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Abstract 

Computational Thinking (CT) and its related concepts have gained a lot of traction within the 

field of education. Many countries, including Finland and the United Kingdom, are in the pro-

cess of integrating CT into their national curriculums to equip pupils with much needed 21st 

century digital skills, including coding (programming). As a result, several programs and activ-

ities are being developed to introduce pupils to CT. The need to develop appropriate teaching 

and learning materials, as well as train teachers to teach, and integrate computational thinking 

into their lessons is apparent. This thesis seeks to contribute to the body of knowledge on com-

putational thinking by designing and testing instructional materials for early primary school. 

Computational thinking as a concept, how to integrate its concepts into coding, as well as how 

pupils understood the concept were explored.  

This study was conducted in an after-school coding club at an elementary school in the northern 

part of Finland. The duration for the coding club was 8 weeks. Each lesson lasted for 45 

minutes. Participants were selected from among 1st and 2nd grade pupils. In selecting partici-

pants for this study, priority was given to pupils with no prior coding experience. 13 out of the 

selected 17 had no prior experience. The remaining 4 participants were randomly selected from 

the rest of the applicants who had coding experience. 

Worksheets and stickers were designed and tested for teaching and learning computational 

thinking. Lesson plans designed for the coding club included activities for teaching computa-

tional thinking using unplugged activities and Scratchjr. The unplugged activities were inte-

grated into coding lessons to enhance the understanding of pupils during the coding lessons. 

This approach helped to connect theoretical computational thinking to real life practices and its 

application in the context of coding. 

Data collected included the unplugged activity worksheets of the participants, their Scratchjr 

projects, and self-efficacy beliefs regarding their ability to code and think computationally. 

These work products were evaluated qualitatively for evidence of understanding.  The analysis 

of the self-efficacy beliefs of participants revealed that participants were confident of their com-

putational thinking and coding abilities. 

The main outcome of this research is the instructional material (stickers, templates, and 

Scratchjr activities) which was designed for teaching and learning purposes. This unique ex-

periment and pedagogical designs are explained to show how unplugged activities can be used 

to introduce pupils to computational thinking concepts. 

Keywords: computational thinking, instructional design, coding, unplugged, worked example 
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1 Introduction 

In the past couple of years, Computational Thinking (CT) and its related concepts have received 

a lot of traction within the field of education. Many countries including Finland and the United 

Kingdom are in the process of integrating CT into their academic curricular to equip pupils with 

much needed 21st century digital skills. As a result, several programs and activities are been 

developed to introduce pupils to CT (Bocconi, Chioccariello, Dettori, Ferrari, & Engelhardt, 

2016). According to Wing (2008), CT is a basic skill for everyone with problem solving, sys-

tems design, and understanding human behavior as its center.  

CT draws on a wide range of cognitive concepts such as abstraction, decomposition, pattern 

recognition, and algorithms to assess and identify a problem, and design solutions to the prob-

lem (Wing, 2008). Wing (2008) expressed the opinion that CT should be taught just as reading 

and writing are taught. It is interesting to note that CT has been integrated into many curricular 

around the world through subjects such as mathematics, informatics, and information technol-

ogy (Bocconi et al., 2016) but not as a standalone subject. In Finland, CT is taught as part of 

Math and Crafts (Mannila, 2014). Learning CT occurs through formal education, informal ed-

ucation, self-directed learning, or community-based learning. It can be deduced that learning 

occurs through individual, co-operation, and collaborative efforts.  

Wing (2011) defined CT as a thought process that involves formulating, designing solutions to 

problems, and representing the solution in a form suitable for information processing. CT skills 

are acquired through understanding problem description, decomposing the problem, collecting, 

analyzing, and representing data, solving the problem at hand, recognizing patterns, developing 

algorithms, decomposition of problems, abstract reasoning, questioning, designing and simu-

lating (Wang & Wang, 2016; Wing, 2008).   

Learning of CT can be frustrating task for pupils. However, CT empowers pupils to be confi-

dent, persistent, open minded, and a team player. It also enhances their problem resolution and 

communication skills (Barr, Harrison, & Conery, 2011). CT represents an umbrella of 

knowledge, skills and tools to automate and speed up the everyday life problem-solving ap-

proach (Barr et al., 2011). 

Programming is one of the 21st century skills that should be taught in schools around the globe. 

The national core curriculum in Finland aims that all pupils should be exposed to some form of 

computer programming during their primary school studies. Kazimoglu, Kiernan, Bacon, & 
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Mackinnon (2012) have argued that computational thinking is a stepping stone to prepare pupils 

to code. However, in order to increase the role of computational thinking in the primary schools, 

appropriate instructional materials, pedagogical designs and in-service teacher education are 

needed. In this thesis, instructional materials and pedagogical design are created and tested in 

the context of an after-school K-2 code school to address that need. 

The rest of this thesis is organized as follows. After the introduction part follows theoretical 

framework where computational thinking and its practical applications are presented. Aim and 

research questions are presented after the theoretical framework followed by the methods chap-

ter. The methods chapter describes the design of the after-school code club experiment and 

instructional materials. It also describes data collection and analysis methods in details. The 

results, discussion and conclusions are presented in subsequent chapters. 
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2 Theoretical framework 

2.1 Computational Thinking 

According to Tedre & Denning (2016), the current definition of computational thinking, was 

birthed from three (3) historical trends that occurred between the 1950s and 1990s. Descrip-

tions, claims, arguments, narratives, and debates characterized this era when scientists and re-

searchers explored computing in many forms. From the 1950’s, many of the descriptions cen-

tered on algorithm thinking until the 1980s when a non-computing scientist with focus on both 

artificial and natural information processing pioneered a revolution. In 1980, Seymour Papert 

published Mindstorm in which computing ideas, techniques, technology, and language played 

a huge role in knowledge construction and speculated how computing can activate learning, 

thinking, cognitive and emotional wellbeing (Papert, 1980). His idea of constructionism occurs 

through exploration and constant practice. This stands out in terms of educational pedagogy 

although other educationists advocated and initiated computing literacy and programming 

(Tedre & Denning, 2016). The advocacy of scientists in the 1980s lead to a political movement 

and the passing of a law, the High-Performance Act which provided funding for solving the 

grand challenge problems identified in computing science. A key issue was the formulation of 

algorithmic solution to the grand challenges that will run on supercomputers (Tedre & Denning, 

2016). From these historical trends, Tedre and Denning (2016) defined computational thinking 

as “the habits of mind that many of us have developed from designing programs, software 

packages, and computations performed by machines - offers very powerful mental tools for 

people who design computations’’. 

In 2006, computational thinking gained popularity in the context of education when Jeannette 

Wing wrote about it in her seminal essay. Her descriptions of computational thinking in no 

specific order includes algorithms, automation, abstraction, analytical thinking, understanding 

human behavior, designing systems, and mathematical thinking (Wing, 2006, 2008). She made 

the following assertions: 

1. Computing is about automations and abstractions. 

2. Computing is in many disciplines. Based on this, she suggests the use of computing will 

lead innovations in many fields in the future. 
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3. Computing is everywhere and part of our daily lives. If computing directly or indirectly 

affects our lives in many ways, then there is the need for everyone to acquire computing 

knowledge at least.  She envisions computational thinking to be inherent in education 

especially early childhood. She states that science, technology and society are the key 

drivers of computing. 

4. She argued that computing is more than just programming, computational thinking is a 

way humans solve problems instead of a way in which computers think and combines 

both mathematical and engineering thinking. 

In 2010, Wing with other colleagues defined computational thinking as the thought processes 

in problem and solution formulation. “Computational Thinking is the thought processes in-

volved in formulating problems and their solutions so that the solutions are represented in a 

form that can be effectively carried out by an information-processing agent” (Cuny, Snyder, & 

Wing, 2010).  

The International Society for Technology in Education (ISTE), Computer Science Teachers’ 

Association (CSTA) together with Higher Education Leaders, K-12 education, and the industry 

experts developed an operational definition for ICT (ISTE & CSTA, 2011). They defined CT 

as a problem-solving process that includes: 

● Formulating problems in a way that computational tools can be used to solve. 

● Organizing and analyzing data. 

● Data representation using different abstractions like simulations, and modeling. 

● Algorithm thinking for automations. 

● Identifying and evaluating possible solutions, selecting the best solution, and imple-

menting the solution effectively and efficiently. 

In addition, they identified behaviors that CT develops and enhances. These include confidence, 

persistence, tolerance, ability to handle open ended problems, and ability to communicate and 

work in a team to accomplish the task at hand. 

In summary, it appears that the definitions and descriptions of computational thinking by Wing 

and the operational definition offered by the ISTE and CSTA corresponds with the definition 

that arose from the history overview of Tedre and Denning.  
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Several computational thinking activities allow pupils to learn through collaboration, coopera-

tion and self-direction. CT focuses on problem solving, operational understanding of CT con-

cepts. It requires no prior knowledge and more importantly no computers are required hence 

pupils everywhere in the world can easily acquire CT knowledge.  

