

Agyei Eunice Eno Yaa Frimponmaa

How to Design Activities for Learning Computational Thinking in the Context of

Early Primary School in an after-school Code Club

Master’s thesis

FACULTY OF EDUCATION

Learning, Education, and Technology

2019

University of Oulu

Faculty of Education

How to Design Activities for Learning Computational Thinking in the Context of Early Pri-

mary School in an after-school code club (Eunice Agyei)

Master’s thesis, 72 pages, 10 appendices

April 2019

Abstract

Computational Thinking (CT) and its related concepts have gained a lot of traction within the

field of education. Many countries, including Finland and the United Kingdom, are in the pro-

cess of integrating CT into their national curriculums to equip pupils with much needed 21st

century digital skills, including coding (programming). As a result, several programs and activ-

ities are being developed to introduce pupils to CT. The need to develop appropriate teaching

and learning materials, as well as train teachers to teach, and integrate computational thinking

into their lessons is apparent. This thesis seeks to contribute to the body of knowledge on com-

putational thinking by designing and testing instructional materials for early primary school.

Computational thinking as a concept, how to integrate its concepts into coding, as well as how

pupils understood the concept were explored.

This study was conducted in an after-school coding club at an elementary school in the northern

part of Finland. The duration for the coding club was 8 weeks. Each lesson lasted for 45

minutes. Participants were selected from among 1st and 2nd grade pupils. In selecting partici-

pants for this study, priority was given to pupils with no prior coding experience. 13 out of the

selected 17 had no prior experience. The remaining 4 participants were randomly selected from

the rest of the applicants who had coding experience.

Worksheets and stickers were designed and tested for teaching and learning computational

thinking. Lesson plans designed for the coding club included activities for teaching computa-

tional thinking using unplugged activities and Scratchjr. The unplugged activities were inte-

grated into coding lessons to enhance the understanding of pupils during the coding lessons.

This approach helped to connect theoretical computational thinking to real life practices and its

application in the context of coding.

Data collected included the unplugged activity worksheets of the participants, their Scratchjr

projects, and self-efficacy beliefs regarding their ability to code and think computationally.

These work products were evaluated qualitatively for evidence of understanding. The analysis

of the self-efficacy beliefs of participants revealed that participants were confident of their com-

putational thinking and coding abilities.

The main outcome of this research is the instructional material (stickers, templates, and

Scratchjr activities) which was designed for teaching and learning purposes. This unique ex-

periment and pedagogical designs are explained to show how unplugged activities can be used

to introduce pupils to computational thinking concepts.

Keywords: computational thinking, instructional design, coding, unplugged, worked example

FOREWORD

I thank the Lord God Almighty who has been the author of my life. I am grateful for all that

He has done for me and how far He has brought me. Secondly, I thank my supervisor, Dr. Jari

Laru for his guidance and direction. This thesis would not have been successful without him. I

also thank Mr Jani Vallirinne and Ms Sirkku Tahvanainen of Code School Finland for the the-

sis opportunity.

My gratitude goes to my parents Mr. Kwaku Adiefeh Agyei and Mrs. Matilda Adjei-Sarpong

for their love, support and sacrifices they have made to bring me this far. A thank you also

goes to sister, Christiana Akua Akyaa Agyei, and my cousin Nana Adjoa Asantewaa Asiamah

for been an inspiration to me. To Mr. Ebenezer Adjei-Sarpong, Mr. Enoch Adjei-Sarpong,

Ms. Adjoa Addai, Mrs. Bridget Adoma, Ms. Claudia Hilton Aba Hamilton, Mrs Kate Asi-

amah and the families of Adjei-Sarpong, Adiefeh, and Asiamah, I say a big thank you. I will

not forget all your support.

I would like to thank my class mates and friends Mr. Opoku Asare Kennedy, Mr. Mutai Ken-

neth, Miss Xinru Chen, Mr. Ahmad Ghaznawii, Mr. Hassan Mehmood, Mr. Dat Le Quoc, Mr.

Bram-Larbi Yaw and all who were there to support and encourage me one way or the other. A

special thank you to the small Ghanaian community at the University of Oulu. Cheers!

To these special people in my life: Mr. Janne Rasanen, Mr. Andy Alorwu, Mr. Solomon Men-

sah, Mr. Alexander Ofori Boateng, and Mr. Christian Baidoo, I say thank you. Indeed, you are

men who stand behind women. Your support is invaluable to me and I am lucky to have you

all in my life. Thank you so much.

Contents

1 Introduction ... 8

2 Theoretical framework.. 10

2.1 Computational Thinking ... 10

2.2 Assessment and Computational Thinking .. 16

2.2.1 How to asses computational thinking in the context of Scratch coding platform: Brennan’s and

Resnick’s model ... 16

2.2.2 Using Bloom’s Taxonomy for assessing computational thinking .. 16

2.2.3 Assessing computational thinking by using formative and summative assessments 17

3 Aim and Research Questions .. 18

4 Methods .. 19

4.1 Participants and Context ... 20

4.2 Pedagogical Design .. 21

4.2.1 Design Principles which were used to guide instructional design and pedagogical activities 21

4.2.2 General overview of the instructional design .. 22

4.2.3 Lesson plans for unplugged and plugged coding activities ... 22

4.3 Instructional materials and tools ... 26

4.3.1 Activity worksheets for unplugged coding activities ... 26

4.3.2 Using Scratchjr as a tool to teach computational thinking ... 31

4.4 Data collection .. 36

4.4.1 Collecting task sheets from unplugged coding phase and scratch code from unplugged code phase

 36

4.4.2 Lesson diary as a background material .. 36

4.4.3 Self-efficacy questionnaires for measuring pupils’ beliefs how they can perform CT tasks 36

4.5 Data analysis ... 37

4.5.1 Using Mann-Whitney test to compare differences between girls and boys, but also non-

experienced and experienced coders ... 37

4.5.2 Evaluating unplugged (worksheets) and plugged coding (Scratchjr code) activities 37

4.5.3 Ethical issues ... 39

5 Results... 40

5.1 How were unplugged and plugged coding activities designed in order to introduce computational

thinking concepts to pupils? ... 40

5.1.1 Prototypes with minor improvements in unplugged materials .. 40

5.1.2 Examples of the artefacts created by pupils in the unplugged activities 44

5.1.3 Pupils’ performance in plugged and unplugged activities .. 45

5.2 What differences exist in the self-efficacy beliefs of learners regarding computational thinking and

coding abilities with respect to prior experienced and gender? .. 47

6 Discussion ... 50

6.1 How were unplugged and plugged coding activities designed in order to introduce computational

thinking concepts to pupils? ... 50

6.2 How were pupils’ understanding of basic computational thinking concepts visible in the artefacts that

they did produce during the coding club? .. 51

6.3 What differences exist in the self-efficacy beliefs of learners regarding computa-tional thinking and

coding abilities with respect to prior experienced and gender? .. 52

7 Conclusion .. 53

References .. 55

Figures

Figure 1 Description of how ADDIE model was used in this thesis .. 20

Figure 2 Stickers for unplugged activities .. 26

Figure 3 Algorithm worksheet describing the daily routine of pupils as an algorithm .. 27

Figure 4 Decomposition worksheet to break weekly routine of leaners by the day of the week 28

Figure 5 Pattern Recognition worksheet to organize weekly routine into repeated and non-repeated activities . 29

Figure 6 Abstraction worksheet to choose important activities to include in daily routine 30

Figure 7 Decision worksheet for deciding the action to take depending on whether it is winter or summer 31

Figure 8 Scratchjr interface showing how blocks can be used to animate characters .. 32

Figure 9 Example of how algorithm and sequence can be taught in Scratchjr ... 33

Figure 10 Multiples ways to achieve repetition in Scratchjr .. 34

Figure 11 Example of how to teach decisions in Scratchjr .. 34

Figure 12 Example of how to teach abstraction in Scratchjr .. 35

Figure 13 1st example of how pupils interacted with algorithm worksheet .. 44

Figure 14 2nd example of how pupils interacted with algorithm worksheet .. 45

Figure 15 Example of how leaners interacted with the 1st prototype decision worksheet 45

file://///nfstu/eagyei/Agyei%20Eunice%20Eno%20Yaa%20Frimponmaa%20Thesis%201.docx%23_Toc7024534
file://///nfstu/eagyei/Agyei%20Eunice%20Eno%20Yaa%20Frimponmaa%20Thesis%201.docx%23_Toc7024536
file://///nfstu/eagyei/Agyei%20Eunice%20Eno%20Yaa%20Frimponmaa%20Thesis%201.docx%23_Toc7024537
file://///nfstu/eagyei/Agyei%20Eunice%20Eno%20Yaa%20Frimponmaa%20Thesis%201.docx%23_Toc7024539
file://///nfstu/eagyei/Agyei%20Eunice%20Eno%20Yaa%20Frimponmaa%20Thesis%201.docx%23_Toc7024542
file://///nfstu/eagyei/Agyei%20Eunice%20Eno%20Yaa%20Frimponmaa%20Thesis%201.docx%23_Toc7024543
file://///nfstu/eagyei/Agyei%20Eunice%20Eno%20Yaa%20Frimponmaa%20Thesis%201.docx%23_Toc7024544

7

Tables

Table 1 Describes resources that can be used for teaching and learning computational thinking. Code.org, CS

Unplugged, Scratchjr have curriculums that aid teachers to deliver coding lessons ... 13

Table 2 Unplugged Lesson Plan with description of activities and Computational Thinking concepts 23

Table 3 Plugged Lesson Plan with Scratchjr describing activities and CT concepts.. 24

Table 4 Integrating computational thinking concepts between unplugged and plugged (coding) activities 25

Table 5 Coding scheme for evaluating unplugged worksheets .. 38

Table 6 Coding scheme for evaluating Scratchjr projects .. 38

Table 7 Prototype worksheets for unplugged activities with changes made to improve worksheet 41

Table 8 Pupils’ performance in unplugged worksheets .. 46

Table 9 Pupils’ performance in Scratchjr projects ... 46

Table 10 Examples of Scratchjr stories .. 46

Table 11 I can write a story in Scratchjr ... 48

Table 12 When I do my daily routines, I apply algorithms .. 48

8

1 Introduction

In the past couple of years, Computational Thinking (CT) and its related concepts have received

a lot of traction within the field of education. Many countries including Finland and the United

Kingdom are in the process of integrating CT into their academic curricular to equip pupils with

much needed 21st century digital skills. As a result, several programs and activities are been

developed to introduce pupils to CT (Bocconi, Chioccariello, Dettori, Ferrari, & Engelhardt,

2016). According to Wing (2008), CT is a basic skill for everyone with problem solving, sys-

tems design, and understanding human behavior as its center.

