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Summary 

The thesis gives the first description of the geological setting, alteration, mineralization style and 

structural control of the Mustajärvi gold occurrence in the Central Lapland Greenstone Belt, northern 

Finland. The applied methods mainly comprise drill core logging, bedrock mapping, thin section studies 

and microprobe analysis.  

The Mustajärvi gold occurrence lies at the southern border of the Central Lapland Greenstone Belt, in 

proximity to the first-order transcrustal Venejoki thrust system. The occurrence is structurally controlled 

by the second-order Mustajärvi shear zone, which is located at the contact between Sodankylä Group 

siliciclastic metasediments and Savukoski Group mafic and ultramafic metavolcanic rocks. The 

outcropping gold-mineralized veins comprise a set of parallel quartz-tourmaline-pyrite veins that show 

typical pinch and swell features, with the vein widths ranging approx. from 0.15 to 1 m. At a depth of 

90 m, a different mineralization style was recently discovered, comprising a 2-m-thick, quartz-poor, 

massive pyrite-mineralized zone grading 45.1 ppm Au. The geochemistry of both mineralization styles 

is typical for orogenic gold deposits, with strongly enriched elements comprising Au, B, Bi, C (CO2), 

Te, and Se. Silver, As, Sb, and W are moderately elevated and positively correlate with gold. Atypical 

for orogenic gold deposits is the strong enrichment of Ni and Co. In unweathered rock, gold is hosted 

by Au- and Au-Bi-telluride micro-inclusions in pyrite, whereas strong weathering near the surface has 

caused a remobilization of gold, resulting in free gold, deposited mainly in the cracks of oxidized pyrite.  

The thesis emphasizes the prospectivity for a more extensive gold mineralized system, especially at 

greater depths and encourages further exploration. Future research on the Mustajärvi occurrence could 

comprise mineralogical studies on the massive pyrite mineralization at depth, and age dating of the 

mineralization based on observed monazite within the mineralized veins.  
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1. INTRODUCTION 
 

The Paleoproterozoic Central Lapland Greenstone Belt (CLGB) has a total reported gold 

endowment of just over 10 Moz, but with most of this resource solely defined in the giant 

Suurikuusikko deposit and dozens of other prospective occurrences lacking detailed 

exploration.  

One potentially promising target, the Mustajärvi orogenic gold occurrence, lies close to 

the southern border of the CLGB, in proximity to the first order Venejoki thrust zone. 

Exploration wise, the Venejoki thrust system has mostly been ignored, despite the fact 

that, regarding the time and direction of deformation, it shares many features with the 

nearby Sirkka thrust zone which is associated with the majority of the known gold 

occurrences in the Central Lapland Greenstone Belt. The Venejoki thrust zone can be 

traced to reach the mantle at a depth of approx. 42 km (Patison et al. 2006; Niiranen et al. 

2014). Not many gold occurrences are known from the Venejoki thrust system, probably 

due to limited exploration activities and a generally poorer bedrock exposure. With this 

study, Mustajärvi is one of the few, if not the first, extensively studied gold occurrence 

along the Venejoki thrust system.  

This thesis gives the first overview of the geological setting, alteration, style of 

mineralization and structural control of the Mustajärvi occurrence and furthermore 

emphasizes the prospectivity for a more extensive gold mineralized system, especially at 

greater depths. Some of the presented characteristics of the Mustajärvi mineralization are 

atypical for gold occurrences in the CLGB and for orogenic gold systems in general. 

These features might represent a distinct mineralization style, characteristic for gold 

occurrences along the Venejoki thrust zone.  
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2. GEOLOGICAL SETTING 
 

2.1 Regional geology of the Central Lapland Greenstone Belt 

 

The Fennoscandian Shield forms the northwestern part of the East European craton and 

comprises most of Finland, Sweden, Russian Karelia and the Kola Peninsula (Fig. 1) (Eilu 

& Niiranen, 2013). In the northern part of the Fennoscandian Shield, the Archean 

basement is covered by a belt of Paleoproterozoic supracrustal rocks, extending from 

northern Norway through Finnish Lapland into Russia. The Finnish part of this belt is 

called the Central Lapland Greenstone Belt (CLGB) (Hanski & Huhma, 2005) (Fig. 3). 