The learning of Computational Thinking in the context of coding can be categorized into 

plugged and unplugged activities. (Atmatzidou & Demetriadis, 2014). Unplugged activities 

typically mean teaching or learning computer programming and science without a computer 

(Code.org, 2013). Unplugged refers to kinesthetic activities that teach computational thinking 

(Code.org, 2013) without the use of computers. It focuses on understanding and applying algo-

rithms that make computers work as they are designed. Knowledge of these algorithms empow-

ers pupils to develop coding skills. The term “plugged” describes teaching and learning of CT 

using computing devices. Block based programming, educational robots, teaching scripts, 

games and animations, and computer simulation are ways of teaching and learning computa-

tional thinking. 

Teaching and learning of computational thinking without the use of the computers (cod-

ing unplugged) 

Unplugged activities present a way of teaching CT with no or limited access to computers 

(Nishida et al., 2009). They provide the opportunity for pupils with no prior knowledge and 

skills to explore CT in simple and sophisticated ways. Unplugged activities are not restricted to 

any location. The activities take place in physical spaces (Nishida et al., 2009). Their kinesthetic 

nature enables pupils to move and learn at the same time hence it is suitable for pupils of all 

ages especially primary schoolchildren (Namukasa et al., n.d.; Nishida et al., 2009). 

Pupils gain inspiration and interest in computer science activities by engaging in non-screen 

activities which could build up their knowledge in the understanding of foundational concepts 

of computing, giving tangibility and visibility to abstract concepts within the field of computer 

science (Curzon & Paul, 2013; Thies & Vahrenhold, 2013). Due to its collaborative nature, 

unplugged activities provide an additional benefit of shifting pupils' understanding about what 

computer science is, thus children can be introduced to computer science and its related subjects 

as a means of enhancing their problem-solving skills (Curzon, McOwan, Plant, & Meagher, 

2014). 
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The adoption and use of unplugged activities provide opportunities for everyone to learn espe-

cially those without access to computers or are too young to use them well. According to Lama-

gna (2015), novices and young pupils are freed from implementation details that are required 

for the running of a computer program with unplugged activities. This encourages active par-

ticipation as there is limited interaction with the computer screen (LeMay, Costantino, O’Con-

nor, & ContePitcher, 2014). 

Indeed, even though programming is an indispensable skill, unplugged activities allow pupils 

to visualize and witness the process of completing a task while contextualizing computing (Cur-

zon et al., 2014). While computing concepts are made simpler and easier for pupils to under-

stand, it also increases their motivation and interest as they find joy in working collaboratively.  

According to Lambert (2009), using unplugged activities, fourth grade pupils had an improve-

ment in their interest in computer science, confidence in mathematics, as well as cognitive 

skills. 

Table 1 Describes resources that can be used for teaching and learning computational thinking. 
Code.org, CS Unplugged, Scratchjr have curriculums that aid teachers to deliver coding lessons 

Name Description Level/Age Website 

CS Unplugged A website with a collection of teaching and learn-

ing materials for teaching computer science with-

out computers using games and puzzles. 

 

K-4 (4-9) https://csunplug-

ged.org/en/ 

Scratch  Scratch is a programming language and a platform 

designed to teach programming via interactive 

stories, games, and animations. It was developed 

by the Lifelong Kindergarten Group at the MIT 

Media Lab. Scratch was designed to give room for 

pupils to tinker, create games, interactive stories 

and art, and share their projects (Resnick et al., 

2009). Scratchjr provides opportunities for 

younger pupils to learn programming using pre-

programmed blocks. 

 

K(4-17) -

college 

https://scratch.mit.e

du/ 

Scratchjr Scratchjr provides opportunities for younger pu-

pils to learn programming using simple prepro-

grammed blocks. 

 

 

K-2(4-8) https://www.scratch

jr.org/ 

Code.org 

 

Code.org is an organization that offers coding 

courses and resources for teaching and learning 

computer science. They also offer hour of code 

lessons for schools. They have resources for both 

K-12(4-17) https://code.org/ 

https://csunplugged.org/en/
https://csunplugged.org/en/
https://scratch.mit.edu/
https://scratch.mit.edu/
https://www.scratchjr.org/
https://www.scratchjr.org/
https://code.org/
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Block based coding (computer programming) 

Computer programming is the process of designing, developing and implementing instructions 

that directs a computer to perform certain tasks. Computer programming is implemented using 

a specific programming language (Balanskat, & Engelhardt, 2015). Writing programs to control 

a computer requires expert knowledge of the context in which the application will be used, 

algorithms and logic. Analyzing the context of the problem leads to an in depth understanding 

of requirements and initiates a search for solutions. Requirements of the solutions are identified 

and verified. Implementation of the solution identified occurs by writing code in a target lan-

guage. In this phase, programming constructs such as variables, algorithms, control, and loops 

are used (Maloney, Peppler, Kafai, Resnick, & Rusk, 2008). 

Programming is the process of analyzing a problem, designing a solution and implementing the 

solution. Coding is a phase in programming, thus implementation. It includes implementing the 

solution in a specific programming language, testing and debugging (Duncan, Bell, & Tan-

imoto, 2014).  Computational thinking is an abstract term that describes thought processes or 

ways of thinking when using or designing computing systems (Wing, 2006; Bocconi et.al, 

2016). In this paper, coding and programming are used synonymously.  

Using computer Simulation and Modelling as a tool to teach or learn computational think-

ing 

plugged and unplugged approaches for learning 

computer science.   

 

Alice 

 

Alice is a free to use app developed by the Stage 

3 Research group at the Carnegie Mellon Univer-

sity in 1995. Originally, it was developed as a Vir-

tual Reality (VR) prototyping tool for non-pro-

grammers to share VR content.  Alice consists of 

3-D model objects and instructions, which are in 

the form of scripts.  

Varies https://www.alice.o

rg/ 

 

Light Bot 

 

Lightbot is a platform designed for novices to 

learn programming through puzzles. By navi-

gating a robot via a maze, programming concepts 

such as sequencing, procedures, loops, and condi-

tionals are explained to pupils. The pupils are 

given a challenge in which they apply the con-

cepts they have learned. No prior knowledge of 

programming is needed. 

 

Pre K- 

 

K-2 (3-8) 

http://lightbot.com/ 

 

https://www.alice.org/
https://www.alice.org/
http://lightbot.com/
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Using computer simulation and modelling tools is a way to teach or learn CT. Pupils learn to 

design and implement models and run simulations of the models created (Moursund, 2015) 

“Growing up Thinking Scientifically” project is an example of that (Lee et al., 2011). In this 

project, the pupils used abstraction to narrow down a real-world problem, followed by creating 

a model with the features they selected from the real-world problem. A typical model was cre-

ated to predict how disease will spread in a school. The school population, layout, number and 

movement of pupils were among the features selected for this model. The model constructed 

was tested with a robot and then evaluated to know how it reflected the real-world problem 

(Lee et.al, 2011).  

Game design as a method to learn computational thinking skills 

Game design is another method for pupils to learn computational thinking skills. Pupils who 

participated in the iGame program, created their own game through story telling by developing 

scenes using Alice, which is a 3D animation program (Lee et al., 2011). Games can be used to 

learn computational thinking concepts and practices, like algorithmic thinking, programming, 

modeling, and abstraction (Werner, Denner, Bliesner, & Rex, 2009).  

In addition, Scratch, block-based programming environment, can be used for creating animated 

stories and games. Yet, Minecraft is a game that allows pupils to design their own artefacts 

during the gameplay by using programming tools integrated in the game. In creating such arte-

facts, pupils can acquire computational thinking concepts and learn different computational 

thinking practices.  

Using educational robots objects or tools for learning  

Educational Robots can be used as objects of learning and as a tool for learning. When a robot 

is an object of learning, the pupil constructs a robot. On the other hand, when a robot is a learn-

ing tool, it can be used to teach subjects such as Mathematics, Science, and computational 

thinking (Burbaitė, Damaševičius, & Štuikys, 2013). For example, robots were used by Denis 

and Hubert (2001) for teaching computational thinking via a collaborative problem-solving ap-

proach. The pupils were given roles such as analyst, algorithm designer, programmer and de-

bugger, which were alternated during each activity. In their research, they discovered that pupils 

understood and adopted CT concepts as the projects progressed and recommended more au-

thentic and engaging problems as it enables pupils to grasp CT concepts. 
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2.2 Assessment and Computational Thinking 

2.2.1 How to asses computational thinking in the context of Scratch coding platform: Bren-

nan’s and Resnick’s model 

Brennan and Resnick conducted a research on how to assess CT on Scratch. They came up with 

6 factors to consider when assessing CT (Brennan, & Resnick, 2012). These include: 1) Mean-

ingful and pupil centered assessment: Assessment must support pupil’s interest and goals by 

providing self-exploratory pathways, multiple design scenarios for pupils according to their 

strength and abilities, and opportunities for reflection; 2) Assessing artefacts: Collecting and 

evaluating the pupils’ projects and products reveal the challenges of the pupil. With that infor-

mation, the needed guide designed for the pupil; 3) Document learning process: Encourage 

pupils to take notes, videos, audio, and record the screen of their working process to present, 

discuss with peers and reflect later. The purpose is to develop metacognition towards acquiring 

the ability to regulate their own learning; 4) Continuous assessment: To appreciate how far the 

pupil has come, and guide him or her, knowing the starting point, current level, and their goals. 

