

testing machine was used. The flexural load applied on beams at a displacement rate of 

0.6 mm/min and 100 kN load cell capacity was used. Fig. 9, shows the flexural strength 

testing apparatus. The results were obtained from the average of three beams. Flexural 

strength of the prismatic beams was calculated by using the following equation 2: 

𝜎𝑓 = 3𝐹𝐿/2𝑏ℎ2                                       (2) 
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Where σf refers to flexural strength, F is the total load, L is the span length, b is the width, 

and h refers to the height of the specimen. 

 

Fig 9. Adopted test setup for flexural test 

 

3.7.2 Compressive Strength  

Those split prismatic beams during the flexural test were used for the compressive test 

according to the ASTM C116-90. The displacement rate was 1.8 mm/min and 100 kN 

load cell capacity. Fig. 10, shows the adopted test setup for the compressive test. The 

results were obtained from the average of six tested samples from each composition. The 

compressive strength was calculated by using equation 3: 

                     𝛔𝐜 =
𝐅

𝐀 
                                                     (𝟑)                                                                                       

30 mm 

160 mm160 mm 
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     Where σc denotes the compressive strength (MPa), F is the compressive load (N), and 

A is the loaded area (mm2). 

 

Fig 10. Adopted test setup for the compressive test. 

 

3.7.3 Drying shrinkage 

According to the ASTM C157, the specimens (40x40x160 mm) length were measured by 

mechanical gauge, and the measurement was continued the length change became 

constant. The measurement started right after de-moulding. The results were obtained 

from the average of three beams. Fig. 11, shows the used mechanical gauge in this 

measurement. Drying shrinkage was calculated based equation 4: 

                 𝛥𝑙 =
𝒍𝒏−𝒍𝟎

𝒍𝟎
                                                          (𝟒)                                                                

   Where, Δl indicates the shrinkage strain, ln is the length measurement, l0 is the initial 

length of specimen.                      
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Fig 11. Device used for measuring the length changes. 

 

3.7.4 Water absorption  

Based on ASTM C 1585-04, three cubic specimens of each mix (50x50x50 mm) were 

dried at 100oC for 48 hours, then those samples were placed under water for 48 hours. 

After that, the samples were removed from the water, and the saturated weight was 

measured. The results were obtained from the average of three tested samples of each mix 

composition. Water absorption (Wm) is calculated based on the following equation:  

              𝑾𝒎 =
𝑴𝒘 − 𝑴𝒅 

𝑴𝒅
𝑿 𝟏𝟎𝟎                                  (𝟓)                                    

 Where, Wm denotes the water absorption, Mw stands for saturated mass, and Md is dry 

mass. 

 

3.7.5 Apparent porosity  

The three cubic specimens of each mix (50x50x50 mm) were immersed into the water, 

and then weighing buoyancy mass with a basket which was fixed to scale. Fig. 12, shows 

16
0 

m
m
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the setup for weighing the suspended weight. The Apparent porosity of specimens were 

calculated by using equation 6: 

𝑨𝒑𝒑𝒂𝒓𝒆𝒏𝒕 𝒑𝒐𝒓𝒐𝒔𝒊𝒕𝒚 =
𝐖𝐬 − 𝐖𝐃 

𝐖𝐬 − 𝐖𝐁
 𝑿 𝟏𝟎𝟎      (𝟔) 

Where Ws denotes the saturate weight, WD is the dry weight, and WB stands for weight 

buoyancy.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 12. Setup for measuring suspended weight. 

 

3.7.6 Capillary water absorption 

The lateral surface of three cubic specimens of each mix composition (50x50x50 mm) 

were covered by paraffin. The water absorption co-efficient due to capillary action was 

measured based on BS EN1015-18:2002 recommendation. Fig. 13 shows the set up for 

 

A bucket is connected to the scale with metallic wire  
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capillary water absorption. The capillary water absorption coefficient were calculated 

using equation 7: 

                         𝐀𝐰 =
∆𝐁

𝐀√𝐭
                                                 (𝟕) 

Where, Aw denotes the capillary water absorption coefficient, ∆B is the absorbed mass, A 

is the surface area, √t is the time (min0.5).  

  

  

 

 

 

 

 

                          

         

 

 

 

Fig 13. Capillary water absorption. 

 

3.7.7 Acid Resistance 

This test was carried out by immersing the sample (50x50x50 mm) in the acidic solution 

which was 5 % sulfuric acid. Samples were dried at 105 °C for 3 days and weighed. After 

that samples were immersed in the acid solution. 

 

3.7.8 Ultrasonic pulse velocity (UPV) 

The ultrasonic pulse velocity determines the thickness of concrete by a pulse of the 

ultrasonic wave which passes through the concrete and velocity of the pulse could be 

Lateral surface of a sample covered by paraffin  
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achieved. The velocity passes will indicate the air void or cracks, however higher velocity 

indicates good quality of concrete. This test is non-destructive and easily carried out on 

site. Fig. 14, shows the measuring UPV of the sample. Pulse velocity of specimens were 

calculated by using equation 8: 

                      𝑽 =
𝑳

𝑻
                                        𝟖 

 

Where V refers to pulse velocity (m/s), L is the distance between two transducers (mm), 

and T denotes transmission time (µsec). 

 

                                   Fig 14. Measuring ultrasonic pulse velocity. 

 

3.7.9 High temperature properties 

Three prismatic beams (40x40x160 mm) of each mix were exposed to 800°C for 3 hours. 

After that samples were left at room temperature to cool down and then flexural and 

compressive strength were measured. Fig. 15a, shown the samples inside the high-

temperature oven and fig. 15b shown the difference after exposure of high temperature 
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   Before                 After  

                                                                                                                                

  

   

 

   

  

 

 

Fig 15. High-temperature exposure: (a) Specimens inside the oven; (b) After exposure 

to high temperature. 

 

3.7.10 Carbonation  

The three prismatic beams (40x40x160 mm) from each mix composition were used to 

determine the carbonation resistance of each mix composition. The specimens were 

placed in the chamber for 7 days, where CO2 gas was circulated with a concentration of 

0.5%, and the relative humidity was 60%. After that flexural and compressive strengths 

were tested. Fig. 16, shows the carbonation chamber where specimens were treated.  
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Fig 16. Carbonation Chamber. 