CT draws on a wide range of cognitive concepts such as abstraction, decomposition, pattern

recognition, and algorithms to assess and identify a problem, and design solutions to the prob-

lem (Wing, 2008). Wing (2008) expressed the opinion that CT should be taught just as reading

and writing are taught. It is interesting to note that CT has been integrated into many curricular

around the world through subjects such as mathematics, informatics, and information technol-

ogy (Bocconi et al., 2016) but not as a standalone subject. In Finland, CT is taught as part of

Math and Crafts (Mannila, 2014). Learning CT occurs through formal education, informal ed-

ucation, self-directed learning, or community-based learning. It can be deduced that learning

occurs through individual, co-operation, and collaborative efforts.

Wing (2011) defined CT as a thought process that involves formulating, designing solutions to

problems, and representing the solution in a form suitable for information processing. CT skills

are acquired through understanding problem description, decomposing the problem, collecting,

analyzing, and representing data, solving the problem at hand, recognizing patterns, developing

algorithms, decomposition of problems, abstract reasoning, questioning, designing and simu-

lating (Wang & Wang, 2016; Wing, 2008).

Learning of CT can be frustrating task for pupils. However, CT empowers pupils to be confi-

dent, persistent, open minded, and a team player. It also enhances their problem resolution and

communication skills (Barr, Harrison, & Conery, 2011). CT represents an umbrella of

knowledge, skills and tools to automate and speed up the everyday life problem-solving ap-

proach (Barr et al., 2011).

Programming is one of the 21st century skills that should be taught in schools around the globe.

The national core curriculum in Finland aims that all pupils should be exposed to some form of

computer programming during their primary school studies. Kazimoglu, Kiernan, Bacon, &

9

Mackinnon (2012) have argued that computational thinking is a stepping stone to prepare pupils

to code. However, in order to increase the role of computational thinking in the primary schools,

appropriate instructional materials, pedagogical designs and in-service teacher education are

needed. In this thesis, instructional materials and pedagogical design are created and tested in

the context of an after-school K-2 code school to address that need.

The rest of this thesis is organized as follows. After the introduction part follows theoretical

framework where computational thinking and its practical applications are presented. Aim and

research questions are presented after the theoretical framework followed by the methods chap-

ter. The methods chapter describes the design of the after-school code club experiment and

instructional materials. It also describes data collection and analysis methods in details. The

results, discussion and conclusions are presented in subsequent chapters.

10

2 Theoretical framework

2.1 Computational Thinking

According to Tedre & Denning (2016), the current definition of computational thinking, was

birthed from three (3) historical trends that occurred between the 1950s and 1990s. Descrip-

tions, claims, arguments, narratives, and debates characterized this era when scientists and re-

searchers explored computing in many forms. From the 1950’s, many of the descriptions cen-

tered on algorithm thinking until the 1980s when a non-computing scientist with focus on both

artificial and natural information processing pioneered a revolution. In 1980, Seymour Papert

published Mindstorm in which computing ideas, techniques, technology, and language played

a huge role in knowledge construction and speculated how computing can activate learning,

thinking, cognitive and emotional wellbeing (Papert, 1980). His idea of constructionism occurs

through exploration and constant practice. This stands out in terms of educational pedagogy

although other educationists advocated and initiated computing literacy and programming

(Tedre & Denning, 2016). The advocacy of scientists in the 1980s lead to a political movement

and the passing of a law, the High-Performance Act which provided funding for solving the

grand challenge problems identified in computing science. A key issue was the formulation of

algorithmic solution to the grand challenges that will run on supercomputers (Tedre & Denning,

2016). From these historical trends, Tedre and Denning (2016) defined computational thinking

as “the habits of mind that many of us have developed from designing programs, software

packages, and computations performed by machines - offers very powerful mental tools for

people who design computations’’.

In 2006, computational thinking gained popularity in the context of education when Jeannette

Wing wrote about it in her seminal essay. Her descriptions of computational thinking in no

specific order includes algorithms, automation, abstraction, analytical thinking, understanding

human behavior, designing systems, and mathematical thinking (Wing, 2006, 2008). She made

the following assertions:

1. Computing is about automations and abstractions.

2. Computing is in many disciplines. Based on this, she suggests the use of computing will

lead innovations in many fields in the future.

11

3. Computing is everywhere and part of our daily lives. If computing directly or indirectly

affects our lives in many ways, then there is the need for everyone to acquire computing

knowledge at least. She envisions computational thinking to be inherent in education

especially early childhood. She states that science, technology and society are the key

drivers of computing.

4. She argued that computing is more than just programming, computational thinking is a

way humans solve problems instead of a way in which computers think and combines

both mathematical and engineering thinking.

In 2010, Wing with other colleagues defined computational thinking as the thought processes

in problem and solution formulation. “Computational Thinking is the thought processes in-

volved in formulating problems and their solutions so that the solutions are represented in a

form that can be effectively carried out by an information-processing agent” (Cuny, Snyder, &

Wing, 2010).

The International Society for Technology in Education (ISTE), Computer Science Teachers’

Association (CSTA) together with Higher Education Leaders, K-12 education, and the industry

experts developed an operational definition for ICT (ISTE & CSTA, 2011). They defined CT

as a problem-solving process that includes:

● Formulating problems in a way that computational tools can be used to solve.

● Organizing and analyzing data.

● Data representation using different abstractions like simulations, and modeling.

● Algorithm thinking for automations.

● Identifying and evaluating possible solutions, selecting the best solution, and imple-

menting the solution effectively and efficiently.

In addition, they identified behaviors that CT develops and enhances. These include confidence,

persistence, tolerance, ability to handle open ended problems, and ability to communicate and

work in a team to accomplish the task at hand.

In summary, it appears that the definitions and descriptions of computational thinking by Wing

and the operational definition offered by the ISTE and CSTA corresponds with the definition

that arose from the history overview of Tedre and Denning.

12

Several computational thinking activities allow pupils to learn through collaboration, coopera-

tion and self-direction. CT focuses on problem solving, operational understanding of CT con-

cepts. It requires no prior knowledge and more importantly no computers are required hence

pupils everywhere in the world can easily acquire CT knowledge.

The learning of Computational Thinking in the context of coding can be categorized into

plugged and unplugged activities. (Atmatzidou & Demetriadis, 2014). Unplugged activities

typically mean teaching or learning computer programming and science without a computer

(Code.org, 2013). Unplugged refers to kinesthetic activities that teach computational thinking

(Code.org, 2013) without the use of computers. It focuses on understanding and applying algo-

rithms that make computers work as they are designed. Knowledge of these algorithms empow-

ers pupils to develop coding skills. The term “plugged” describes teaching and learning of CT

using computing devices. Block based programming, educational robots, teaching scripts,

games and animations, and computer simulation are ways of teaching and learning computa-

tional thinking.

Teaching and learning of computational thinking without the use of the computers (cod-

ing unplugged)

Unplugged activities present a way of teaching CT with no or limited access to computers

(Nishida et al., 2009). They provide the opportunity for pupils with no prior knowledge and

skills to explore CT in simple and sophisticated ways. Unplugged activities are not restricted to

any location. The activities take place in physical spaces (Nishida et al., 2009). Their kinesthetic

nature enables pupils to move and learn at the same time hence it is suitable for pupils of all

ages especially primary schoolchildren (Namukasa et al., n.d.; Nishida et al., 2009).

Pupils gain inspiration and interest in computer science activities by engaging in non-screen

activities which could build up their knowledge in the understanding of foundational concepts

of computing, giving tangibility and visibility to abstract concepts within the field of computer

science (Curzon & Paul, 2013; Thies & Vahrenhold, 2013). Due to its collaborative nature,

unplugged activities provide an additional benefit of shifting pupils' understanding about what

computer science is, thus children can be introduced to computer science and its related subjects

as a means of enhancing their problem-solving skills (Curzon, McOwan, Plant, & Meagher,

2014).

13

The adoption and use of unplugged activities provide opportunities for everyone to learn espe-

cially those without access to computers or are too young to use them well. According to Lama-

gna (2015), novices and young pupils are freed from implementation details that are required

for the running of a computer program with unplugged activities. This encourages active par-

ticipation as there is limited interaction with the computer screen (LeMay, Costantino, O’Con-

nor, & ContePitcher, 2014).

Indeed, even though programming is an indispensable skill, unplugged activities allow pupils

to visualize and witness the process of completing a task while contextualizing computing (Cur-

zon et al., 2014). While computing concepts are made simpler and easier for pupils to under-

stand, it also increases their motivation and interest as they find joy in working collaboratively.

According to Lambert (2009), using unplugged activities, fourth grade pupils had an improve-

ment in their interest in computer science, confidence in mathematics, as well as cognitive

skills.

Table 1 Describes resources that can be used for teaching and learning computational thinking.
Code.org, CS Unplugged, Scratchjr have curriculums that aid teachers to deliver coding lessons

Name Description Level/Age Website

CS Unplugged A website with a collection of teaching and learn-

ing materials for teaching computer science with-

out computers using games and puzzles.

K-4 (4-9) https://csunplug-

ged.org/en/

Scratch Scratch is a programming language and a platform

designed to teach programming via interactive

stories, games, and animations. It was developed

by the Lifelong Kindergarten Group at the MIT

Media Lab. Scratch was designed to give room for

pupils to tinker, create games, interactive stories

and art, and share their projects (Resnick et al.,

2009). Scratchjr provides opportunities for

younger pupils to learn programming using pre-

programmed blocks.

K(4-17) -

college

https://scratch.mit.e

du/

Scratchjr Scratchjr provides opportunities for younger pu-

pils to learn programming using simple prepro-

grammed blocks.

K-2(4-8) https://www.scratch

jr.org/

Code.org

Code.org is an organization that offers coding

courses and resources for teaching and learning

computer science. They also offer hour of code

lessons for schools. They have resources for both

K-12(4-17) https://code.org/

https://csunplugged.org/en/
https://csunplugged.org/en/
https://scratch.mit.edu/
https://scratch.mit.edu/
https://www.scratchjr.org/
https://www.scratchjr.org/
https://code.org/

14

Block based coding (computer programming)

Computer programming is the process of designing, developing and implementing instructions

that directs a computer to perform certain tasks. Computer programming is implemented using

a specific programming language (Balanskat, & Engelhardt, 2015). Writing programs to control

a computer requires expert knowledge of the context in which the application will be used,

algorithms and logic. Analyzing the context of the problem leads to an in depth understanding

of requirements and initiates a search for solutions. Requirements of the solutions are identified

and verified. Implementation of the solution identified occurs by writing code in a target lan-

guage. In this phase, programming constructs such as variables, algorithms, control, and loops

are used (Maloney, Peppler, Kafai, Resnick, & Rusk, 2008).