Taking multiple point assessments, gives snapshots of pupils’ CT experience, progress and 

challenges. These snapshots are potential sources of relevant information for support purposes; 

5) Assessing multiple ways of knowing: Knowledge of concepts and practice are both relevant 

in assessing pupils. Knowledge of concepts accounts for the ability to list, identify, define, ex-

plain, and give examples of CT concepts. Knowledge of practice on the other hand, shows how 

the concept is used in practice. For instance, knowledge of repetition (CT practice) in the form 

of loops in addition with knowledge of pattern recognition (a CT concept); 6) Assess with mul-

tiple viewpoints: With the success of the pupil in mind, the viewpoint of the pupil, peers, teach-

ers and if possible, soliciting for parents’, teachers’, experts’, and/or researchers' opinions of 

pupil’s work and ways to support the pupil. Parents’ opinion may be valuable if they know how 

well their children are progressing. 

2.2.2 Using Bloom’s Taxonomy for assessing computational thinking 

Blooms Taxonomy is another way to assess pupils (Fuller et al., 2007; Starr, Manaris, & 

Stalvey, 2008; Thies & Vahrenhold, 2012). This taxonomy was also used by (Starr et al., 2008; 

Thies & Vahrenhold, 2012) to assess CT concepts in tasks, projects, and products. Blooms 

Taxonomy is made of the cognitive, affective and psychometric domains (Bloom, 1956).  Fuller 
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et al. (2007) and Starr et al., (2008) agree to the use of Bloom’s Taxonomy for eliciting learning 

objectives and assessing pupils. The research by Starr and his colleagues spanning over a 3-

year period highlights the need to use the taxonomy for setting learning objectives because it 

guides the selection of pedagogical tools, strategies, and suitable tasks for CT lessons. Accord-

ing to Starr et al. (2008), the Bloom’s taxonomy represents the pathway for mastery of a CT 

skill as it can be used to estimate the time and effort required to teach CT knowledge and skills. 

By outlining the stages of knowledge acquisition, teachers will know the level pupils are and 

provide the needed support.   

2.2.3 Assessing computational thinking by using formative and summative assessments 

CT can also be assessed using formative and summative assessments (Yadav et al., 2015).  In 

their research, Yadav and colleagues interviewed CT teachers. These teachers used formative 

assessment to monitor the progress of their pupils. The teachers collected feedback from pupils, 

and this informed decisions regarding future instructions. Summative assessment was used to 

assess mastery of CT concepts and products created by the pupils. This form of assessment 

often results in grades, which ‘describes pupils' mastery’. Multiple Choice Questions (MCQs), 

open-ended questions, and rubric, were used for summative assessment.  While MCQs and 

open-ended questions were used to solicit pupils understanding of CT concepts, rubric were 

used for setting expectations which pupils had to accomplish if they desired a grade. This gives 

pupils the opportunity to make important decisions on how much effort and time they are will-

ing to invest to attain a grade or goal. 
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3 Aim and Research Questions 

The purpose of this research is to design, use and evaluate pedagogical practices and materials 

for teaching CT and coding to elementary school pupils. This research aim can be further di-

vided into three main questions: 

RQ1: How were unplugged and plugged coding activities designed in order to introduce com-

putational thinking concepts to pupils? 

RQ2: How was pupils’ understanding of basic computational thinking concepts visible in the 

artefacts that they did produce during the coding club? 

RQ3: What differences exist in the self-efficacy beliefs of learners regarding computational 

thinking and coding abilities with respect to prior experienced and gender? 
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4 Methods 

A major part of this thesis is related to the design of instructional material and pedagogical 

activities for unplugged and plugged coding activities in the context of an after-school coding 

club. The processes employed were influenced by Design Based Research methodology. It is a 

systematic methodology that seeks to bridge the gap between theory and practice through iter-

ative analysis, design, development, and implementation, emphasizing on collaboration be-

tween researchers and practitioners (Wang & Hannafin, 2005). DBR provides insights on im-

proving teaching and learning using existing theories (Barab & Squire, 2004). DBL is a cyclical 

methodology with phases and evolves through iterations.  

According to EduTech Wiki by University of Geneva (2019), Design-based research can be 

seen as a combination of action research and ordinary instructional methods such as ADDIE. 

In this study, the author designed her instructional materials and pedagogical design based on 

the feedback that she got during the intervention in the meetings of the coding club. However, 

the design of the code club was based on an established instructional design model (ADDIE). 

See Figure 1 to see how the ADDIE model was used in this thesis. 

ADDIE is an instructional design methodology that consists of 5 phases; analysis, design, de-

velopment, implementation, and evaluation phases for creating and developing instructional 

materials and learning objects that impacts knowledge and skills (Clark, 2011). 

● Analysis phase: includes studying the context to understand it, identifying the problem, 

existing knowledge gaps, constraints, and formulating goals and objectives to address 

the identified needs.  

● Design phase: includes elaborating learning objectives, sequencing the learning objec-

tives, creating learning scenarios for each objective, and outlining the learning materi-

als, tools, materials, and equipment needed. 

● Development: This phase includes producing the instructional or learning materials.  

● Implementation: This phase includes conducting teaching experiments or lessons to test 

learning materials. 

● Evaluation: This phase involves eliciting tools to measure and monitor the effectiveness 

of the intervention. Summative and formative methods are used to assess whether the 

learning materials achieved set objectives. 
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Figure 1 Description of how ADDIE model was used in this thesis 

4.1 Participants and Context 

The context of this study was an after-school coding club in a primary school in the northern 

part of Finland. A total of 17 children (8 girls and 9 boys aged 6-8) were selected to participate 

in the lessons organized in the coding club. Sampling of the participants was based on their 

previous coding experience (no experience / any experience). However, only 13 out of the se-

lected 17 fulfilled the criterion with the other 4 participants randomly selected from the rest of 

the applicants who had coding experience. 

Code club meetings were organized into 8 lessons, where each lesson lasted for 45 minutes. 

The author of the study was the designer of the activities and materials. She was also the re-

sponsible teacher in the club, although she got help from participants’ parents and other stake-

holders.  

The sessions were arranged in a school computer laboratory. Each participant received an iPad 

labelled with their names that they used to do the required plugged coding exercises in the 

Analysis

• Finding information about the age, ability to speak and understand English, ability to read, spell and write

• Finding resources available such as classroom, iPads with Scratchjr

• Time allocated for each club session

Design

• Outlining objectives for lessons

• Outlining tools and resources needed for developing instructional materials

Development
• Creation of unplugged materials for computational thinking concepts

Implementation • Testing of designed materials at the after-school coding club

Evaluation • Analysis of students work using a developed coding scheme
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context of the club. Scratchjr was used as the coding tool (see Figure 8) to teach computational 

thinking in the context of the plugged coding part of the design.  

4.2 Pedagogical Design  

4.2.1 Design Principles which were used to guide instructional design and pedagogical activi-

ties 

Learning theories and methodologies influenced the design of the coding and unplugged mate-

rials. Reigeluth (2013) suggests theories and methodologies for sequencing and delivering les-

sons. The basics of the design included three major objectives: 1) Learning objectives guides 

the planning and delivery of lessons. It also guides the assessment of pupil and instructional 

material. It defines the topics and concepts to be covered as well as the level of understanding 

for them hence its suitability for assessing learning; 2) In designing coding instructions, worked 

examples were used to facilitate the process of knowledge transfer thus to the reduce cognitive 

effort needed to master CT and coding concepts; 3) Assessment is a tool to identify and measure 

the comprehension of the pupils. Pupils often have different attitudes towards learning; deep 

and surface learning (Harlen & James, 1997).  While deep learning pupils seek to understand 

and obtain mastery, surface learning pupils seek to reproduce content, get good grades as an 

indicator of performance. Understanding concepts enables pupils to use and reproduce the 

knowledge acquired in other contexts (Harlen & James, 1997). In the context of this study, the 

author made use of self-assessment during the entire 8 weeks to effect changes in the instruc-

tional materials and pedagogical materials when needed. This reflection can be seen from the 

personal diary (Appendix II).  