 

Fig. 1. The Fennoscandian Shield and its position within the East European Craton. Subareas: CS – Central 

Svecofennia, SS - Southern Svecofennia, BA – Bergslagen Area, G – Gothian Terranes, J – Jormua, K – Kittilä, Ki – 
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Kiruna, O – Outokumpu, OR – Oslo rift, SA – Skellefte Area, SB – Savo Belt, T – Telemarkian Terranes, WGC – 

Western Gneiss Complex (Lahtinen, 2012). 

The Paleoproterozoic rocks of the CLGB were deposited on the Archean basement 

gneisses of the Karelian craton, beginning at ca. 2.45 Ga. Approximately 400 million 

years of intracratonic to cratonic margin rifting led to deposition of a series of 

autochthonous volcanic and sedimentary rocks during the early Paleoproterozoic, which 

were later deformed in the 1.93-1.77 Ga Svecofennian orogeny (Lehtonen et al., 1998; 

Hanski & Huhma, 2005). 

The CLGB is bordered by the Central Lapland Granite Complex in the south and the arc-

shaped Lapland Granulite Belt in the northeast (Hanski & Huhma, 2005). The most recent 

interpretation of the CLGB stratigraphy divides the rocks into seven lithostratigraphic 

groups of metavolcanic and metasedimentary rocks: Vuojärvi, Salla, Kuusamo, 

Sodankylä, Savukoski, Kittilä, and Kumpu (Figs. 2 and 4) (Niiranen et al., 2015). The 

first lithostratigraphic model of the CLGB by Lehtonen et al. (1998) did not include the 

Vuojärvi Group, distinguished a separate Lainio Group, which is now part of the Kumpu 

Group, and listed the Kuusamo Group as the Onkamo Group.  

 

Fig. 2. Stratigraphy of the CLGB with descriptions of the lithostratigraphic units (mod. after Eilu & Niiranen, 2013). 
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Vuojärvi Group 

The Vuojärvi Group, being only recently distinguished as a lithostratigraphic group, is 

dominant at the southern margin of the CLGB (Fig. 3) (Niiranen et al., 2015). Its quartz-

feldspar and quartz-sericite schists may represent metamorphosed clastic sedimentary 

rocks and/or felsic metavolcanic rocks (Eilu & Nykänen, 2011). While Vuojärvi Group 

rocks are thought to overlie the Archaean basement, the exact age and stratigraphic 

position of this new group is still not well understood.  

Salla Group 

Salla Group rocks occur in the eastern parts of the CLGB. They also directly overlie the 

Archean basement and due to the lack of clear field observations the exact stratigraphic 

relation between the Vuojärvi and Salla Group is uncertain (Eilu & Nykänen, 2011). The 

supracrustal rocks of the Salla Group mainly comprise subaerial calc-alkaline 

intermediate to felsic metavolcanic rocks including volcanic conglomerates and andesitic, 

dacitic and rhyolitic pillow lavas and pyroclastics (Lehtonen et al., 1998; Hanski & 

Huhma, 2005). The eruptional environment, chemical compositions of the metavolcanic 

rocks with a strong crustal signature, and the stratigraphic position of the metavolcanic 

rocks indicate that Salla Group volcanism was related to the initial stage of rifting of the 

Archean craton (Lehtonen et al., 1998).  

Kuusamo Group 

Kuusamo Group rocks (formerly described as Onkamo Group by Lehtonen et al., 1998) 

are dominated by subaerial komatiitic to tholeiitic volcanic rocks, which were erupted on 

top of the Salla Group, the Archean basement, and possibly the Vuojärvi Group. They 

generally differ from Salla Group metavolcanic rocks in being more primitive with 

overall higher Mg, Cr and Ni concentrations and lower TiO2 contents (Lehtonen et al., 

1998). As with the Salla Group, the Kuusamo Group metavolcanic rocks show clear 

evidence of a sialic crustal contamination (Lehtonen, 1998).  

 

Sodankylä Group 

The abundant rift-related magmatic activity of the Salla and Kuusamo Groups was 

followed by the deposition of a thick and wide-spread, epiclastic sedimentary sequence 

on top of the older units of the CLGB and Archean basement gneisses (Lehtonen et al., 

1998; Hanski & Huhma, 2005). This sedimentary sequence is represented by the 

terrestrial to shallow marine orthoquartzites, sericite quartzites, mica schists and minor 
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carbonate rocks of the Sodankylä Group with additional tholeiitic basalts and basaltic 

andesites. The prominent abundance and distribution of quartzites suggest a great 

widening of the depositional basin from a relatively narrow rift basin after the cessation 

of Salla and Kuusamo magmatism. A minimum age of the sedimentary sequence is 

estimated by sills cutting the quartzites at around 2.22 Ga but not reaching into the 

overlying lithostratigraphic units (Hanski & Huhma, 2005). The Sodankylä Group rocks 

are the oldest currently known gold-hosting rocks in the CLGB.  

