
Improving Visualization on Code Repository
Issues for Tasks Understanding

University of Oulu
Faculty of Information Technology and
Electrical Engineering
Master’s Thesis
Robroo Somkiadcharoen
16 June 2019

2

Abstract

Understanding the tasks and bug locating are extremely challenging and time-
consuming. Achieving a new state of the art of understanding the tasks or issues and
provide a high-level visualization to the users would be an incredible asset to both
developers and research communities. Open Github archive are gathered, and the data is
programmatically labelled. The Fasttext embedding model was trained to map the words
to together based on semantics. Then, both CNN and RNN types of deep learning
architectures are trained to classify whether each tokenized instance is a source file
attribute or not. The word embedding and LSTM models worked well and did
generalize in the real-world usage up to an extent. The models could achieve around
0.80 F1 scores on the test set. Along with the model, the generated usage graphs are
presented that are the final output of the thesis work. Some types of issues were suitable
for this workflow and did produce reasonable graphs which might be useful for the
users to see the big picture of an issue.

Keywords
Task Visualization, Dependency Graphs, Deep Learning

Supervisor
D. Sc. (Tech), Professor Mika Mäntylä

3

Foreword

My sincere appreciation for the brilliant contributors of this thesis and supported both
my mental and physical health during this journey.

I would like to thank my thesis supervisor Dr. Mika Mäntylä. He was always open to
discussion whenever I had a question regarding the research even when he was on sick
leave. He consistently steered me in the proper direction when things went south. My
thanks to Dr. Maëlick Claes as a master’s thesis opponent. His advice were highly
analytical and crucial to the research.

I am thankful to every single person who contributed to the European Masters
Programme in Software Engineering (EMSE) program for scholarship opportunity of
master’s degree. All colleagues at Softagram were awesome and always be supportive.

Finally, I must express my very profound gratitude to my parents and to Poy, my
girlfriend for providing me with unfailing support and continuous encouragement
throughout my years of study and through the process of researching and writing this
thesis.

This accomplishment would not have been possible without them.

Thank you.

Robroo Somkiadcharoen

Oulu, June 16, 2019

4

Abbreviations

The following list is a collection of abbreviations that are commonly used in the
publications and also appears many times in this thesis.

DNN Neural Networks

RNN Recurrent Neural Networks

NLP Natural Language Processing

MSE Mean squared error

FP False Positive

TP True Positive

FN False Negative

TN True Negative

F1 F1-score

LSTM Long-Short Term Memory

Bi-LSTM Bi-directional Long-Short Term Memory

CNN Convolutional Neural Networks

ReLU Rectified Linear Unit

XML Extensible Markup Language

RQ Research Question

DSR Design Science Research

1D 1 Dimension

5

Contents

Abstract..2
Foreword..3
Abbreviations...4
Contents...5
1. Introduction...6
2. Background and related work..8

2.1 Neural networks and deep learning..9
2.1.1 Neural networks..9
2.1.2 Training deep neural network..10
2.1.3 Recurrent neural network..11
2.1.4 Convolutional neural network...12

2.2 Deep Learning in natural language processing...13
2.2.1 Representation of raw text...13
2.2.2 Many-to-Many RNN Applications..14

2.3 Deep Learning in Tasks understanding...14
2.4 Dependency Graph Generators...15

3. Research Settings...16
3.1 Research Objectives..16
3.2 Research Methods...16

3.2.1 Design Science Research...17
3.3 Research Design...17

4. Identifying source code attributes..19
4.1 Methodology...19

4.1.1 Data...19
4.1.2 Models...21
4.1.3 Training...23

4.2 Result and Evaluation...23
5. Visualizing source code attributes...28

5.1 Methodology...28
5.2 Interpretation...28

6. Threats to validity..31
6.1 Internal validity...31
6.2 External validity..31

7. Conclusion and Future work..32
7.1 Future Work..32

References...33
Appendix A. Training Graphs..41

6

1. Introduction

Issue in open source software development is used to refer to the issue ticket from issue
tracking systems. The issue ticket can be seen as an artifact for reporting and requesting
a bug or a feature to the software developer team. In addition, the issues usually contain
the only textual descriptions of the environment and situation which seem to be
sufficient for software developers to understand the objective of them.

Practically, even if a well-established database exists, understanding issues is not
straightforward (Bettenburg et al., 2007). There are several challenges reported by
developers who contribute in open-source projects about the complexity of
understanding the source code and the issue objective (Guo, Zimmermann, Nagappan,
& Murphy, 2011; Stol, Avgeriou, & Ali Babar, 2010). Even highly experienced
engineers, who are not familiar with the job or the code base, might need hours to learn
only to locate the usage chain of a function. Early research tried analysing the past git
commit histories and numerically pointed out where the bug is (Zhou, Zhang, & Lo,
2012).

From an internal meeting in Softagram, the team notices that some issues type which
provided the source file attributes should hint the developers about the dependency of
the specific source files. In the focus of this research, source file attributes are the items
that can be referred within the source code such as method name, class name, and file
name. The example can be seen in “fileWriter.write()” as a method name, “FileWriter”
as a class name, and “softagram-live/main.py” as a file name. Fortunately, Softagram, as
a Finnish’s leading software analysis and visualization solution company, has the source
code visualization engine available. The tool can show how the source files attributes
are connected based on the usage of them (“Softagram Products – See Your Software
Visualized,” n.d.).

Moreover, the integration of the Softagram’s source code visualization tool and the issue
description would be beneficial to the software developers. That is, the developers will
have the ability to understand the high-level dependency graph of the extracted source
file attributes.

However, extracting those source file attributes is not a trivial task. It is possible that
using a lot of regular expression patterns can achieve the same goal, but it is time-
consuming and difficult to maintain. In addition, it is much more difficult to construct a
temporal-based rule. For example, a rule such that after a keyword “This” followed by
“file”, there is a 20% chances that the next word is a source file attribute is hard to
construct.

Deep Neural Networks (DNN) keep showing futuristic results in many areas. In the area
of computer vision, it can easily achieve more than 60 frames per second in the object
recognition task and can even generate highly realistic image of a person which remains
as a challenge for people to differentiate them from real ones (Horev, 2018; Karras,
Laine, & Aila, 2018; Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018). In the natural
language processing task, OpenAI has developed a GPT-2, a DNN language model
which can generate professional text that they chose to not release the pre-trained model
due to safety and security reasons (Radford et al., 2019).

7

The Softagram team see this opportunity and believe that the deep learning algorithm
can help to extract source file attributes as well. The benefit of using this DNN is that
one does not need to manually create static rules for extracting the source file attributes.
It can learn the features of the data automatically. As a startup company, introducing a
killer feature would provide the company with an ability to stand out in a crowd. For
example, one company applied artificial intelligence extensively for source code
enhancement task like common bug detection (source{d}, n.d.). With experiences and
interests in modern machine learning methodologies, researching machine learning
ideas and see if it can eventually enhance the existing Softagram services and
customers’ experiences would be a great exploration.

The focus of the thesis is to answer the research questions (RQ):

RQ1 How to detect source code attributes automatically?

RQ2 How to build a visualization of an issue/bug description?

To find the answers, the execution is to create an automatic issue visualization. It is
done by using deep learning to extract the source file attributes. Then, the results are fed
to the Softagram’s graph generator which creates a dependency graph between the
source file attributes. The study is done by the design science research methods which
focus on building an artifact to be used in the real-world settings.

This thesis will contribute and set up a practical state-of-the-art by applying natural
language processing, and dependencies visualization to give a practical high-level task
description to the users in Figure 1. The research community benefits from the research
pipeline from the data source to the interpretation of the end result. Moreover, after
making the product of the end result, this feature will be free to use for open source
projects on Github.

The thesis has 7 chapters. Chapter 2 shows the background and existing work of both
issues understanding the task and deep learning in natural language processing area. In
Chapter 3, the research settings are presented which are research methods, and the step
of evaluations. Chapter 4 shows how deep learning is used in keyword extractions, and
Chapter 5 is about how to visualize the source code attributes. Threats to validity can be
seen in Chapter 6. In the end, Chapter 7 presents the conclusion and future work.

8

2. Background and related work

In the last section, the brief background and motivation of the research are presented.
This section is, based on previous literature, It presents a background of the issues
understanding tasks, and a concise history of neural networks on the fields of natural
language processing while providing some applications related to the practices. Finally,
the current work on source code visualization and the Softagram’s graph generator are
reported as existing work.

Issue tracking systems are software that helps software developers store the bug or
features reported by stakeholders at one place. It helps in reporting, assignment,
progress tracking, and archiving of issues (Bissyandé et al., 2013). Giving the same
understanding among stakeholders can be seen in one of the importance of issues
reports (Bertram, Voida, Greenberg, & Walker, 2010). The issues usually have a
description of an issue, an identifier, a description of the specific issue, and priority.
This information leads to a meaningful discussion about the possibilities of solving if
done with enough context (Bettenburg et al., 2007).