Instructional design and pedagogical activities were also influenced by concepts like: 1) Au-

thentic learning: This type of learning supports learning by providing real life examples that 

pupils can relate to; 2) Direct instruction: This approach was for scripting both coding and 

unplugged activities instruction; 3) Hands-on-learning: It provides opportunities for exploring, 

discovering and experiencing concepts; 4) Scaffolding: This approach was used to support and 

facilitate pupils who needed help to understand and reach their stage of Zone of Proximal De-

velopment; 5) Personalization: Customizing opportunities within the instructional materials to 

accommodate the personal needs of pupils. Personalization was achieved by providing gender 

specific stickers and accommodating the different routines of pupils. For example, while some 
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pupils dress up before eating, some dress up after eating; 6) Worked example: Solved examples 

with steps reduces the cognitive load used for knowledge and skill acquisition and improve 

learning as a result. 

4.2.2 General overview of the instructional design 

Pupils had the opportunity to use the concepts they have learned in previous lessons. For ex-

ample, the decomposition unplugged lesson followed the algorithm lesson. During the decom-

position lesson, the worksheet was designed to breakdown the weekly activity performed by 

pupils according to the days of the week. Within this lesson, the concept of algorithms was 

reinforced by creating an algorithm of daily activities for each day of the week. Through this 

lesson, pupils learned to do some activities that repeat such as waking up, eating, and sleeping.  

The plugged version of this lesson made use of repeat blocks in Scratchjr to teach the concept 

of repetition while applying the start and end blocks used in the algorithm (sequence). Pattern 

recognition is the follow up lesson where pupils identified similar patterns within their routines. 

With this incremental learning approach, the pupils would master the concepts despite the lim-

ited time available.  

The 7th and 8th lessons were designed purposely to assess the CT and coding knowledge of 

pupils. One task was to write a story. The pupils were given prompts to guide them to write 

animated stories. A Scratchjr program was run and pupils had to write the code. This is an 

assessment prescribed by the creators of Scratchjr. Assessment for learning was used to evalu-

ate pupil's comprehension of CT and coding concepts. This was achieved by evaluating pupil’s 

work products for evidences of understanding. The success criteria for the instructional mate-

rials was the ability of pupils to apply the concepts learned to create a Scratchjr program. Self-

efficacy questionnaires were used to understand the perceived confidence of learned regarding 

their knowledge of CT concepts and coding.    

4.2.3 Lesson plans for unplugged and plugged coding activities 

Using the information obtained after analyzing the context and participants, preliminary lesson 

plans were drafted for the plugged and unplugged lessons (See Tables 2 and 3). The main target 

for lesson plans was to 1) integrate computational thinking concepts into the design of coding 

lessons; 2) design authentic lessons where pupils would be engaged with unplugged coding 
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tasks (basics of the CT connected with real-life examples) and then 3) smoothly introduce par-

ticipants to plugged coding tasks. 

In the coding club design, the unplugged part of the lesson featured one CT concept. The CT 

concept was taught during the first 15 minutes. A simple definition of the concept is given 

followed by an explanation of the concept using storyboards, and stickers. The stickers and 

worksheet were packaged for each pupil due to the time constraints. The pupils were expected 

to put the stickers on the storyboard using glue tag given by the teacher. An alternative approach 

would have been to allow the pupils to cut the stickers themselves through which they would 

have acquired handicraft skills. However, due to the time constraints, the stickers were pre-cut.  

 

Table 2 Unplugged Lesson Plan with description of activities and Computational Thinking concepts 

Week Description Unplugged activity CT concept 

1 Pupils are introduced to binary 

code as the language comput-

ers understand. Pupils were 

given binary code for the al-

phabet and are asked to write 

their names in computer lan-

guage. 

Introduction to computing lan-

guage with binary coding activ-

ity. 

 

2 Pupils are introduced to algo-

rithms using their daily rou-

tines.  

Introduction to algorithms using 

algorithm worksheet 

Algorithms 

3 Pupils are introduced to de-

composition using their daily 

routine for a week. Pupils are 

asked to break down their rou-

tine for the week based on the 

day. They are also asked to 

identify activities they do 

every day and those they do 

only on some days. 

 

Introduction to decomposition 

and pattern recognition using de-

composition and algorithm 

worksheets. 

Decomposition and pattern 

recognition 

4 Pupils were introduced to deci-

sion making by organizing ac-

tivities and clothes based on 

the season. 

Introduction to decisions making 

using a worksheet 

Decision making 
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The plugged coding lesson part further explained the CT concept by applying it through 

Scratchjr exercises. For example, in the unplugged lessons, a pupil can create an algorithm of 

their daily routines. A simple example is the flow of day: from the first thing done in the morn-

ing to the last thing done before sleeping. The principle behind this kind of algorithm lesson is 

sequencing. The understanding of the sequencing concept can be further elaborated as a coding 

concept by teaching them how to use Scratchjr to create code. In practice, they were shown 

how to use a start and an end point blocks in their Scratchjr code and how to put other blocks 

of the code in between them logically.  

Table 3 Plugged Lesson Plan with Scratchjr describing activities and CT concepts 

Week Description Plugged activity with 

Scratchjr 

CT Concept 

1 Introduction to Scratchjr interface Introduction to Scratchjr  

2 Learning about sequences using mo-

tion blocks 

Using start and end blocks to start and 

end Scratchjr code 

Introduction to algorithms 

using sequences 

Algorithms and sequen-

ces 

3 Learning repetition using the numbers 

on Scratchjr blocks, repeat block and 

forever block 

Continue to learn how to use the repeat 

and forever block 

Introduction to controls Repetition 

4 Learning to use color coded message 

blocks to send and receive messages to 

and from Scratchjr characters. 

 Decisions 

5 Learning to modify Scratchjr charac-

ters and background, add sound 

blocks, record sounds, and modify 

characters with pictures taken with 

camera. In this lesson, pupils include 

Introduction to abstractions Abstraction 

5 Learning to include (add) or 

exclude(remove) activities to 

and from their daily routines. 

Introduction to abstraction using 

a worksheet that simplifies the 

process. 

Abstraction 
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and exclude by modifying some de-

fault features with Scratchjr. Also, pu-

pils get to decide the blocks important 

for their code and those that are not. 

6 Revising learned CT concepts. Pupils 

reviewed the concepts by writing 

Scratchjr code that demonstrates con-

cepts. This prepared them to create 

their own Scratchjr projects.  

Revision of Concepts Algorithms, decompo-

sition, decisions, and 

abstraction 

7 Creating a story or game using the 

concepts that have been taught. 

Create your own project Algorithms, decompo-

sition, decisions, and 

abstraction 

8 Continuation of project and wrapping 

up. Taking self-efficacy survey to 

evaluate one’s beliefs 

 Algorithms, decompo-

sition, decisions, and 

abstraction 

 

 

Table 4 Integrating computational thinking concepts between unplugged and plugged (coding) activities 

CT concept Unplugged Ac-

tivity 

Coding Acti-

vity 

Simple Explanation of 

concept 

Rational of concept from lit-

erature 

Algorithms Write an algo-

rithm for daily 

routine 

Write a 

Scratchjr code 

to move a 

character from 

one point to 

another 

Sequence of activities 

with start and finish 

end points 

“designing a step-by-step so-

lution to a problem” (Man-

nila, et. al 2014) 

Decomposition 

and Pattern re-

cognition 

Write an algo-

rithm for 

weekly routine 

Write a 

Scratchjr code 

for a character 

to do some-

thing repeat-

edly 

Decomposition: Break 

down given the prob-

lem to identify the 

basic components. 

Pattern recognition: 

Identify actions that oc-

cur more than once. 

“formulating a solution to a 

larger problem and breaking 

the solution down into 

smaller tasks to be dealt 

with” (Mannila, et. al 2014) 

Pattern recognition “is ob-

serving patterns, trends, and 

regularities in data” (Man-

nila, et. al 2014) 

Decision ma-

king 

Write an algo-

rithm to do 

something 

Write a 

Scratchjr code 

to control the 

Presence of start and 

end blocks. 

Use of control blocks 

Using cognitive skills or 

strategies to evaluate out-
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4.3 Instructional materials and tools 

 

4.3.1 Activity worksheets for unplugged coding activities  

Stickers for unplugged coding with activity worksheets 

This sheet (Figure 2) shows sample stickers used by pupils while learning concepts of compu-

tational thinking using activity worksheets. All examples below are from the situation where 

based on the 

season 

movement of a 

character 

 

for sending and receiv-

ing message using 

color coded start blocks 

comes of our thought pro-

cesses (Halpern, 1998) 

Abstraction Write an algo-

rithm to show 

important rou-

tines in a day  

Write a 

Scratchjr code 

to include im-

portant blocks, 

background, or 

character 

 

Simplifying things by 

hiding some details 

(adding important 

things and removing 

unimportant things) 

“is identifying and extracting 

relevant information to de-

fine main idea(s)” (Compu-

tational Thinking Concept 

Guide, n.d) 

Figure 2 Stickers for unplugged activities 
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stickers are used with the (initially) empty forms.  Stickers can be customized to fit into each 

learning situation and need. 