 

The Sodankylä Group is subdivided into the Virttiövaara Formation (ViF) and the 

Honkavaara Formation (HvF). The direct stratigraphic relation between these formations 

is not known except for gravimetric data showing that the ViF is dipping under the HvF 

(Lehtonen, 1998). Virttiövaara Formation rocks are mainly composed of orthoquartzites, 

sericite schists and sericite quartzites with locally high amounts of fuchsite, coloring the 

rocks green. Several sedimentary structures can be observed in the ViF, such as cross 

bedding, graded bedding, herringbone structures, and mud cracks, indicating 

sedimentation in a tidal environment (Nikula, 1985). The Honkavaara Formation is 

composed of quartzites, siltstones, carbonate rocks and additional felsic, intermediate and 

mafic metavolcanic rocks (Lehtonen et al., 1998). All rock units are strongly albitized. 

The mafic metavolcanic rocks are tholeiitic basalts, and the felsic and intermediate 

metavolcanic rocks are trachytes, trachyandesites and rhyolites (Lehtonen et al., 1998). 

Trace and rare earth element contents show that the mafic and felsic rocks did not evolve 

from the same parental magma (Lehtonen et al., 1998). Th/TiO2 values of the HvF mafic 

metavolcanic rocks suggest a rather low degree of sialic contamination compared to the 

older Salla and Kuusamo Group magmas (Lehtonen et al., 1998).  

Savukoski Group 

The transition between the Sodankylä and Savukoski Group is gradual and associated 

with a continual deepening of the depositional rift basins, resulting in sedimentation of 

more and more fine-grained sediments (Lehtonen et al., 1998). The deposition of 

Sodankylä quartzites gave way to the formation of the phyllite-tuffite-black schist 

assemblages of the lower Savukoski Group. Similar units were also formed in the 

Kuusamo and Peräpohja belts (Lehtonen et al., 1998; Rastas et al., 2001). These graphite- 

and sulphide-bearing, fine-grained sediments may be important sources for S and Au in 

some locations, assuming a metamorphic model for orogenic gold occurrences in the 
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CLGB. A minimum age for the pelitic metasediments is provided by the crosscutting ca. 

2.06 Ga Keivitsa intrusion (Mutanen & Huhma, 2001). 

The upper part of the Savukoski Group is characterized by a reactivation of magmatic 

activity and the filling of the basin with mafic and ultramafic rocks, such as tholeiitic and 

picritic basalts and komatiites (Lehtonen et al., 1998). These mantle-derived, high-

temperature komatiitic and picritic rocks are suggested to represent plume-related 

volcanism (Hanski et al., 2001) that is coeval with a major rifting event at ca. 2.1 Ga 

(Perttunen & Vaasjoki, 2001; Rastas et al., 2001; Väänänen & Lehtonen, 2001; Kyläkoski 

et al., 2012). The metavolcanics have preserved their original chemical composition well, 

without any intense sialic contamination (Lehtonen et al., 1998). The ultramafic volcanic 

rocks were subsequently altered to serpentinite-chlorite ± talc ± amphibole rocks or to 

more intense carbonate ± talc assemblages either during seafloor events or during regional 

greenschist facies metamorphism. Especially the ultramafic rocks are important gold 

targets along the regional “Sirkka line” thrust fault, as they act as sites of major 

deformation adjacent to many gold occurrences in the CLGB, but only host some gold 

themselves, with the exception of the currently second largest gold occurrence in the 

CLGB, the Pahtavaara deposit which is hosted by komatiites of the upper Savukoski 

Group.  

Kittilä Group 

Rifting culminated at ca. 1.97 Ga resulting in the formation of oceanic crust (Eilu & 

Niiranen, 2013) consisting of a ca. 6 km-thick pile of mafic and minor ultramafic 

metavolcanic rocks, with interbeds of greywacke, phyllite, graphite- and sulphide-bearing 

schists, and minor carbonates and banded iron formations (Lehtonen et al., 1998). 