 

3.7.11 Thermogravimetric analysis (TGA)  

A Precisa PrepASH 129 analyzer was used to perform the tests. Powders were placed in 

alumina crucibles and tested at an argon atmosphere and a heating rate of 10 °C/min. 

Mass loss was recorded with gradual increases in temperature during the test. 

 

3.7.12 Efflorescence assessment 

Efflorescence is usually observed in geopolymers which are originated by the fact that 

alkaline or soluble silicates, those are added during processing which cannot be totally 

consumed during geopolymerization. It is caused by the transfer of alkaline or earth 

alkaline ions from pore solution to the sample surface and reacting with atmospheric CO2 

(Abdollahnejad et al., 2018). Efflorescence was observed visually after curing for 28 days 

in ambient conditions (24°C and RH 35%). 
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4. RESULTS AND DISCUSSION 

 4.1 Flexural and compressive strength 

The experimental procedure has been designed to evaluate the effects of replacement of 

soapstone with different co-binders and to investigate how these co-binders will affect 

the hardened properties of the designed mix compositions. Fig. 17a, indicates that the 

maximum and minimum flexural strengths were recorded around 11.5 MPa and 1.5 MPa 

for the mix compositions with metakaolin and lime as a co-binder, respectively. Fig. 17b, 

indicates the results of compressive strength. The achieved results depicted that the 

highest compressive strength were recorded around 25 MPa for metakaolin based 

samples. The maximum and minimum compressive strength were recorded around 25 

MPa and 5 MPa, respectively for the mix composition with 5% lime and 20% metakaolin 

at 28 days respectively.  

 

a) 

 

b) 

Fig 17. Effects of using replacing co-binders on the: a) Flexural strength; b) 

Compressive strength. 
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There are two different fibers, and two volume fraction (1% and 0.5%) were used in this 

research in order to investigate; how these fibers and their dosages will effect on the 

hardened properties of mix compositions. Fig. 18a, illustrates the effects of adding fibers 

to the mixtures which soapstone was replaced by 20% metakaolin. The results showed 

that maximum and minimum flexural strength were obtained around 11. 5 MPa and 10 

MPa for the mixtures reinforced with 1% and 0.5% steel fibers, respectively. While using 

1% steel and 0.5% basalt fibers did not affect the flexural strength in compare to the plain 

mix composition. Moreover, 1% basalt and 0.5% steel fibers reduced the flexural 

strengths around 10% and 5% respectively in compare to the reference mix composition. 

Fig. 18b, shows that the maximum and minimum compressive strength were achieved 

around 27 MPa and 23.5 MPa for the mixtures reinforced with 0.5% basalt fibers and 

0.5% steel fibers, respectively. The compressive strength was improved around 27 MPa 

as recorded by adding 0.5% basalt fibers. According to the achieved results, the 

compressive strength was improved and reduced around 4% by adding 1% and 0.5% steel 

fibers to the mixtures, respectively. Moreover, by employing 1% and 0.5%, basalt fibers 

were reduced and improved approximately 4% and 10%, respectively by comparison with 

the plain mixture. It was interesting to find that by reducing the amount of basalt fibers 

by half, the compressive strength was improved around 10% as compared to the reference 

sample. 
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b) 

Fig 18. Effects of using different type and dosage of fibers, and replacing 20% of 
soapstone with metakaolin as a co-binder on the: a) Flexural strength; b) Compressive 

strength.  

 

It was tried replacing 20% to 10% of soapstone with lime resulting in mixture had become 

hardened which was not possible to cast it due to short settling time. Therefore, 5% of 

soapstone had been replaced with lime. Fig. 19a, represents the effects of adding fibers 

to the mixtures which soapstone was replaced by 5% lime. The maximum and minimum 

flexural strength were obtained around 6.5 MPa and 1.5 MPa for the mixture reinforced 

with 1% basalt fiber and plain mixture, respectively. The results illustrated that the 

flexural strength was improved up to 250% by employing 1% and 0.5% steel fibers. On 

the other hand, 1% and 0.5% basalt fibers improved the flexural strength around 500% 

and 300%, in compare to the plain mixture respectively. Fig. 19b, illustrates that the 

effects of adding fibers and replacing lime as a co-binder on the compressive strength. 

The results showed that maximum and minimum compressive strength were obtained 

around 8.2 MPa and 5.2 MPa for the mixture reinforced with 1% basalt fiber and plain 

mix compositions, respectively. Compressive strength were improved in mixtures which 

were reinforced with 1% and 0.5% steel fibers and the increment were around 25% to 

38%, respectively. Moreover, employing 1% and 0.5% basalt fibers, the compressive 

strength were improved around 60% and 45% in compare to the plain mix composition, 

respectively.  
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a) 

 

b) 

Fig 19. Effects of using different type and dosage of fibers, and replacing 5% of 
soapstone with lime as a co-binder: a) Flexural strength; b) Compressive strength. 

 

Fig. 20a, indicates the effects of adding fibers to the mixtures which soapstone was 

replaced by 20% stone wool. The results showed that maximum and minimum flexural 

strength were obtained around 8 MPa and 5.5 MPa for the mixtures reinforced with 0.5% 

and 1% basalt fiber, respectively. It showed that by employing 0.5%, basalt fibers, 

improved the flexural strength approximately 15% compared to the reference mixture. 

However, 1% of basalt fibers decreased the flexural strength around 20% in comparison 

with the reference mixture. Furthermore, addition of 1% and 0.5% of steel fibers resulted 

in reducing the flexural strength of around 1% and 5%, respectively. According to the 

obtained results, using 1% and 0.5% steel fibers did not improve the flexural strength; 

however, in the case of 0.5% basalt fibers, the flexural strength were improved. Fig. 20b, 
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shows the compressive strength of mix compositions with 20% stone wool as replacement 

of soapstone. The results showed that maximum and minimum compressive strength were 

obtained around 12 MPa and 9 MPa for the mixtures reinforced with 0.5% and 1% basalt 

fibers, respectively. It was revealed that by using 1% and 0.5% steel fibers, the 

compressive strengths were reduced by around 12%. Besides, 1% and 0.5% basalt fibers 

were decreased the compressive strength around 20% and 8%, respectively. Moreover, in 

can be mention that increasing the amount of basalt fibers from 0.5% and 1% led to 

decrease in the compressive strength.  

