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Abstract

Understanding  the  tasks  and  bug  locating  are  extremely  challenging  and  time-
consuming. Achieving a new state of the art of understanding the tasks or issues and 
provide a  high-level  visualization  to  the users  would be an incredible  asset  to both 
developers and research communities. Open Github archive are gathered, and the data is 
programmatically labelled. The Fasttext embedding model was trained to map the words 
to  together  based  on semantics.  Then,  both  CNN and RNN types  of  deep learning 
architectures  are  trained to classify whether  each tokenized instance is  a  source file 
attribute  or  not.  The  word  embedding  and  LSTM  models  worked  well  and  did 
generalize in the real-world usage up to an extent. The models could achieve around 
0.80 F1 scores on the test set. Along with the model, the generated usage graphs are 
presented that are the final output of the thesis work. Some types of issues were suitable 
for this workflow and did produce reasonable graphs which might be useful for the 
users to see the big picture of an issue.
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Abbreviations

The  following  list  is  a  collection  of  abbreviations  that  are  commonly  used  in  the 
publications and also appears many times in this thesis.

DNN Neural Networks

RNN Recurrent Neural Networks

NLP Natural Language Processing

MSE Mean squared error

FP False Positive

TP True Positive

FN False Negative

TN True Negative

F1 F1-score

LSTM Long-Short Term Memory

Bi-LSTM Bi-directional Long-Short Term Memory

CNN Convolutional Neural Networks

ReLU Rectified Linear Unit

XML Extensible Markup Language

RQ Research Question

DSR Design Science Research

1D 1 Dimension
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1. Introduction

Issue in open source software development is used to refer to the issue ticket from issue 
tracking systems. The issue ticket can be seen as an artifact for reporting and requesting 
a bug or a feature to the software developer team. In addition, the issues usually contain 
the  only  textual  descriptions  of  the  environment  and  situation  which  seem  to  be 
sufficient for software developers to understand the objective of them. 

Practically,  even  if  a  well-established  database  exists,  understanding  issues  is  not 
straightforward  (Bettenburg  et  al.,  2007).  There  are  several  challenges  reported  by 
developers  who  contribute  in  open-source  projects  about  the  complexity  of 
understanding the source code and the issue objective  (Guo, Zimmermann, Nagappan, 
&  Murphy,  2011;  Stol,  Avgeriou,  &  Ali  Babar,  2010).  Even  highly  experienced 
engineers, who are not familiar with the job or the code base, might need hours to learn 
only to locate the usage chain of a function. Early research tried analysing the past git  
commit histories and numerically pointed out where the bug is  (Zhou, Zhang, & Lo, 
2012).

From an internal meeting in Softagram, the team notices that some issues type which 
provided the source file attributes should hint the developers about the dependency of 
the specific source files. In the focus of this research, source file attributes are the items 
that can be referred within the source code such as method name, class name, and file 
name. The example can be seen in “fileWriter.write()” as a method name, “FileWriter” 
as a class name, and “softagram-live/main.py” as a file name. Fortunately, Softagram, as 
a Finnish’s leading software analysis and visualization solution company, has the source 
code visualization engine available. The tool can show how the source files attributes 
are connected based on the usage of them (“Softagram Products – See Your Software 
Visualized,” n.d.).

Moreover, the integration of the Softagram’s source code visualization tool and the issue 
description would be beneficial to the software developers. That is, the developers will 
have the ability to understand the high-level dependency graph of the extracted source 
file attributes.

However, extracting those source file attributes is not a trivial task. It is possible that 
using a lot of regular expression patterns can achieve the same goal,  but it  is time-
consuming and difficult to maintain. In addition, it is much more difficult to construct a 
temporal-based rule. For example, a rule such that after a keyword “This” followed by 
“file”, there is a 20% chances that the next word is a source file attribute is hard to 
construct.

Deep Neural Networks (DNN) keep showing futuristic results in many areas. In the area 
of computer vision, it can easily achieve more than 60 frames per second in the object 
recognition task and can even generate highly realistic image of a person which remains 
as a challenge for people to differentiate them from real ones  (Horev, 2018; Karras, 
Laine, & Aila, 2018; Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018). In the natural 
language processing  task,  OpenAI has  developed a  GPT-2,  a  DNN language model 
which can generate professional text that they chose to not release the pre-trained model 
due to safety and security reasons (Radford et al., 2019).
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The Softagram team see this opportunity and believe that the deep learning algorithm 
can help to extract source file attributes as well. The benefit of using this DNN is that 
one does not need to manually create static rules for extracting the source file attributes. 
It can learn the features of the data automatically. As a startup company, introducing a 
killer feature would provide the company with an ability to stand out in a crowd. For 
example,  one  company  applied  artificial  intelligence  extensively  for  source  code 
enhancement task like common bug detection  (source{d}, n.d.). With experiences and 
interests  in  modern  machine  learning  methodologies,  researching  machine  learning 
ideas  and  see  if  it  can  eventually  enhance  the  existing  Softagram  services  and 
customers’ experiences would be a great exploration. 

The focus of the thesis is to answer the research questions (RQ):

RQ1 How to detect source code attributes automatically?

RQ2 How to build a visualization of an issue/bug description?

To find the answers, the execution is to create an automatic issue visualization.  It is 
done by using deep learning to extract the source file attributes. Then, the results are fed 
to  the  Softagram’s  graph generator  which  creates  a  dependency  graph  between  the 
source file attributes. The study is done by the design science research methods which 
focus on building an artifact to be used in the real-world settings.

This thesis will  contribute and set  up a practical  state-of-the-art  by applying natural 
language processing, and dependencies visualization to give a practical high-level task 
description to the users in Figure 1. The research community benefits from the research 
pipeline from the data source to the interpretation of the end result.  Moreover,  after 
making the product of the end result, this feature will be free to use for open source 
projects on Github. 

The thesis has 7 chapters. Chapter 2 shows the background and existing work of both 
issues understanding the task and deep learning in natural language processing area. In 
Chapter 3, the research settings are presented which are research methods, and the step 
of evaluations. Chapter 4 shows how deep learning is used in keyword extractions, and 
Chapter 5 is about how to visualize the source code attributes. Threats to validity can be 
seen in Chapter 6. In the end, Chapter 7 presents the conclusion and future work.
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2. Background and related work

In the last section, the brief background and motivation of the research are presented. 
This  section is,  based on previous  literature,  It  presents  a  background of the issues 
understanding tasks, and a concise history of neural networks on the fields of natural 
language processing while providing some applications related to the practices. Finally, 
the current work on source code visualization and the Softagram’s graph generator are 
reported as existing work.

Issue tracking systems are software that  helps software developers  store the bug or 
features  reported  by  stakeholders  at  one  place.  It  helps  in  reporting,  assignment, 
progress tracking,  and archiving of issues  (Bissyandé et  al.,  2013). Giving the same 
understanding  among  stakeholders  can  be  seen  in  one  of  the  importance  of  issues 
reports  (Bertram,  Voida,  Greenberg,  &  Walker,  2010).  The  issues  usually  have  a 
description of an issue, an identifier,  a description of the specific issue, and priority. 
This information leads to a meaningful discussion about the possibilities of solving if 
done with enough context (Bettenburg et al., 2007).