Traditionally, issues can be seen as a database of feature or bug reports, where it acts as
a place to store documentation only. However, in modern development practices,
especially in open source software development, one can see that the git hosting
services with built-in issue tracking systems have been developed to serve as a
communication channel (Bertram et al., 2010).

It is essential for the stakeholders of the software that have the same goal of each issue,
since performing a refactoring when there is a mis-implementation could be expensive
(Boehm, 2002).

Surprisingly, even if a well-established database exists, understanding issues is a non-
trivial task (Bettenburg et al., 2007). Popular issues tracking systems nowadays, for
instance, Github, Gitlab, Bitbucket, and Bugzilla, only represent issues with description
in text format, tag, and links to others issues (“Issue trackers - Atlassian
Documentation,” n.d.; “Issues | GitLab,” n.d.; “Mastering Issues · GitHub Guides,” n.d.)

There are several challenges reported by students when they would like to identify the
architectural pattern in open source software development. One example can be seen in
“Hierarchy of source code directory organization is counter-intuitive, Manually
browsing source code is tricky and time-consuming, and Code comments are not clear”
(Stol et al., 2010). In the Mozilla project, researchers discover that in many cases if a
bug introduces meaningful problems, there might be a need to assign the task to a
person who knows better code structure. This seems to be the problem that the core
developers who have a better understanding of the architecture have a better
understanding than volunteers who just joined the development (Reis, Fortes, Pontin, &
Fortes, 2002). Apart from the Mozilla project, some developers reassign the bug
because the bug report quality was terrible. It is normally caused when the developers
do not understand the task (Guo et al., 2011).

To solve the problems, there are some researchers come up with the solution which
provides a machine learning solution which can tell if an issue is newbie friendly or not
(Stanik, Montgomery, Martens, Fucci, & Maalej, 2018). Providing, also, class diagrams

9

or dependency views or any code visualization tool would help newcomers understand
the problem in the bigger picture and be able to work on it and even find further
problems (Park & Jensen, 2009).

2.1 Neural networks and deep learning

In supervised machine learning, the normal workflow is that the developers need to
manually do feature engineering, which means trying to figure out how to get the
important part of the data into the training or inference process of a machine learning
model (Chandrashekar & Sahin, 2014). This task is expensive that only domain experts
should get involved and seen as the most important part of a machine learning algorithm
(Domingos, 2012; Ng, 2011). It simply means that, if the feature engineering is not done
right, the statistical model might not learn enough useful data to inference (Parikh,
2014).

Deep learning, which is actually a neural network that has more than 3 layers deep,
takes a totally different approach. One of the strongest points of neural networks is that
it is a machine learning method that does feature engineering automatically (Nielsen,
2015). The shallower layer is a low-level feature extraction, where the input could be
raw data, and it tries to get the low abstract representation of the data. The deeper layers
now extract higher-level presentation of the data and eventually might get image objects
or get too complex for a human to understand but still useful for the machine learning
model (Karpathy, n.d.). Then, these representations can be used to work on various
tasks. Since the useful features are already extracted by the deep neural network, there is
no need to do the manual work of feature engineering.

2.1.1 Neural networks

The baseline of deep learning models are multilayer perceptrons or deep feed-forward
neural network, where the objective of such networks is to make a great function
approximator, i.e. how to approximate function F such that y=f (x) ; where y is the
optimization goal (Nielsen, 2015).

When it comes to networks, there can be many function approximators working
together, f (x)=f (3)

(f (2)
(f (1)

(f (0)
(x)))) , where each function serves as each own

layers. In this example case, the f(0) serves as the first layer, f (1) serves as the
second layer, and f (2) serves as the third layer and so on. These now created a depth
of the learning model itself, where the word deep learning came from (Goodfellow,
Bengio, & Courville, 2016).

In neural networks, the terminology for each function approximator is a neuron. A
neuron is a function that receives one or more inputs and produces only one output. A
function that computes the output of neurons in a vector form can be seen in the
following (Nielsen, 2015).

y i=g (W i x i−1+b i) Where x i−1 is an input vector or the output from the last layer,
W i is a weight vector, and bi is a bias vector, g is an activation function, and i

stands for layer i. The weights and biases are the parameters to be optimized during the
training.

The activation function is the judge to decide whether this neuron should fire the signal
to the deeper layer or not. The characteristics of useful activation functions are
differentiable, cheap to compute, and serve non-linearity (Ramachandran, Zoph, & Le,
2017). Nonlinearity is important since combining multiple linear functions would result

10

in the linear function. That is, the network cannot learn more complex decision shape
which is non-ideal in case of training the network on non-linearly separable data. The
example of non-linear activation functions are softmax, tanh, and Rectified Linear Unit
(ReLU) (Goodfellow et al., 2016; Nair & Hinton, 2010; Ozbulak, Neve, & Messem,
2018).

softmax

f (xi)=
e(yi)

∑
j

1+e
(y j)

tanh

f (x)=
2

1+e−2 x
−1

ReLU

f (x)=max(0, x)

2.1.2 Training deep neural network

Training a deep neural network is similar to what is done on a traditional machine
learning model. It can also be trained with the gradient-based method (Lecun, Bottou,
Bengio, & Haffner, 1998). It is done by adjusting each individual weight according to
the error between prediction and ground-truth (Goodfellow et al., 2016). There are 4
main components which are loss functions, optimization, metrics, and transfer learning.

Loss functions get the differences between prediction and ground-truth in number. One
example of loss functions can be seen in mean squared error loss (MSE) (Das, Jiang, &
Rao, 2004).

MSE=
1
N ∑ (y i− ŷ i)

2

The main goal of training deep learning is to update weights and biases in the network
to minimize the loss function which is an optimization problem. Normally, researchers
tend to use backpropagation with stochastic gradient descent (Nielsen, 2015).

Gradient descent is an optimization algorithm which tries to find the local minima of a
function by moving towards the downhill of a sloping point (Ruder, 2016). In addition,
computing gradient of the whole dataset is computationally and memory expensive, so
computing gradient only on a batch of a dataset is preferred in practice which is known
as stochastic gradient descent (Bottou, 2010).

Backpropagation is a neural network training algorithm which uses the gradient descent
to update the weights where it minimizes the loss and uses chain rules to propagate the
error from the deep layers to shallow layers (Rojas, 1996). The main functions are to
compute the error using loss function, then compute the gradients, i.e. rate of change, of
output with respect to weights, then compute the weights with respect to weights in the
previous layer. In the end, these gradients are used to update the weights (Goodfellow et
al., 2016). During the training, epoch means one pass through the whole dataset. Since
the data can grow larger than available memory, sampling a batch of data for training
works in practice.

11

Metrics are how one evaluates the performance of the model which are often dependent
on the tasks that are performing. The examples can be seen in F1 score, mean intersect
over union, and accuracy (Rezatofighi et al., 2019; Sokolova & Lapalme, 2009). F1
score is based on the Precision (PREC) and Recall (REC). Precision is how well the
model can correctly predict the attributes. Recall is how it correctly predicts the
attributes on all samples. F1 score is the harmonic mean of precision and recall.

Mathematically, PREC=
TP

TP+FP
; REC=

TP
TP+FN

; F 1=
2×PRE C×REC

PREC+REC
 where

TP is True positives, FP is False positives, and FN is False negatives (Davis &
Goadrich, 2006).

TP and TN are the cases where a model predicts a correct class. TP means that the
ground-truth of the data is a true class, and the prediction is also true class. TN means
the actual class is a false class, and the predicted class is a false class. In contrast, False
Positives (FP) and FN are the cases that a model predicts an incorrect class. FP means
that the true condition is negative, but the predicted condition is positive. FN is the case
where the true class is positive, but the prediction is negative.

The mean intersect over union is a metric that is used in the object detection and image
segmentation task. It can be seen as the ratio of the overlapping area over the combined
area (Rezatofighi et al., 2019). The accuracy metric is the correct predictions over the
total predictions.

Training a deep neural network is time-consuming and resource exhaustive. Luckily, the
learned weights of a network might be useful for tasks in the same area. In case of
visual recognition, the animal classification network might learn the low-level features
which can detect the basic geometry or edges of an object where the high-level features
detect the more abstract details of the object (Karpathy, n.d.). In this case, a traffic sign
classifier can share the same low-level features from the animal classifier as a pre-
trained model. The only parts that need to update are the deeper layers of the network or
only the high-level features for the specific domain only (Chunmian, Lin, Wenting,
Kelvin, & Guo, 2019). This technique is called transfer-learning, and it helps reduce
many numbers of parameters that need to be trained.