  

 

Algorithm worksheet – recognizing daily routines 

The purpose of the worksheet is to help in the teaching and learning of algorithms through daily 

routines. The pupils are required to use stickers to outline their daily routine from the very first 

thing they do in the morning to the last thing done in the evening. The numbers in the worksheet 

guides the pupils to organize their daily routine in an orderly sequence. See Figure 3.  

 

Figure 3 Algorithm worksheet describing the daily routine of pupils as an algorithm 

Decomposition Worksheet – weekly routines were broken down by week days 

This worksheet supported the teaching of decomposition. See Figure 4. The weekly routine of 

the pupils was broken down by the days of the week. The pupils were required to outline their 

routines for each of the days in an orderly manner. This worksheet also enforced the application 
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of algorithms from the previous worksheet. Pupils identified repeated routines by themselves 

or are prompted to do so by the teacher. The numbers again guided the pupils to outline routine 

in an orderly sequence. 

. 

 

Pattern Recognition Worksheet – weekly activities were organized into repeated and non-re-

peated activities 

This worksheet follows the decomposition worksheet. Pupils identify the routines they do every 

day and those they do only on some days. The worksheet seeks to help pupils identify repeated 

routines and those that are not repeated as shown in Figure 5.  

Figure 4 Decomposition worksheet to break weekly routine of leaners by the day of the week 
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Abstraction Worksheet – important weekly activities were chosen to be included into daily rou-

tines 

The abstraction worksheet seeks to support the teaching and learning of the concept of algo-

rithms through the addition or removal of certain activities from the daily routine of pupils. See 

Figure 6. 

Figure 5 Pattern Recognition worksheet to organize weekly routine into repeated and non-repeated 
activities 
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Figure 6 Abstraction worksheet to choose important activities to include in daily routine 

Decision Worksheet – deciding the action to take depending on the season (winter or summer) 

This worksheet (See Figure 7) teaches decision-making using certain conditions. It is used to 

explain why and how we make decisions daily. Pupils state an activity they engage in depending 

on a condition. For example, they go skiing if it is winter and swimming if it is summer. Pupils 

are encouraged to come up with their own conditions and make the necessary decisions. 
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4.3.2 Using Scratchjr as a tool to teach computational thinking 

With ScratchJr, young children (ages 5-7) can program their own interactive stories and games. 

In the process, they learn to solve problems, design projects, and express themselves creatively 

on the computer. Figure 8 shows the main interface of the tool where users can add/edit char-

acters, add/edit scenes and create actual code. More information about Scratchjr can be found 

from their website (https://www.scratchjr.org/). 

The example coding area (bottom of Figure 8) has two code snippets: the left code has an ex-

ample where the cat will go one step forward and then jump 4+2 times if user clicks the flag 

(trigger). On the bottom-right side is an example of the code where code will be executed four 

Figure 7 Decision worksheet for deciding the action to take depending on whether it is winter or summer 

https://www.scratchjr.org/


 

32 

 

times (loop block) after the user has touched the cat. Inside of the loop is a code snippet to spin 

the cat. 

 

Figure 8 Scratchjr interface showing how blocks can be used to animate characters 

Scratchjr was used as a programming tool in the coding club to continue with computational 

thinking concepts taught in the unplugged parts of the course activities (see Tables 2 and 3). 

Next worked examples will show how Scratchjr was used to teach computational thinking con-

cepts. 

Algorithm is a sequence of steps for doing a task  

Algorithm is a sequence of steps for doing a task. Sequence is a specific order of doing some-

thing starting from the first thing to the last thing to be done. For example, an algorithm for 

the day can start with waking up, followed by a sequence of activities (brush your teeth, bath, 

eat breakfast, to the last activity, sleep). At the programming level, algorithms can be ex-

plained using start (triggering blocks), a sequence of other blocks and end with an end block 

(See Figure 3). In Scratchjr, the yellow blocks are triggering blocks that are used to start or 

trigger a character to do something. Red blocks are used to end a Scratchjr program (code). 

The blue blocks represent motion blocks used to move the characters around the stage. The 

mauve and green blocks are used to change the look of characters and add sound to code re-

spectively. 
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Figure 9 illustrates how algorithms were introduced in Scratchjr. The task given was to write 

an algorithm to make the cat move to the position of the hen. Figure 9, presents one solution to 

the task. There are 4 alternative ways to make the cat move to the position of the hen using the 

concept of repetition. See  Figure 10 (A, B, C, D). 

 

Figure 9 Example of how algorithm and sequence can be taught in Scratchjr 

Repetition – doing something over and over again.  

Repetition simply means to do something over and over again. Figure 10 demonstrates 4 ways 

repetition was taught using Scratchjr. 

1. The first way is to change the number on the motion block to 10. This reduces the 

number of individual motion blocks used in Figure 9 to 1 motion block as shown in 

Figure 10 (A)  

2. The second and third way is to use the repeat block to repeat a sequence. See Figure 

10 (B and C). The difference between Figure 10 (B and C) is the numbers on the 

blocks. 

3. The fourth way is use a forever block to make the cat move to the hen repeatedly with-

out stopping (See Figure 10 (D)).  
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4. In coding, it is possible to generate multiple code to accomplish the same function and 

must be noted that some solutions are more optimal than others. Figure 9 and Figure 

10 (A, B, C, and D) demonstrates how this is possible.  

 

Decision – making selections based on some conditions 

 

Figure 10 Multiples ways to achieve repetition in Scratchjr 

Figure 11 Example of how to teach decisions in Scratchjr 
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Decision involves making a selection based on some condition. The color of message blocks is 

used to control the actions of the cat. Pupils had to decide what actions they wanted the cat to 

take. In Scratchjr, decision making can be taught using the color of the message block (See 

Figure 11). 

Abstraction 

Abstraction is about simplifying and representing concepts at a higher level by including only 

relevant concepts. Figure 12 illustrates how an abstraction was introduced in Scratchjr. Here, 

pupils had to include things that are important for their code. The relevant aspects emphasized 

are to include a start and end blocks in addition to others blocks that the leaners deemed im-

portant for the task given. 

  

Figure 12 Example of how to teach abstraction in Scratchjr 
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4.4 Data collection 

The data of this thesis consisted of the artefacts produced by pupils (unplugged coding materials 

i.e. task sheets and plugged coding products i.e. Scratchjr codes), notes taken by the author of 

the thesis and self-efficacy questionnaires concerning the coding and computational thinking 

concepts.  

4.4.1 Collecting task sheets from unplugged coding phase and scratch code from unplugged 

code phase 

All work products done in the unplugged and plugged coding phases were collected and ana-

lyzed. Work products were task sheets from the unplugged activities and Scratchjr programs 

from the respective coding lessons. 

4.4.2 Lesson diary as a background material 

The author of this thesis kept a lesson diary which is used as a material in this study. The author 

wrote short descriptions about each lesson in order to develop the course design and instruc-

tional materials, and to also help with later research reporting. 

4.4.3 Self-efficacy questionnaires for measuring pupils’ beliefs how they can perform CT tasks 

Self-efficacy measures the innate ability of individuals to accomplish a goal or perform a task. 

In this study, a questionnaire which included coding and computational thinking questions was 

developed to explore the self-efficacy of the pupils at the end of the code club. The self-efficacy 

questionnaire was based on Bandura’s self-efficacy scale which places emphasis on the “Can” 

judgement of competence (Bandura, 2005). The following are examples of the scale constructed 

(See Appendix I for the detailed form) 

1. I can add characters to my code                                               

2. I can code characters to move            

3. I can use motion blocks to make a character move      

4. I can write a story in Scratchjr                      
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The items in the scale were presented on a 100 point scale starting from 0 (cannot do it at all) 

through to 20, 30 through 50 (not too sure can do it), 60 – 70 (pretty sure can do it), and 80 

through 100 (certain can do it). 

4.5 Data analysis 

Data analyzed for this thesis includes the self-efficacy questionnaire and the work product of 

pupils. First, examples of Scratchjr projects of some pupils are presented and examined for CT 

concepts. A Mann-Whitney U test was used to analyse the self-efficacy responses of pupils to 

identify the differences in the abilities of pupils in different groups thus males and females, and 

pupils with prior and no experience in coding. The findings are presented here. 