Traditionally, issues can be seen as a database of feature or bug reports, where it acts as 
a  place  to  store  documentation  only.  However,  in  modern  development  practices, 
especially  in  open  source  software  development,  one  can  see  that  the  git  hosting 
services  with  built-in  issue  tracking  systems  have  been  developed  to  serve  as  a 
communication channel (Bertram et al., 2010).

It is essential for the stakeholders of the software that have the same goal of each issue, 
since performing a refactoring when there is a mis-implementation could be expensive 
(Boehm, 2002).

Surprisingly, even if a well-established database exists, understanding issues is a non-
trivial  task  (Bettenburg  et  al.,  2007).  Popular  issues tracking systems nowadays,  for 
instance, Github, Gitlab, Bitbucket, and Bugzilla, only represent issues with description 
in  text  format,  tag,  and  links  to  others  issues  (“Issue  trackers  -  Atlassian 
Documentation,” n.d.; “Issues | GitLab,” n.d.; “Mastering Issues · GitHub Guides,” n.d.)

There are several challenges reported by students when they would like to identify the 
architectural pattern in open source software development. One example can be seen in 
“Hierarchy  of  source  code  directory  organization  is  counter-intuitive,  Manually 
browsing source code is tricky and time-consuming, and Code comments are not clear” 
(Stol et al., 2010). In the Mozilla project, researchers discover that in many cases if a 
bug introduces  meaningful  problems,  there  might  be a  need to  assign the  task to  a 
person who knows better code structure. This seems to be the problem that the core 
developers  who  have  a  better  understanding  of  the  architecture  have  a  better 
understanding than volunteers who just joined the development (Reis, Fortes, Pontin, & 
Fortes,  2002).  Apart  from  the  Mozilla  project,  some  developers  reassign  the  bug 
because the bug report quality was terrible. It is normally caused when the developers 
do not understand the task (Guo et al., 2011). 

To solve the problems, there are some researchers come up with the solution which 
provides a machine learning solution which can tell if an issue is newbie friendly or not 
(Stanik, Montgomery, Martens, Fucci, & Maalej, 2018). Providing, also, class diagrams 
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or dependency views or any code visualization tool would help newcomers understand 
the  problem in  the  bigger  picture  and be  able  to  work on it  and even find  further 
problems (Park & Jensen, 2009).

2.1 Neural networks and deep learning

In supervised machine learning,  the normal workflow is that the developers need to 
manually  do  feature  engineering,  which  means  trying  to  figure  out  how to  get  the 
important part of the data into the training or inference process of a machine learning 
model (Chandrashekar & Sahin, 2014). This task is expensive that only domain experts 
should get involved and seen as the most important part of a machine learning algorithm 
(Domingos, 2012; Ng, 2011). It simply means that, if the feature engineering is not done 
right,  the  statistical  model  might  not  learn  enough useful  data  to  inference  (Parikh, 
2014).

Deep learning, which is actually a neural network that has more than 3 layers deep, 
takes a totally different approach. One of the strongest points of neural networks is that 
it is a machine learning method that does feature engineering automatically  (Nielsen, 
2015). The shallower layer is a low-level feature extraction, where the input could be 
raw data, and it tries to get the low abstract representation of the data. The deeper layers 
now extract higher-level presentation of the data and eventually might get image objects 
or get too complex for a human to understand but still useful for the machine learning 
model  (Karpathy,  n.d.).  Then,  these representations  can be used to work on various 
tasks. Since the useful features are already extracted by the deep neural network, there is 
no need to do the manual work of feature engineering.

2.1.1 Neural networks

The baseline of deep learning models are multilayer perceptrons or deep feed-forward 
neural  network,  where  the  objective  of  such  networks  is  to  make  a  great  function 
approximator, i.e. how to approximate function F such that y=f (x ) ; where y is the 
optimization goal (Nielsen, 2015).

When  it  comes  to  networks,  there  can  be  many  function  approximators  working 
together, f (x)=f (3 )

(f (2)
( f (1)

( f (0 )
(x)))) ,  where  each  function  serves  as  each  own 

layers.  In  this  example  case,  the  f(0) serves as  the first  layer,  f (1) serves  as the 
second layer, and f (2) serves as the third layer and so on. These now created a depth 
of the learning model itself,  where the word deep learning came from  (Goodfellow, 
Bengio, & Courville, 2016). 

In  neural  networks,  the  terminology  for  each function  approximator  is  a  neuron.  A 
neuron is a function that receives one or more inputs and produces only one output. A 
function  that  computes  the  output  of  neurons  in  a  vector  form can  be  seen  in  the 
following (Nielsen, 2015).

y i=g (W i x i−1+b i ) Where  x i−1 is an input vector or the output from the last layer, 
W i is a weight vector,  and bi is a bias vector,  g is  an activation function,  and i 

stands for layer i. The weights and biases are the parameters to be optimized during the 
training.

The activation function is the judge to decide whether this neuron should fire the signal 
to  the  deeper  layer  or  not.  The  characteristics  of  useful  activation  functions  are 
differentiable, cheap to compute, and serve non-linearity (Ramachandran, Zoph, & Le, 
2017). Nonlinearity is important since combining multiple linear functions would result 
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in the linear function. That is, the network cannot learn more complex decision shape 
which is non-ideal in case of training the network on non-linearly separable data. The 
example of non-linear activation functions are softmax, tanh, and Rectified Linear Unit 
(ReLU)  (Goodfellow et al., 2016; Nair & Hinton, 2010; Ozbulak, Neve, & Messem, 
2018). 

softmax

f (xi)=
e( yi )

∑
j

1+e
( y j)

tanh

f (x)=
2

1+e−2 x
−1

ReLU

f (x)=max(0, x)

2.1.2 Training deep neural network

Training a  deep neural  network is  similar  to  what  is  done on a  traditional  machine 
learning model. It can also be trained with the gradient-based method (Lecun, Bottou, 
Bengio, & Haffner, 1998). It is done by adjusting each individual weight according to 
the error between prediction and ground-truth  (Goodfellow et al., 2016). There are 4 
main components which are loss functions, optimization, metrics, and transfer learning.

Loss functions get the differences between prediction and ground-truth in number. One 
example of loss functions can be seen in mean squared error loss (MSE) (Das, Jiang, & 
Rao, 2004).

MSE=
1
N ∑ ( y i− ŷ i)

2

The main goal of training deep learning is to update weights and biases in the network 
to minimize the loss function which is an optimization problem. Normally, researchers 
tend to use backpropagation with stochastic gradient descent (Nielsen, 2015). 