 

a) 

 

b) 

Fig 20. Effects of using different type and dosage of fibers, and replacing 20% of 

soapstone with stone wool as a co-binder: a) Flexural strength; b) Compressive 

strength. 
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Fig. 21a, shows the effects of adding fibers to the mixtures with 20% silica fume as a 

replacement of soapstone. The obtained results showed that the maximum and minimum 

flexural strength were obtained around 9 MPa and 5 MPa for the mixtures reinforced with 

1% basalt fibers and plain mix composition, respectively. By employing 1% and 0.5% 

steel fibers, the flexural strength increased around 40% in compare to the plain mixture. 

Likewise, 1% and 0.5% Basalt fibers improved the flexural strength around 80% and 

40%, respectively. Fig. 21b, shows the effects of addition of fibers on the compressive 

strength of mixture with 20% silica fume use as a co-binder. The results showed that 

maximum and minimum compressive strength were obtained around 10 MPa and 8 MPa 

for the mixtures reinforced with 1% basalt fibers and plain mixture, respectively. By 

employing 0.5% steel fibers, the compressive strength was improved up to 10% compared 

to the reference mix composition. However, it was observed that by adding 1% steel 

fibers, the compressive strength improved by 2%. Moreover, 1% and 0.5% basalt fibers 

improved the compressive strength around 20% and 15% respectively. 

 

   a) 

 

b) 

Fig 21.  Effects of using different fibers and replacing 20% of soapstone with silica 

fume as a co-binder on the a) Flexural strength; b) Compressive strength. 
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4.2 Drying Shrinkage  

Fig. 22, represents the effects of different co-binders when were replaced with soapstone 

on drying shrinkage rate. It revealed that the drying shrinkage rate of mix composition 

with 5% lime was increased rapidly in comparison to other used co-binders and reached 

around -0.20mm in the first 360 hours. The shrinkage rate of mix composition with 20% 

metakaolin was slightly changed in compare to other used co-binders. Moreover, Gesso 

et al., 2007 reported that, by using metakaolin as a co-binder, the shrinkage rate could be 

reduced. Silica and stone wool as co-binders behaved similarly in terms of shrinkage and 

their rates was been gradually increasing up to a certain point. 

 

Fig 22. Shrinkage of plain mixtures with metakaolin, lime, stone wool or silica fume 

used as a co-binder.  

 

Fig. 23, illustrates the results of drying shrinkage of the reinforced mixtures with 

metakaolin as a co-binder. The obtained values showed that by employing 0.5% and 1% 

basalt fibers, the drying shrinkage decreased around 70% and 80%, respectively as 

compared to the reference mixture. Moreover, by employing 1% and 0.5% steel fibers, 

drying shrinkage rates decreased about 70% in compare to the reference mix composition. 
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Fig 23. Effects of fibers on the drying shrinkage in the mixture with 20% metakaolin 

used as a co-binder. 

 

Fig. 24, depicts the results of mixtures with 5% lime as a co-binder. It was recorded that 

by adding fibers either 1% and 0.5% steel fibers or 1% and 0.5% basalt fibers, the drying 

shrinkage rate decreased by 55% and 50%, respectively in compared to the reference 

mixture.  

 

Fig 24. Effects of fibers on the drying shrinkage in the mixture with 5% lime used as a 

co-binder. 
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reduced around 31% and 50% by employing 0.5% and 1% steel fibers, respectively in 

compare to the reference samples. Adding 1% basalt, decreased the drying shrinkage by 

40%. Moreover, 0.5% basalt fibers reduced the drying shrinkage rate up to 25%. The 

obtained results revealed that the higher amount of steel fibers (1%) resulted in the highest 

resulted reduction in shrinkage rates. 

 

Fig 25. Effects of fibers on the drying shrinkage in the mixture with 20% stone wool 

used as a co-binder. 

 

Fig. 26, illustrates the results of drying shrinkage measurement for mixtures which 

soapstone was replaced with silica fume by 20%. The achieved results showed that by 

adding 0.5% and 1%, steel fibers decreased the drying shrinkage rate around 30% and 

45%, respectively as compared to the reference mixture. By employing 0.5% and 1% 

basalt fibers, the shrinkage rate was reduced around 15% to 30%. Also, it was reported 

that the higher amount of steel fibers could lead towards the great improvement. 
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Fig 26. Effects of fibers on the drying shrinkage in the mixture with 20% silica fume 

used as a co-binder. 

 

4.3 Water absorption  

To presented results the effects of using different co-binders on water absorption of 

soapstone mix compositions. Fig. 27, depicts the results of water absorption by immersion 

of plain mixtures. According to the obtained results, the metakaolin mixture showed a 

higher amount of water absorption in compare to two co-binders. Due to the high amount 

of water absorption in mixture with 5% lime, it was not possible to measure it.  

 

Fig 27. Effects of used co binders on water absorption. 
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the plain mixture. However, the amount and types of fibers affected on water absorption 

about 10% 

 

Fig 28. Effects of fibers on the water absorption of mixtures with 20% metakaolin as a 

co-binder. 

 

Fig. 29, shows mixtures with lime 5% as a co-binder during conducting the water 

absorption test. This figure shows that within few hours of starting the test, the water 

absorption was high, and the measurement was not possible for those mix compositions 

with 5% lime. 

 

  

             

 

 

 

 

 

Fig 29. Reinforced mixtures with 5% lime during water absorption test. 
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Fig. 30, represents the effects of using different fibers on the water absorption of mixtures 

with 20% stone wool. The obtained values showed that 0.5% and 1% steel fibers 

increased the water absorption rate around 25%. While, 1% and 0.5% basalt fibers 

increased the water absorption around 45% and 25%, respectively in compare to reference 

mix composition. Besides, it was found that by adding (1%) basalt fibers absorption 

increased in compared to the mixture with (0.5%) basalt fibers. 