2.1.3 Recurrent neural network

Recurrent neural network (RNN) is created to deal with sequences of input which can
generate one or many sequences of output (Karpathy, 2015). RNN is very useful to deal
with sequences of data. As the design of memorization in mind, RNN neurons in a time
step can remember the information from the previous input. Thus, it also captures how
each input are related to each other and how they influence the next time step which is
called as temporal features (Goodfellow et al., 2016).

The recurrent neural network system can be seen at applying the same weights to each
input in every time step as in Figure 2. Where each time step t, the equation looks like
the following.

a(t)
=b+Wh(t−1)

+Ux(t)

h(t)
= tanh(a(t)

)

o(t)
=c+Vh(t)

ŷ=softmax (o(t)
)

Where b,c are bias vectors and W,U,V are the weight matrices.

H denotes the recurrent state, and o is an unnormalized log probability at time step t
(Goodfellow et al., 2016).

12

One application of this Vanilla RNN can be seen in using a character level neural
network to imitate Shakespeare (Karpathy, 2015). The network then learns how each
character influences the next character based on past information about how characters
arrange. Some successful applications of RNN-based architecture are image captioning
and music composition (Choi, Fazekas, & Sandler, 2016; Wang, Yang, Bartz, & Meinel,
2016).

Normally, Vanilla RNN is not used in practice since it suffers from gradient vanishing
which causes the network cannot learn long time dependencies among time steps.
Therefore, there are modified RNN architectures which improve gradient flow. They are
Long-Short Term Memory (LSTM) and Gated Recurrent Unit (Hochreiter, 1998; Kanai,
Fujiwara, & Iwamura, 2017).

2.1.4 Convolutional neural network

Convolutional neural network (CNN) is a type of deep learning architecture which is
originally created in the area of computer vision since it maintains shift, scale, and
distortion variants when extracting features from the input (Lecun et al., 1998).
However, the inputs can be one dimension (1D) data such as vectors, or 2 dimension
data such as images. When introducing a convolutional layer into a deep neural
network, this is called a convolutional neural network.

Apart from the images, CNN also works well in Natural Language Processing (NLP)
area. Text representations of a sentence can be tokenized into words, where each word
can be represented by a d-dimensional vector (Yin, Kann, Yu, & Schütze, 2017). Then,
the convolution process in an n-gram fashion, i.e. a word with its closest n-neighbors.
The speciality of this convolution is that weights are shared across the network. Then, it
can learn to put more or fewer weights to the thing that the network learn that they are
important. This intuition is comparable to the attention mechanism in RNN (Vaswani et
al., 2017).

The basic computation formula for applying a convolution layer to a 1-dimensional
vector is very straightforward as the following.

y i=g (W i x i−1[l : l+kernelsize]+bi) Where x[i:j] here denotes an array slice of x from
index i to index j. The slice represents the scope of input that will be convoluted which
will be the same size as the convolutional kernel. l denotes the starting subset location
of an input (Lee & Dernoncourt, 2016).

13

Based on the previous formula, it performs as a sliding window towards a vector. This
also introduces the parameters sharing idea that the input will receive the same
convolution kernel, W, in every timestep. This helps in reducing the parameters
explosion problem in the traditional neural network (Goodfellow et al., 2016).

The example of the basic architecture of CNN can be seen in Figure 3. It has a few
types of popular layers which are Convolution layer, Pooling layer, Activation layer, and
Fully Connected layer. The convolution layer is basically a neural network layer that
does the convolution operation on the input. In addition, the pooling layer is a
subsampling layer which is meant to reduce the size of the input. The activation layer is
the layer that performs the activation function on the input. Also, the fully connected
layer is a normal neural network. The orders might be Convolution, Activation, and
Pooling layers to extract features. Then, those are normally fed into Fully Connected
layers to perform regression or classification tasks.

2.2 Deep Learning in natural language processing

NLP is a domain that aims to understand and process languages that are used by
humans. There are already a lot of researches in this area. The NLP tasks that deep
neural network provides successful results can be seen in part of speech tagging,
sentiment classification, question answering, and text summarization (Huang, Xu, & Yu,
2015; Li, Jiang, Liu, Ren, & Li, 2018; A. W. Yu et al., 2018; L.-C. Yu, Wang, Lai, &
Zhang, 2017).

Even though RNN tends to perform better in general NLP tasks, they all have roughly
the same performance in sentiment classification, part of speech tagging, and answer
selection tasks (Yin et al., 2017). In general, CNN benefits from recognizing the
importance of the surroundings, and train much faster than RNN since the matrices and
convolution operation can be parallelized (Bradbury, Merity, Xiong, & Socher, 2016).

2.2.1 Representation of raw text

For the data preprocessing of NLP tasks toward deep learning, researchers usually need
to map each word of an input to a vector first before feeding them as an input to the
model. The most traditional way is to use Bag of Words vector to represent the number
of occurrences of each word in the input (Deepu, Pethuru, & S., n.d.). The problem with

14

this is that the input is not weighted. Therefore, some words that appear too many times
in a context might be noise in data instead. This is how TF-iDF originated from. The
idea is to weight the terms that appear a lot (Ramos & others, 2003).

In the neural word embeddings, Word2Vec is a model to represent raw text as a vector.
It emphasizes on the relationship between words rather than the occurrences of them
(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). Facebook’s Fasttext model is also
very popular and is an extension of word2vec. The main difference is that each word
vector is composed of a character n-gram (Bojanowski, Grave, Joulin, & Mikolov,
2016). Therefore, the out of vocabulary words can be solved by constructing the word
vector from its n-gram.

2.2.2 Many-to-Many RNN Applications

In the structure of deep learning model, Seq2Seq is a general-purpose neural network
structure composing of encoder and decoder parts. Sequence to sequence network is a
way to make recurrent neural network process on many-to-many input to output. It is
useful in the sense that the network might want to read a sequence of input and output
as a sequence. For example, translating a sentence from English to French is possible by
employing the LSTM network (Sutskever, Vinyals, & Le, 2014).

In the keyword extractions tasks, the model is normally in a seq2seq fashion since the
input needs to read in a sentence and output a few words afterwards. Also, this can be
modelled as a classification task where the training data is flagged whether it is a
keyword or not. Multiple variations of RNN show a promising result of extracting the
key-phrases from tweets on Twitter (Zhang, Wang, Gong, & Huang, 2016). In addition,
an encoder-decoder RNN model is able to generate key-phrases on many datasets, and
can even generate the keywords that are not in the text (Meng et al., 2017).

2.3 Deep Learning in Tasks understanding.

There are many studies on adopting deep learning on the tasks understanding. Many of
them actually tried to learn the representation of the issues itself. Then they get creative
with a lot of applications that they could imagine. However, even they achieved
outstanding performance, they are still far from perfect.

Anvik, Hiew, & Murphy (2006) show how they use machine learning methods to make
an automatic system of assigning a task to a suitable developer. The study did train the
model through repository histories and bug histories. Mani, Sankaran, & Aralikatte
(2018) introduce a deep learning method with an attention mechanism to represent a
bug report based on title and description. The representation is then fed into the
classifier for assigning a bug to developers. Lyubinets, Boiko, & Nicholas (2018) invent
hierarchical attention deep learning based model to automatically learn to label the
bugs. The authors show that their work can outperform traditional machine learning
solutions. Li et al. (2018) train unsupervised deep learning to summarize a bug report in
the open source projects, where the architecture could provide a summary of 40% of
ground-truth length where it covers more than 50% of the sentences in ground-truth
summary. Dam, Tran, Grundy, & Ghose (2016) also created an abstract representation
of the whole software life-cycle including issues and releases. They proposed to convert
a text representation of issues description and source code into a vector representation
using word2vec or paragraph2vec. Then, the representation can be feed into a recurrent
deep neural network architecture and created an abstract representation of those. Huo,
Li, & Zhou (2016) propose a CNN solution for inputting both source code and bugs
description. Then, a representation is used to predict the location of the bugs in the
source code. Choetkiertikul et al. (2018) show a case where they employed sequential-

15

based deep learning architecture with a highway network and word embedding to
learning representation of issues. Then, they train a regressor to predict a story point of
a specific issue. Stanik et al. (2018) created a classifier from a TF-iDF representation of
issue tracker data. They successfully classify the data into three classes which are
newbie friendly, experienced newbie friendly, and experts friendly. While the work is
done by traditional machine learning, the importance of this work is how they pre-
process the text features to create a representation that can be feed into deep learning
based model too.