Gradient descent is an optimization algorithm which tries to find the local minima of a 
function by moving towards the downhill of a sloping point (Ruder, 2016). In addition, 
computing gradient of the whole dataset is computationally and memory expensive, so 
computing gradient only on a batch of a dataset is preferred in practice which is known 
as stochastic gradient descent (Bottou, 2010). 

Backpropagation is a neural network training algorithm which uses the gradient descent 
to update the weights where it minimizes the loss and uses chain rules to propagate the 
error from the deep layers to shallow layers  (Rojas, 1996). The main functions are to 
compute the error using loss function, then compute the gradients, i.e. rate of change, of 
output with respect to weights, then compute the weights with respect to weights in the 
previous layer. In the end, these gradients are used to update the weights (Goodfellow et 
al., 2016). During the training, epoch means one pass through the whole dataset. Since 
the data can grow larger than available memory, sampling a batch of data for training 
works in practice.
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Metrics are how one evaluates the performance of the model which are often dependent 
on the tasks that are performing. The examples can be seen in F1 score, mean intersect 
over union, and accuracy  (Rezatofighi et al.,  2019; Sokolova & Lapalme, 2009). F1 
score is based on the Precision (PREC) and Recall (REC). Precision is how well the 
model  can  correctly  predict  the  attributes.  Recall  is  how  it  correctly  predicts  the 
attributes on all samples. F1 score is the harmonic mean of precision and recall.

Mathematically,  PREC=
TP

TP+FP
; REC=

TP
TP+FN

; F 1=
2×PRE C×REC

PREC+REC
 where 

TP is  True  positives,  FP is  False  positives,  and  FN  is  False  negatives  (Davis  & 
Goadrich, 2006). 

TP and TN are the cases where a model predicts a correct class. TP means that the 
ground-truth of the data is a true class, and the prediction is also true class. TN means 
the actual class is a false class, and the predicted class is a false class. In contrast, False 
Positives (FP) and FN are the cases that a model predicts an incorrect class. FP means 
that the true condition is negative, but the predicted condition is positive. FN is the case 
where the true class is positive, but the prediction is negative.

The mean intersect over union is a metric that is used in the object detection and image 
segmentation task. It can be seen as the ratio of the overlapping area over the combined 
area  (Rezatofighi et al., 2019). The accuracy metric is the correct predictions over the 
total predictions.

Training a deep neural network is time-consuming and resource exhaustive. Luckily, the 
learned weights of a network might be useful for tasks in the same area. In case of 
visual recognition, the animal classification network might learn the low-level features 
which can detect the basic geometry or edges of an object where the high-level features 
detect the more abstract details of the object (Karpathy, n.d.). In this case, a traffic sign 
classifier  can share the same low-level  features  from the animal  classifier  as a  pre-
trained model. The only parts that need to update are the deeper layers of the network or 
only  the high-level  features  for  the  specific  domain  only  (Chunmian,  Lin,  Wenting, 
Kelvin, & Guo, 2019). This technique is called transfer-learning, and it helps reduce 
many numbers of parameters that need to be trained.

2.1.3 Recurrent neural network

Recurrent neural network (RNN) is created to deal with sequences of input which can 
generate one or many sequences of output (Karpathy, 2015). RNN is very useful to deal 
with sequences of data. As the design of memorization in mind, RNN neurons in a time 
step can remember the information from the previous input. Thus, it also captures how 
each input are related to each other and how they influence the next time step which is 
called as temporal features (Goodfellow et al., 2016).  

The recurrent neural network system can be seen at applying the same weights to each 
input in every time step as in Figure 2. Where each time step t, the equation looks like 
the following.

a(t )
=b+Wh(t−1)

+Ux(t )

h(t )
= tanh(a(t)

)

o(t )
=c+Vh(t )

ŷ=softmax (o(t )
)

Where b,c are bias vectors and W,U,V are the weight matrices. 

H denotes the recurrent state, and o is an unnormalized log probability at time step t 
(Goodfellow et al., 2016).
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One application  of  this  Vanilla  RNN can be seen  in  using  a  character  level  neural 
network to imitate Shakespeare  (Karpathy, 2015). The network then learns how each 
character influences the next character based on past information about how characters 
arrange. Some successful applications of RNN-based architecture are image captioning 
and music composition (Choi, Fazekas, & Sandler, 2016; Wang, Yang, Bartz, & Meinel, 
2016).

Normally, Vanilla RNN is not used in practice since it suffers from gradient vanishing 
which  causes  the  network  cannot  learn  long  time  dependencies  among  time  steps. 
Therefore, there are modified RNN architectures which improve gradient flow. They are 
Long-Short Term Memory (LSTM) and Gated Recurrent Unit (Hochreiter, 1998; Kanai, 
Fujiwara, & Iwamura, 2017).

2.1.4 Convolutional neural network

Convolutional neural network (CNN) is a type of deep learning architecture which is 
originally  created  in  the area of computer  vision since it  maintains  shift,  scale,  and 
distortion  variants  when  extracting  features  from  the  input  (Lecun  et  al.,  1998). 
However, the inputs can be one dimension (1D) data such as vectors, or 2 dimension 
data  such  as  images.  When  introducing  a  convolutional  layer  into  a  deep  neural 
network, this is called a convolutional neural network.

Apart from the images, CNN also works well in Natural Language Processing (NLP) 
area. Text representations of a sentence can be tokenized into words, where each word 
can be represented by a d-dimensional vector (Yin, Kann, Yu, & Schütze, 2017). Then, 
the convolution process in an n-gram fashion, i.e. a word with its closest n-neighbors. 
The speciality of this convolution is that weights are shared across the network. Then, it 
can learn to put more or fewer weights to the thing that the network learn that they are 
important. This intuition is comparable to the attention mechanism in  RNN (Vaswani et 
al., 2017). 

The basic  computation formula for applying a convolution layer to a 1-dimensional 
vector is very straightforward as the following.

y i=g (W i x i−1[l : l+kernelsize]+bi ) Where x[i:j] here denotes an array slice of x from 
index i to index j. The slice represents the scope of input that will be convoluted which 
will be the same size as the convolutional kernel. l denotes the starting subset location 
of an input (Lee & Dernoncourt, 2016).
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Based on the previous formula, it performs as a sliding window towards a vector. This 
also  introduces  the  parameters  sharing  idea  that  the  input  will  receive  the  same 
convolution  kernel,  W,  in  every  timestep.  This  helps  in  reducing  the  parameters 
explosion problem in the traditional neural network (Goodfellow et al., 2016).

The example of the basic architecture of CNN can be seen in  Figure 3. It has a few 
types of popular layers which are Convolution layer, Pooling layer, Activation layer, and 
Fully Connected layer. The convolution layer is basically a neural network layer that 
does  the  convolution  operation  on  the  input.  In  addition,  the  pooling  layer  is  a 
subsampling layer which is meant to reduce the size of the input. The activation layer is 
the layer that performs the activation function on the input. Also, the fully connected 
layer is a normal neural network. The orders might be Convolution,  Activation,  and 
Pooling layers to extract features. Then, those are normally fed into Fully Connected 
layers to perform regression or classification tasks.