  

Fig 30. Effects of fibers on the water absorption of mixtures with 20% stone wool as a 

co-binder. 

 

Fig. 31, represents the effects of using different fibers on water absorption results of the 

mixtures with 20% silica fume. The achieved results showed that 1% and 0.5% basalt 

fibers increased the water absorption by 38% and 35% respectively as compared to the 

reference mixture. Although, Steel fibers did not affect the water absorption in a compare 

to the reference mixture water absorption. 

 

Fig 31. Effects of fibers on the water absorption of mixtures with 20% silica fume as a 

co-binder. 
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4.4 Apparent porosity 

This part is assigned to investigate the effects of using different co-binders on apparent 

porosity. Fig. 32, shows the apparent porosity of plain mix compositions. The results for 

mixture with metakaolin and stone wool plain mixtures were recorded around 25% and 

15% respectively, whereas silica fume result was recorded 6% which was lowest apparent 

porosity in compare to the mixtures with metakaolin or stone wool.  

 

Fig 32. Apparent porosity of plain mixtures. 

 

Fig. 33, shows that the effects of different fibers on the apparent porosity of the mix 

compositions with 20% metakaolin. The apparent porosity of reinforced mixtures were 

reduced around 10% in comparison to the reference mixture. The results showed that type 

and amount of fibers did not affect the results. 

 

Fig 33. Apparent porosity of fibers reinforced mixtures with 20% metakaolin. 
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Fig. 34, depicts the results of apparent porosity of reinforced mix compositions with 20% 

stone wool as a co-binder. According to the achieved values, 0.5% and 1% steel fibers 

increased the apparent porosity by 27% as compared to the reference mix composition. 

Moreover, 1% basalt fibers increased the apparent porosity of about 40%. In addition, 

0.5% basalt fibers increased the apparent porosity by 21% as compared to the reference 

mixture. The attained results reveal that fibers reinforced mixtures have higher apparent 

porosity in compare to the plain mixture.  

 

Fig 34. Apparent porosity of fibers reinforced mixtures with 20% stone wool. 

 

Fig. 35, shows the effects of different fibers on the apparent porosity of mixture with 20% 

silica fume. In 1% and 0.5% steel mixtures, the apparent porosity decreased around 10% 

in compare to the reference mixture. However, 1% and 0.5% basalt increased the apparent 

porosity by 30% and 25% as compared to the plain mix composition, respectively. 

 

Fig 35. Apparent porosity of fibers reinforced mixtures with 20% silica fume. 
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4.5 Capillary water absorption 

The following results presented the effects of using different co-binders on water 

absorption by the capillary. Fig. 36a, illustrates the cumulative mass of water of plain mix 

compositions. It showed that metakaolin plain samples showed higher cumulative mass 

of water around 11 kg/m2. The stone wool was 5 kg/m2 and silica fume around 2.20 kg/m2. 

According to the achieved results, silica fume had lower cumulative mass of water about 

2.20 kg/m2.  Fig. 36b, represents the capillary co-efficient of plain mixtures. The capillary 

co-efficient of metakaolin mixture was the highest and silica fume had the lowest of 

capillary water absorption co-efficient.  

 

           a) 

 

b) 

Fig 36. a) Cumulative mass of water in the plain mixtures; b) Water absorption 

capillary coefficient of plain mixtures. 

0

3

6

9

12

0 10 20 30 40 50 60 70 80

C
u

m
u

la
ti

v
e 

m
a

ss
 o

f 
w

a
te

r
 (

k
g

/m
2
)

√Time (min0.5) 

Metakaolin
Stone wool
Silica fume

0

0,04

0,08

0,12

0,16

Metakaolin Stone wool Silica fume

C
a

p
il

la
ry

 c
o

ef
fe

c
ie

n
t 

(k
g

/m
2
m

in
0
.5

)



   

48 
 

Fig. 37a, illustrates the results of capillary water absorption by using different fibers in 

the metakaolin mix compositions. It was observed that addition of fibers did not affect 

the capillary water absorption remarkably. Fig. 37b, represents the capillary co-efficient 

of metakaolin mixtures. The minimum and maximum co-efficient were recorded around 

0.139 kg/m2H0.5 and 0.144 kg/m2H0.5 for the 1% and 0.5% basalt fiber respectively.  

 

a) 

 

b) 

Fig 37. a) Cumulative mass of water in the fiber reinforced mixtures 20% metakaolin; 

b) Capillary coefficient of fibers reinforced mixtures with 20% metakaolin. 

 

Fig. 38, shows the capillary water absorption test on mix compositions with 5% lime. Due 
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. 

 

 

 

 

Fig 38. Capillary water absorption of fiber reinforced mix compositions with 5% lime. 

 

Fig. 39a, depicts the cumulative mass of water in mixtures with 20% stone wool. The 

achieved results showed that 0.5% and 1% basalt fiber increased the water absorption co-

efficient by around 45% and 15% as compared to the plain mix composition, respectively. 

Moreover, 1% and 0.5% steel fiber reinforced mixtures were absorbed water around 25% 

compared to reference mixture and confirmed that the dosages of steel fibers did not affect 

the water absorption. Fig. 39b, illustrates the capillary co-efficient results. The minimum 

and maximum capillary co-efficient were recorded around 0.05 kg/m2H0.5 and 0.09 

kg/m2H0.5 for the plain and 0.5% basalt fiber mixture, respectively. 
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a) 

 

b) 

Fig 39. a) Cumulative mass of water in the fiber reinforced mixtures with 20% stone 

wool; b) Capillary coefficient of fibers reinforced mixtures 20% stone wool. 
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efficient results, which the minimum and maximum co-efficient were recorded around 

0.025 kg/m2H0.5 and 0.040 kg/m2H0.5 for the 0.5% and 1% steel fibers, respectively. 