Programming is the process of analyzing a problem, designing a solution and implementing the

solution. Coding is a phase in programming, thus implementation. It includes implementing the

solution in a specific programming language, testing and debugging (Duncan, Bell, & Tan-

imoto, 2014). Computational thinking is an abstract term that describes thought processes or

ways of thinking when using or designing computing systems (Wing, 2006; Bocconi et.al,

2016). In this paper, coding and programming are used synonymously.

Using computer Simulation and Modelling as a tool to teach or learn computational think-

ing

plugged and unplugged approaches for learning

computer science.

Alice

Alice is a free to use app developed by the Stage

3 Research group at the Carnegie Mellon Univer-

sity in 1995. Originally, it was developed as a Vir-

tual Reality (VR) prototyping tool for non-pro-

grammers to share VR content. Alice consists of

3-D model objects and instructions, which are in

the form of scripts.

Varies https://www.alice.o

rg/

Light Bot

Lightbot is a platform designed for novices to

learn programming through puzzles. By navi-

gating a robot via a maze, programming concepts

such as sequencing, procedures, loops, and condi-

tionals are explained to pupils. The pupils are

given a challenge in which they apply the con-

cepts they have learned. No prior knowledge of

programming is needed.

Pre K-

K-2 (3-8)

http://lightbot.com/

https://www.alice.org/
https://www.alice.org/
http://lightbot.com/

15

Using computer simulation and modelling tools is a way to teach or learn CT. Pupils learn to

design and implement models and run simulations of the models created (Moursund, 2015)

“Growing up Thinking Scientifically” project is an example of that (Lee et al., 2011). In this

project, the pupils used abstraction to narrow down a real-world problem, followed by creating

a model with the features they selected from the real-world problem. A typical model was cre-

ated to predict how disease will spread in a school. The school population, layout, number and

movement of pupils were among the features selected for this model. The model constructed

was tested with a robot and then evaluated to know how it reflected the real-world problem

(Lee et.al, 2011).

Game design as a method to learn computational thinking skills

Game design is another method for pupils to learn computational thinking skills. Pupils who

participated in the iGame program, created their own game through story telling by developing

scenes using Alice, which is a 3D animation program (Lee et al., 2011). Games can be used to

learn computational thinking concepts and practices, like algorithmic thinking, programming,

modeling, and abstraction (Werner, Denner, Bliesner, & Rex, 2009).

In addition, Scratch, block-based programming environment, can be used for creating animated

stories and games. Yet, Minecraft is a game that allows pupils to design their own artefacts

during the gameplay by using programming tools integrated in the game. In creating such arte-

facts, pupils can acquire computational thinking concepts and learn different computational

thinking practices.

Using educational robots objects or tools for learning

Educational Robots can be used as objects of learning and as a tool for learning. When a robot

is an object of learning, the pupil constructs a robot. On the other hand, when a robot is a learn-

ing tool, it can be used to teach subjects such as Mathematics, Science, and computational

thinking (Burbaitė, Damaševičius, & Štuikys, 2013). For example, robots were used by Denis

and Hubert (2001) for teaching computational thinking via a collaborative problem-solving ap-

proach. The pupils were given roles such as analyst, algorithm designer, programmer and de-

bugger, which were alternated during each activity. In their research, they discovered that pupils

understood and adopted CT concepts as the projects progressed and recommended more au-

thentic and engaging problems as it enables pupils to grasp CT concepts.

16

2.2 Assessment and Computational Thinking

2.2.1 How to asses computational thinking in the context of Scratch coding platform: Bren-

nan’s and Resnick’s model

Brennan and Resnick conducted a research on how to assess CT on Scratch. They came up with

6 factors to consider when assessing CT (Brennan, & Resnick, 2012). These include: 1) Mean-

ingful and pupil centered assessment: Assessment must support pupil’s interest and goals by

providing self-exploratory pathways, multiple design scenarios for pupils according to their

strength and abilities, and opportunities for reflection; 2) Assessing artefacts: Collecting and

evaluating the pupils’ projects and products reveal the challenges of the pupil. With that infor-

mation, the needed guide designed for the pupil; 3) Document learning process: Encourage

pupils to take notes, videos, audio, and record the screen of their working process to present,

discuss with peers and reflect later. The purpose is to develop metacognition towards acquiring

the ability to regulate their own learning; 4) Continuous assessment: To appreciate how far the

pupil has come, and guide him or her, knowing the starting point, current level, and their goals.

Taking multiple point assessments, gives snapshots of pupils’ CT experience, progress and

challenges. These snapshots are potential sources of relevant information for support purposes;

5) Assessing multiple ways of knowing: Knowledge of concepts and practice are both relevant

in assessing pupils. Knowledge of concepts accounts for the ability to list, identify, define, ex-

plain, and give examples of CT concepts. Knowledge of practice on the other hand, shows how

the concept is used in practice. For instance, knowledge of repetition (CT practice) in the form

of loops in addition with knowledge of pattern recognition (a CT concept); 6) Assess with mul-

tiple viewpoints: With the success of the pupil in mind, the viewpoint of the pupil, peers, teach-

ers and if possible, soliciting for parents’, teachers’, experts’, and/or researchers' opinions of

pupil’s work and ways to support the pupil. Parents’ opinion may be valuable if they know how

well their children are progressing.

2.2.2 Using Bloom’s Taxonomy for assessing computational thinking

Blooms Taxonomy is another way to assess pupils (Fuller et al., 2007; Starr, Manaris, &

Stalvey, 2008; Thies & Vahrenhold, 2012). This taxonomy was also used by (Starr et al., 2008;

Thies & Vahrenhold, 2012) to assess CT concepts in tasks, projects, and products. Blooms

Taxonomy is made of the cognitive, affective and psychometric domains (Bloom, 1956). Fuller

17

et al. (2007) and Starr et al., (2008) agree to the use of Bloom’s Taxonomy for eliciting learning

objectives and assessing pupils. The research by Starr and his colleagues spanning over a 3-

year period highlights the need to use the taxonomy for setting learning objectives because it

guides the selection of pedagogical tools, strategies, and suitable tasks for CT lessons. Accord-

ing to Starr et al. (2008), the Bloom’s taxonomy represents the pathway for mastery of a CT

skill as it can be used to estimate the time and effort required to teach CT knowledge and skills.

By outlining the stages of knowledge acquisition, teachers will know the level pupils are and

provide the needed support.

2.2.3 Assessing computational thinking by using formative and summative assessments

CT can also be assessed using formative and summative assessments (Yadav et al., 2015). In

their research, Yadav and colleagues interviewed CT teachers. These teachers used formative

assessment to monitor the progress of their pupils. The teachers collected feedback from pupils,

and this informed decisions regarding future instructions. Summative assessment was used to

assess mastery of CT concepts and products created by the pupils. This form of assessment

often results in grades, which ‘describes pupils' mastery’. Multiple Choice Questions (MCQs),

open-ended questions, and rubric, were used for summative assessment. While MCQs and

open-ended questions were used to solicit pupils understanding of CT concepts, rubric were

used for setting expectations which pupils had to accomplish if they desired a grade. This gives

pupils the opportunity to make important decisions on how much effort and time they are will-

ing to invest to attain a grade or goal.

18

3 Aim and Research Questions

The purpose of this research is to design, use and evaluate pedagogical practices and materials

for teaching CT and coding to elementary school pupils. This research aim can be further di-

vided into three main questions:

RQ1: How were unplugged and plugged coding activities designed in order to introduce com-

putational thinking concepts to pupils?

RQ2: How was pupils’ understanding of basic computational thinking concepts visible in the

artefacts that they did produce during the coding club?

RQ3: What differences exist in the self-efficacy beliefs of learners regarding computational

thinking and coding abilities with respect to prior experienced and gender?

19

4 Methods

A major part of this thesis is related to the design of instructional material and pedagogical

activities for unplugged and plugged coding activities in the context of an after-school coding

club. The processes employed were influenced by Design Based Research methodology. It is a

systematic methodology that seeks to bridge the gap between theory and practice through iter-

ative analysis, design, development, and implementation, emphasizing on collaboration be-

tween researchers and practitioners (Wang & Hannafin, 2005). DBR provides insights on im-

proving teaching and learning using existing theories (Barab & Squire, 2004). DBL is a cyclical

methodology with phases and evolves through iterations.

According to EduTech Wiki by University of Geneva (2019), Design-based research can be

seen as a combination of action research and ordinary instructional methods such as ADDIE.

In this study, the author designed her instructional materials and pedagogical design based on

the feedback that she got during the intervention in the meetings of the coding club. However,

the design of the code club was based on an established instructional design model (ADDIE).

See Figure 1 to see how the ADDIE model was used in this thesis.

ADDIE is an instructional design methodology that consists of 5 phases; analysis, design, de-

velopment, implementation, and evaluation phases for creating and developing instructional

materials and learning objects that impacts knowledge and skills (Clark, 2011).

● Analysis phase: includes studying the context to understand it, identifying the problem,

existing knowledge gaps, constraints, and formulating goals and objectives to address

the identified needs.

● Design phase: includes elaborating learning objectives, sequencing the learning objec-

tives, creating learning scenarios for each objective, and outlining the learning materi-

als, tools, materials, and equipment needed.

● Development: This phase includes producing the instructional or learning materials.

● Implementation: This phase includes conducting teaching experiments or lessons to test

learning materials.

● Evaluation: This phase involves eliciting tools to measure and monitor the effectiveness

of the intervention. Summative and formative methods are used to assess whether the

learning materials achieved set objectives.

20

Figure 1 Description of how ADDIE model was used in this thesis

4.1 Participants and Context

The context of this study was an after-school coding club in a primary school in the northern

part of Finland. A total of 17 children (8 girls and 9 boys aged 6-8) were selected to participate

in the lessons organized in the coding club. Sampling of the participants was based on their

previous coding experience (no experience / any experience). However, only 13 out of the se-

lected 17 fulfilled the criterion with the other 4 participants randomly selected from the rest of

the applicants who had coding experience.

Code club meetings were organized into 8 lessons, where each lesson lasted for 45 minutes.

The author of the study was the designer of the activities and materials. She was also the re-

sponsible teacher in the club, although she got help from participants’ parents and other stake-

holders.