2.2 Deep Learning in natural language processing

NLP is  a  domain  that  aims  to  understand  and  process  languages  that  are  used  by 
humans. There are already a lot  of researches in this area. The NLP tasks that deep 
neural  network  provides  successful  results  can  be  seen  in  part  of  speech  tagging, 
sentiment classification, question answering, and text summarization (Huang, Xu, & Yu, 
2015; Li, Jiang, Liu, Ren, & Li, 2018; A. W. Yu et al., 2018; L.-C. Yu, Wang, Lai, & 
Zhang, 2017). 

Even though RNN tends to perform better in general NLP tasks, they all have roughly 
the same performance in sentiment classification, part of speech tagging, and answer 
selection  tasks  (Yin  et  al.,  2017).  In  general,  CNN  benefits  from  recognizing  the 
importance of the surroundings, and train much faster than RNN since the matrices and 
convolution operation can be parallelized (Bradbury, Merity, Xiong, & Socher, 2016).

2.2.1 Representation of raw text

For the data preprocessing of NLP tasks toward deep learning, researchers usually need 
to map each word of an input to a vector first before feeding them as an input to the 
model. The most traditional way is to use Bag of Words vector to represent the number 
of occurrences of each word in the input (Deepu, Pethuru, & S., n.d.). The problem with 
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this is that the input is not weighted. Therefore, some words that appear too many times 
in a context might be noise in data instead. This is how TF-iDF originated from. The 
idea is to weight the terms that appear a lot (Ramos & others, 2003).

In the neural word embeddings, Word2Vec is a model to represent raw text as a vector.  
It emphasizes on the relationship between words rather than the occurrences of them 
(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). Facebook’s Fasttext model is also 
very popular and is an extension of word2vec. The main difference is that each word 
vector  is  composed  of  a  character  n-gram  (Bojanowski,  Grave,  Joulin,  & Mikolov, 
2016). Therefore, the out of vocabulary words can be solved by constructing the word 
vector from its n-gram.

2.2.2 Many-to-Many RNN Applications

In the structure of deep learning model, Seq2Seq is a general-purpose neural network 
structure composing of encoder and decoder parts. Sequence to sequence network is a 
way to make recurrent neural network process on many-to-many input to output. It is 
useful in the sense that the network might want to read a sequence of input and output  
as a sequence. For example, translating a sentence from English to French is possible by 
employing the LSTM network (Sutskever, Vinyals, & Le, 2014).

In the keyword extractions tasks, the model is normally in a seq2seq fashion since the 
input needs to read in a sentence and output a few words afterwards. Also, this can be 
modelled  as  a  classification  task  where  the  training  data  is  flagged  whether  it  is  a 
keyword or not. Multiple variations of RNN show a promising result of extracting the 
key-phrases from tweets on Twitter (Zhang, Wang, Gong, & Huang, 2016). In addition, 
an encoder-decoder RNN model is able to generate key-phrases on many datasets, and 
can even generate the keywords that are not in the text (Meng et al., 2017).

2.3 Deep Learning in Tasks understanding.

There are many studies on adopting deep learning on the tasks understanding. Many of 
them actually tried to learn the representation of the issues itself. Then they get creative 
with  a  lot  of  applications  that  they  could  imagine.  However,  even  they  achieved 
outstanding performance, they are still far from perfect.

Anvik, Hiew, & Murphy (2006) show how they use machine learning methods to make 
an automatic system of assigning a task to a suitable developer. The study did train the 
model  through  repository  histories  and bug histories.  Mani,  Sankaran,  & Aralikatte 
(2018) introduce a deep learning method with an attention mechanism to represent a 
bug  report  based  on  title  and  description.  The  representation  is  then  fed  into  the 
classifier for assigning a bug to developers. Lyubinets, Boiko, & Nicholas (2018) invent 
hierarchical  attention  deep learning  based model  to  automatically  learn  to  label  the 
bugs. The authors show that their  work can outperform traditional machine learning 
solutions. Li et al. (2018) train unsupervised deep learning to summarize a bug report in 
the open source projects, where the architecture could provide a summary of 40% of 
ground-truth length where it covers more than 50% of the sentences in ground-truth 
summary.  Dam, Tran, Grundy, & Ghose (2016) also created an abstract representation 
of the whole software life-cycle including issues and releases. They proposed to convert 
a text representation of issues description and source code into a vector representation 
using word2vec or paragraph2vec. Then, the representation can be feed into a recurrent 
deep neural network architecture and created an abstract representation of those.  Huo, 
Li, & Zhou (2016) propose a CNN solution for inputting both source code and bugs 
description.  Then, a representation is used to predict  the location of the bugs in the 
source code. Choetkiertikul et al. (2018) show a case where they employed sequential-
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based  deep  learning  architecture  with  a  highway  network  and  word  embedding  to 
learning representation of issues. Then, they train a regressor to predict a story point of 
a specific issue. Stanik et al. (2018) created a classifier from a TF-iDF representation of 
issue  tracker  data.  They  successfully  classify  the  data  into  three  classes  which  are 
newbie friendly, experienced newbie friendly, and experts friendly. While the work is 
done by traditional  machine  learning,  the importance  of this  work is  how they pre-
process the text features to create a representation that can be feed into deep learning 
based model too. 

2.4 Dependency Graph Generators

Dependency  graphs  are  the  graphs  that  visualize  the  usage  between  source  file 
attributes. In the case of method level, it shows whether the particular methods import 
which functions from which files. In addition, the outgoing edges of how the methods 
are  imported  to  the  neighbors  are  displayed  too.  The  idea  is  to  help  developers 
understand what are the impacts that happen if a particular file or function is modified. 
The example can be seen Softagram’s pull requests impact visualization graph in Figure
1.

Softagram has  an architecture  visualization  platform ready to use.  It  can run on git 
repositories to extract dependencies among them, then the information on what files are 
changed, added, or removed can be fed to create a dependency graph. The application 
programming interfaces are written in both Java and Python which already exist and 
easy  to  integrate.  The  graph  generation  interface  indexes  the  repositories  as  an 
Extensible Markup Language (XML) file. This XML file store relationships of all the 
classes and functions within the repositories. Moreover, Softagram also integrates with 
various  git  hosting  services  which  are  Github,  Gitlab,  Gitlab  Enterprise,  BitBucket, 
Bitbucket Enterprise, Visual Studio Team Services, and Gerrit. The dependency graph is 
computed automatically and serves right in the pull requests and cross-platform desktop 
application. The graph generator is based on the same graph engine which powered a 
popular graph visualization tool yEd.

Code Flower is an open-source MIT license source code visualization tool. It provides a 
fixed file level visualization for any project. However, the process of creating the input 
data for the Code Flower itself is still manual which requires a lot of work. In addition, 
there is not much interaction to do with the visualization (Zaninotto, n.d.).