Similarly to the sedimentary rocks of the Savukoski rocks, the deep marine pelitic 

graphite- and sulphide- bearing units of the Kittilä Group possibly represent suitable 

sources for S, creating bisulphide complexes for transporting gold. Consequently, Kittilä 

Group rocks have a large potential for Au deposits, which is represented, for example, by 

the >6 Moz Suurikuusikko orogenic gold deposit, currently being the biggest gold mine 

in Europe (Agnico Eagle, 2017). The Kittilä Group is bound against the surrounding 

sequences by tectonic contacts (Niiranen et al., 2015), which are thought to represent 

thrusting of the submarine Kittilä Group rocks over the older more subaerial 

autochthonous lithostratigraphic groups of the CLGB at ca. 1910 Ma (Hanski & Huhma, 

2005). The age for the Kittilä Group has been obtained from cross-cutting felsic 



10 
 

porphyries that are coeval with the associated mafic metavolcanic rocks and have yielded 

a U-Pb zircon age of ca. 2015 Ma (Lehtonen et al., 1998).  

Kumpu Group 

The Kumpu Group is the youngest stratigraphic unit of the CLGB and represents a major 

stratigraphic break, showing a drastic change from volcanic- to sedimentary-dominated 

facies. The Kumpu Group sediments comprise coarse-clastic, non-mature, molasse-type 

arkoses, conglomerates, and siltstones, with sedimentological features suggesting 

deposition in a fluvial environment, such as alluvial fans and braided river systems, 

directly on top of the older volcano-sedimentary sequences of the CLGB (Kortelainen, 

1983). The Kumpu Group metasediments commonly display a characteristic red-brown 

to purplish color, which is caused by the presence of abundant hematite (Lehtonen et al., 

1998).  
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Fig. 3. Geological map of the Central Lapland Greenstone Belt and its known gold occurrences (modified after Eilu & 

Niiranen, 2013). 

 

2.2 Deformation history  

 

The Paleoproterozoic rocks of the Central Lapland Greenstone Belt have undergone 

several phases of deformation and metamorphism (Hölttä et al., 2007; Niiranen, 2015; 

Molnar et al., 2017). The general metamorphic grade throughout the CLGB is mid- to 
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upper greenschist facies, only reaching mid- to upper amphibolite facies along the 

southern (south of the Venejoki thrust zone), western and northeastern (locally reaching 

granulite facies in the northeasternmost corner in the Vuotso area) boundaries and in the 

vicinity of granitoid intrusions. 

The deformation history of the CLGB is typically divided into three ductile deformation 

events D1, D2, D3, followed by brittle stages (Hölttä et al., 2007; Patison, 2007; Niiranen, 

2015). The main deformation stages D1 and D2 relate to thrusting events at the margins 

of the CLGB (Hölttä et al., 2007; Patison, 2007). In the north-eastern margins of the 

CLGB, high-grade rocks of the Lapland Granulite Belt and adjacent Vuotso complex 

rocks were thrust to the S-SW onto CLGB successions during D1, driven by the collision 

of the Kola and Karelian cratons (Patison, 2007; Niiranen, 2015). In the southern margin, 

north to north-east thrusting occurred along the Sirkka and Venejoki thrust zones (D2), 

driven by the early stages of the Svecofennian orogeny (Patison, 2007; Eilu & Niiranen, 

2013; Niiranen, 2015). Due to a lack of distinct overprinting relationships and clear 

geochronology, these early events cannot be clearly discriminated and might also be 

roughly synchronous (Patison, 2007; Niiranen, 2015). However, indirect evidence shows 

D1 ages of around 1.91 Ga, and estimations for D2 ranging between 1.89-1.86Ga 

(Niiranen personal communication, 2017; Niiranen, 2015) (Fig. 4). 

 

Fig. 4. Stratigraphy and deformation events of the CLGB (Wyche et al., 2015). 

D1 and D2 faults represent mainly ductile thrust fault systems striking roughly E-W, 

whereby some features could be reflected by reactivation of pre-D1 extensional features 
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related to the Paleoproterozoic rifting. The D2 thrust systems include the Venejoki thrust 

zone and the Sirkka thrust zone in the southern part of the Kittilä terrane (Fig. 5) 

(Niiranen, 2015), which act as the main rheological boundaries within the CLGB. 