The sessions were arranged in a school computer laboratory. Each participant received an iPad

labelled with their names that they used to do the required plugged coding exercises in the

Analysis

• Finding information about the age, ability to speak and understand English, ability to read, spell and write

• Finding resources available such as classroom, iPads with Scratchjr

• Time allocated for each club session

Design

• Outlining objectives for lessons

• Outlining tools and resources needed for developing instructional materials

Development
• Creation of unplugged materials for computational thinking concepts

Implementation • Testing of designed materials at the after-school coding club

Evaluation • Analysis of students work using a developed coding scheme

21

context of the club. Scratchjr was used as the coding tool (see Figure 8) to teach computational

thinking in the context of the plugged coding part of the design.

4.2 Pedagogical Design

4.2.1 Design Principles which were used to guide instructional design and pedagogical activi-

ties

Learning theories and methodologies influenced the design of the coding and unplugged mate-

rials. Reigeluth (2013) suggests theories and methodologies for sequencing and delivering les-

sons. The basics of the design included three major objectives: 1) Learning objectives guides

the planning and delivery of lessons. It also guides the assessment of pupil and instructional

material. It defines the topics and concepts to be covered as well as the level of understanding

for them hence its suitability for assessing learning; 2) In designing coding instructions, worked

examples were used to facilitate the process of knowledge transfer thus to the reduce cognitive

effort needed to master CT and coding concepts; 3) Assessment is a tool to identify and measure

the comprehension of the pupils. Pupils often have different attitudes towards learning; deep

and surface learning (Harlen & James, 1997). While deep learning pupils seek to understand

and obtain mastery, surface learning pupils seek to reproduce content, get good grades as an

indicator of performance. Understanding concepts enables pupils to use and reproduce the

knowledge acquired in other contexts (Harlen & James, 1997). In the context of this study, the

author made use of self-assessment during the entire 8 weeks to effect changes in the instruc-

tional materials and pedagogical materials when needed. This reflection can be seen from the

personal diary (Appendix II).

Instructional design and pedagogical activities were also influenced by concepts like: 1) Au-

thentic learning: This type of learning supports learning by providing real life examples that

pupils can relate to; 2) Direct instruction: This approach was for scripting both coding and

unplugged activities instruction; 3) Hands-on-learning: It provides opportunities for exploring,

discovering and experiencing concepts; 4) Scaffolding: This approach was used to support and

facilitate pupils who needed help to understand and reach their stage of Zone of Proximal De-

velopment; 5) Personalization: Customizing opportunities within the instructional materials to

accommodate the personal needs of pupils. Personalization was achieved by providing gender

specific stickers and accommodating the different routines of pupils. For example, while some

22

pupils dress up before eating, some dress up after eating; 6) Worked example: Solved examples

with steps reduces the cognitive load used for knowledge and skill acquisition and improve

learning as a result.

4.2.2 General overview of the instructional design

Pupils had the opportunity to use the concepts they have learned in previous lessons. For ex-

ample, the decomposition unplugged lesson followed the algorithm lesson. During the decom-

position lesson, the worksheet was designed to breakdown the weekly activity performed by

pupils according to the days of the week. Within this lesson, the concept of algorithms was

reinforced by creating an algorithm of daily activities for each day of the week. Through this

lesson, pupils learned to do some activities that repeat such as waking up, eating, and sleeping.

The plugged version of this lesson made use of repeat blocks in Scratchjr to teach the concept

of repetition while applying the start and end blocks used in the algorithm (sequence). Pattern

recognition is the follow up lesson where pupils identified similar patterns within their routines.

With this incremental learning approach, the pupils would master the concepts despite the lim-

ited time available.

The 7th and 8th lessons were designed purposely to assess the CT and coding knowledge of

pupils. One task was to write a story. The pupils were given prompts to guide them to write

animated stories. A Scratchjr program was run and pupils had to write the code. This is an

assessment prescribed by the creators of Scratchjr. Assessment for learning was used to evalu-

ate pupil's comprehension of CT and coding concepts. This was achieved by evaluating pupil’s

work products for evidences of understanding. The success criteria for the instructional mate-

rials was the ability of pupils to apply the concepts learned to create a Scratchjr program. Self-

efficacy questionnaires were used to understand the perceived confidence of learned regarding

their knowledge of CT concepts and coding.

4.2.3 Lesson plans for unplugged and plugged coding activities

Using the information obtained after analyzing the context and participants, preliminary lesson

plans were drafted for the plugged and unplugged lessons (See Tables 2 and 3). The main target

for lesson plans was to 1) integrate computational thinking concepts into the design of coding

lessons; 2) design authentic lessons where pupils would be engaged with unplugged coding

23

tasks (basics of the CT connected with real-life examples) and then 3) smoothly introduce par-

ticipants to plugged coding tasks.

In the coding club design, the unplugged part of the lesson featured one CT concept. The CT

concept was taught during the first 15 minutes. A simple definition of the concept is given

followed by an explanation of the concept using storyboards, and stickers. The stickers and

worksheet were packaged for each pupil due to the time constraints. The pupils were expected

to put the stickers on the storyboard using glue tag given by the teacher. An alternative approach

would have been to allow the pupils to cut the stickers themselves through which they would

have acquired handicraft skills. However, due to the time constraints, the stickers were pre-cut.

Table 2 Unplugged Lesson Plan with description of activities and Computational Thinking concepts

Week Description Unplugged activity CT concept

1 Pupils are introduced to binary

code as the language comput-

ers understand. Pupils were

given binary code for the al-

phabet and are asked to write

their names in computer lan-

guage.

Introduction to computing lan-

guage with binary coding activ-

ity.

2 Pupils are introduced to algo-

rithms using their daily rou-

tines.

Introduction to algorithms using

algorithm worksheet

Algorithms

3 Pupils are introduced to de-

composition using their daily

routine for a week. Pupils are

asked to break down their rou-

tine for the week based on the

day. They are also asked to

identify activities they do

every day and those they do

only on some days.

Introduction to decomposition

and pattern recognition using de-

composition and algorithm

worksheets.

Decomposition and pattern

recognition

4 Pupils were introduced to deci-

sion making by organizing ac-

tivities and clothes based on

the season.

Introduction to decisions making

using a worksheet

Decision making

24

The plugged coding lesson part further explained the CT concept by applying it through

Scratchjr exercises. For example, in the unplugged lessons, a pupil can create an algorithm of

their daily routines. A simple example is the flow of day: from the first thing done in the morn-

ing to the last thing done before sleeping. The principle behind this kind of algorithm lesson is

sequencing. The understanding of the sequencing concept can be further elaborated as a coding

concept by teaching them how to use Scratchjr to create code. In practice, they were shown

how to use a start and an end point blocks in their Scratchjr code and how to put other blocks

of the code in between them logically.

Table 3 Plugged Lesson Plan with Scratchjr describing activities and CT concepts

Week Description Plugged activity with

Scratchjr

CT Concept

1 Introduction to Scratchjr interface Introduction to Scratchjr

2 Learning about sequences using mo-

tion blocks

Using start and end blocks to start and

end Scratchjr code

Introduction to algorithms

using sequences

Algorithms and sequen-

ces

3 Learning repetition using the numbers

on Scratchjr blocks, repeat block and

forever block

Continue to learn how to use the repeat

and forever block

Introduction to controls Repetition

4 Learning to use color coded message

blocks to send and receive messages to

and from Scratchjr characters.

 Decisions

5 Learning to modify Scratchjr charac-

ters and background, add sound

blocks, record sounds, and modify

characters with pictures taken with

camera. In this lesson, pupils include

Introduction to abstractions Abstraction

5 Learning to include (add) or

exclude(remove) activities to

and from their daily routines.

Introduction to abstraction using

a worksheet that simplifies the

process.

Abstraction

25

and exclude by modifying some de-

fault features with Scratchjr. Also, pu-

pils get to decide the blocks important

for their code and those that are not.

6 Revising learned CT concepts. Pupils

reviewed the concepts by writing

Scratchjr code that demonstrates con-

cepts. This prepared them to create

their own Scratchjr projects.

Revision of Concepts Algorithms, decompo-

sition, decisions, and

abstraction

7 Creating a story or game using the

concepts that have been taught.

Create your own project Algorithms, decompo-

sition, decisions, and

abstraction

8 Continuation of project and wrapping

up. Taking self-efficacy survey to

evaluate one’s beliefs

 Algorithms, decompo-

sition, decisions, and

abstraction

Table 4 Integrating computational thinking concepts between unplugged and plugged (coding) activities

CT concept Unplugged Ac-

tivity

Coding Acti-

vity

Simple Explanation of

concept

Rational of concept from lit-

erature

Algorithms Write an algo-

rithm for daily

routine

Write a

Scratchjr code

to move a

character from

one point to

another

Sequence of activities

with start and finish

end points

“designing a step-by-step so-

lution to a problem” (Man-

nila, et. al 2014)

Decomposition

and Pattern re-

cognition

Write an algo-

rithm for

weekly routine

Write a

Scratchjr code

for a character

to do some-

thing repeat-

edly

Decomposition: Break

down given the prob-

lem to identify the

basic components.

Pattern recognition:

Identify actions that oc-

cur more than once.

“formulating a solution to a

larger problem and breaking

the solution down into

smaller tasks to be dealt

with” (Mannila, et. al 2014)

Pattern recognition “is ob-

serving patterns, trends, and

regularities in data” (Man-

nila, et. al 2014)

Decision ma-

king

Write an algo-

rithm to do

something

Write a

Scratchjr code

to control the

Presence of start and

end blocks.

Use of control blocks

Using cognitive skills or

strategies to evaluate out-

26

4.3 Instructional materials and tools

4.3.1 Activity worksheets for unplugged coding activities

Stickers for unplugged coding with activity worksheets

This sheet (Figure 2) shows sample stickers used by pupils while learning concepts of compu-

tational thinking using activity worksheets. All examples below are from the situation where

based on the

season

movement of a

character

for sending and receiv-

ing message using

color coded start blocks

comes of our thought pro-

cesses (Halpern, 1998)

Abstraction Write an algo-

rithm to show

important rou-

tines in a day

Write a

Scratchjr code

to include im-

portant blocks,

background, or

character

Simplifying things by

hiding some details

(adding important

things and removing

unimportant things)

“is identifying and extracting

relevant information to de-

fine main idea(s)” (Compu-

tational Thinking Concept

Guide, n.d)

Figure 2 Stickers for unplugged activities

27

stickers are used with the (initially) empty forms. Stickers can be customized to fit into each

learning situation and need.

Algorithm worksheet – recognizing daily routines

The purpose of the worksheet is to help in the teaching and learning of algorithms through daily

routines. The pupils are required to use stickers to outline their daily routine from the very first

thing they do in the morning to the last thing done in the evening. The numbers in the worksheet

guides the pupils to organize their daily routine in an orderly sequence. See Figure 3.