 

 

a) 

 

b) 

Fig 40. a) Cumulative mass of water in the fiber reinforced mixtures with 20% silica 

fume; Capillary coefficient of fibers reinforced mixtures 20% silica fume. 
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obtained values showed that the lime mixtures were dissolved in the acidic solution within 

few hours. Metakaolin, stone wool and silica fume lost their mass by around 3%, 0.5%, 

and 0.6%, respectively. 

 
 

Fig 41. Effect of plain mixtures on acid test. 

 

 Fig. 42a, shows the weight loss which was caused due to acid exposure. The plain sample 

showed 3% weight loss. By employing 1% and 0.5% steel fibers, the mixtures lost their 

mass around 10% and 35% respectively. In addition, mixtures reinforced with 1% and 

0.5% basalt fibers showed only 2% mass loss after 7 days of exposure of acid.  

Fig. 42b, shows fibers reinforced samples with 20% metakaolin after the acid test. The 

plain and reinforced samples with steel fibers decomposed due to acid exposure, 

conversely, basalt reinforced mixtures were slightly lost their mass, while their structures 

were stable.  
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a) 

 

 

  

     

 

 

 

 

 

b) 

Fig 42. a) Acid test results for reinforced mix compositions with 20% metakaolin; b) 

After exposure to acid 

 

Fig. 43a, represents the mass loss of lime mixtures due to acid exposure. The reference 

specimen was totally dissolved during the test. Mix composition reinforced with 1% steel 

fibers mass loss was around 25%, and mixture with 0.5% steel fibers mass loss was 

around 100%. Moreover, by adding 1% and 0.5% basalt fibers, mix compositions lost 

their mass by approximately 5% and 10%, respectively.  

Fig. 43b, represents the visual look the reinforced mixtures with 5% lime, Reference 

mixture and reinforced mix composition with 0.5% steel fibers were totally dissolved in 

the acidic solution. 
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a)                          

 

 

 

 

 

 

            

b) 

Fig 43. a) Acid test results for reinforced mix compositions with 5% lime; b) After 

exposure to acid. 

 

Fig. 44a, represents the mass loss of mixtures with 20% stone wool due to acid attack. 

The reference mixture mass loss was approximately 0.2%. Reinforced mixtures with 1% 

and 0.5% steel fibers lost their mass by 3.5%. Moreover, by adding 0.5% and 1% basalt 

fibers mixtures lost the mass around 3%. Fig. 44b, shows the samples after the acid test.  
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a) 

 

 

 

  

 

 

 

 

 

 

b) 

Fig 44. a) Acid test results for reinforced mix compositions with 20% stone wool; 

b) After exposure to acid. 

 

Fig. 45a, represents the mass loss of reinforced mix compositions with 20% silica fume 

due to acid attack. The reference specimen lost its mass by approximately 0.5%. By 

employing 1% and 0.5% steel fibers, the mass loss was around 0.2% and 0.05% 

respectively. While by employing 1% and 0.5% basalt fibers the mass loss reduced to 

around 0.03% and 0.08%. Fig. 45b shows the tested specimens after acid test. 
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a) 

 

 

 

 

 

 

b) 

Fig 45. a) Acid test results for reinforced mix compositions with 20% silica fume; b) 

After exposure of acid solution. 
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Fig 46. Effects of Plain used co-binders on mixtures on the water absorption. 

 

Fig. 47, shows the effects of using different fibers on the UPV of mixture with 20% 

metakaolin. The achieved results showed that reinforced mixtures, UPV higher up to 5% 

as compared to the plain mixture.  

 

Fig 47. Effects of fibers on the UPV of mixtures with 20% metakaolin as a co-binder. 

 

Fig. 48, shows the effects of using different fibers on the UPV of the mixture with 5% 

lime. The obtained results showed that mixtures reinforced with 1% and 0.5% basalt 

fibers were higher around 17% and 23%, respectively as compared to plain mix 

composition. In addition, mixtures reinforced with 1% and 0.5% steel fibers were around 

3% higher UPV as compared to reference mix composition. While, Mastali et al., (2019) 

0

500

1000

1500

2000

2500

3000

3500

4000

Metakaolin Lime Stone wool Silica fume

U
P

V
 (

m
/s

)

0

500

1000

1500

2000

2500

3000

3500

4000

Reference 1% Steel 0.5% Steel 1% Basalt 0.5% Basalt

U
P

V
 (

m
/s

)



   

58 
 

reported that by adding fibers to the mixtures could be led to increase or decrease air 

voids, for that reason, the UPV could reduce. 

 

Fig 48. Effects of fibers on the UPV of mixtures with 20% metakaolin as a co-binder. 

 

Fig. 49, shows the effects of using different fibers on the UPV of mixture with 20% stone 

wool. The obtained results showed that mixtures reinforced with 1% and 0.5% steel fibers 

were recorded lower UPV by 15% and 12% respectively. Moreover, mixtures reinforced 

with 1% and 0.5% basalt fibers were recorded 15% and 5% respectively. 

 

Fig 49. Effects of fibers on the UPV of mixtures with 20% stone wool as a co-binder. 
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were recorded lower UPV around 1%. Moreover, mixtures reinforced with 1% and 0.5% 

basalt fibers were recorded by 4%. 

 

 

Fig 50. Effects of fibers on the UPV of mixtures with 20% silica fume as a co-binder. 

 

4.8 High temperature properties 

To analyze the resistance of designed mix compositions and the effects of different co-
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a) 

 

b) 

Fig 51. Effects of high temperature on the co-binders: a) Flexural strength; b) 

compressive strength after 3 h in 800 oC. 

  

Fig. 52a, illustrates the effects of high temperature on the flexural strength of the 

reinforced metakaolin mixtures. The maximum and minimum flexural strength were 

recorded 9.3 MPa and 7.2 MPa for the mixture reinforced with 1% steel fiber and plain 

mix composition, respectively. According to the achieved results, the flexural strength 
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fibers and with 0.5% steel, respectively. By adding 1% and 0.5% steel fibers, the 

compressive strength were reduced by 20% and 35% respectively by comparison with 

un-heated mix compositions. However, by employed 1% and 0.5% basalt fibers strength 

were decreased by approximately 25%.  