Especially the Sirkka line comprises a series of E-W to SE-NW, closely-spaced, 

subparallel ~40° south-dipping thrust- and shear zones and segments (Hölttä et al., 2007; 

Patison, 2007;). Some segments along this zone were displaced and reoriented by later 

D3 strike-slip shear zones. The Sirkka line is not a straight thrust system, but curves in the 

east to the southeast. Representing a major stratigraphic and litho-geochemical boundary, 

the Sirkka line controls many of the Au occurrences in the CLGB (Patison, 2007). South 

of the Sirkka line, the Venejoki fault may reflect overthrusting to the north by units of the 

Central Granitoid Complex. The Venejoki fault system is not well defined, however, a 

set of roughly E-W striking, subparallel, ca. 40° south-dipping thrust zones similar to the 

Sirkka thrust system is assumed to be a likely scenario (Niiranen, personal 

communication, 2018) (Fig. 5). An impact on Au mineralization similar to the Sirkka line 

has not yet been observed from the Venejoki fault system.  

 

Fig. 5. Major structures in the CLGB seen from the SSW. The Venejoki- (VeTZ) and Sirkka (SiTZ) thrust faults appear 

as E-W trending, ~40° S dipping major fault zones with multiple segments. Other faults are: HaSZ-Hanhimaa shear 

zone; KiTZ-Kiistala thrust zone; MuSZ-Muusa shear zone; PoSZ-Porkonen shear zone; RuSZ-Ruoppapalo shear zone 

(Niiranen, 2015). 
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A shift in the regional stress regime resulted in a D3 convergence from the western and 

southwestern margin of the CLGB. The D3 deformation involved the development of 

NW-N-NE-striking strike-slip shear zones that displace and/or reactivate D1/D2 thrust 

zones (Patison 2007; Hölttä et al., 2007). The timing and the cause of the D3 stress regime 

shift are not clearly understood. Age estimations range from 1.89 Ga to a minimum age 

of 1.77 Ga (whereby 1.83-1.80 Ga is assumed to be the most precise age) (Sorjonen-Ward 

et al., 1997; Lehtonen et al., 1998; Väisanen, 2002; Patison, 2007). Some of the D3 N-S 

shear zones are thought to have been either initiated as a compensating response to the 

opposing compression during D1/D2 (Patison 2007), or that they may have utilized 

transfer shear zones formed during pre-D1 rift-related volcanism (Ward et al., 1989). 

However, it is clear, that the orientation of D3 features is strongly influenced at a local 

scale by pre-existing structures, especially south of the Sirkka line (Patison, 2007). The 

Suurikuusikko deposit is situated along the Kiistala D3 northeast-trending strike-slip fault 

(Fig. 3), expressing the important correlation between gold mineralization and D3 

shearing which is observable throughout the CLGB.  

The D4 deformation consists of small-scale brittle faulting, jointing and discontinuous 

brittle shear zones that overprint all structures within the CLGB. The maximum age for 

D4 deformation is 1.77Ga (Väisanen, 2002; Patison, 2007). Therefore, D4 features are 

post-orogenic and perhaps post-gold mineralization.  
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3. METHODS  
 

The thesis methods comprise a combination of practical field work and analytical 

research. The practical part consists of a ground magnetometer survey including its 

interpretation, geological mapping of the wider study area, geological mapping of the 

artisanal mining pit and re-logging of the available historical drill core. The analytical 

research comprises thin section studies with subsequent microprobe analysis, and 

modelling the mineralization with a 3D software. 

Field work 

The ground magnetic survey at the Mustajärvi study area spanned a total of 40.4 km of 

measured distance. A spacing of 50 m with a total of 28.15 km measured distance was 

applied for a more regional testing, whereas a spacing of 25 m with a total of 12.23 km 

measured distance was applied in the area of the known mineralization. The survey lines 

were oriented N-S, based on the historically assumed approx. E-W strike of the known 

occurrence. Other field work comprised mapping the geology of the study area, mostly 

consisting of a glacial erratic boulder survey since a generally thick till cover results in a 

scarcity of outcrops. However, a small artisanal mining pit exposes outcrop, which 

includes the contact between both rock formations that host outcropping auriferous 

quartz-tourmaline-pyrite veins. As part of the study, the pit was mapped in great detail 

including a full structural analysis. During the mapping, a total of 30 boulder and outcrop 

samples were taken from the study area for thin section and geochemical analysis.  

During 1991 and 1992, Outokumpu drilled 12 holes at Mustajärvi. As part of the thesis, 

all available drill core was re-logged, with the resulting geological data acting as a base 

for a consequent 3D model, which was created to better understand the spatial extent of 

the gold mineralization. A total of 30 samples was taken from the drill core for 

geochemical analysis and for thin sections to study the petrography and alteration. 