Figure 3 Algorithm worksheet describing the daily routine of pupils as an algorithm

Decomposition Worksheet – weekly routines were broken down by week days

This worksheet supported the teaching of decomposition. See Figure 4. The weekly routine of

the pupils was broken down by the days of the week. The pupils were required to outline their

routines for each of the days in an orderly manner. This worksheet also enforced the application

28

of algorithms from the previous worksheet. Pupils identified repeated routines by themselves

or are prompted to do so by the teacher. The numbers again guided the pupils to outline routine

in an orderly sequence.

.

Pattern Recognition Worksheet – weekly activities were organized into repeated and non-re-

peated activities

This worksheet follows the decomposition worksheet. Pupils identify the routines they do every

day and those they do only on some days. The worksheet seeks to help pupils identify repeated

routines and those that are not repeated as shown in Figure 5.

Figure 4 Decomposition worksheet to break weekly routine of leaners by the day of the week

29

Abstraction Worksheet – important weekly activities were chosen to be included into daily rou-

tines

The abstraction worksheet seeks to support the teaching and learning of the concept of algo-

rithms through the addition or removal of certain activities from the daily routine of pupils. See

Figure 6.

Figure 5 Pattern Recognition worksheet to organize weekly routine into repeated and non-repeated
activities

30

Figure 6 Abstraction worksheet to choose important activities to include in daily routine

Decision Worksheet – deciding the action to take depending on the season (winter or summer)

This worksheet (See Figure 7) teaches decision-making using certain conditions. It is used to

explain why and how we make decisions daily. Pupils state an activity they engage in depending

on a condition. For example, they go skiing if it is winter and swimming if it is summer. Pupils

are encouraged to come up with their own conditions and make the necessary decisions.

31

4.3.2 Using Scratchjr as a tool to teach computational thinking

With ScratchJr, young children (ages 5-7) can program their own interactive stories and games.

In the process, they learn to solve problems, design projects, and express themselves creatively

on the computer. Figure 8 shows the main interface of the tool where users can add/edit char-

acters, add/edit scenes and create actual code. More information about Scratchjr can be found

from their website (https://www.scratchjr.org/).

The example coding area (bottom of Figure 8) has two code snippets: the left code has an ex-

ample where the cat will go one step forward and then jump 4+2 times if user clicks the flag

(trigger). On the bottom-right side is an example of the code where code will be executed four

Figure 7 Decision worksheet for deciding the action to take depending on whether it is winter or summer

https://www.scratchjr.org/

32

times (loop block) after the user has touched the cat. Inside of the loop is a code snippet to spin

the cat.

Figure 8 Scratchjr interface showing how blocks can be used to animate characters

Scratchjr was used as a programming tool in the coding club to continue with computational

thinking concepts taught in the unplugged parts of the course activities (see Tables 2 and 3).

Next worked examples will show how Scratchjr was used to teach computational thinking con-

cepts.

Algorithm is a sequence of steps for doing a task

Algorithm is a sequence of steps for doing a task. Sequence is a specific order of doing some-

thing starting from the first thing to the last thing to be done. For example, an algorithm for

the day can start with waking up, followed by a sequence of activities (brush your teeth, bath,

eat breakfast, to the last activity, sleep). At the programming level, algorithms can be ex-

plained using start (triggering blocks), a sequence of other blocks and end with an end block

(See Figure 3). In Scratchjr, the yellow blocks are triggering blocks that are used to start or

trigger a character to do something. Red blocks are used to end a Scratchjr program (code).

The blue blocks represent motion blocks used to move the characters around the stage. The

mauve and green blocks are used to change the look of characters and add sound to code re-

spectively.

33

Figure 9 illustrates how algorithms were introduced in Scratchjr. The task given was to write

an algorithm to make the cat move to the position of the hen. Figure 9, presents one solution to

the task. There are 4 alternative ways to make the cat move to the position of the hen using the

concept of repetition. See Figure 10 (A, B, C, D).

Figure 9 Example of how algorithm and sequence can be taught in Scratchjr

Repetition – doing something over and over again.

Repetition simply means to do something over and over again. Figure 10 demonstrates 4 ways

repetition was taught using Scratchjr.

1. The first way is to change the number on the motion block to 10. This reduces the

number of individual motion blocks used in Figure 9 to 1 motion block as shown in

Figure 10 (A)

2. The second and third way is to use the repeat block to repeat a sequence. See Figure

10 (B and C). The difference between Figure 10 (B and C) is the numbers on the

blocks.

3. The fourth way is use a forever block to make the cat move to the hen repeatedly with-

out stopping (See Figure 10 (D)).

34

4. In coding, it is possible to generate multiple code to accomplish the same function and

must be noted that some solutions are more optimal than others. Figure 9 and Figure

10 (A, B, C, and D) demonstrates how this is possible.

Decision – making selections based on some conditions

Figure 10 Multiples ways to achieve repetition in Scratchjr

Figure 11 Example of how to teach decisions in Scratchjr

35

Decision involves making a selection based on some condition. The color of message blocks is

used to control the actions of the cat. Pupils had to decide what actions they wanted the cat to

take. In Scratchjr, decision making can be taught using the color of the message block (See

Figure 11).

Abstraction

Abstraction is about simplifying and representing concepts at a higher level by including only

relevant concepts. Figure 12 illustrates how an abstraction was introduced in Scratchjr. Here,

pupils had to include things that are important for their code. The relevant aspects emphasized

are to include a start and end blocks in addition to others blocks that the leaners deemed im-

portant for the task given.

Figure 12 Example of how to teach abstraction in Scratchjr

36

4.4 Data collection

The data of this thesis consisted of the artefacts produced by pupils (unplugged coding materials

i.e. task sheets and plugged coding products i.e. Scratchjr codes), notes taken by the author of

the thesis and self-efficacy questionnaires concerning the coding and computational thinking

concepts.

4.4.1 Collecting task sheets from unplugged coding phase and scratch code from unplugged

code phase

All work products done in the unplugged and plugged coding phases were collected and ana-

lyzed. Work products were task sheets from the unplugged activities and Scratchjr programs

from the respective coding lessons.

4.4.2 Lesson diary as a background material

The author of this thesis kept a lesson diary which is used as a material in this study. The author

wrote short descriptions about each lesson in order to develop the course design and instruc-

tional materials, and to also help with later research reporting.

4.4.3 Self-efficacy questionnaires for measuring pupils’ beliefs how they can perform CT tasks

Self-efficacy measures the innate ability of individuals to accomplish a goal or perform a task.

In this study, a questionnaire which included coding and computational thinking questions was

developed to explore the self-efficacy of the pupils at the end of the code club. The self-efficacy

questionnaire was based on Bandura’s self-efficacy scale which places emphasis on the “Can”

judgement of competence (Bandura, 2005). The following are examples of the scale constructed

(See Appendix I for the detailed form)

1. I can add characters to my code

2. I can code characters to move

3. I can use motion blocks to make a character move

4. I can write a story in Scratchjr

37

The items in the scale were presented on a 100 point scale starting from 0 (cannot do it at all)

through to 20, 30 through 50 (not too sure can do it), 60 – 70 (pretty sure can do it), and 80

through 100 (certain can do it).

4.5 Data analysis

Data analyzed for this thesis includes the self-efficacy questionnaire and the work product of

pupils. First, examples of Scratchjr projects of some pupils are presented and examined for CT

concepts. A Mann-Whitney U test was used to analyse the self-efficacy responses of pupils to

identify the differences in the abilities of pupils in different groups thus males and females, and

pupils with prior and no experience in coding. The findings are presented here.

4.5.1 Using Mann-Whitney test to compare differences between girls and boys, but also non-

experienced and experienced coders

The Mann‐Whitney U test is a nonparametric test conducted to explore statistically significant

differences between independent samples (MacFarland, & Yates, 2016). The Mann-Whitney

test is appropriate for analyzing ordinal and non-normally distributed data. It compares at least

two of the sample means derived from the one population and examines if the means of the

sample are the same (McKnight, & Najab, 2010).

In this thesis, pupils were included to the sample based on their prior coding experience. Par-

ticipating pupils were also divided by their gender (8 girls, 9 boys), so Mann-Whitney U-test

was used to explore the differences between both conditions (boys vs girls and experience vs.

no-experience). Those grouping conditions were used to explore differences between the means

in the self-efficacy questionnaire data about coding and computational thinking.

4.5.2 Evaluating unplugged (worksheets) and plugged coding (Scratchjr code) activities

To identify and assess learning, coding schemes were developed for both unplugged (Table 5)

and plugged learning activities (Table 6). Criterions used in the coding schemes were based on

existing framework by Brennan & Resnick (2012). Unplugged activities were coded by analyz-

ing how pupils had used stickers on their worksheets. For example, pattern recognition concept

was understood when pupils were able to identify the activities they do daily and also activities

that they do sometimes.

38

Plugged coding was assessed by analyzing code snippets done by the pupils. The ability to use

the appropriate blocks in the right order to accomplish the task was an example of using com-

putational thinking concept in the code.

Table 5 Coding scheme for evaluating unplugged worksheets

CT concept Description

Algorithm Pupils must start their code with the first thing they do in the morning to the last

thing they do in the day. Pupils are expected to organize their daily activities in a

sequence.

Decomposition Pupils must organize their daily activities in order. An algorithm for each day must

be created.

Pattern recognition Based on the decomposition, pupils are to identify the activities they do every day

and those they do on somedays.

Decisions Pupils are to make decisions based on the time of the year (winter or summer). It is

expected that the pupil can place the stickers at the right places.

Abstraction Ability to select important activities or routines for the day in addition to other ac-

tivities that the pupil considers important for their daily routine.

Table 6 Coding scheme for evaluating Scratchjr projects

CT concept Coding Concept Block Description

Algorithms Sequence Start (Triggering)

End (Block)

Pupil must start their

code with a start block

and an end block. In be-

tween these two blocks,

are motion blocks.

Decomposition and Pat-

tern recognition

Repetition Start block

Repeat block

Forever block

End block

Presence of start and end

blocks.

A sequence of motion

blocks using either repeat

or forever blocks.

39

Decision-making Conditionals Start block

Control blocks

End block

(optional)

Repeat block Forever

block

Presence of start and end

blocks.

Use of control blocks for

sending and receiving

message using color

coded start blocks.

Abstraction Start block

Look blocks

Sound blocks

End block

Modifying characters

(optional)

Repeat block Forever

block

Message block

Presence of start and end

blocks.