 

a) 

 

b) 

Fig 52. Effects of replacing 20% of soapstone with metakaolin, using various type and 

dosage of fibers on the exposure to elevated temperature: a) Flexural strength; b) 

compressive strength after 3 h in 800 oC. 
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the flexural strength after exposing to high temperature by 25% in compared to un-heated 

mixture. However, 0.5% basalt fibers increased the strength of around 20% by 

comparison with un-heated mixture. Fig. 53b, depicts the effects of high temperature on 

compressive strength of reinforced lime mix compositions. The maximum and minimum 

compressive strength were recorded 9.4 MPa and 6.3 MPa for the mix composition with 

0.5% basalt fibers and plain mix composition, respectively. By adding 1% and 0.5% steel 

fibers compressive strength increased around 5% compared to un-heated mixtures. 

Moreover, adding 1% and 0.5% basalt improved the compressive strength by 10% and 

25%, respectively in a compare to the un-heated mixtures. Interestingly, it was found that 

using less basalt fibers led to high temperature after exposing to high temeperature. 

 

a) 

 

b) 

Fig 53. Effects of replacing 5% of soapstone with lime, using various type and dosage 

of fibers on the exposure to elevated temperature: a) Flexural strength; b) compressive 

strength after 3 h in 800 oC. 
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Fig. 54a, shows the effects of high temperature on flexural strength of reinforced stone 

wool samples. The obtained results represented that, the maximum and minimum flexural 

strength were recorded 10 MPa and 9 MPa for the mixture reinforced with 1% and 0.5% 

steel fibers, respectively. By adding 1% and 0.5% basalt fibers, flexural strength were 

increased around 65% and 25% respectively. Moreover, by employing 0.5% and 1% steel 

fibers 35% and 50% increment were registered, respectively. It showed that increasing 

basalt fibers from 0.5% to 1% resulted in improving the strength of samples after exposing 

to high temperature. 

Fig. 54b, illustrates the effects of high temperature on the compressive strength of 

reinforced stone wool samples. The obtained results showed that the maximum and 

minimum compressive strength were recorded 22.7 MPa and 19.2 MPa for the mixture 

reinforced with 0.5% basalt fibers and 1% steel fibers, respectively. By adding 1% and 

0.5% steel fibers compressive strength increased around 90% and 200%, respectively 

compared to un-heated mixtures. In addition, using 1% and 0.5% basalt fibers led to 

higher strength around 200% higher than un-heated mix compositions. It was interesting 

to find that, using a low amount of steel fibers and high amount of basalt fibers resulted 

in higher compressive strength improvement.  
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b) 

Fig 54. Effects of replacing 20% of soapstone with stone wool, using various type and 

dosage of fibers on the exposure to elevated temperature: a) Flexural strength; b) 

compressive strength after 3 h in 800 oC. 

 

Fig. 55a, show the flexural strength of reinforced silica fume mixtures. The maximum 

and minimum flexural strength were recorded 10.6 MPa and 19.2 MPa for the plain 

mixture and mixture reinforced with 0.5% basalt fibers, respectively. According to the 

obtained results represented, the flexural strength were increased around 30% and 40% 

by adding 1% and 0.5 steel fibers, respectively. On the other hand, by employing 1% 

basalt fibers the flexural strength were decreased around 5%, while adding 0.5% basalt 

fibers increased the strength of 15% in compared to un-heated mixtures. Interestingly, it 

was found that using less amount of steel fibers could lead to better in terms of the 

resistance of the sample to high temperature. Fig. 55b, illustrates the effect of high 

temperature on the compressive of the reinforced silica mixtures. The maximum and 

minimum compressive strength were recorded around 10 MPa and 7 MPa for the mixtures 

reinforced with 1% basalt and 0.5% steel fibers mix compositions, respectively. The 

results showed that 1% of steel fibers increased the compressive strength by 12% 

compared to un-heated reinforced mixture, however, by adding 0.5% steel fibers, the 

strength were reduced around 25%. In addition, by adding 1% and 0.5% basalt fibers, 

compressive strength decreased by 1% and 17%, respectively.  
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a) 

 

b) 

Fig 55. Effects of replacing 20% of soapstone with silica fume, using various type and 

dosage of fibers on the exposure to elevated temperature: a) Flexural strength; b) 

compressive strength after 3 h in 800 oC. 

 

4.9 Carbonation 

To evaluate the effects of carbonation on the flexural strength with different co-binders 

which were used as partial replaced of soapstone. Fig. 56a, shows the results of tested 

samples after exposing to carbonation chamber for 7 days which was compared with un-

carbonized mixtures. The maximum and minimum flexural strength were recorded 

around 19 MPa and 2.5 MPa for the metakaolin and lime mixtures respectively. The 
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mix compositions, flexural strengths improved approximately by 80% and 100%, 

respectively compared to un-carbonized mixtures. Fig. 56b, shows the results of the 

carbonation effects on the compressive strength. The maximum and minimum 

compressive strength were recorded around 27.5 MPa and 7.5 MPa for the metakaolin 

and lime mixture, respectively. The achieved results showed that metakaolin mixture 

were recorded the highest compressive strength compared to other co-binders. 

Furthermore, In the silica fume mixture, compressive were increased by approximately 

100%. By comparing the compressive strengths with un-carbonized and carbonized 

mixtures, lime and stone wool mixtures were improved by 40% and 60%, respectively. 

 

a) 

 

 

b) 

Fig 56. The effects of carbonation on using different co-binders: a) Flexural strength; b) 

Compressive strength. 
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Fig. 57a, illustrates the results of exposure of carbonation on the flexural strength of the 

reinforced metakaolin samples. The maximum and minimum flexural strength were 

recorded around 25 MPa and 18 MPa for the mixtures reinforced with 1% basalt fibers 

and 1% steel fibers, respectively. By adding 1% and 0.5% steel fibers, flexural strength 

were increased around 60% and 90%, respectively compared to un-carbonized mix 

compositions. Likewise, by using 1% and 0.5% basalt fibers flexural strength were 

increased by 230% and 90% respectively as compared to un-carbonized mix 

compositions. It was showed that by using higher amount of basalt fibers and lower 

amount of steel fibers could be influenced to get great improvement in strength.  