2.4 Dependency Graph Generators

Dependency graphs are the graphs that visualize the usage between source file
attributes. In the case of method level, it shows whether the particular methods import
which functions from which files. In addition, the outgoing edges of how the methods
are imported to the neighbors are displayed too. The idea is to help developers
understand what are the impacts that happen if a particular file or function is modified.
The example can be seen Softagram’s pull requests impact visualization graph in Figure
1.

Softagram has an architecture visualization platform ready to use. It can run on git
repositories to extract dependencies among them, then the information on what files are
changed, added, or removed can be fed to create a dependency graph. The application
programming interfaces are written in both Java and Python which already exist and
easy to integrate. The graph generation interface indexes the repositories as an
Extensible Markup Language (XML) file. This XML file store relationships of all the
classes and functions within the repositories. Moreover, Softagram also integrates with
various git hosting services which are Github, Gitlab, Gitlab Enterprise, BitBucket,
Bitbucket Enterprise, Visual Studio Team Services, and Gerrit. The dependency graph is
computed automatically and serves right in the pull requests and cross-platform desktop
application. The graph generator is based on the same graph engine which powered a
popular graph visualization tool yEd.

Code Flower is an open-source MIT license source code visualization tool. It provides a
fixed file level visualization for any project. However, the process of creating the input
data for the Code Flower itself is still manual which requires a lot of work. In addition,
there is not much interaction to do with the visualization (Zaninotto, n.d.).

Flow is a free source code visualization tool which supports Java language only. In
contrast to Softagram and Code Flower, it does not focus on finding dependencies or
architectural meaning of source code. The behavioral-driven flow visualization is the
main goal of this program (“Visualize Java code execution,” n.d.).

Sourcetrail is an offline cross-platform source code browser. It works by indexing a
project, then interactively go through the source code via the diagram or the code. In
addition, the dependency graphs can be created at any levels and it supports connection
to an integrated development environment or code editors for digging through the
source code (“Sourcetrail - The offline cross-platform code browser,” n.d.).

16

3. Research Settings

This section will describe the research methods and research plans. It begins by showing
the needs of executing design science research. Then, plans for integrating a deep
learning model as a feature are presented.

3.1 Research Objectives

There are four main types of research knowledge contribution framework as shown in
Figure 4 (Gregor & Hevner, 2013). They all could be seen in improvement, invention,
routine design and exaptation. Firstly, improvement means developing new solutions to
existing problems. Secondly, the invention is the invention of a new solution to new
problems. Thirdly, using existing solutions to new problems are exaptation. Finally, the
Routine design, which is not considered as a design science research (DSR) because
there is no contribution done to the science society, is how one applied existing
solutions to existing problems.

This thesis aims to contribute as an exaptation since the deep learning approaches to
natural language understanding are widely adapted into different domains. However,
according to the best of the team’s knowledge and literature reviews, there is no
application in natural language understanding with visualization on the issues
understanding before.

The goal of this research is to answer the research questions:

RQ1 How to detect source code attributes automatically?

RQ2 How to build a visualization of an issue/bug description?

Figure 4. DSR Knowledge Contribution Framework
(adapted from Gregor & Hevner, 2013)

3.2 Research Methods

In order to choose the suitable methods for particular research, looking at the goal that
the research is trying to achieve is encouraged.

17

There are many research methods that can answer these RQs. The reasons that
qualitative research and systematic literature reviews are not used in this study are that
both methods can only give the idea, which is useful for research planning or obtaining
knowledge.

On the other hand, design science research can produce the output as an information
technology artifact and evaluate it under the real environment setting. The ultimate goal
of this thesis is to implement the automated issue visualization as a feature to serve
customers worldwide which is applicable to design science research.

3.2.1 Design Science Research

Design Science research is a research method that aims to understand and improve
human performances (Aken, van, 2005). In addition, one can follow the template of this
research to implement novelty methodologies into the real-world environment and
evaluate the artifacts.

The design science research framework can be broken down into three cycles which are
a relevant cycle, design cycle, and rigor cycle. As seen in Figure 5, the environment
means the people, organizational and technical systems, and problems and
opportunities. The design science research deals with the building of artifacts and
evaluation. In the middle between design science research and environment, there is a
relevant cycle. This cycle acts as a bridge between these two components. That is, it is a
recurring process of evaluation of the design science artifacts based on environmental
testing and requirements. Within the design science research itself, there is a design
cycle between the building and evaluating the designed artifacts. On the rightmost
component in the picture, there is a knowledge base. The knowledge base is scientific
knowledge or expertise in the area. The rigor cycle acts between the design science
research and knowledge base. Without a doubt, it means to use the foundations on the
area that one already has to enhance the design science building and evaluation process
(Hevner, 2007).

Figure 5. DSR Cycles (adapted from (Hevner, 2007))

3.3 Research Design

In order to answer the RQs, the methodology was building an automated issue
visualization system which took the text description of issues as an input. The
technology behind it was deep learning on natural language processing which would
help with extracting source file attributes. The research team saw the opportunities and
proposed an alternative to the regular expression solution. With this setting, the model
should be able to recognize both the semantic meanings and temporal features of the
task.

The rough picture that summarizes the method can be seen in Figure 6. Open source
issues data from an existing database were gathered. Then, the data needed to be

18

explored and analyzed how one could pre-process it before inputting to the models.
After that, deep learning architectures were implemented and trained on the
preprocessed data. The training objective was to create a word classification model
whether it is a source file attribute or not which the positive class belonged to source file
attributes and negative class belonged to the non source file attributes.

During training, the models were evaluated based on metrics whether the model learned
enough for the next stage. In the final part, the model was inferred on the unseen
dataset, clean the predictions that are noise from the input, and fed it to Softagram graph
generator. The purpose of Softagram graph generator was to create a dependencies
graph on the source code attributes which can provide a high-level representation of the
issues.

There were 2 levels of evaluation methods which were the model level and the
practicality level. The RQ1 was answered during the model level as a methodology to
construct the artifact. The machine learning model performance evaluation was done by
using the testing set where the network did not see those sets during learning. Metrics
that used to check the performance were precision, recall, and F1 score. In other words,
if the models achieved at least 0.80 F1 score, it meant that the models actually learned
the training data and could generalize well in testing data which hinted that it might
generalize in real-world data.

After the model stage, the outputs from the model were fed to the graph generator. The
RQ2 were answered during this stage. Real-world data from open source issues were
fed to the whole pipeline for creating the visualization. The evaluation of the
visualization was done by describing the meaning of the outcome of the sample to
understand the value that it might have created.

To map the research plan to the DSR framework, raw data gathering and visualization
stages of this research plan belong with the relevant cycle. Apart from this, model
training and evaluation stages were as the design cycle and rigor cycle where the
researcher of this research acted as a person in the environment.

Figure 6. Research Plan

19

4. Identifying source code attributes

4.1 Methodology

This section is about the methodology of implementing the deep learning model to
identify source code attributes. The chapter consists of data labeling and preprocessing,
model architectures and training.

4.1.1 Data

The plan was to find open issues or bug trackers that were freely available on the
Internet. However, popular datasets that researchers use such as Bugzilla in Eclipse
ecosystems were professionally oriented that provided more meaningful description
compared to the issues in non-professional and non-industrial Github projects. As the
ultimate goal was to use the product as a Github issues extension, it was the best idea to
use the data from the same distribution. In addition, acquiring the data from Github is
simple.

There was an open dataset by Github. According to (“GH Archive,” n.d.), Github stored
its hourly-updated data on Google’s BigQuery system and it was available to the public.
Also, the issue events were all kept there as well.

Even if the data was free, the cost of using Google cloud platform was not. Luckily,
they provided a coupon for the first user using Google Cloud Platform. The issues are
then queried for the ones that opened during the year 2018 which the body must be at
least 20 words and the title must be at least ten words. After that, the data was transfer to
Google Cloud Storage for the backup purpose, then it was downloaded to a local
machine for analysis.

The data consisted of the following columns, which were issue_url, issue_title,
issue_body with a total number of around 800k Github Issues.

Labeling

Data labeling was the major problem of this task. Due to the nature of issues
understanding, one might need a lot of time to understand the issue or not understand it
at all. The scenario here was that the researchers believed that source file attributes in
the issue would provide more context in addition to the textual description of an issue.
For example, the issue in Figure 7 would make much more sense to come up with a
dependency graph of the skimage/morphology/_skeletonize_cy.pyx and method
_skeletonize_loop.

In the first setting, a researcher tried to label the data by himself and discovered that he
needed more than 2 minutes per issue to only get a rough context. In order to label the
whole issues, it would take at least 1,600,000 minutes or roughly three years straight to
obtain the result. Even though in this experiment only around 12,000 issues were used,
it would take roughly 300 hours to accomplish which was not ideal. Therefore, The core
of this research was to try out if the work was doable, then keep enhancing a specific
part for the production use. Therefore, using a regular expression as rule-based labeling

20

was taken in place. The words that were associated with source file attributes were
annotated as class 1 and 0 otherwise.