4.5.1 Using Mann-Whitney test to compare differences between girls and boys, but also non-

experienced and experienced coders 

The Mann‐Whitney U test is a nonparametric test conducted to explore statistically significant 

differences between independent samples (MacFarland, & Yates, 2016). The Mann-Whitney 

test is appropriate for analyzing ordinal and non-normally distributed data. It compares at least 

two of the sample means derived from the one population and examines if the means of the 

sample are the same (McKnight, & Najab, 2010).  

In this thesis, pupils were included to the sample based on their prior coding experience. Par-

ticipating pupils were also divided by their gender (8 girls, 9 boys), so Mann-Whitney U-test 

was used to explore the differences between both conditions (boys vs girls and experience vs. 

no-experience). Those grouping conditions were used to explore differences between the means 

in the self-efficacy questionnaire data about coding and computational thinking.  

4.5.2 Evaluating unplugged (worksheets) and plugged coding (Scratchjr code) activities  

To identify and assess learning, coding schemes were developed for both unplugged (Table 5) 

and plugged learning activities (Table 6). Criterions used in the coding schemes were based on 

existing framework by Brennan & Resnick (2012). Unplugged activities were coded by analyz-

ing how pupils had used stickers on their worksheets. For example, pattern recognition concept 

was understood when pupils were able to identify the activities they do daily and also activities 

that they do sometimes.  
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Plugged coding was assessed by analyzing code snippets done by the pupils. The ability to use 

the appropriate blocks in the right order to accomplish the task was an example of using com-

putational thinking concept in the code. 

  

Table 5 Coding scheme for evaluating unplugged worksheets 

CT concept Description 

Algorithm Pupils must start their code with the first thing they do in the morning to the last 

thing they do in the day. Pupils are expected to organize their daily activities in a 

sequence. 

Decomposition Pupils must organize their daily activities in order. An algorithm for each day must 

be created. 

Pattern recognition Based on the decomposition, pupils are to identify the activities they do every day 

and those they do on somedays. 

Decisions Pupils are to make decisions based on the time of the year (winter or summer). It is 

expected that the pupil can place the stickers at the right places. 

Abstraction Ability to select important activities or routines for the day in addition to other ac-

tivities that the pupil considers important for their daily routine. 

 

 

Table 6 Coding scheme for evaluating Scratchjr projects 

CT concept Coding Concept Block Description 

Algorithms Sequence Start (Triggering) 

End (Block) 

Pupil must start their 

code with a start block 

and an end block. In be-

tween these two blocks, 

are motion blocks. 

Decomposition and Pat-

tern recognition 

Repetition Start block 

Repeat block 

Forever block 

End block 

Presence of start and end 

blocks. 

A sequence of motion 

blocks using either repeat 

or forever blocks. 
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Decision-making Conditionals Start block 

Control blocks 

End block 

(optional) 

Repeat block Forever 

block 

Presence of start and end 

blocks. 

Use of control blocks for 

sending and receiving 

message using color 

coded start blocks. 

Abstraction  Start block 

Look blocks 

Sound blocks 

End block 

Modifying characters 

 

(optional) 

Repeat block Forever 

block 

Message block 

 

Presence of start and end 

blocks. 

Using sound and look 

blocks. Recording one’s 

own sound 

Modifying characters 

with camera taken pic-

tures 

Create your Scratchjr 

Project (Story) 

Sequence 

Repetition 

Conditionals 

Start block 

Look blocks 

Sound blocks 

End block 

Modifying characters 

Repeat block Forever 

block 

Message block 

Presence of start and end 

blocks. 

Appropriate use of 

blocks. 

 

(optional) 

Decomposition of story 

into scenes using pages 

of Scratchjr 

4.5.3 Ethical issues 

Permission forms were sent to parents of the participants to get their permission to collect the 

data of their wards and include it to research data repositories.  

The data collected included worksheets, Scratchjr projects, and self-efficacy responses to ques-

tionnaire which all were used to assess participant’s knowledge and ability to code. An example 

of a participant’s work was used to illustrate how learning took place and the effectiveness of 

instructions. The recorded observations with notes were done by the author of the study (see 

Appendix II). 

All the data was stored into university data storage and kept there as anonymized to ensure that 

the participant’s identity is protected. 
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5 Results 

5.1 How were unplugged and plugged coding activities designed in order to introduce 

computational thinking concepts to pupils? 

Evaluation is the last phase of the ADDIE method used for this thesis (see Figure 1). It is also 

crucial part of the cyclical nature of the design-based research. Due to time constraints in the 

context of this study, only minor iteration cycles were possible to implement.  

Most of the activities related to this research question are presented in the methods section in 

the form of pedagogical practices and instructional materials. In this section, one example of 

the iterations done in the context of this study is presented. Development of the unplugged 

instructional materials is described below. 

5.1.1 Prototypes with minor improvements in unplugged materials 

Minor changes were made to the unplugged materials before testing them at the after-school 

coding club, during, and after each coding club session. Changes made to the 1st prototype of 

the algorithm worksheet affected the 1st prototypes of the decomposition and pattern recogni-

tion worksheets. The changes included the addition of numbers to the worksheet to guide the 

pupils to organize their routine in an orderly fashion. The stickers for the worksheets were 

changed as well.  

After the lesson that used the algorithm worksheet proved successful with the numbers, the 

decomposition and pattern recognition worksheets were redesigned during the implementation 

of the coding club in a similar fashion with the goal to scaffold the learning process. Changes 

made to the decision worksheet occurred after the implementation of the lesson. During the 

decision lesson, it was realized the decision pupils had to make did not match the predefined 

set of actions. This led to a little confusion among the pupils which was quickly clarified by 

explaining the concept and the idea behind the worksheet a wee bit more.  

There was a need to redesign the decision worksheet. The abstraction worksheet underwent 

minor changes during the period of the coding club prior to the lesson on abstraction to make 

the worksheet friendlier and easier to use. See Table 7. 

 



 

 

 

Table 7 Prototype worksheets for unplugged activities with changes made to improve worksheet 

CT concept 1st Prototype Current Prototype Changes Made 

Algorithms   Redesign of worksheet. Addition 

of numbers to guide pupils to or-

ganize their daily routine orderly. 

Decomposi-

tion 

 

 

Redesign of worksheet by organiz-

ing weekly routine in one table to 

make it easier to use. 
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Pattern 

recognition 

 

 Redesign of worksheet by chang-

ing the goal of the task from school 

and non-school day activities to 

daily and nondaily activities. This 

was done to simplify the task for 

pupils. 

Decisions 

 

 Redesign of worksheet to include 

good description of the actions 

leaners will take when a condition 

is fulfilled. 
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Abstraction 

 

 Redesign by reorganizing the look 

of the worksheet to be friendlier. 

Text was added to make the work-

sheet self-explanatory 

 



 

 

RQ2: How were pupils’ understanding of basic computational thinking concepts visible 

in the artefacts that they did produce during the coding club? 

In this section, pupils’ understanding of the basic computational thinking concepts will be pre-

sented in the form of examples from the unplugged and plugged coding tasks, as well as results 

of the assessment of the pupils’ artefacts (activity sheets) and code (Scratchjr projects). 

5.1.2 Examples of the artefacts created by pupils in the unplugged activities 

In this section, examples of how pupils interacted with unplugged material are explained. There 

were some differences in the worksheet of pupils. See Figures 13 and 14. While some dressed 

up before eating breakfast, others ate breakfast before dressing up. This shows how the work-

sheet accommodated the routine structure of each pupil, enabling personalization. Provisions 

were made for gender-specific stickers for boys and girls as shown in the Figures 13 and 14. 

 

 

Figure 13 1st example of how pupils interacted with algorithm worksheet 
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Figure 14 2nd example of how pupils interacted with algorithm worksheet 

 

                                   Figure 15 Example of how leaners interacted with the 1st prototype decision worksheet 

5.1.3 Pupils’ performance in plugged and unplugged activities 

After analyzing pupils’ work products thus Scratchjr projects and unplugged activity work-

sheets, some pupils succeeded in performing the task given (see Tables 8 and 9). However, 

some were not very successful. Their work did not show evidence of the criteria described in 

Tables 5 and 6. It can however be concluded that many of the pupils did excel at the task given 

and hence the intervention was effective. 
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Table 8 Pupils’ performance in unplugged worksheets 

CT concept No of pupils who par-

ticipated 

No of pupils who suc-

ceeded 

No of pupils who did not 

succeed 

Algorithm 17 17  

Decomposition 15 15  

Pattern recognition 15 15  

Decisions 12 12  

Abstraction 15 15  

 

 

Table 9 Pupils’ performance in Scratchjr projects 

CT concept No of pupils whose 

work were saved 

No of pupils who suc-

ceeded 

No of pupils who did not 

succeed 

Algorithm 13 13  

Repetition 11 10 1 

Decisions 10 6 4 

Abstraction 9 6 3 

 

 

Table 10 Examples of Scratchjr stories 

Project Description Teacher’s Comment 

 

Pupil 1: Figure 11 shows an ani-

mated cat moving up and down. In 

this example, the pupil made use 

of a start and an end block to start 

and end code respectively. The pu-

pil made use of two different mo-

tion blocks 3 times to make the cat 

move.  