Using sound and look

blocks. Recording one’s

own sound

Modifying characters

with camera taken pic-

tures

Create your Scratchjr

Project (Story)

Sequence

Repetition

Conditionals

Start block

Look blocks

Sound blocks

End block

Modifying characters

Repeat block Forever

block

Message block

Presence of start and end

blocks.

Appropriate use of

blocks.

(optional)

Decomposition of story

into scenes using pages

of Scratchjr

4.5.3 Ethical issues

Permission forms were sent to parents of the participants to get their permission to collect the

data of their wards and include it to research data repositories.

The data collected included worksheets, Scratchjr projects, and self-efficacy responses to ques-

tionnaire which all were used to assess participant’s knowledge and ability to code. An example

of a participant’s work was used to illustrate how learning took place and the effectiveness of

instructions. The recorded observations with notes were done by the author of the study (see

Appendix II).

All the data was stored into university data storage and kept there as anonymized to ensure that

the participant’s identity is protected.

40

5 Results

5.1 How were unplugged and plugged coding activities designed in order to introduce

computational thinking concepts to pupils?

Evaluation is the last phase of the ADDIE method used for this thesis (see Figure 1). It is also

crucial part of the cyclical nature of the design-based research. Due to time constraints in the

context of this study, only minor iteration cycles were possible to implement.

Most of the activities related to this research question are presented in the methods section in

the form of pedagogical practices and instructional materials. In this section, one example of

the iterations done in the context of this study is presented. Development of the unplugged

instructional materials is described below.

5.1.1 Prototypes with minor improvements in unplugged materials

Minor changes were made to the unplugged materials before testing them at the after-school

coding club, during, and after each coding club session. Changes made to the 1st prototype of

the algorithm worksheet affected the 1st prototypes of the decomposition and pattern recogni-

tion worksheets. The changes included the addition of numbers to the worksheet to guide the

pupils to organize their routine in an orderly fashion. The stickers for the worksheets were

changed as well.

After the lesson that used the algorithm worksheet proved successful with the numbers, the

decomposition and pattern recognition worksheets were redesigned during the implementation

of the coding club in a similar fashion with the goal to scaffold the learning process. Changes

made to the decision worksheet occurred after the implementation of the lesson. During the

decision lesson, it was realized the decision pupils had to make did not match the predefined

set of actions. This led to a little confusion among the pupils which was quickly clarified by

explaining the concept and the idea behind the worksheet a wee bit more.

There was a need to redesign the decision worksheet. The abstraction worksheet underwent

minor changes during the period of the coding club prior to the lesson on abstraction to make

the worksheet friendlier and easier to use. See Table 7.

Table 7 Prototype worksheets for unplugged activities with changes made to improve worksheet

CT concept 1st Prototype Current Prototype Changes Made

Algorithms Redesign of worksheet. Addition

of numbers to guide pupils to or-

ganize their daily routine orderly.

Decomposi-

tion

Redesign of worksheet by organiz-

ing weekly routine in one table to

make it easier to use.

42

Pattern

recognition

 Redesign of worksheet by chang-

ing the goal of the task from school

and non-school day activities to

daily and nondaily activities. This

was done to simplify the task for

pupils.

Decisions

 Redesign of worksheet to include

good description of the actions

leaners will take when a condition

is fulfilled.

43

Abstraction

 Redesign by reorganizing the look

of the worksheet to be friendlier.

Text was added to make the work-

sheet self-explanatory

RQ2: How were pupils’ understanding of basic computational thinking concepts visible

in the artefacts that they did produce during the coding club?

In this section, pupils’ understanding of the basic computational thinking concepts will be pre-

sented in the form of examples from the unplugged and plugged coding tasks, as well as results

of the assessment of the pupils’ artefacts (activity sheets) and code (Scratchjr projects).

5.1.2 Examples of the artefacts created by pupils in the unplugged activities

In this section, examples of how pupils interacted with unplugged material are explained. There

were some differences in the worksheet of pupils. See Figures 13 and 14. While some dressed

up before eating breakfast, others ate breakfast before dressing up. This shows how the work-

sheet accommodated the routine structure of each pupil, enabling personalization. Provisions

were made for gender-specific stickers for boys and girls as shown in the Figures 13 and 14.

Figure 13 1st example of how pupils interacted with algorithm worksheet

45

Figure 14 2nd example of how pupils interacted with algorithm worksheet

 Figure 15 Example of how leaners interacted with the 1st prototype decision worksheet

5.1.3 Pupils’ performance in plugged and unplugged activities

After analyzing pupils’ work products thus Scratchjr projects and unplugged activity work-

sheets, some pupils succeeded in performing the task given (see Tables 8 and 9). However,

some were not very successful. Their work did not show evidence of the criteria described in

Tables 5 and 6. It can however be concluded that many of the pupils did excel at the task given

and hence the intervention was effective.

46

Table 8 Pupils’ performance in unplugged worksheets

CT concept No of pupils who par-

ticipated

No of pupils who suc-

ceeded

No of pupils who did not

succeed

Algorithm 17 17

Decomposition 15 15

Pattern recognition 15 15

Decisions 12 12

Abstraction 15 15

Table 9 Pupils’ performance in Scratchjr projects

CT concept No of pupils whose

work were saved

No of pupils who suc-

ceeded

No of pupils who did not

succeed

Algorithm 13 13

Repetition 11 10 1

Decisions 10 6 4

Abstraction 9 6 3

Table 10 Examples of Scratchjr stories

Project Description Teacher’s Comment

Pupil 1: Figure 11 shows an ani-

mated cat moving up and down. In

this example, the pupil made use

of a start and an end block to start

and end code respectively. The pu-

pil made use of two different mo-

tion blocks 3 times to make the cat

move.

Teacher's comment: This pupil

could have made use of a repeat

block and one of each of the mo-

tion blocks instead.

47

Pupil 2: Figure 12 shows an ani-

mated lizard walking on a branch

of a tree. This pupil made used of

the start and end block to start and

end code. This pupil made use of

repeat and motion blocks to se-

quence the movement of the lizard

in a way the pupil desired.

Teacher’s comment: This pupil

demonstrated her ability to use the

blocks in the right context.

Pupil 3: Figure 13 shows an ani-

mated airplane flying. This pupil

designed an airplane, made use of

the start, repeat, motion and end

blocks to animate the airplane

Teacher’s comment: This pupil

made use of the blocks in a way

that demonstrates mastery of con-

cepts. The pupil did a good job to

design an airplane

Pupil 4: Figure 14 shows an ani-

mated ball. The pupil chose to ani-

mate a ball. The pupil selected a

space background and added a cat

and an astronaut. The movement

of the ball added a motion effect to

this code.

Teacher’s comment: This pupil

demonstrated mastery by making

use of the start, control blocks,

motion and end blocks to create a

meaningful animation.

5.2 What differences exist in the self-efficacy beliefs of learners regarding computa-

tional thinking and coding abilities with respect to prior experienced and gender?

An analysis of pupil’s self-efficacy beliefs in terms of their ability to write Scratchjr story was

conducted. The results revealed that 10 out of 11 pupils who participated in the survey believed

they could write Scratchjr a story. This demonstrates that pupils understood the concepts such

as algorithm and repetition and demonstrated this in their stories (see Table 11). The remaining

6 pupils were absent on that day.

48

Table 11 I can write a story in Scratchjr

 Frequency Percent Valid Percent Cumulative Percent

Valid 1,00 1 5,9 9,1 9,1

4,00 10 58,8 90,9 100,0

Total 11 64,7 100,0

Missing System 6 35,3

Total 17 100,0

In addition, self-efficacy questions related to their ability to apply computational thinking skills

in their daily lives revealed that 8 out of the 10 pupils who participated were certain of their

ability to apply algorithms to their daily routines. 1 pupil was not too sure, and the remaining

pupil was not sure at all that (s)he could apply algorithms in their routine (see Table 12).

Table 12 When I do my daily routines, I apply algorithms

 Frequency Percent Valid Percent

Cumulative Per-

cent

Valid 10 1 5,9 10,0 10,0

50 1 5,9 10,0 20,0

90 2 11,8 20,0 40,0

100 6 35,3 60,0 100,0

Total 10 58,8 100,0

Missing System 7 41,2

Total 17 100,0

Differences in the self-efficacy beliefs of the pupils

A Mann-Whitney test conducted revealed that there were slight differences between the self-

efficacy beliefs of pupils to code and perform simple computational thinking tasks though the

difference is not significant. The Mann-Whitney test revealed that boys had a greater (Mdn =

6.00) self-efficacy belief to code a story in Scratchjr than girls (Mdn = 5.17), U= 10.000, p=

49

0.414 (see Appendices III and IV). The test showed that there was a difference in the ability of

pupils to think computationally. Questions were asked related to their ability to apply CT con-

cepts such as algorithms in their daily routine. Both boys and girls reported the same self-effi-

cacy beliefs in terms of their ability to apply computational thinking concepts to their daily

routine (When I do my routines, I apply algorithms). They had the same self-efficacy beliefs

although the difference was not significant (Mdn = 5, U=12.000, p=0.881). See Appendices V

and VI.

Another Mann-Whitney test conducted revealed that pupils who had prior coding experience

had higher self-efficacy beliefs than pupils who had no prior experience. The test showed that

pupils who had prior coding experience were more confident of their ability to write a story in

Scratchjr (Mdn = 6) than pupils who had no prior coding experience (Mdn = 4) though the

difference is not significant statistically (U = 10.000, p = 0.414). See Appendices VII and VIII.

Also pupils, with prior coding experience were more confident of their ability to think compu-

tationally (When I do my routines, I apply algorithms), (Mdn = 6) than pupils with no such

prior experience (Mdn = 4) although the difference is not statistically significant (U = 8.000, p

= 0.476) See Appendices IX and X.

50

6 Discussion

The main purpose of this thesis is to design, and test unplugged computational activities that

aim to introduce coding to pupils. To achieve this, unplugged worksheets were created for com-

putational thinking concepts. In addition, Scratchjr lessons were designed to integrate compu-

tational thinking concepts into coding lessons.

6.1 How were unplugged and plugged coding activities designed in order to introduce

computational thinking concepts to pupils?

Scratchjr, the block-based coding application supports the teaching and learning of computa-

tional thinking concepts. Computational thinking concepts such as algorithms, decomposition,

pattern recognition, decision making, and abstraction can be practiced in Scratchjr.