Figure 7. An example issue from scikit-image repository
onhttps://github.com/scikit-image/scikit-image/issues/3861.
The yellow highlighted has the true class as source file
attributes.

Pre-processing

In order to select the issues that were descriptive enough to provide source file
attributes, the data were first preprocessed by concatenating the issue title and body.
Then, regular expression was employed to detect if there were camel case, small camel
case, snake case, file path and methods-like strings in the concatenated title and body.
After filtering, the dataset ended up having 360k issues left.

Since there was no access to high processing power available on the task, the dataset
was then randomly sampling for only 12k of issues. Initially, stratified random sampling
was a reasonable practice since it balanced the data, but the nature of this data was that
there might be only some small parts of the issue that are source file attributes, and
trying to sample the issues that consist of a lot of true classes might lead to bias in the
data for this case eventually. The number of true class and false class in the dataset are
1,396,583 and 66,097 respectively.

Then, the special characters and excess white spaces were cleaned and tokenized base
on a white space character. During the manual data labeling for around 60 issues, some
heuristics were gathered. Issues could contain many source file attributes in the
description, however, only some of them were worth exploring the dependency graph.
This source file attributes were called main source file attributes. The meaningful source
file attributes of an issue were within the first 100 words more than 50% of the time. In
addition, the mean and median of the description lengths were 107.49 and 93.0 words

21

respectively as in Figure 8. The length of the description was truncated to only 120
words for the purpose of computation efficiency while still preserve the main source file
attributes from the heuristic. In addition, this limitation also made it easier to compare
the performance between different types of models.

In order to map the word into an n-dimensional space, words embedding were used.
However, the pre-trained word embedding based on Wikipedia or some other domains
would not work on this case since the source file attributes unlikely to happen in the
whole corpus. Fasttext was used for the main reason that it captured the semantic
meaning of the word and could handle out of vocab which was lacking in word2vec
(Bojanowski et al., 2016). In contrary to the training of source file extraction model, the
Fasttext model was trained on the rest 800k cleaned Github issues description.

4.1.2 Models

The main reason that TensorFlow framework was chosen for this work was that it
supports the high-performance production ready serving of the model seamlessly
(Olston et al., 2017). This property would help developers deploy their deep learning
model to the production easily without being an expert in machine learning model
deployment.

Four sequence classification models are constructed. All models here were classic
models where the CNN was based on Lenet style and LSTM was from a sequence
classification style. However, the 1D convolution model was developed from the
intuition of convolution operation itself.

For this task, four types of architecture were chosen. The model 1 was Lenet style CNN
model. It was just convolution following by max pooling for three times, then fed the
extracted features to the fully connected layer. The input was constructed as a 2D
matrix, where each row corresponded to each word in an issue, and the columns were
100-dimensional vectors of a Fasttext embedding of a word. In the first three layers,
they were pairs of 32x3x3 convolution layer following by 2x2 max pooling layer. In the
end, they were then fed to the two fully connected layers with the neuron size of 300
and 120 respectively. The activations for the intermediate layers were done by ReLU,
while the last activation was softmax. For high-level understanding details of the CNN
model, Figure 9 shows the visualization and details of it. In the same procedure, the 2nd

22

model was also a Lenet style CNN model. However, it made use of a 1D convolution
along the horizontal axis instead under the intuition that it should extract the features of
the word and its neighbors. This model could be seen as applying n-gram word
embedding vector to a CNN. The only difference in model 1 and 2 was only the size of
convolution filters. The filter sizes in model 2 were 5x100, 5x 50, and 5x25. This should
be similar to applying n-grams convolution of an input where n=5. Figure 10 captured
the high-level understanding of how the 1D convolution operated.

The 3rd and 4th models were solely based on the sequential model. Both models were
two layers stacked LSTM and two layers stacked Bi-Directional Long-Short Term
Memory (Bi-LSTM) which directly used the output from Fasttext embedding as an
input. The size of the hidden nodes for each LSTM node was 200. The total model
workflow can be seen in Figure 11 and Figure 12.

The idea of the comparison of these models was that they both had the ability to extract
features from the input automatically. However, CNN tended to extract the feature from
the input space, or in n-grams fashion in 1D convolution of this case. In contrast, RNN
could recognize temporal features. RNN based model could have answered the
hypothesis that the dataset might not need to be perfect since the model should learn
semantic features from the Fasttext embedding and temporal features from the
construction of a time-series based issues. In other words, it should be able to learn the
meaning of the word based on the context. Also, where and when do the source file
attributes happened in the context.

Figure 10. CNN architecture with 1D convolution of Model 2

23

4.1.3 Training

A training set and a test set were split based on 65%/35% from the total issue.

They were trained with Adaptive Moment Estimation optimizer since it supported
adaptive learning rate with the starting value of 0.001. There were two settings for the
batch size. A batch size of 128 was used for LSTM, Bi-LSTM, and CNN models. In
addition, the batch size of 32 was chosen for Bi-LSTM. The reason that the upper limit
was 128 was because of a memory constraint. In addition, using a larger batch size
allowed the model to train much faster, but it also consumed more memory too.

There was no over-fitting prevention done on the models, since it made more sense to
see the training & validation loss first whether there was a chance of over-fitting. The
loss function was binary cross entropy. Since the hyper-parameter searching was quite
timing expensive, the researchers could not explore the search. The only settings that
were done in this research were from the gut’s feeling.

The training was solely done on Google’s colab because it provided free-of-charge
access to a GPU (“Colaboratory – Google,” n.d.). It was configured to train 60 epochs
with early stopping in 10 epochs threshold which monitoring on test set f1-score. The
total time per each epoch in LSTM was around 3 minutes per epoch, and Bi-LSTM was
around 10 minutes per epoch. For CNN, an architecture which could parallelize the
training, the timing was also around 3 minutes per epoch for the current architectures
and filter sizes. The monitoring of the training was done seamlessly via Tensorboard via
ngrok directly from Google’s colab notebook. In order to store the trained weights and
model, PyDrive library was used to upload & download models from private Google
Drive account (Google Drive API Python wrapper library., 2013/2019).

4.2 Result and Evaluation

CNN 1D CNN LSTM Bi-LSTM Bi-LSTM
(batch_size=32)

Test F1 0.3085 0.3551 0.8156 0.8019 0.8049

Test
Precision

0.4205 0.5339 0.8275 0.8229 0.8091

Test Recall 0.2470 0.2676 0.8046 0.7827 0.8032

Table 1. Scores on the test set.

Figure 11. LSTM architecture of Model 3
Figure 12. Bi-LSTM architecture of Model 4

24

The detailed results of the experiment were reported in both Table 1 and Appendix A.
Training Graphs. The LSTM model converged around the 30 epochs with the f1 score
on the validation at 0.81. Meanwhile, the Bi-LSTM model converged in only around ten
epochs with the validation f1 score as ~0.80. It can be seen that the Bi-LSTM converged
much faster than the uni-directional LSTM. In contrast, the time spending to train Bi-
LSTM was two times longer than the time needed to spend on the LSTM. In the same
ways, there was no significant improvement from adding another direction to the model.
Even using the smaller batch size which was supposed to give a better convergence, the
smaller batch size of 32 does not make a noticeable significant in F1, Precision, and
Recall (Keskar, Mudigere, Nocedal, Smelyanskiy, & Tang, 2016).

In contrast, the CNN models could not learn useful features for prediction. The
validation loss stopped reducing since the 5th epoch in model 1. It could only reach
around 0.30 for F1 score. Similarly, the 1D CNN model could only learn to calculate F1
score on a test set as 0.3551 in epoch 26. The reason that CNN cannot learn useful
features was that the features of the neighborhood might not be useful enough for the
network learning style. In addition, temporal features might be crucial for this task. In
order to try out a CNN again, maybe just using a CNN on a single word vector might
work well. For more information about test loss, PREC, REC, F1 on each model, please
see Appendix A. Training Graphs.

The following evaluation was done on the best model which was unidirectional LSTM.
The result tables here showed that the RNN based models did not suffer from over-
fitting, so the usage of regularization was not needed in this case. The possibilities were
that it was because the data was automatically labeled, thus there was much noise which
might prevent the model from starting to memorize the data.

In order to describe the performance of the model, it could be done easily through the
confusion matrix. It was a matrix which showed the true class and predicted class on a
data set which could be translated to the performance of the model. In this case, the
predicted results from the test set were shown.