Fig. 57b, illustrates the results of exposure to carbonation on the compressive strength of 

the reinforced metakaolin specimens. The maximum and minimum compressive strength 

were recorded around 31 MPa and 23 MPa for the mixture reinforced with 1% basalt and 

0.5% steel fibers based mixtures, respectively. By using 1% and 0.5% steel fibers, the 

compressive strength were increased and decreased, respectively around 5% by 

comparison with un-carbonized mixtures. Moreover, by adding 1% and 0.5%, basalt 

fibers were increased the strength by 30% and 10% respectively. Remarkably, it was 

found that steel fibers dosages were not influenced to get higher strength. While basalt 

fibers were recorded highest strength, also dosages of fibers could be influenced to lead 

higher compressive strength.  
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b) 

Fig 57. Effects of replacing 20% of soapstone with metakaolin, using various type and 

dosage of fibers on the carbonation: a) Flexural strength; b) compressive strength. 

 

Fig. 58a, depicts the results of exposure to carbonation on the flexural strength of 

reinforced lime mixtures. The maximum and minimum flexural strength were recorded 

around 9.5 MPa and 2.5 MPa for the mixture reinforced with 1% basalt fibers and plain 

mix composition, respectively. According to the attained results showed, by adding 1% 

and 0.5% steel fibers the flexural strength were improved around 230% and 50%, 

respectively as compared to un-carbonized mixtures. Furthermore, by employing 1% and 

0.5% basalt fibers, the strength were improved by 45% and 90%, respectively as 

compared to un-carbonized mix compositions. Moreover, it was interesting to find that a 

high amount of steel fibers were improved on their strengths due to high amount, while 

basalt had improved their strength due to less amount of fibers. Fig. 58b, illustrates the 

effects of carbonation on the compressive strength of the lime reinforced mixtures. The 

maximum and minimum compressive strength were recorded around 10.5 MPa and 7.5 

MPa for the mixture reinforced with 1% basalt fibers and plain mixture respectively. 

Likewise, by employing 1% and 0.5% steel fibers the compressive strengths were 

increased by 35% compared to un-carbonized mixtures. On the other hand, by adding 1% 

and 0.5%, basalt fibers were improved the strength by 25%, respectively. It was found 

that fibers were influenced to get higher strength, however, dosages of fibers were low 

influenced on the compressive strength.  
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a) 

 

b) 

Fig 58. Effects of replacing 5% lime of soapstone with lime, using various type and 

dosage of fibers on the carbonation: a) Flexural strength; b) compressive strength. 

 

Fig. 59a, depicts the results of exposure to carbonation effect on the flexural strength of 

reinforced stone wool mixtures. The maximum and minimum flexural strength were 

recorded around 16.5 MPa and 11 MPa for the mixtures reinforced with 0.5% basalt fibers 

and 0.5% steel fibers, respectively. The achieved results showed by adding 1%, and 0.5% 

of steel fibers, flexural strength were increased around 65% compared to un-carbonized 

mixtures. Likewise, 1% and 0.5% basalt fibers were improved by 230% and 200%, 

respectively compared to un-carbonized mixtures. Additionally, it was interesting to find 

that adding higher amount of basalt fibers were influenced to get higher strength, 

however, the amount of steel fibers was slightly influenced to enhance the strength. Fig. 

59b, depicts the results of carbonation exposure on the compressive strength of reinforced 

0

5

10

15

20

25

Reference 1% Steel 0.5% Steel 1% Basalt 0.5% Basalt

F
le

x
u

ra
l 

st
re

n
g

th
 (

M
P

a
)

Un-carbonized Carbonized

0

5

10

15

20

25

30

35

Reference 1% Steel 0.5% Steel 1% Basalt 0.5% Basalt

C
o

m
p

re
ss

iv
e 

st
re

n
g

th
 (

M
P

a
)

Un-carbonized Carbonized



   

70 
 

stone wool mixtures. The maximum and minimum compressive strength were recorded 

around 18.5 MPa and 14 MPa for the plain mix compositions and reinforced with 0.5% 

steel fibers. The achieved results showed by adding 1% and 0.5% steel fibers compressive 

strengths were improved around 55% and 35%, respectively compared to un-carbonized 

mixtures. On the Contrary, 1% and 0.5% basalts fibers were increased by 70% as 

compared to un-carbonized mix compositions. Additionally, it was interesting to find that 

by using either 1% or 0.5% basalt fibers, compressive strength were slightly improved, 

while higher amount of steel fibers could be led to higher strength after exposing to 

carbonation. 

 

a) 

 

 

b) 

Fig 59. Effects of replacing 20% of soapstone with stone wool, using various type and 

dosage of fibers on the carbonation: a) Flexural strength; b) compressive strength. 
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Fig. 60a, shows the carbonation effects on the flexural strength for the reinforced silica 

fume mixtures. The obtained results showed great improvement when comparing with 

un-carbonized samples. The maximum and minimum flexural strength were recorded 

around 15 MPa and 10 MPa for the mixture reinforced with 1% steel fibers and plain mix 

composition. By using 0.5% and 1% steel fibers, flexural strength were improved around 

70% and 200%, respectively in a compare to un-carbonized. Moreover, by adding 1% 

and 0.5% basalt fibers strength were improved around 55% to 75%, respectively. 

Interestingly, it was found that, by adding higher amount steel fibers could lead to great 

improvement. After exposing to carbonation. Fig. 60b, depicts the results the effects of 

carbonation on the compressive strength of reinforced silica fume mix compositions. The 

maximum and minimum compressive strength were recorded around 18 MPa and 17 MPa 

for the reinforced with 1% basalt fibers and plain mix compositions. The achieved results 

showed that by adding 1% and 0.5% steel fibers compressive strengths were improved 

around 100% and 90%, respectively compared to un-carbonized mixtures. Furthermore, 

by adding 1% and 0.5% basalts fibers, the compressive strength were increased by 75% 

and 90% as compared to un-carbonized mix compositions. Additionally, it was found that 

dosages of steel fibers did slightly effect on compressive strength. 
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b) 

Fig 60. Effects of replacing 20% of soapstone with silica fume, using various type and 

dosage of fibers on the carbonation: a) Flexural strength; b) compressive strength. 