Flow is  a free source code visualization tool which supports  Java language only.  In 
contrast to Softagram and Code Flower, it does not focus on finding dependencies or 
architectural meaning of source code. The behavioral-driven flow visualization is the 
main goal of this program (“Visualize Java code execution,” n.d.). 

Sourcetrail  is an offline cross-platform source code browser.  It works by indexing a 
project, then interactively go through the source code via the diagram or the code. In 
addition, the dependency graphs can be created at any levels and it supports connection 
to  an  integrated  development  environment  or  code  editors  for  digging  through  the 
source code (“Sourcetrail - The offline cross-platform code browser,” n.d.). 
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3. Research Settings

This section will describe the research methods and research plans. It begins by showing 
the  needs  of  executing  design  science  research.  Then,  plans  for  integrating  a  deep 
learning model as a feature are presented. 

3.1 Research Objectives

There are four main types of research knowledge contribution framework as shown in 
Figure 4 (Gregor & Hevner, 2013). They all could be seen in improvement, invention, 
routine design and exaptation. Firstly, improvement means developing new solutions to 
existing problems. Secondly, the invention is the invention of a new solution to new 
problems. Thirdly, using existing solutions to new problems are exaptation. Finally, the 
Routine design, which is not considered as a design science research (DSR) because 
there  is  no  contribution  done  to  the  science  society,  is  how  one  applied  existing 
solutions to existing problems. 

This thesis aims to contribute as an exaptation since the deep learning approaches to 
natural  language understanding are widely adapted into different  domains.  However, 
according  to  the  best  of  the  team’s  knowledge  and  literature  reviews,  there  is  no 
application  in  natural  language  understanding  with  visualization  on  the  issues 
understanding before.

The goal of this research is to answer the research questions:

RQ1 How to detect source code attributes automatically?

RQ2 How to build a visualization of an issue/bug description?

Figure 4.  DSR Knowledge Contribution Framework 
(adapted from Gregor & Hevner, 2013)

3.2 Research Methods

In order to choose the suitable methods for particular research, looking at the goal that 
the research is trying to achieve is encouraged. 
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There  are  many  research  methods  that  can  answer  these  RQs.  The  reasons  that 
qualitative research and systematic literature reviews are not used in this study are that 
both methods can only give the idea, which is useful for research planning or obtaining 
knowledge. 

On the other hand, design science research can produce the output as an information 
technology artifact and evaluate it under the real environment setting. The ultimate goal 
of this thesis is to implement the automated issue visualization as a feature to serve 
customers worldwide which is applicable to design science research. 

3.2.1 Design Science Research

Design Science research is  a  research method that  aims to  understand and improve 
human performances (Aken, van, 2005). In addition, one can follow the template of this 
research  to  implement  novelty  methodologies  into  the  real-world  environment  and 
evaluate the artifacts. 

The design science research framework can be broken down into three cycles which are 
a relevant cycle, design cycle, and rigor cycle. As seen in  Figure 5, the environment 
means  the  people,  organizational  and  technical  systems,  and  problems  and 
opportunities.  The  design  science  research  deals  with  the  building  of  artifacts  and 
evaluation. In the middle between design science research and environment, there is a 
relevant cycle. This cycle acts as a bridge between these two components. That is, it is a 
recurring process of evaluation of the design science artifacts based on environmental 
testing and requirements.  Within the design science research itself,  there is a design 
cycle  between  the  building  and evaluating  the  designed  artifacts.  On  the  rightmost 
component in the picture, there is a knowledge base. The knowledge base is scientific 
knowledge or expertise in the area.  The rigor cycle acts  between the design science 
research and knowledge base. Without a doubt, it means to use the foundations on the 
area that one already has to enhance the design science building and evaluation process 
(Hevner, 2007). 

Figure 5. DSR Cycles (adapted from (Hevner, 2007))

3.3 Research Design

In  order  to  answer  the  RQs,  the  methodology  was  building  an  automated  issue 
visualization  system  which  took  the  text  description  of  issues  as  an  input.  The 
technology behind it was deep learning on natural language processing which would 
help with extracting source file attributes. The research team saw the opportunities and 
proposed an alternative to the regular expression solution. With this setting, the model 
should be able to recognize both the semantic meanings and temporal features of the 
task.

The rough picture that summarizes the method can be seen in  Figure 6. Open source 
issues  data  from an  existing  database  were  gathered.  Then,  the  data  needed  to  be 
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explored and analyzed how one could pre-process it before inputting to the models. 
After  that,  deep  learning  architectures  were  implemented  and  trained  on  the 
preprocessed  data.  The training  objective  was to  create  a  word classification  model 
whether it is a source file attribute or not which the positive class belonged to source file 
attributes and negative class belonged to the non source file attributes.

During training, the models were evaluated based on metrics whether the model learned 
enough for  the  next  stage.  In  the  final  part,  the  model  was inferred  on the  unseen 
dataset, clean the predictions that are noise from the input, and fed it to Softagram graph 
generator.  The  purpose  of  Softagram graph generator  was  to  create  a  dependencies 
graph on the source code attributes which can provide a high-level representation of the 
issues. 

There  were  2  levels  of  evaluation  methods  which  were  the  model  level  and  the 
practicality level. The RQ1 was answered during the model level as a methodology to 
construct the artifact. The machine learning model performance evaluation was done by 
using the testing set where the network did not see those sets during learning. Metrics 
that used to check the performance were precision, recall, and F1 score. In other words, 
if the models achieved at least 0.80 F1 score, it meant that the models actually learned 
the training data and could generalize well in testing data which hinted that it  might 
generalize in real-world data.

After the model stage, the outputs from the model were fed to the graph generator. The 
RQ2 were answered during this stage. Real-world data from open source issues were 
fed  to  the  whole  pipeline  for  creating  the  visualization.  The  evaluation  of  the 
visualization  was done by describing  the meaning of  the outcome of the sample to 
understand the value that it might have created.

To map the research plan to the DSR framework, raw data gathering and visualization 
stages  of  this  research  plan  belong with the  relevant  cycle.  Apart  from this,  model 
training  and  evaluation  stages  were  as  the  design  cycle  and  rigor  cycle  where  the 
researcher of this research acted as a person in the environment.

Figure 6. Research Plan
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4. Identifying source code attributes

4.1 Methodology

This  section is  about  the methodology of implementing  the deep learning model  to 
identify source code attributes. The chapter consists of data labeling and preprocessing, 
model architectures and training.

4.1.1 Data

The plan was to  find  open issues  or  bug trackers  that  were freely  available  on the 
Internet.  However,  popular  datasets  that  researchers  use such as  Bugzilla  in Eclipse 
ecosystems  were  professionally  oriented  that  provided  more  meaningful  description 
compared to the issues in non-professional and non-industrial Github projects. As the 
ultimate goal was to use the product as a Github issues extension, it was the best idea to 
use the data from the same distribution. In addition, acquiring the data from Github is 
simple. 

There was an open dataset by Github. According to (“GH Archive,” n.d.), Github stored 
its hourly-updated data on Google’s BigQuery system and it was available to the public. 
Also, the issue events were all kept there as well.