According to the confusion matrix in Figure 13, the majority of the classes were
predicted correctly, in other words, the 1st and 4th quadrants of it produced quite high
values as 99.2% and 80.5% for TP and TN respectively. The numbers 488,974 and
23,066 denoted the classes of each word instance from the test set. In contrast, the 2nd

quadrant was very low as only 0.8% was false positive (FP), and the 3rd quadrant was

25

19.5% for FN, which was not low enough and produced quite a lot of noises in the
predictions. In these cases, TP and TN were quite high and produce reasonable in most
cases below.

The example of the 1st, 2nd, and 4th quadrants could be seen in Figure 14. The texts that
were highlighted in yellow are TP, while the blue-highlighted indicated that the specific
texts were the false positives. The non-highlighted denoted the TN class. Even the
confusion matrix showed FP rate was very low, there were some examples of FP in this
case. Using the heuristics, the reason that “ii”, “jj”, and “result[:” were predicted as
source file attributes was because of the limits of using regular expressions to generate
ground-truth. In order to reduce the FP, having a better data labelling method would
help.

In the case of the third quadrant, a real-world example was in Figure 16. It followed the
color code like the above, except that the ones highlighted in green are FN. This case
happened as a failure of a dataset itself due to the constraints from using regular
expressions. The regular expression rules must have computed noises to the class labels.
In addition, not reporting the “ProgramData” and “dtype_range” could lead to better
predictions of the model.

There was also one interesting prediction that can be found in Figure 17. Even though
the name of the method in the issue was not labeled in the dataset because of a bug in
the patterns used for matching, the network learned to predict this eventually. It was a
hint that the model could learn from temporal features and did not over-fitted the
dataset. That is, the model was able to learn both the semantic and temporal features.
However, there were arguably many parts which could have predicted as source file
attributes but were reported as true negatives due to the limit of regular expressions.

There were various types of issues, most of them did not provide any results as they
might not be applicable to this task. In other words, there was no clean source file
attributes defined in the issue, it usually did not provide useful features for the models
and thus lead to no result from the predictions. For example, the feature request or bugs
that were caused by the environment usually do not have source file attributes to extract.
Therefore, the graph generator would have no input to visualize. In Figure 15, it showed
the example of the issue that do not contain source file attributes and no FP and FN
presented in the predictions.

26

Figure 14. Example of predictions 1 From https://github.com/scikit-
image/scikit-image/issues/3861

Figure 15. Example of an issue From https://github.com/scikit-
image/scikit-image/issues/3739

27

Figure 16. Example of predictions 2 From https://github.com/scikit-image/scikit-
image/issues/3700

Figure 17. Example of predictions 3 https://github.com/scikit-image/scikit-
image/issues/3890

28

5. Visualizing source code attributes

5.1 Methodology

The graph generation was done by an executable file from Softagram. The graph
generator engine was written in a way that the users needed to input the query as a set
format. In addition, there are rules for constructing the query for the engine. The
pathnames that had at least one slash(‘/’) character would be treated as a full path. All
the special characters must be neglected, except underscore and dot, since these two
provide useful information in the query. The underscore could denote the variable name
or function name in programming languages that use snake case practice. The dot also
acted as an attribution-ship in some programming languages. However, the dot was not
supported as a query syntax yet, so there were some special treatments that needed to be
done for this type of attributes as shown in the example in the following example. In
addition, the source file attributes that looked like outliers and false alarm such as ‘print’
and ‘result[’ needed to be neglected.

To make it more clear for the reader, the example can be seen in how to construct the
query of Figure 17, the predictions from the models were [“skimage.transform.resize’,
“anti_aliasing_sigma”, “print_function”, “sys.version”, “platform.platform()”,
“format(skimage.__version__)”, “format(numpy.__version__)”]. The output was then
filtered by neglecting the format and print which are the built-in Python 3 functions. As
a result, the potential query elements were [“skimage.transform.resize’,
“anti_aliasing_sigma”, “sys.version”, “platform.platform()”]. The elements with dot
needed to be constructed as an AND of sets, so that the resulted queries were filtered
accordingly. In addition, the normal terms needed to be constructed as an OR of sets, so
that these terms were included in the final results. The final query of this case was
“(skimage AND transform AND resize) OR aliasing OR (sys AND version) OR
(platform AND platform)”. The final image can be seen in Figure 19.

5.2 Interpretation

Figure 19, Figure 20, and Figure 21 are the outbound dependency graphs of the issues in
Figure 17, Figure 14, and Figure 18 respectively. Due to the nature of scientific
packages, some implementations are done in Cython and Softagram’s indexing analyzer
understood those Cython files as an external.

In these cases, the files that were the core files of each issue appeared on the rightmost
column of the graph which were skimage.transform.resize,
_skeletonize_cy._skeletonize_loop, and points_in_poly.

By showing the usage graph for the aforementioned functions, the graphs captured the
total usage of the core files in the repositories. Those usages could be grouped as test
files and submodules. It could help developers to locate the other modules that will be
affected by implementing a function or fixing a bug in an issue. This type of usage
definition could be done in the same manner by browsing source code through some
Python integrated development environment like PyCharm. However, it was difficult to
understand the whole pictures when developers needed to dig deep into some
submodules. Moreover, the source code relationship showed in a textual format, which

29

might need a longer time to understand the big picture compared to the high-level
source code visualizations.

Figure 18. Example of predictions 4 https://github.com/scikit-image/scikit-
image/issues/3892

Figure 19. Example of graph generation from Figure 17

30

Figure 20. Example of graph generation from Figure 14

Figure 21: Example of graph generation Figure 18.

31

6. Threats to validity

This chapter explained how the research could have gone wrong. The chapter consists
of internal validity and external validity sub chapters.

6.1 Internal validity

Due to the lack of computational power and time constraints, hyper-parameters of the
Fasttext model and source file attributes extraction model can not be explored. In
addition, the mapping of each word to an n-dimensional vector using Fasttext is done in
an unsupervised way. That is, there is no guarantee that the same result can be achieved
when the model is trained from scratch. This might cause a problem when others are
trying to replicate the same work since the result could be different.

In addition, the Fasttext training used all available data to train, and the deep learning
model used a subset of the same data. That was, the source file attributes in the test
dataset were included in the word embedding model which does not reflect the real-
world environment.

The dataset is quite poor in the sense that it does not grasp the main context of the
issues. In addition, there is a lot of noise in the dataset which could introduce the bias to
the models. It could be improved by using manual labeling for the task. However, it
would be costly to label the data.

The description cleaning was also done in a fashion that it could fit the time limit. Since
the training pipeline was quite long and time-consuming, where there are steps to train
Fasttext model, vectorize all inputs, and train the source file extraction models, it was
difficult to experiment on different types of input sources.

6.2 External validity

The dataset was programmatically labeled by rules which was not ideal as it was hard to
construct rules that could imitate developers’ understanding. Even the model could
achieve acceptable f1 score from this particular dataset, it might not translate to the
distribution of the issues in the real-world setting. In other words, there are rooms of
improvements in the dataset to achieve real-world human understanding representation
of it.

In addition, the Softagram graph generators have rooms to improve. There are too many
parameters for the graph generation. For example, the recursion of dependencies, the
level of details, and the dependencies views are crucial parameters to generate an easy
to understand graphs. However, some values such as the recursion of dependencies is
the project specific value, since it means how deep the dependencies is mined and each
project has its own way of organizing the source code pattern. These types of parameter
might cause a problem in the production environment.

32

7. Conclusion and Future work

The research questions that drives this thesis are:

RQ1 How to detect source code attributes automatically?

RQ2 How to build a visualization of an issue/bug description?

Word embedding and deep learning models were trained to solve the source file
attribute findings. It showed that both methods worked well and did generalize in real-
world usage with around 20% of FN and 0.8% for FP. The processes were querying data
from open Github archive in Google BigQuery and training a Fasttext model to map the
words together based on semantics. Then, sequential deep learning models were trained
to classify whether each tokenized string was a source file attribute or not. The models
could achieve around 0.80 F1 scores on the test set.

Along with the model, the generated usage graphs that are the final output of the thesis
work were presented for selected real-world issues from scikit-image repository. In the
selected examples, they successfully represent the issue as dependency graphs of source
file attributes where the graphs show the usage relationship for those source file
attributes.

7.1 Future Work

In the future, there are possibilities to generate high-quality training data for the task of
issue understanding. Having realistic data would totally enhance the model to learn the
useful pattern which imitates the human understanding. Therefore, the noises in the
dataset should be eliminated and might even capture some keywords that are not source
file attributes, and make the model moves closer to the human level understanding. In
addition to getting better data, using an unsupervised method for training this task
would be beneficial since there is no need to spend labor in data labeling.

Moreover, given that once the machine learning models are good enough to predict the
source file attributes, it would be very interesting to visualize the output into a dynamic
graph environment. That is, the users can modify the dependency graphs upon their own
intentions.