 

4.10 Thermogravimetric analysis and differential thermogravimetry 
analysis 

 

The TGA and DTG curves of the designed mix compositions of alkali-activated pastes at 

28 days are illustrates in Fig. 61, the mass loss and noticeable DTG peaks of the co-

binders which were partial replaced of soapstone. During TGA analysis, mass loss was 

observed at 100 oC to 800 oC (Luukkonen et al., 2019). Masse et al., 1993 reported that, 

the free water and structurally bond water which are existed in the mixture. The free water 

is vaporized at 100 oC. However, the weight loss was examined at a temperature from 

100 oC to 800 oC is recognized to the structural water. Moreover, the rate of mass loss 

becomes slowdown 250 oC onwards due to chemically bonded and OH groups (Nath et 

al., 2016). The first destructive, second and third peak could be recognized to the C-S-H 

gel, portlandite and calcite, respectively. 

According to the achieved curves shows three major endothermic peaks. The first, second 

and third peaks are destructed approximately 150 oC, 580 oC, and 730 oC, respectively. 

The stone wool mixture lost its mass higher in compare to other co-binders. Whereas, 

metakaolin lost mass around 2% in compare to lime and silica fume. The maximum and 

minimum mass loss were recorded around 14% and 12% respectively. 
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a) 

 

 

b) 

Fig 61. a) TGA analysis of replacing soapstone by four different co-binders; b) DTG 

analysis of replacing soapstone by four different co-binders 
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4.11 Efflorescence assessment 

To visual monitoring of using different co binders on efflorescence with different fibers. 

Fig. 62, shows the designed mix compositions to observing the efflorescence. Rows are 

used to indicate types and dosages of fibers, while columns are represented the co-binders. 

According to Fig. 62a, it was not found any certain efflorescence while monitoring in the 

various mix compositions except stone wool mixtures. Furthermore, in Fig. 62b, the 

reinforced mixtures with 0.5% basalt fibers were high efflorescence compared to the 

reference mix composition. 
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b) 

Fig 62. a) Efflorescence observation between co-binders; b) By visual analyzing the 

efflorescence in the stone wool mix compositions. 
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5. CONCLUSIONS 

This investigation reported on the effects of replacement of soapstone with different co-

binders. In this study, there are four different co-binders (i.e., metakaolin, lime, stone 

wool and silica fume) which were partial replaced with soapstone. The effects were 

investigated through hardened properties at 28 days. The subsequent conclusions can be 

made:  

 

 Regarding both flexural and compressive strength, metakaolin mixtures were 

registered the highest strength around 11.5 MPa and 25 MPa, respectively. 

Generally, addition of fibers had slightly effect on mechanical strength. 

 

 

 In terms of shrinkage, with 20% metakaolin based mixtures recorded the best 

results. However, the addition of fibers shrinkage rates were reduced rates up to 

80% as compared plain mixture. 

 

 

 Relating to water absorption, silica fume based mix compositions were recorded 

lowest absorption amount about 5 times lower in compare to the metakaolin 

mixtures. By adding steel fibers did not effect on absorption rate, In addition, 

basalt fibers influenced to lead higher absorption around 38%.   

 

 

 Concerning apparent porosity, the lowest apparent porosity were recorded around 

6% for the silica fume mix composition. Furthermore, the effects of fibers were 

behaved similar as in water absorption. 

 

 

 Capillary water absorption, replaced 20% of soapstone with silica fume mixture 

were recorded the lowest cumulative mass of water around 2.20 kg/m2. Likewise, 

by adding less amount of steel fibers could be led to reduce cumulative mass about 

15%. 
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 Relating to Acid resistance, replaced 20% of soapstone with stone wool mix 

composition recorded best results. Moreover, the addition of higher amount fibers 

were influenced to reduce mass loss.  

 

 

 Concerning with UPV, silica fume mixtures were recorded highest around 3535 

m/s. In addition, by adding fibers either steel or basalt fibers, UPV was reduced 

up to 4%.  

 

 

 Effects of high temperature on the both flexural and compressive strengths after 

3 h in 800 oC, both strengths of stone wool based mixtures were increased. Also, 

by using less amount of fibers had led to better improvement. 

 

 

 After exposure of carbonation, the metakaolin based mixtures were improved both 

flexural and compressive strengths around 19 MPa and 27.5 MPa, respectively. 

Furthermore, by addition of higher amount of basalt fibers were influenced to 

great improvement.   

 

 

 Regarding TGA analysis, the lowest mass loss was recorded in metakaolin 

mixtures, while rest of co-binders were lost around 2% to 3% higher than 

metakaolin. 

 

 

 According to the efflorescence rate, in stone wool mixtures were found 

efflorescence. However, stone wool mixtures reinforced with basalt fibers were 

higher rate as compared to other stone wool based mix compositions. 
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6. FUTURE WORK 

This thesis has apportioned with the development of Alkali-activated soapstone waste 

with partially replacing with different co-binders and using two different fibers in order 

to an analysis on the hardened properties, several problems might not be discussed due to 

time restraints. Consequently, the future wok must be carried out to gain a well 

understanding of the alkali activated magnesium aluminosilcate binders. The presented 

outcomes show the accomplishments of the performed study. However, additional studies 

still necessary; the following effort is brief as the recommendations for future work.  

 

 Examine effects of different alkali activators ratios on the hardened properties 

 

 

 Microstructural analysis has needed to be carried out to study their morphologies. 

 

 

 While different tests were carried out in this thesis to observe the durability. Still, 

additional findings are needed to confirm the acid resistance to alkali-activated 

soapstone binder for an extended time. 

 

 

 To the development of the soapstone binders with partial replacement of different 

industrial wastes (i.e., slags and fly ashes etc…) and various type of fibers.    

 

 

Generally, the key aim of this thesis was to examine the use of waste soapstone to yield 

construction materials. However, there are still many open questions that need to be 

assessed before these materials can be commercially exploited. 
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