Even if the data was free, the cost of using Google cloud platform was not. Luckily, 
they provided a coupon for the first user using Google Cloud Platform. The issues are 
then queried for the ones that opened during the year 2018 which the body must be at 
least 20 words and the title must be at least ten words. After that, the data was transfer to 
Google  Cloud  Storage  for  the  backup  purpose,  then  it  was  downloaded  to  a  local 
machine for analysis.

The  data  consisted  of  the  following  columns,  which  were  issue_url,  issue_title, 
issue_body with a total number of around 800k Github Issues. 

Labeling

Data  labeling  was  the  major  problem  of  this  task.  Due  to  the  nature  of  issues 
understanding, one might need a lot of time to understand the issue or not understand it  
at all. The scenario here was that the researchers believed that source file attributes in 
the issue would provide more context in addition to the textual description of an issue. 
For example, the issue in  Figure 7 would make much more sense to come up with a 
dependency  graph  of  the  skimage/morphology/_skeletonize_cy.pyx  and  method 
_skeletonize_loop.

In the first setting, a researcher tried to label the data by himself and discovered that he 
needed more than 2 minutes per issue to only get a rough context. In order to label the 
whole issues, it would take at least 1,600,000 minutes or roughly three years straight to 
obtain the result. Even though in this experiment only around 12,000 issues were used, 
it would take roughly 300 hours to accomplish which was not ideal. Therefore, The core 
of this research was to try out if the work was doable, then keep enhancing a specific 
part for the production use. Therefore, using a regular expression as rule-based labeling 
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was taken in place.  The words that  were associated  with source file  attributes  were 
annotated as class 1 and 0 otherwise.

 

Figure  7. An  example  issue  from  scikit-image  repository 
onhttps://github.com/scikit-image/scikit-image/issues/3861. 
The  yellow  highlighted  has  the  true  class  as  source  file 
attributes.

Pre-processing

In  order  to  select  the  issues  that  were  descriptive  enough  to  provide  source  file 
attributes, the data were first preprocessed by concatenating the issue title and body. 
Then, regular expression was employed to detect if there were camel case, small camel 
case, snake case, file path and methods-like strings in the concatenated title and body. 
After filtering, the dataset ended up having 360k issues left.

Since there was no access to high processing power available on the task, the dataset 
was then randomly sampling for only 12k of issues. Initially, stratified random sampling 
was a reasonable practice since it balanced the data, but the nature of this data was that 
there might be only some small parts of the issue that are source file attributes,  and 
trying to sample the issues that consist of a lot of true classes might lead to bias in the 
data for this case eventually. The number of true class and false class in the dataset are 
1,396,583 and 66,097 respectively. 

Then, the special characters and excess white spaces were cleaned and tokenized base 
on a white space character. During the manual data labeling for around 60 issues, some 
heuristics  were  gathered.  Issues  could  contain  many  source  file  attributes  in  the 
description, however, only some of them were worth exploring the dependency graph. 
This source file attributes were called main source file attributes. The meaningful source 
file attributes of an issue were within the first 100 words more than 50% of the time. In 
addition, the mean and median of the description lengths were 107.49 and 93.0 words 
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respectively as in  Figure 8. The length of the description was truncated to only 120 
words for the purpose of computation efficiency while still preserve the main source file 
attributes from the heuristic. In addition, this limitation also made it easier to compare 
the performance between different types of models.

In order to map the word into an n-dimensional space, words embedding were used. 
However, the pre-trained word embedding based on Wikipedia or some other domains 
would not work on this case since the source file attributes unlikely to happen in the 
whole  corpus.  Fasttext  was  used  for  the  main  reason  that  it  captured  the  semantic 
meaning of the word and could handle out of vocab which was lacking in word2vec 
(Bojanowski et al., 2016). In contrary to the training of source file extraction model, the 
Fasttext model was trained on the rest 800k cleaned Github issues description.

4.1.2 Models

The main  reason that  TensorFlow framework was  chosen for  this  work  was that  it 
supports  the  high-performance  production  ready  serving  of  the  model  seamlessly 
(Olston et al., 2017). This property would help developers deploy their deep learning 
model  to  the  production  easily  without  being  an  expert  in  machine  learning  model 
deployment. 

Four  sequence  classification  models  are  constructed.  All  models  here  were  classic 
models where the CNN was based on Lenet  style and LSTM was from a sequence 
classification  style.  However,  the  1D  convolution  model  was  developed  from  the 
intuition of convolution operation itself.

For this task, four types of architecture were chosen. The model 1 was Lenet style CNN 
model. It was just convolution following by max pooling for three times, then fed the 
extracted  features  to  the  fully  connected  layer.  The  input  was  constructed  as  a  2D 
matrix, where each row corresponded to each word in an issue, and the columns were 
100-dimensional vectors of a Fasttext embedding of a word. In the first three layers, 
they were pairs of 32x3x3 convolution layer following by 2x2 max pooling layer. In the 
end, they were then fed to the two fully connected layers with the neuron size of 300 
and 120 respectively. The activations for the intermediate layers were done by ReLU, 
while the last activation was softmax. For high-level understanding details of the CNN 
model, Figure 9 shows the visualization and details of it. In the same procedure, the 2nd 



22

model was also a Lenet style CNN model. However, it made use of a 1D convolution 
along the horizontal axis instead under the intuition that it should extract the features of 
the  word  and  its  neighbors.  This  model  could  be  seen  as  applying  n-gram  word 
embedding vector to a CNN. The only difference in model 1 and 2 was only the size of 
convolution filters. The filter sizes in model 2 were 5x100, 5x 50, and 5x25. This should 
be similar to applying n-grams convolution of an input where n=5. Figure 10 captured 
the high-level understanding of how the 1D convolution operated.

The 3rd and 4th models were solely based on the sequential model. Both models were 
two  layers  stacked  LSTM  and  two  layers  stacked  Bi-Directional  Long-Short  Term 
Memory (Bi-LSTM) which directly  used the output  from Fasttext  embedding as  an 
input. The size of the hidden nodes for each LSTM node was 200. The total  model 
workflow can be seen in Figure 11 and Figure 12.

The idea of the comparison of these models was that they both had the ability to extract  
features from the input automatically. However, CNN tended to extract the feature from 
the input space, or in n-grams fashion in 1D convolution of this case. In contrast, RNN 
could  recognize  temporal  features.  RNN  based  model  could  have  answered  the 
hypothesis that the dataset might not need to be perfect since the model should learn 
semantic  features  from  the  Fasttext  embedding  and  temporal  features  from  the 
construction of a time-series based issues. In other words, it should be able to learn the 
meaning of the word based on the context. Also, where and when do the source file 
attributes happened in the context. 

Figure 10. CNN architecture with 1D convolution of Model 2
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4.1.3 Training

A training set and a test set were split based on 65%/35% from the total issue.