33

References

Aken, van, J. E. (2005). Management research as a design science: articulating the
research products of mode 2 knowledge production in management. British
Journal of Management, 16(1), 19–36. https://doi.org/10.1111/j.1467-
8551.2005.00437.x

Anvik, J., Hiew, L., & Murphy, G. C. (2006). Who Should Fix This Bug? Proceedings
of the 28th International Conference on Software Engineering, 361–370.
https://doi.org/10.1145/1134285.1134336

Bertram, D., Voida, A., Greenberg, S., & Walker, R. (2010). Communication,
Collaboration, and Bugs: The Social Nature of Issue Tracking in Small,
Collocated Teams. Proceedings of the 2010 ACM Conference on Computer
Supported Cooperative Work, 291–300.
https://doi.org/10.1145/1718918.1718972

Bettenburg, N., Just, S., Schröter, A., Weiß, C., Premraj, R., & Zimmermann, T. (2007).
Quality of Bug Reports in Eclipse. Proceedings of the 2007 OOPSLA Workshop
on Eclipse Technology EXchange, 21–25.
https://doi.org/10.1145/1328279.1328284

Bissyandé, T. F., Lo, D., Jiang, L., Réveillère, L., Klein, J., & Traon, Y. L. (2013). Got
issues? Who cares about it? A large scale investigation of issue trackers from
GitHub. 2013 IEEE 24th International Symposium on Software Reliability
Engineering (ISSRE), 188–197. https://doi.org/10.1109/ISSRE.2013.6698918

Boehm, B. (2002). Get ready for agile methods, with care. Computer, 35(1), 64–69.
https://doi.org/10.1109/2.976920

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching Word Vectors
with Subword Information. ArXiv Preprint ArXiv:1607.04606.

Bottou, L. (2010). Large-Scale Machine Learning with Stochastic Gradient Descent. In
Y. Lechevallier & G. Saporta (Eds.), Proceedings of COMPSTAT’2010 (pp. 177–
186). Physica-Verlag HD.

Bradbury, J., Merity, S., Xiong, C., & Socher, R. (2016). Quasi-Recurrent Neural
Networks. CoRR, abs/1611.01576. Retrieved from
http://arxiv.org/abs/1611.01576

Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods.
Computers & Electrical Engineering, 40(1), 16–28.
https://doi.org/10.1016/j.compeleceng.2013.11.024

Choetkiertikul, M., Dam, H. K., Tran, T., Pham, T. T. M., Ghose, A., & Menzies, T.
(2018). A deep learning model for estimating story points. IEEE Transactions on
Software Engineering, 1–1. https://doi.org/10.1109/TSE.2018.2792473

Choi, K., Fazekas, G., & Sandler, M. B. (2016). Text-based LSTM networks for
Automatic Music Composition. CoRR, abs/1604.05358. Retrieved from
http://arxiv.org/abs/1604.05358

34

Chunmian, L., Lin, L., Wenting, L., Kelvin, W., & Guo, J. (2019). Transfer Learning
Based Traffic Sign Recognition Using Inception-v3 Model. Periodica
Polytechnica Transportation Engineering, 47(3).
https://doi.org/10.3311/PPtr.11480

Colaboratory – Google. (n.d.). Retrieved June 2, 2019, from
https://research.google.com/colaboratory/faq.html

Convolutional Neural Network (CNN). (2018, April 23). Retrieved March 28, 2019,
from NVIDIA Developer website:
https://developer.nvidia.com/discover/convolutional-neural-network

Dam, H. K., Tran, T., Grundy, J., & Ghose, A. (2016). DeepSoft: A Vision for a Deep
Model of Software. Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 944–947.
https://doi.org/10.1145/2950290.2983985

Das, K., Jiang, J., & Rao, J. N. K. (2004). Mean squared error of empirical predictor.
The Annals of Statistics, 32(2), 818–840.
https://doi.org/10.1214/009053604000000201

Davis, J., & Goadrich, M. (2006). The Relationship Between Precision-Recall and ROC
Curves. Proceedings of the 23rd International Conference on Machine Learning,
233–240. https://doi.org/10.1145/1143844.1143874

Deepu, S., Pethuru, R., & S., R. (n.d.). A Framework for Text Analytics using the Bag of
Words (BoW) Model for Prediction. International Journal of Advanced
Networking & Applications.

Domingos, P. M. (2012). A few useful things to know about machine learning.
Commun. Acm, 55(10), 78–87.

GH Archive. (n.d.). Retrieved May 9, 2019, from https://www.gharchive.org/

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

Google Drive API Python wrapper library. [Python]. (2019). Retrieved from
https://github.com/gsuitedevs/PyDrive (Original work published 2013)

Gregor, S., & Hevner, A. R. (2013). Positioning and Presenting Design Science
Research for Maximum Impact. MIS Q., 37(2), 337–356.
https://doi.org/10.25300/MISQ/2013/37.2.01

Guo, P. J., Zimmermann, T., Nagappan, N., & Murphy, B. (2011). “Not My Bug!” and
Other Reasons for Software Bug Report Reassignments. Proceedings of the
ACM 2011 Conference on Computer Supported Cooperative Work, 395–404.
https://doi.org/10.1145/1958824.1958887

Hevner, A. R. (2007). A three cycle view of design science research. Scandinavian
Journal of Information Systems, 19(2), 4.

Hochreiter, S. (1998). The Vanishing Gradient Problem During Learning Recurrent
Neural Nets and Problem Solutions. Int. J. Uncertain. Fuzziness Knowl.-Based
Syst., 6(2), 107–116. https://doi.org/10.1142/S0218488598000094

Horev, R. (2018, December 26). Style-based GANs – Generating and Tuning Realistic
Artificial Faces. Retrieved March 24, 2019, from Lyrn.AI website:
https://www.lyrn.ai/2018/12/26/a-style-based-generator-architecture-for-
generative-adversarial-networks/

35

Huang, Z., Xu, W., & Yu, K. (2015). Bidirectional LSTM-CRF Models for Sequence
Tagging. CoRR, abs/1508.01991. Retrieved from
http://arxiv.org/abs/1508.01991

Huo, X., Li, M., & Zhou, Z.-H. (2016). Learning Unified Features from Natural and
Programming Languages for Locating Buggy Source Code. Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence, 1606–
1612. Retrieved from http://dl.acm.org/citation.cfm?id=3060832.3060845

Issue trackers - Atlassian Documentation. (n.d.). Retrieved March 24, 2019, from
https://confluence.atlassian.com/bitbucket/issue-trackers-221449750.html

Issues | GitLab. (n.d.). Retrieved March 24, 2019, from
https://docs.gitlab.com/ee/user/project/issues/

Kanai, S., Fujiwara, Y., & Iwamura, S. (2017). Preventing Gradient Explosions in Gated
Recurrent Units. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, & R. Garnett (Eds.), Advances in Neural Information
Processing Systems 30 (pp. 435–444). Retrieved from
http://papers.nips.cc/paper/6647-preventing-gradient-explosions-in-gated-
recurrent-units.pdf

Karpathy, A. (2015, May 21). The Unreasonable Effectiveness of Recurrent Neural
Networks. Retrieved March 28, 2019, from
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Karpathy, A. (n.d.). CS231n Convolutional Neural Networks for Visual Recognition.
Retrieved June 1, 2019, from Visualizing what ConvNets learn website:
http://cs231n.github.io/understanding-cnn/

Karras, T., Laine, S., & Aila, T. (2018). A Style-Based Generator Architecture for
Generative Adversarial Networks. CoRR, abs/1812.04948. Retrieved from
http://arxiv.org/abs/1812.04948

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P. (2016). On
Large-Batch Training for Deep Learning: Generalization Gap and Sharp
Minima. CoRR, abs/1609.04836. Retrieved from http://arxiv.org/abs/1609.04836

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
https://doi.org/10.1109/5.726791

Lee, J. Y., & Dernoncourt, F. (2016). Sequential Short-Text Classification with
Recurrent and Convolutional Neural Networks. ArXiv:1603.03827 [Cs, Stat].
Retrieved from http://arxiv.org/abs/1603.03827

Li, X., Jiang, H., Liu, D., Ren, Z., & Li, G. (2018). Unsupervised Deep Bug Report
Summarization. Proceedings of the 26th Conference on Program
Comprehension, 144–155. https://doi.org/10.1145/3196321.3196326

Lyubinets, V., Boiko, T., & Nicholas, D. (2018). Automated labeling of bugs and tickets
using attention-based mechanisms in recurrent neural networks. CoRR,
abs/1807.02892. Retrieved from http://arxiv.org/abs/1807.02892

Mani, S., Sankaran, A., & Aralikatte, R. (2018). DeepTriage: Exploring the
Effectiveness of Deep Learning for Bug Triaging. CoRR, abs/1801.01275.
Retrieved from http://arxiv.org/abs/1801.01275

36

Mastering Issues · GitHub Guides. (n.d.). Retrieved March 24, 2019, from
https://guides.github.com/features/issues/

Meng, R., Zhao, S., Han, S., He, D., Brusilovsky, P., & Chi, Y. (2017). Deep Keyphrase
Generation. CoRR, abs/1704.06879. Retrieved from
http://arxiv.org/abs/1704.06879

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed
Representations of Words and Phrases and their Compositionality. CoRR,
abs/1310.4546. Retrieved from http://arxiv.org/abs/1310.4546

Nair, V., & Hinton, G. E. (2010). Rectified Linear Units Improve Restricted Boltzmann
Machines. Proceedings of the 27th International Conference on International
Conference on Machine Learning, 807–814. Retrieved from
http://dl.acm.org/citation.cfm?id=3104322.3104425

Ng, A. (2011). Machine Learning and AI via Brain simulations. Speech Recognition, 43.