 

Teacher's comment: This pupil 

could have made use of a repeat 

block and one of each of the mo-

tion blocks instead. 
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Pupil 2: Figure 12 shows an ani-

mated lizard walking on a branch 

of a tree. This pupil made used of 

the start and end block to start and 

end code. This pupil made use of 

repeat and motion blocks to se-

quence the movement of the lizard 

in a way the pupil desired. 

Teacher’s comment: This pupil 

demonstrated her ability to use the 

blocks in the right context.  

 

 

 

Pupil 3: Figure 13 shows an ani-

mated airplane flying. This pupil 

designed an airplane, made use of 

the start, repeat, motion and end 

blocks to animate the airplane 

Teacher’s comment: This pupil 

made use of the blocks in a way 

that demonstrates mastery of con-

cepts. The pupil did a good job to 

design an airplane 

 

 

Pupil 4: Figure 14 shows an ani-

mated ball. The pupil chose to ani-

mate a ball. The pupil selected a 

space background and added a cat 

and an astronaut. The movement 

of the ball added a motion effect to 

this code. 

 

Teacher’s comment: This pupil 

demonstrated mastery by making 

use of the start, control blocks, 

motion and end blocks to create a 

meaningful animation. 

 

5.2 What differences exist in the self-efficacy beliefs of learners regarding computa-

tional thinking and coding abilities with respect to prior experienced and gender? 

An analysis of pupil’s self-efficacy beliefs in terms of their ability to write Scratchjr story was 

conducted. The results revealed that 10 out of 11 pupils who participated in the survey believed 

they could write Scratchjr a story. This demonstrates that pupils understood the concepts such 

as algorithm and repetition and demonstrated this in their stories (see Table 11). The remaining 

6 pupils were absent on that day. 
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Table 11 I can write a story in Scratchjr 

 Frequency Percent Valid Percent Cumulative Percent 

Valid 1,00 1 5,9 9,1 9,1 

4,00 10 58,8 90,9 100,0 

Total 11 64,7 100,0  

Missing System 6 35,3   

Total 17 100,0   

 

In addition, self-efficacy questions related to their ability to apply computational thinking skills 

in their daily lives revealed that 8 out of the 10 pupils who participated were certain of their 

ability to apply algorithms to their daily routines. 1 pupil was not too sure, and the remaining 

pupil was not sure at all that (s)he could apply algorithms in their routine (see Table 12). 

Table 12 When I do my daily routines, I apply algorithms 

 

 Frequency Percent Valid Percent 

Cumulative Per-

cent 

Valid 10 1 5,9 10,0 10,0 

50 1 5,9 10,0 20,0 

90 2 11,8 20,0 40,0 

100 6 35,3 60,0 100,0 

Total 10 58,8 100,0  

Missing System 7 41,2   

Total 17 100,0   

 

 

Differences in the self-efficacy beliefs of the pupils 

A Mann-Whitney test conducted revealed that there were slight differences between the self-

efficacy beliefs of pupils to code and perform simple computational thinking tasks though the 

difference is not significant. The Mann-Whitney test revealed that boys had a greater (Mdn = 

6.00) self-efficacy belief to code a story in Scratchjr than girls (Mdn = 5.17), U= 10.000, p= 
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0.414 (see Appendices III and IV). The test showed that there was a difference in the ability of 

pupils to think computationally. Questions were asked related to their ability to apply CT con-

cepts such as algorithms in their daily routine. Both boys and girls reported the same self-effi-

cacy beliefs in terms of their ability to apply computational thinking concepts to their daily 

routine (When I do my routines, I apply algorithms). They had the same self-efficacy beliefs 

although the difference was not significant (Mdn = 5, U=12.000, p=0.881). See Appendices V 

and VI. 

Another Mann-Whitney test conducted revealed that pupils who had prior coding experience 

had higher self-efficacy beliefs than pupils who had no prior experience. The test showed that 

pupils who had prior coding experience were more confident of their ability to write a story in 

Scratchjr (Mdn = 6) than pupils who had no prior coding experience (Mdn = 4) though the 

difference is not significant statistically (U = 10.000, p = 0.414).  See Appendices VII and VIII. 

Also pupils, with prior coding experience were more confident of their ability to think compu-

tationally (When I do my routines, I apply algorithms), (Mdn = 6) than pupils with no such 

prior experience (Mdn = 4) although the difference is not statistically significant (U = 8.000, p 

= 0.476) See Appendices IX and X. 
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6 Discussion 

The main purpose of this thesis is to design, and test unplugged computational activities that 

aim to introduce coding to pupils. To achieve this, unplugged worksheets were created for com-

putational thinking concepts. In addition, Scratchjr lessons were designed to integrate compu-

tational thinking concepts into coding lessons.  

6.1 How were unplugged and plugged coding activities designed in order to introduce 

computational thinking concepts to pupils? 

Scratchjr, the block-based coding application supports the teaching and learning of computa-

tional thinking concepts. Computational thinking concepts such as algorithms, decomposition, 

pattern recognition, decision making, and abstraction can be practiced in Scratchjr.  

Firstly, unplugged activities were designed for each computational thinking concept. The equiv-

alent coding concept, if exists, was identified. The unplugged activity was used to introduce the 

computational thinking concept. Afterwards, its equivalent coding concept was used to rein-

force the concept. Pupils had the opportunity to learn about computational thinking concepts 

and practice or apply them in the context of Scratchjr. Using the Scratchjr blocks such as trigger 

(start), end, motion, looks, sound, and control blocks, computational thinking concepts were 

taught to pupils. They were then given tasks to do. The solutions they produced for the tasks 

given had to demonstrate evidences of computational thinking concepts in their Scratchjr pro-

grams. In Scratchjr, an algorithm is equivalent to sequence.   

The stories pupils created could be just a page or not more than 4 pages. For a story of one page, 

a sequence of blocks with starting and ending points must be present. This represented an algo-

rithm. For stories of more than a page, the pupils had to break down the stories into scenes and 

identify the needed scenes such as where the story starts and where it ends as well as the scenes 

that come in between the start and end. Breaking down the story is known as decomposition in 

computational thinking. For the concept of decomposition, they had to identify patterns in their 

stories that repeat. The identified repeated patterns can be implemented using relevant blocks 

(repeat or forever block) for repeating a sequence in Scratchjr. Abstraction, another computa-

tional thinking concept was connected to Scratchjr. Abstraction was evident when pupils were 

able to include important scenes in their Scratchjr stories. Important scenes that were used to 

examine pupils’ stories included the presence of starting and ending scenes. The pupils had the 
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opportunity to modify the characters as part of abstraction when the pupils deemed it relevant 

for their story. Using Scratchjr, abstract computational thinking concepts can be taught, prac-

ticed and applied in coding. Table 4 shows how unplugged activities were integrated into coding 

activities. Also, Table 10 shows examples of Scratchjr stories created by pupils. 

6.2 How were pupils’ understanding of basic computational thinking concepts visible in 

the artefacts that they did produce during the coding club? 

During the process of creating an algorithm for their daily and weekly routines, pupils were 

exposed to computational thinking concepts such as algorithms, decomposition, pattern recog-

nition, repetition and abstraction. Adapting these computational thinking concepts to coding in 

the context of Scratchjr gave pupils the opportunity to explore these concepts further to gain 

more understanding. When Scratchjr written by pupils run, they see the outcome, debug, and 

make the necessary changes in their program (stories). There are similar evidences that pupils 

learn computational thinking skills through coding (Chalmers, 2018; Marcelino, Pessoa, Vieira, 

Salvador, & Mendes,2018) or through unplugged activities (Curzon, 2013; Brackmann, 2017). 

By evaluating pupils work products including Scratchjr projects and unplugged activities, I no-

tice how pupils applied the concepts to write their own algorithms and animate characters in 

Scratchjr. See Table 10 for different stories pupils wrote to demonstrate their understanding of 

Scratchjr stories. Figures 13 and 14 show alternate ways pupils wrote an algorithm for their 

daily routines. It must be noted that pupils should be encouraged to be creative in generating 

solutions if the important components are present. For example, in Scratchjr, the ability of pu-

pils to use important blocks such as the start and end blocks, together with the correct sequence 

of blocks served as evidence to demonstrate their understanding of the sequence, a computa-

tional thinking concept. A similar concept was used to determine if pupils understood compu-

tational thinking concepts in the unplugged lessons. Pupils demonstrated their understanding of 

algorithms, a CT concept when they created an algorithm for their daily routine such that it 

shows the first thing they do in a day (which is to wake up) and the last thing they do (which is 

to sleep) together with the correct sequence of other activities they do in a day. 