Firstly, unplugged activities were designed for each computational thinking concept. The equiv-

alent coding concept, if exists, was identified. The unplugged activity was used to introduce the

computational thinking concept. Afterwards, its equivalent coding concept was used to rein-

force the concept. Pupils had the opportunity to learn about computational thinking concepts

and practice or apply them in the context of Scratchjr. Using the Scratchjr blocks such as trigger

(start), end, motion, looks, sound, and control blocks, computational thinking concepts were

taught to pupils. They were then given tasks to do. The solutions they produced for the tasks

given had to demonstrate evidences of computational thinking concepts in their Scratchjr pro-

grams. In Scratchjr, an algorithm is equivalent to sequence.

The stories pupils created could be just a page or not more than 4 pages. For a story of one page,

a sequence of blocks with starting and ending points must be present. This represented an algo-

rithm. For stories of more than a page, the pupils had to break down the stories into scenes and

identify the needed scenes such as where the story starts and where it ends as well as the scenes

that come in between the start and end. Breaking down the story is known as decomposition in

computational thinking. For the concept of decomposition, they had to identify patterns in their

stories that repeat. The identified repeated patterns can be implemented using relevant blocks

(repeat or forever block) for repeating a sequence in Scratchjr. Abstraction, another computa-

tional thinking concept was connected to Scratchjr. Abstraction was evident when pupils were

able to include important scenes in their Scratchjr stories. Important scenes that were used to

examine pupils’ stories included the presence of starting and ending scenes. The pupils had the

51

opportunity to modify the characters as part of abstraction when the pupils deemed it relevant

for their story. Using Scratchjr, abstract computational thinking concepts can be taught, prac-

ticed and applied in coding. Table 4 shows how unplugged activities were integrated into coding

activities. Also, Table 10 shows examples of Scratchjr stories created by pupils.

6.2 How were pupils’ understanding of basic computational thinking concepts visible in

the artefacts that they did produce during the coding club?

During the process of creating an algorithm for their daily and weekly routines, pupils were

exposed to computational thinking concepts such as algorithms, decomposition, pattern recog-

nition, repetition and abstraction. Adapting these computational thinking concepts to coding in

the context of Scratchjr gave pupils the opportunity to explore these concepts further to gain

more understanding. When Scratchjr written by pupils run, they see the outcome, debug, and

make the necessary changes in their program (stories). There are similar evidences that pupils

learn computational thinking skills through coding (Chalmers, 2018; Marcelino, Pessoa, Vieira,

Salvador, & Mendes,2018) or through unplugged activities (Curzon, 2013; Brackmann, 2017).

By evaluating pupils work products including Scratchjr projects and unplugged activities, I no-

tice how pupils applied the concepts to write their own algorithms and animate characters in

Scratchjr. See Table 10 for different stories pupils wrote to demonstrate their understanding of

Scratchjr stories. Figures 13 and 14 show alternate ways pupils wrote an algorithm for their

daily routines. It must be noted that pupils should be encouraged to be creative in generating

solutions if the important components are present. For example, in Scratchjr, the ability of pu-

pils to use important blocks such as the start and end blocks, together with the correct sequence

of blocks served as evidence to demonstrate their understanding of the sequence, a computa-

tional thinking concept. A similar concept was used to determine if pupils understood compu-

tational thinking concepts in the unplugged lessons. Pupils demonstrated their understanding of

algorithms, a CT concept when they created an algorithm for their daily routine such that it

shows the first thing they do in a day (which is to wake up) and the last thing they do (which is

to sleep) together with the correct sequence of other activities they do in a day.

52

6.3 What differences exist in the self-efficacy beliefs of learners regarding computa-

tional thinking and coding abilities with respect to prior experienced and gender?

To argue further that pupils understood the computational thinking concepts they were intro-

duced to, frequency statistics conducted on the self-efficacy beliefs of pupils revealed that many

of them were sure they could apply computational thinking concepts to their daily routines and

could also write Scratchjr stories. In addition, Mann-Whitney statistics tests were conducted to

identify differences between the self-efficacy beliefs of girls and that of boys as well as pupils

who had prior coding experience and those who did not. The tests revealed slight differences

between the self-efficacy beliefs of boys and girls as well as pupils who had prior and no coding

knowledge prior to taking this computational thinking lesson.

53

7 Conclusion

In this research, the need for creating materials for teaching and learning computational think-

ing were identified. The concept of computational thinking was explored leading to the identi-

fication of key concepts such as algorithms, decomposition, pattern recognition, abstraction and

decisions. The study focuses on designing teaching and learning materials for computational

thinking and coding. The materials make use of real-life experiences of pupils to explain com-

putational thinking concepts. The daily and weekly routine of pupils were used to explain CT

concepts such as algorithms, decomposition, pattern recognition, and abstraction. Seasons such

as winter and summer were used to explain conditionals or decision-making. Each worksheet

came with a set of stickers because of the age and English-speaking ability of the pupils.

The study also explored ways in which computational thinking can aid the understanding of

coding concepts. Using Scratchjr, computational thinking concepts were mapped to coding con-

cepts. The success achieved in using this approach to explain coding concepts is attributed to

the real-life experiences used to explain computational thinking concepts.

The work products pupils produced were used to evaluate their comprehension of the concepts

taught. In addition, Bandura’s self-efficacy questionnaire was used to examine the perceived

self-efficacy beliefs of the pupils. It was identified that the pupils who had prior coding experi-

ence were more confident of their ability to think computationally and code than pupils with no

prior experience though the difference was not significant. Also, while boys were more confi-

dent of their ability to code than their ability to thinking computationally, girls were more con-

fident about their ability to think computationally. Based on these findings, coding can be in-

troduced to novices using real-life computational thinking concepts.

CT has the potential to equip pupils with the ability to code. Computational thinking concepts

can be integrated into coding lessons when teaching coding. Activities for teaching and learning

can include plugged and unplugged activities. Unplugged activities provide a means to explore

abstract computational thinking concepts using real-life experiences. This enhances the under-

standing of pupils.

The designed materials when tested during the after-school coding club proved successful after

evaluating the work products of leaners. In general, the pupils were successful in the tasks they

were given. They were able to apply the concepts learned in their Scratchjr projects. Also, the

pupils reported positive self-efficacy beliefs which indicates that they understood the concepts

54

taught. Based on these evidences, it can be concluded that the designed instructional materials

were effective as aids for teaching and learning computational thinking.

Conditions such as age, prior knowledge, and English-speaking ability affected the design of

lesson materials. Hence future replication may require changes in the plan to accommodate the

new context. This thesis serves as an example of how to design unplugged activities for teaching

and learning computational thinking as well as how computational thinking concepts can be

integrated into coding activities using Scratchjr.

Future research directions include conducting more tests to validate and improve unplugged

instructional materials and the creation of new materials for other CT concepts.

55

References

Balanskat, A., & Engelhardt K. (2015). Computing our future. Computer programming and

coding. Priorities, school curricula and initiatives across Europe.

Barr, D., Harrison, J., & Conery, L. (2011). Computational Thinking: A Digital Age. Retrieved

from https://files.eric.ed.gov/fulltext/EJ918910.pdf

Bandura, A. (2005). Guide for constructing self-efficacy scales. In Self-efficacy beliefs of ado-

lescents, 5(1), 307-337. (pp. 307–337). Retrieved from https://www.uky.edu/~eushe2/Ban-

dura/BanduraGuide2006.pdf

Barab, S., & Squire, K. (2004). Design-based research: Putting a stake in the ground. The jour-

nal of the learning sciences, 13(1), 1-14.

Bloom, B. S. (Benjamin S. (1956). Taxonomy of educational objectives; the classification of

educational goals,. Longmans, Green.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016). Developing

Computational Thinking in Compulsory Education. https://doi.org/10.2791/792158

Brackmann, C. P., Román-González, M., Robles, G., Moreno-León, J., Casali, A., & Barone,

D. (2017, November). Development of computational thinking skills through unplugged

activities in primary school. In Proceedings of the 12th Workshop on Primary and Second-

ary Computing Education (pp. 65-72). ACM.

Brennan, K., Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing

the development of computational thinking. IN AERA 2012. Retrieved from http://citese-

erx.ist.psu.edu/viewdoc/summary?doi=10.1.1.296.6602

Chalmers, C. (2018). Robotics and computational thinking in primary school. International

Journal of Child-Computer Interaction, 17, 93-100.

Clark, D. (2011). Instructional System Design: The ADDIE Model - A Handbook for Practi-

tioners. Retrieved from http://www.nwlink.com/~donclark/hrd/sat.html

Code.org. (2013). Curriculum Guide and Unplugged Lesson Plans Computer Science Funda-

mentals Courses A-F. Retrieved from https://code.org/files/CSF_CoursesA-F_Curricu-

lum_Guide.pdf

Cuny, J., Snyder, L., & Wing, J. M. (2010). Demystifying computational thinking for non-com-

puter scientists.

Curzon, P., McOwan, P. W., Plant, N., & Meagher, L. R. (2014). Introducing teachers to com-

putational thinking using unplugged storytelling. In Proceedings of the 9th Workshop in

56

Primary and Secondary Computing Education on - WiPSCE ’14 (pp. 89–92). New York,

New York, USA: ACM Press. https://doi.org/10.1145/2670757.2670767

Curzon, P., (2013). cs4fn and computational thinking unplugged. In Proceedings of the 8th

Workshop in Primary and Secondary Computing Education on - WiPSE ’13 (pp. 47–50).

New York, New York, USA: ACM Press. https://doi.org/10.1145/2532748.2611263

Design-based research. (2018, October 1). EduTech Wiki, A resource kit for educational tech-

nology teaching, practice and research. Retrieved 07:57, April 15, 2019 from http://edute-

chwiki.unige.ch/mediawiki/index.php?title=Design-based_research&oldid=69812.

Fuller, U., Johnson, C. G., Tuukka Ahoniemi, Kentacuk, Cukierman, D., Hernán-Losada, I.,

Jackova, J., … Thompson, E. (2007). Developing a Computer Science-specific Learning

Taxonomy. Developing a Computer Science-Specific Learning Taxonomy. ACM SIGCSE,

Bulletin, 39(4):152–170. Retrieved from https://www.cs.kent.ac.uk/pubs/2007/2798/con-

tent.pdf

Harlen, W., & James, M. (1997). Assessment and Learning: differences and relationships be-

tween formative and summative assessment. https://doi.org/10.1080/0969594970040304

ISTE, & CSTA. (2011). Operational Definition of Computational Thinking for k-12 Education.

Retrieved from http://www.iste.org/docs/ct-documents/computational-thinking-opera-

tional-definition-flyer.pdf?sfvrsn=2

Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon, L. (2012). A serious game for develop-

ing computational thinking and learning introductory computer programming. Procedia-

Social and Behavioural Sciences, 47, 1991-1999.