Nielsen, M. A. (2015). Neural Networks and Deep Learning. Determination Press.
Retrieved from http://neuralnetworksanddeeplearning.com

Olston, C., Fiedel, N., Gorovoy, K., Harmsen, J., Lao, L., Li, F., … Soyke, J. (2017).
TensorFlow-Serving: Flexible, High-Performance ML Serving.
ArXiv:1712.06139 [Cs]. Retrieved from http://arxiv.org/abs/1712.06139

Ozbulak, U., Neve, W. D., & Messem, A. V. (2018). How the Softmax Output is
Misleading for Evaluating the Strength of Adversarial Examples. CoRR,
abs/1811.08577. Retrieved from http://arxiv.org/abs/1811.08577

Parikh, R. (2014, May 7). How Anomalies Can Wreck Your Data (Garbage In, Garbage
Out). Retrieved June 1, 2019, from Garbage In, Garbage Out: How Anomalies
Can Wreck Your Data website: https://heap.io/blog/data-stories/garbage-in-
garbage-out-how-anomalies-can-wreck-your-data

Park, Y., & Jensen, C. (2009). Beyond pretty pictures: Examining the benefits of code
visualization for Open Source newcomers. 2009 5th IEEE International
Workshop on Visualizing Software for Understanding and Analysis, 3–10.
https://doi.org/10.1109/VISSOF.2009.5336433

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language
Models are Unsupervised Multitask Learners.

Ramachandran, P., Zoph, B., & Le, Q. V. (2017). Searching for Activation Functions.
ArXiv:1710.05941 [Cs]. Retrieved from http://arxiv.org/abs/1710.05941

Ramos, J., & others. (2003). Using tf-idf to determine word relevance in document
queries. Proceedings of the First Instructional Conference on Machine
Learning, 242, 133–142. Piscataway, NJ.

Reis, C. R., Fortes, R. P. de M., Pontin, R., & Fortes, M. (2002). An Overview of the
Software Engineering Process and Tools in the Mozilla Project.

Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., & Savarese, S. (2019).
Generalized Intersection over Union: A Metric and A Loss for Bounding Box
Regression. ArXiv:1902.09630 [Cs]. Retrieved from
http://arxiv.org/abs/1902.09630

Rojas, R. (1996). Neural Networks: A Systematic Introduction. Retrieved from
https://www.springer.com/gp/book/9783540605058

37

Ruder, S. (2016). An overview of gradient descent optimization algorithms.
ArXiv:1609.04747 [Cs]. Retrieved from http://arxiv.org/abs/1609.04747

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018).
MobileNetV2: Inverted Residuals and Linear Bottlenecks. ArXiv:1801.04381
[Cs]. Retrieved from http://arxiv.org/abs/1801.04381

Softagram Products – See Your Software Visualized. (n.d.). Retrieved March 11, 2019,
from Softagram website: https://softagram.com/products/

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures
for classification tasks. Information Processing & Management, 45(4), 427–437.
https://doi.org/10.1016/j.ipm.2009.03.002

source{d}. (n.d.). Machine Learning for Large Scale Code Analysis. Retrieved March
11, 2019, from source{d} website: https://sourced.tech/

Sourcetrail - The offline cross-platform code browser. (n.d.). Retrieved June 2, 2019,
from https://www.sourcetrail.com/

Stanik, C., Montgomery, L., Martens, D., Fucci, D., & Maalej, W. (2018). A Simple
NLP-Based Approach to Support Onboarding and Retention in Open Source
Communities. 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME), 172–182. https://doi.org/10.1109/ICSME.2018.00027

Stol, K.-J., Avgeriou, P., & Ali Babar, M. (2010). Identifying Architectural Patterns
Used in Open Source Software: Approaches and Challenges. Proceedings of the
14th International Conference on Evaluation and Assessment in Software
Engineering, 91–100. Retrieved from http://dl.acm.org/citation.cfm?
id=2227057.2227069

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to Sequence Learning with
Neural Networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, &
K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems
27 (pp. 3104–3112). Retrieved from http://papers.nips.cc/paper/5346-sequence-
to-sequence-learning-with-neural-networks.pdf

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., …
Polosukhin, I. (2017). Attention Is All You Need. CoRR, abs/1706.03762.
Retrieved from http://arxiv.org/abs/1706.03762

Visualize Java code execution. (n.d.). Retrieved June 2, 2019, from http://findtheflow.io/

Wang, C., Yang, H., Bartz, C., & Meinel, C. (2016). Image Captioning with Deep
Bidirectional LSTMs. CoRR, abs/1604.00790. Retrieved from
http://arxiv.org/abs/1604.00790

Yin, W., Kann, K., Yu, M., & Schütze, H. (2017). Comparative Study of CNN and RNN
for Natural Language Processing. CoRR, abs/1702.01923. Retrieved from
http://arxiv.org/abs/1702.01923

Yu, A. W., Dohan, D., Luong, M.-T., Zhao, R., Chen, K., Norouzi, M., & Le, Q. V.
(2018). QANet: Combining Local Convolution with Global Self-Attention for
Reading Comprehension. CoRR, abs/1804.09541. Retrieved from
http://arxiv.org/abs/1804.09541

Yu, L.-C., Wang, J., Lai, K. R., & Zhang, X. (2017). Refining Word Embeddings for
Sentiment Analysis. Proceedings of the 2017 Conference on Empirical Methods

38

in Natural Language Processing, 534–539. https://doi.org/10.18653/v1/D17-
1056

Zaninotto, F. (n.d.). CodeFlower Source code visualization. Retrieved June 2, 2019,
from http://www.redotheweb.com/CodeFlower/

Zhang, Q., Wang, Y., Gong, Y., & Huang, X. (2016). Keyphrase Extraction Using Deep
Recurrent Neural Networks on Twitter. Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, 836–845.
https://doi.org/10.18653/v1/D16-1080

Zhou, J., Zhang, H., & Lo, D. (2012). Where should the bugs be fixed? More accurate
information retrieval-based bug localization based on bug reports. 2012 34th
International Conference on Software Engineering (ICSE), 14–24.
https://doi.org/10.1109/ICSE.2012.6227210

39

Appendix A. Training Graphs

Figure 23. Training result for 1D CNN model

Figure 22. Training result for CNN model

40

Figure 25. Training result for Bi-LSTM model

Figure 24. Training result for LSTM model

41

Figure 26. Training result for Bi-LSTM model with batchsize=32

42

	Abstract
	Keywords
	Supervisor

	Foreword
	Abbreviations
	Contents
	1. Introduction
	2. Background and related work
	2.1 Neural networks and deep learning
	2.1.1 Neural networks
	2.1.2 Training deep neural network
	2.1.3 Recurrent neural network
	2.1.4 Convolutional neural network

	2.2 Deep Learning in natural language processing
	2.2.1 Representation of raw text
	2.2.2 Many-to-Many RNN Applications

	2.3 Deep Learning in Tasks understanding.
	2.4 Dependency Graph Generators

	3. Research Settings
	3.1 Research Objectives
	3.2 Research Methods
	3.2.1 Design Science Research

	3.3 Research Design

	4. Identifying source code attributes
	4.1 Methodology
	4.1.1 Data
	Labeling
	Pre-processing

	4.1.2 Models
	4.1.3 Training

	4.2 Result and Evaluation

	5. Visualizing source code attributes
	5.1 Methodology
	5.2 Interpretation

	6. Threats to validity
	6.1 Internal validity
	6.2 External validity

	7. Conclusion and Future work
	7.1 Future Work

	References
	Appendix A. Training Graphs