They  were  trained  with  Adaptive  Moment  Estimation  optimizer  since  it  supported 
adaptive learning rate with the starting value of 0.001. There were two settings for the 
batch size. A batch size of 128 was used for LSTM, Bi-LSTM, and CNN models. In 
addition, the batch size of 32 was chosen for Bi-LSTM. The reason that the upper limit 
was 128 was because of a memory constraint.  In addition,  using a larger  batch size 
allowed the model to train much faster, but it also consumed more memory too.

There was no over-fitting prevention done on the models, since it made more sense to 
see the training & validation loss first whether there was a chance of over-fitting. The 
loss function was binary cross entropy. Since the hyper-parameter searching was quite 
timing expensive, the researchers could not explore the search. The only settings that 
were done in this research were from the gut’s feeling.

The  training  was  solely  done  on Google’s  colab  because  it  provided  free-of-charge 
access to a GPU (“Colaboratory – Google,” n.d.). It was configured to train 60 epochs 
with early stopping in 10 epochs threshold which monitoring on test set f1-score. The 
total time per each epoch in LSTM was around 3 minutes per epoch, and Bi-LSTM was 
around 10 minutes per epoch. For CNN, an architecture which could parallelize the 
training, the timing was also around 3 minutes per epoch for the current architectures 
and filter sizes. The monitoring of the training was done seamlessly via Tensorboard via 
ngrok directly from Google’s colab notebook. In order to store the trained weights and 
model, PyDrive library was used to upload & download models from private Google 
Drive account (Google Drive API Python wrapper library., 2013/2019).

4.2 Result and Evaluation

CNN 1D CNN LSTM Bi-LSTM Bi-LSTM 
(batch_size=32)

Test F1 0.3085 0.3551 0.8156 0.8019 0.8049

Test 
Precision

0.4205 0.5339 0.8275 0.8229 0.8091

Test Recall 0.2470 0.2676 0.8046 0.7827 0.8032

Table 1. Scores on the test set. 

Figure 11. LSTM architecture of Model 3
Figure 12. Bi-LSTM architecture of Model 4
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The detailed results of the experiment were reported in both Table 1 and Appendix A.
Training Graphs. The LSTM model converged around the 30 epochs with the f1 score 
on the validation at 0.81. Meanwhile, the Bi-LSTM model converged in only around ten 
epochs with the validation f1 score as ~0.80. It can be seen that the Bi-LSTM converged 
much faster than the uni-directional LSTM. In contrast, the time spending to train Bi-
LSTM was two times longer than the time needed to spend on the LSTM. In the same 
ways, there was no significant improvement from adding another direction to the model. 
Even using the smaller batch size which was supposed to give a better convergence, the 
smaller batch size of 32 does not make a noticeable significant in F1, Precision, and 
Recall (Keskar, Mudigere, Nocedal, Smelyanskiy, & Tang, 2016). 

In  contrast,  the  CNN  models  could  not  learn  useful  features  for  prediction.  The 
validation loss stopped reducing since the 5th epoch in model 1. It could only reach 
around 0.30 for F1 score. Similarly, the 1D CNN model could only learn to calculate F1 
score on a test set as 0.3551 in epoch 26. The reason that CNN cannot learn useful  
features was that the features of the neighborhood might not be useful enough for the 
network learning style. In addition, temporal features might be crucial for this task. In 
order to try out a CNN again, maybe just using a CNN on a single word vector might 
work well. For more information about test loss, PREC, REC, F1 on each model, please 
see Appendix A. Training Graphs.

The following evaluation was done on the best model which was unidirectional LSTM. 
The result tables here showed that the RNN based models did not suffer from over-
fitting, so the usage of regularization was not needed in this case. The possibilities were 
that it was because the data was automatically labeled, thus there was much noise which 
might prevent the model from starting to memorize the data.

In order to describe the performance of the model, it could be done easily through the 
confusion matrix. It was a matrix which showed the true class and predicted class on a 
data set which could be translated to the performance of the model. In this case, the 
predicted results from the test set were shown.

 

According  to  the  confusion  matrix  in  Figure  13,  the  majority  of  the  classes  were 
predicted correctly, in other words, the 1st and 4th quadrants of it produced quite high 
values  as 99.2% and 80.5% for TP and TN respectively.  The numbers 488,974 and 
23,066 denoted the classes of each word instance from the test set. In contrast, the 2nd 

quadrant was very low as only 0.8% was false positive (FP), and the 3rd quadrant was 
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19.5% for FN, which was not low enough and produced quite a lot of noises in the 
predictions. In these cases, TP and TN were quite high and produce reasonable in most 
cases below.

The example of the 1st, 2nd, and 4th quadrants could be seen in Figure 14. The texts that 
were highlighted in yellow are TP, while the blue-highlighted indicated that the specific 
texts  were  the  false  positives.  The non-highlighted  denoted  the  TN class.  Even  the 
confusion matrix showed FP rate was very low, there were some examples of FP in this 
case. Using the heuristics,  the reason that “ii”,  “jj”, and “result[:” were predicted as 
source file attributes was because of the limits of using regular expressions to generate 
ground-truth. In order to reduce the FP, having a better data labelling method would 
help.

In the case of the third quadrant, a real-world example was in Figure 16. It followed the 
color code like the above, except that the ones highlighted in green are FN. This case 
happened  as  a  failure  of  a  dataset  itself  due  to  the  constraints  from using  regular 
expressions. The regular expression rules must have computed noises to the class labels. 
In addition, not reporting the “ProgramData” and “dtype_range” could lead to better 
predictions of the model.

There was also one interesting prediction that can be found in Figure 17. Even though 
the name of the method in the issue was not labeled in the dataset because of a bug in 
the patterns used for matching, the network learned to predict this eventually. It was a 
hint  that  the  model  could  learn  from temporal  features  and  did  not  over-fitted  the 
dataset. That is, the model was able to learn both the semantic and temporal features. 
However, there were arguably many parts which could have predicted as source file 
attributes but were reported as true negatives due to the limit of regular expressions.

There were various types of issues, most of them did not provide any results as they 
might  not  be applicable  to this  task.  In other words,  there was no clean source file 
attributes defined in the issue, it usually did not provide useful features for the models 
and thus lead to no result from the predictions. For example, the feature request or bugs 
that were caused by the environment usually do not have source file attributes to extract. 
Therefore, the graph generator would have no input to visualize. In Figure 15, it showed 
the example of the issue that do not contain source file attributes and no FP and FN 
presented in the predictions.
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Figure 14. Example of predictions 1 From https://github.com/scikit-
image/scikit-image/issues/3861

Figure  15. Example  of  an  issue  From  https://github.com/scikit-
image/scikit-image/issues/3739
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Figure 16. Example of predictions 2 From https://github.com/scikit-image/scikit-
image/issues/3700

Figure 17. Example of predictions 3 https://github.com/scikit-image/scikit-
image/issues/3890
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5. Visualizing source code attributes

5.1 Methodology

The  graph  generation  was  done  by  an  executable  file  from  Softagram.  The  graph 
generator engine was written in a way that the users needed to input the query as a set 
format.  In  addition,  there  are  rules  for  constructing  the  query  for  the  engine.  The 
pathnames that had at least one slash(‘/’) character would be treated as a full path. All 
the special characters must be neglected, except underscore and dot, since these two 
provide useful information in the query. The underscore could denote the variable name 
or function name in programming languages that use snake case practice. The dot also 
acted as an attribution-ship in some programming languages. However, the dot was not 
supported as a query syntax yet, so there were some special treatments that needed to be 
done for this type of attributes as shown in the example in the following example. In 
addition, the source file attributes that looked like outliers and false alarm such as ‘print’ 
and ‘result[’ needed to be neglected.