Lamagna, E. A. (2015). Algorithmic thinking unplugged. Journal of Computing Sciences in

Colleges, 30(6), 45–52. Retrieved from https://dl.acm.org/citation.cfm?id=2753036

Lambert, L. (2009). Computer science outreach in an elementary school. Journal of Computing

Sciences in Colleges, 24(3), 118–124. Retrieved from https://dl.acm.org/cita-

tion.cfm?id=1409896

Lave, J. (1988). Cognition in practice. Applied Cognitive Psychology, 4(6), 504–506.

https://doi.org/10.1002/acp.2350040610

LeMay, S., Costantino, T., O’Connor, S., & ContePitcher, E. (2014). Screen time for children.

In Proceedings of the 2014 conference on Interaction design and children - IDC ’14 (pp.

217–220). New York, New York, USA: ACM Press.

https://doi.org/10.1145/2593968.2610456

https://doi.org/10.1145/2532748.2611263

57

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by

choice: urban youth learning programming with scratch (Vol. 40, No. 1, pp. 367-371).

ACM

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., & Settle, A.

(2014, June). Computational thinking in K-9 education. In Proceedings of the working

group reports of the 2014 on innovation & technology in computer science education con-

ference (pp. 1-29). ACM.

Marcelino, M. J., Pessoa, T., Vieira, C., Salvador, T., & Mendes, A. J. (2018). Learning Com-

putational Thinking and scratch at distance. Computers in Human Behavior, 80(C), 470-

477.

MacFarland, T. W., & Yates, J. M. (2016). Mann–whitney u test. In Introduction to nonpara-

metric statistics for the biological sciences using R (pp. 103-132). Springer, Cham.

Namukasa, I. K., Kotsopoulos, D., Floyd, L., Weber, J., Kafai, Y., Khan, S. Somanath, S. (n.d.).

From computational thinking to computational participation: Towards Achieving Excel-

lence through Coding in elementary schools. Retrieved from http://researchideas.ca/cod-

ing/docs/CT-participation.pdf

Nishida, T., Kanemune, S., Idosaka, Y., Namiki, M., Bell, T., & Kuno, Y. (2009). A CS Un-

plugged Design Pattern. Retrieved from http://www.computacional.com.br/arquivos/Arti-

gos CS Unplugged - Desplugado/NISHIDA - A CS Unplugged Design Pattern.pdf

O’Neill, G., & Murphy, F. (2010). UCD TEACHING AND LEARNING/ RESOURCES Guide

to Taxonomies of Learning ASSESSMENT. Retrieved from http://www.ucd.ie/t4cms/ucd-

tla0034.pdf

Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. New York: Basic

Books, Inc. Retrieved from http://worrydream.com/refs/Papert - Mindstorms 1st ed.pdf

Resnick, M., Maloney, Andrés Monroy-Hernández, J., Rusk, N., Eastmond, E., Brennan, K.,

Rosenbaum, E., … Kafai, Y. (2009). Digital fluency Sould mean designing, creating, and

remixing, not just browsing, chatting, and interacting. Communications of the ACM,

52(11). https://doi.org/10.1145/1592761.1592779

Reigeluth, C. M. (Ed.). (2013). Instructional design theories and models: An overview of their

current status. Routledge.

Starr, C. W., Manaris, B., & Stalvey, R. H. (2008). Bloom’s Taxonomy Revisited: Specifying

Assessable Learning Objectives in Computer Science. ACM SIGCSE’ 08 . Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.446.342&rep=rep1&type=pdf

58

Tedre, M., & Denning, P. J. (2016). The Long Quest for Computational Thinking. In Koli

Calling Conference on Computing Education Research (pp. 120–129).

https://doi.org/10.1145/2999541.2999542

Thies, R., & Vahrenhold, J. (2012). Reflections on outreach programs in CS classes. In Pro-

ceedings of the 43rd ACM technical symposium on Computer Science Education - SIGCSE

’12 (p. 487). New York, New York, USA: ACM Press.

https://doi.org/10.1145/2157136.2157281

Thies, R., & Vahrenhold, J. (2013). On plugging "unplugged" into CS classes. In

Proceeding of the 44th ACM technical symposium on Computer science education -

SIGCSE ’13 (p. 365). New York, New York, USA: ACM Press.

https://doi.org/10.1145/2445196.2445303

Vygotsky, L. (1986). Thought and Language. Retrieved from http://s-f-walker.org.uk/pubse-

books/pdfs/Vygotsky_Thought_and_Language.pdf

Wang, M., & Wang, Y. F. (2016). A Study on Computer Teaching Based on Computational

Thinking. International Journal of Emerging Technologies in Learning (IJET), 11(12), 72.

https://doi.org/10.3991/ijet.v11i12.6069

Wing, J. (2006). Computational Thinking. Retrieved from https://www.cs.cmu.edu/~15110-

s13/Wing06-ct.pdf

Wing, J. (2008). Computational thinking and thinking about computing. Philosophical Trans-

actions of the Royal Society A: Mathematical, Physical and Engineering Sciences,

366(1881), 3717–3725. https://doi.org/10.1098/rsta.2008.0118

Yadav, A., David Burkhart, Daniel Moix, Eric Snow, Padmaja Bandaru, & Lissa Clayborn.

(2015). Sowing the Seeds: A Landscape Study on Assessment in Secondary Computer Sci-

ence Education. Retrieved from https://www.researchgate.net/publication/281792891

Yang, F., & Dong, Z. (2017). Educational Theory (pp. 15–29). https://doi.org/10.1007/978-

981-10-1944-9_2

59

Appendix I

60

Appendix II

Researcher’s notes

29th October, 2018

The original plan was to have an unplugged lesson, followed by a short lecture, 2-3 worked

examples and a collaborative task.

The unplugged lesson was about binary coding. The pupils had to write their names in binary

code. The purpose of this lesson was to give an idea of the language of the computer and how

everything that runs on the computer is written in computer language.

This was followed by introducing them to the Scratchjr app interface. After seeing how the

pupils immerse themselves with Scratchjr, I decided to give them the opportunity to explore the

interface more by themselves after teaching the main concept (coding).

I had a parent who was very helpful in delivering the lesson and supporting the lesson plan.

5th November 2018

The lesson began with a short introduction of the concept of sequence and algorithm, empha-

sizing on the starting point and the ending point. Afterwards, the pupils did an unplugged ac-

tivity on their daily routine. The purpose was to reinforce the idea of sequence, algorithm. A

daily routine began by waking up followed by a series of activities and ends by sleeping. Most

of the sequence of activities were similar for some pupils except for a few in which two activi-

ties swapped places. In all, the pupils understood the concept. The two concepts were later used

in Scratch. The pupils were given two worked examples that used the start and end blocks to

move characters using the motion blocks. Afterwards, the pupils were given the opportunity to

explore Scratch themselves using the two concepts. With the help of the co-teacher, I went

around to check their work and encouraged them to add an end block which was missing in

most of their exploratory work. This provided another opportunity to emphasize the relevance

of the concepts.

12th November 2018

61

The lesson began with a short introduction of the concept of repetition. We recapped the algo-

rithm lesson because I wanted to reinforce the concept again. I asked a question relating to

repetition which a pupil responded. The pupils received an unplugged activity relating to repe-

tition. The activity built on the previous activity. This time around, pupils built a storyboard

that contained activities for each day of the week. A group of 4 pupils were given a storyboard

sheet to fill in their daily activities based on the day. The original lesson plan included two

unplugged activities for repetition and pattern recognition. The idea of the pattern recognition

was to identify activities that occur every day as daily activities and those that occur on some

days as nondaily activities from the repetition worksheet. These activities could also be de-

scribed as school day verses non-school day activities. However, this unplugged activity was

not done because of the time factor. After the unplugged, we revisited the algorithm concept in

Scratchjr. Using, the same example (move towards an object with one motion block), the se-

quences of blocks were minimized using the number to repeat a block, using the repeat block,

and forever loop. I demonstrated how the repeat block and motion block with numbers could

be used to achieve the same purpose in this particular example. In this lesson, the co-teacher

and I went around to assist pupils who needed help to understand and repeat the worked exam-

ple.

19th November 2018

This lesson began with a short introduction to the concept of conditionals. The relevance of it

for making decisions was highlighted. The unplugged activity had a set of pictures for summer

and winter clothes and activities and a worksheet. The pupils were to put a picture of activity

or clothes based on the season. The worksheet began with “if it is ____”

After the pupils had finished the unplugged activity, we proceeded to Scratchjr. Here, a worked

example of conditionals was shown using the send and receive message block. A character

performed an action when it received a message which had been colour coded. It was very

tough to explain the conditionals concept given that Scratchjr does not have this structure. After

multiple explanations, the pupils got the concept. Pupils were encouraged to use the previous

concepts taught in their worked examples.

62

26th November 2018

This lesson also began with an explanation of the concept of abstraction. How to include or

remove certain things from your code. The lesson started with an unplugged activity. The un-

plugged activity included a list of daily activities and extra activities. The pupils were asked to

add important routines and remove unimportant routines. This was followed by a plugged ac-

tivity. The pupils were given a worked example that demonstrated important parts of program-

ming (including a start, a sequence of blocks, and an end). In addition, the pupils were intro-

duced to look and sound blocks. The pupils also had the opportunity to include their own pic-

tures to their characters.

3rd December 2018

The main concepts of programming have been taught. This is a preparatory lesson for the pu-

pils’ projects. A story prompt was given to the pupils to write a story. The idea is to assess

pupil’s ability to use the blocks already learned to create a story. This lesson was loosely

scripted but had prompts to assist the pupils to write their story. Also as the teacher, I went

around to help any pupil who needed further assistance (scaffolding). I think the lesson was

successful as the pupils were able to use the concepts learned in various ways. This shows that

the pupils understood the concepts that have been taught. This project was intended to be a

preparatory lesson, but it turned out differently hence there was no need to ask the pupils to

write another story.

10th December 2018

Based on the outcome of the previous lesson, I decided to take a different approach to today’s

lesson. I used the Solve-It assessment from Scratchjr website. Pupils were asked to write the

code after been shown a sequence of movement. Most of the pupils were able to write the

correct code, others were close which is very good because there are multiple ways to achieve

the same thing in coding though some code snippets are more efficient than others. However,

others needed some hints to write the code successfully. The hints were using printed coding

blocks.

63

17th December 2018

Today, the pupils created their own projects, exploring Scratchjr. They were also given efficacy

questionnaire to assess their beliefs regarding their understanding of CT and coding concepts.

Many of the pupils were absent, a challenge faced almost every week.

64

Appendix III

65

Appendix IV

66

Appendix V

67

Appendix VI

68

Appendix VII

69

Appendix VIII

70

Appendix IX

71

Appendix X