 

52 

 

6.3 What differences exist in the self-efficacy beliefs of learners regarding computa-

tional thinking and coding abilities with respect to prior experienced and gender? 

To argue further that pupils understood the computational thinking concepts they were intro-

duced to, frequency statistics conducted on the self-efficacy beliefs of pupils revealed that many 

of them were sure they could apply computational thinking concepts to their daily routines and 

could also write Scratchjr stories. In addition, Mann-Whitney statistics tests were conducted to 

identify differences between the self-efficacy beliefs of girls and that of boys as well as pupils 

who had prior coding experience and those who did not. The tests revealed slight differences 

between the self-efficacy beliefs of boys and girls as well as pupils who had prior and no coding 

knowledge prior to taking this computational thinking lesson.  
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7 Conclusion 

In this research, the need for creating materials for teaching and learning computational think-

ing were identified. The concept of computational thinking was explored leading to the identi-

fication of key concepts such as algorithms, decomposition, pattern recognition, abstraction and 

decisions. The study focuses on designing teaching and learning materials for computational 

thinking and coding. The materials make use of real-life experiences of pupils to explain com-

putational thinking concepts. The daily and weekly routine of pupils were used to explain CT 

concepts such as algorithms, decomposition, pattern recognition, and abstraction. Seasons such 

as winter and summer were used to explain conditionals or decision-making. Each worksheet 

came with a set of stickers because of the age and English-speaking ability of the pupils. 

The study also explored ways in which computational thinking can aid the understanding of 

coding concepts. Using Scratchjr, computational thinking concepts were mapped to coding con-

cepts. The success achieved in using this approach to explain coding concepts is attributed to 

the real-life experiences used to explain computational thinking concepts.   

The work products pupils produced were used to evaluate their comprehension of the concepts 

taught. In addition, Bandura’s self-efficacy questionnaire was used to examine the perceived 

self-efficacy beliefs of the pupils. It was identified that the pupils who had prior coding experi-

ence were more confident of their ability to think computationally and code than pupils with no 

prior experience though the difference was not significant. Also, while boys were more confi-

dent of their ability to code than their ability to thinking computationally, girls were more con-

fident about their ability to think computationally. Based on these findings, coding can be in-

troduced to novices using real-life computational thinking concepts.  

CT has the potential to equip pupils with the ability to code. Computational thinking concepts 

can be integrated into coding lessons when teaching coding. Activities for teaching and learning 

can include plugged and unplugged activities. Unplugged activities provide a means to explore 

abstract computational thinking concepts using real-life experiences. This enhances the under-

standing of pupils. 

The designed materials when tested during the after-school coding club proved successful after 

evaluating the work products of leaners. In general, the pupils were successful in the tasks they 

were given. They were able to apply the concepts learned in their Scratchjr projects. Also, the 

pupils reported positive self-efficacy beliefs which indicates that they understood the concepts 



 

54 

 

taught. Based on these evidences, it can be concluded that the designed instructional materials 

were effective as aids for teaching and learning computational thinking. 

Conditions such as age, prior knowledge, and English-speaking ability affected the design of 

lesson materials. Hence future replication may require changes in the plan to accommodate the 

new context. This thesis serves as an example of how to design unplugged activities for teaching 

and learning computational thinking as well as how computational thinking concepts can be 

integrated into coding activities using Scratchjr.  

Future research directions include conducting more tests to validate and improve unplugged 

instructional materials and the creation of new materials for other CT concepts. 
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Appendix II 

Researcher’s notes 

29th October, 2018 

The original plan was to have an unplugged lesson, followed by a short lecture, 2-3 worked 

examples and a collaborative task. 

The unplugged lesson was about binary coding. The pupils had to write their names in binary 

code. The purpose of this lesson was to give an idea of the language of the computer and how 

everything that runs on the computer is written in computer language. 

This was followed by introducing them to the Scratchjr app interface. After seeing how the 

pupils immerse themselves with Scratchjr, I decided to give them the opportunity to explore the 

interface more by themselves after teaching the main concept (coding). 

I had a parent who was very helpful in delivering the lesson and supporting the lesson plan. 

 

5th November 2018 

The lesson began with a short introduction of the concept of sequence and algorithm, empha-

sizing on the starting point and the ending point. Afterwards, the pupils did an unplugged ac-

tivity on their daily routine. The purpose was to reinforce the idea of sequence, algorithm. A 

daily routine began by waking up followed by a series of activities and ends by sleeping. Most 

of the sequence of activities were similar for some pupils except for a few in which two activi-

ties swapped places. In all, the pupils understood the concept. The two concepts were later used 

in Scratch. The pupils were given two worked examples that used the start and end blocks to 

move characters using the motion blocks. Afterwards, the pupils were given the opportunity to 

explore Scratch themselves using the two concepts. With the help of the co-teacher, I went 

around to check their work and encouraged them to add an end block which was missing in 

most of their exploratory work. This provided another opportunity to emphasize the relevance 

of the concepts. 

 

12th November 2018 
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The lesson began with a short introduction of the concept of repetition. We recapped the algo-

rithm lesson because I wanted to reinforce the concept again. I asked a question relating to 

repetition which a pupil responded. The pupils received an unplugged activity relating to repe-

tition. The activity built on the previous activity. This time around, pupils built a storyboard 

that contained activities for each day of the week.  A group of 4 pupils were given a storyboard 

sheet to fill in their daily activities based on the day. The original lesson plan included two 

unplugged activities for repetition and pattern recognition. The idea of the pattern recognition 

was to identify activities that occur every day as daily activities and those that occur on some 

days as nondaily activities from the repetition worksheet. These activities could also be de-

scribed as school day verses non-school day activities. However, this unplugged activity was 

not done because of the time factor. After the unplugged, we revisited the algorithm concept in 

Scratchjr. Using, the same example (move towards an object with one motion block), the se-

quences of blocks were minimized using the number to repeat a block, using the repeat block, 

and forever loop. I demonstrated how the repeat block and motion block with numbers could 

be used to achieve the same purpose in this particular example. In this lesson, the co-teacher 

and I went around to assist pupils who needed help to understand and repeat the worked exam-

ple. 

 

 

19th November 2018 

This lesson began with a short introduction to the concept of conditionals. The relevance of it 

for making decisions was highlighted. The unplugged activity had a set of pictures for summer 

and winter clothes and activities and a worksheet. The pupils were to put a picture of activity 

or clothes based on the season. The worksheet began with “if it is ____” 

After the pupils had finished the unplugged activity, we proceeded to Scratchjr. Here, a worked 

example of conditionals was shown using the send and receive message block. A character 

performed an action when it received a message which had been colour coded. It was very 

tough to explain the conditionals concept given that Scratchjr does not have this structure. After 

multiple explanations, the pupils got the concept. Pupils were encouraged to use the previous 

concepts taught in their worked examples. 
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26th November 2018 

This lesson also began with an explanation of the concept of abstraction. How to include or 

remove certain things from your code. The lesson started with an unplugged activity. The un-

plugged activity included a list of daily activities and extra activities. The pupils were asked to 

add important routines and remove unimportant routines. This was followed by a plugged ac-

tivity. The pupils were given a worked example that demonstrated important parts of program-

ming (including a start, a sequence of blocks, and an end). In addition, the pupils were intro-

duced to look and sound blocks. The pupils also had the opportunity to include their own pic-

tures to their characters. 

 

3rd December 2018 

The main concepts of programming have been taught. This is a preparatory lesson for the pu-

pils’ projects. A story prompt was given to the pupils to write a story. The idea is to assess 

pupil’s ability to use the blocks already learned to create a story. This lesson was loosely 

scripted but had prompts to assist the pupils to write their story. Also as the teacher, I went 

around to help any pupil who needed further assistance (scaffolding). I think the lesson was 

successful as the pupils were able to use the concepts learned in various ways. This shows that 

the pupils understood the concepts that have been taught. This project was intended to be a 

preparatory lesson, but it turned out differently hence there was no need to ask the pupils to 

write another story. 

 

10th December 2018 

Based on the outcome of the previous lesson, I decided to take a different approach to today’s 

lesson. I used the Solve-It assessment from Scratchjr website. Pupils were asked to write the 

code after been shown a sequence of movement. Most of the pupils were able to write the 

correct code, others were close which is very good because there are multiple ways to achieve 

the same thing in coding though some code snippets are more efficient than others. However, 

others needed some hints to write the code successfully. The hints were using printed coding 

blocks. 
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17th December 2018 

Today, the pupils created their own projects, exploring Scratchjr. They were also given efficacy 

questionnaire to assess their beliefs regarding their understanding of CT and coding concepts. 

Many of the pupils were absent, a challenge faced almost every week.  
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