To make it more clear for the reader, the example can be seen in how to construct the 
query of Figure 17, the predictions from the models were [“skimage.transform.resize’, 
“anti_aliasing_sigma”,  “print_function”,  “sys.version”,  “platform.platform()”, 
“format(skimage.__version__)”,  “format(numpy.__version__)”].  The output  was  then 
filtered by neglecting the format and print which are the built-in Python 3 functions. As 
a  result,  the  potential  query  elements  were  [“skimage.transform.resize’, 
“anti_aliasing_sigma”,  “sys.version”,  “platform.platform()”].  The  elements  with  dot 
needed to be constructed as an AND of sets, so that the resulted queries were filtered 
accordingly. In addition, the normal terms needed to be constructed as an OR of sets, so 
that  these terms were included in the final results.  The final query of this  case was 
“(skimage  AND  transform  AND  resize)  OR  aliasing  OR  (sys  AND  version)  OR 
(platform AND platform)”. The final image can be seen in Figure 19.

5.2 Interpretation

Figure 19, Figure 20, and Figure 21 are the outbound dependency graphs of the issues in 
Figure  17,  Figure  14,  and  Figure  18 respectively.  Due  to  the  nature  of  scientific 
packages, some implementations are done in Cython and Softagram’s indexing analyzer 
understood those Cython files as an external. 

In these cases, the files that were the core files of each issue appeared on the rightmost 
column  of  the  graph  which  were  skimage.transform.resize, 
_skeletonize_cy._skeletonize_loop, and points_in_poly. 

By showing the usage graph for the aforementioned functions, the graphs captured the 
total usage of the core files in the repositories. Those usages could be grouped as test 
files and submodules. It could help developers to locate the other modules that will be 
affected by implementing a function or fixing a bug in an issue. This type of usage 
definition could be done in the same manner by browsing source code through some 
Python integrated development environment like PyCharm. However, it was difficult to 
understand  the  whole  pictures  when  developers  needed  to  dig  deep  into  some 
submodules. Moreover, the source code relationship showed in a textual format, which 
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might  need a  longer  time to  understand the  big  picture  compared to  the  high-level 
source code visualizations.

Figure  18. Example of predictions 4 https://github.com/scikit-image/scikit-
image/issues/3892

Figure 19. Example of graph generation from Figure 17
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Figure 20.  Example of graph generation from Figure 14

Figure 21: Example of graph generation Figure 18.
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6. Threats to validity

This chapter explained how the research could have gone wrong. The chapter consists 
of internal validity and external validity sub chapters.

6.1 Internal validity

Due to the lack of computational power and time constraints, hyper-parameters of the 
Fasttext  model  and  source  file  attributes  extraction  model  can  not  be  explored.  In 
addition, the mapping of each word to an n-dimensional vector using Fasttext is done in 
an unsupervised way. That is, there is no guarantee that the same result can be achieved 
when the model is trained from scratch. This might cause a problem when others are 
trying to replicate the same work since the result could be different.

In addition, the Fasttext training used all available data to train, and the deep learning 
model used a subset of the same data. That was, the source file attributes in the test 
dataset were included in the word embedding model which does not reflect the real-
world environment.

The dataset is quite poor in the sense that it  does not grasp the main context of the 
issues. In addition, there is a lot of noise in the dataset which could introduce the bias to 
the models. It could be improved by using manual labeling for the task. However, it 
would be costly to label the data.

The description cleaning was also done in a fashion that it could fit the time limit. Since 
the training pipeline was quite long and time-consuming, where there are steps to train 
Fasttext model, vectorize all inputs, and train the source file extraction models, it was 
difficult to experiment on different types of input sources.

6.2 External validity

The dataset was programmatically labeled by rules which was not ideal as it was hard to 
construct  rules  that  could  imitate  developers’ understanding.  Even  the  model  could 
achieve acceptable f1 score from this particular dataset,  it  might not translate  to the 
distribution of the issues in the real-world setting. In other words, there are rooms of 
improvements in the dataset to achieve real-world human understanding representation 
of it.

In addition, the Softagram graph generators have rooms to improve. There are too many 
parameters for the graph generation. For example, the recursion of dependencies, the 
level of details, and the dependencies views are crucial parameters to generate an easy 
to understand graphs. However, some values such as the recursion of dependencies is 
the project specific value, since it means how deep the dependencies is mined and each 
project has its own way of organizing the source code pattern. These types of parameter 
might cause a problem in the production environment. 
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7. Conclusion and Future work

The research questions that drives this thesis are:

RQ1 How to detect source code attributes automatically?

RQ2 How to build a visualization of an issue/bug description?

Word  embedding  and  deep  learning  models  were  trained  to  solve  the  source  file 
attribute findings. It showed that both methods worked well and did generalize in real-
world usage with around 20% of FN and 0.8% for FP. The processes were querying data 
from open Github archive in Google BigQuery and training a Fasttext model to map the 
words together based on semantics. Then, sequential deep learning models were trained 
to classify whether each tokenized string was a source file attribute or not. The models 
could achieve around 0.80 F1 scores on the test set. 

Along with the model, the generated usage graphs that are the final output of the thesis 
work were presented for selected real-world issues from scikit-image repository. In the 
selected examples, they successfully represent the issue as dependency graphs of source 
file  attributes  where  the  graphs  show  the  usage  relationship  for  those  source  file 
attributes.

7.1 Future Work

In the future, there are possibilities to generate high-quality training data for the task of 
issue understanding. Having realistic data would totally enhance the model to learn the 
useful  pattern which imitates  the human understanding.  Therefore,  the noises in the 
dataset should be eliminated and might even capture some keywords that are not source 
file attributes, and make the model moves closer to the human level understanding. In 
addition  to  getting  better  data,  using  an  unsupervised  method for  training  this  task 
would be beneficial since there is no need to spend labor in data labeling. 

Moreover, given that once the machine learning models are good enough to predict the 
source file attributes, it would be very interesting to visualize the output into a dynamic 
graph environment. That is, the users can modify the dependency graphs upon their own 
intentions.
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Appendix A. Training Graphs

Figure 23. Training result for 1D CNN model

Figure 22. Training result for CNN model
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Figure 25. Training result for Bi-LSTM model

Figure 24. Training result for LSTM model
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Figure 26. Training result for Bi-LSTM model with batchsize=32
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