Geochemical analysis was performed by ALS and consisted of a four-acid digestion with 

an ICP-MS finish (code ME-MS61) and fire assay for gold concentrations (code Au-

AA24). The results included a wide array of elements, however, neither B, Hg nor Si was 

part of the analysis. With B being a major constituent of tourmaline, Hg being commonly 

enriched in orogenic gold deposits, and Si being crucial for geochemical calculations, 

these elements would have been beneficial for the study.  
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Research 

A total of 60 thin sections were prepared and studied with transmitted and reflected light 

microscopes for the general petrography of the host rocks, alteration processes and gold 

distribution. A microprobe study with quantitative WDS analysis was later conducted to 

further investigate the mineralogy of the gold occurrence. All measurements were made 

at the University of Oulu, utilizing a Jeol JXA-8200 superprobe. As measurement 

parameters, a 15 kV accelerating voltage and a 15 nA probe current with a tungsten 

filament were used. The spot size diameter was kept under 1 µm due to the small grain 

sizes of the gold associated minerals. All measured elements with their relating 

measurement parameters can be found in Tables 1 and 2.  

Table 1. Measurement parameter of the quantitative WDS analysis. 

 

Table 2. Distribution of the elements over the measurement channels for the quantitative WDS analysis. 

 

 

 

 

Furthermore, a 3D model was created in Leapfrog to visualize the extent of the gold 

mineralization (Fig. 10).  

 

 

Element Std name X-ray Crystal CH Acc.V Peak Peak s Back s 

Se Se La TAP 1 15 97.40 10.0 5.0 

S FeS2 Ka PETJ 2 15 172.10 10.0 5.0 

Co Co Ka LIFH 4 15 124.78 10.0 5.0 

Au Au15 Ma PETH 5 15 187.08 30.0 15.0 

As GaAs La TAP 1 15 104.89 10.0 5.0 

Fe FeS2 Ka LIF 2 15 134.65 10.0 5.0 

Ni Ni Ka LIFH 4 15 115.65 10.0 5.0 

Bi Bi Ma PETH 5 15 163.90 10.0 5.0 

W W La LIFH 4 15 102.89 10.0 5.0 

Ag Ag La PETH 5 15 133.09 10.0 5.0 

Sb Sb La PETH 5 15 110.20 10.0 5.0 

Te Hg-Te La PETH 5 15 105.39 10.0 5.0 

Channel 1 2 3 4 5 

  Se1T S  Co4LH Au5PH 

  As1T Fe2L  Ni4LH Bi5PH 

     W4LH Ag5PH 

      Sb5PH 

          Te5PH 
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4. MUSTAJÄRVI STUDY AREA 
 

4.1 Geographical overview  

The Mustajärvi study area spans roughly 200 hectares and is situated approx. 15 km ESE 

of the Kittilä town (centered location at 427720E 7500270N: EUREF_FIN_TM35FIN). 

The site is easily accessible by the Highway 80, which cuts through the northern part of 

the study site and connects the towns of Kittilä and Sodankylä (Fig. 6). A high-voltage 

power line passes through the area, which might prove favorable for any potential mining 

operations. The Mustajärvi site is almost entirely covered by an open pine and birch forest 

(Fig. 7). The study site is flanked to the southwest, south and east by marshy wetlands, 

which belong to the Natura 2000 environmental protection network (Fig. 6). The area is 

nearly flat with elevations ranging between 195 and 210 above sea level, whereby the 

elevation gradually increases from the south to the north. The till cover at the study site 

is on average 3.5 m thick, ranging between 0.5 and 10 m (Fig. 8). The till thickness 

increases towards the south, where glacial deposition is interpreted based on field 

observations and digital elevation models. There are no outcrops at the Mustajärvi study 

site, except for a small-scale artisanal mining pit exposing roughly 5 m x 10 m of bedrock.  

 

Fig. 6. Geographic overview of the Mustajärvi study with features of interest. 
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Fig. 7. Orthophotograph of the Mustajärvi study area. Clearly recognizable are the Highway 80 connecting Kittilä with 

Sodankylä, a high-voltage power-line, the Natura-2000 wetlands in the SW, S and E, the artisanal mining pit, and 2 

houses.  

 

Fig. 8. Till thickness at Mustajärvi. The thickness is interpolated based on the sample depth of Outokumpu Bottom-of-

till (BoT) samples. 
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4.2 Exploration history  

Anomalous gold values at Mustajärvi were first discovered in a GTK regional till survey 

in the late 1980s (Eilu and Nykänen, 2011). Subsequently, Outokumpu Oy investigated 

this anomaly in 1990-1991 with multiple N-S oriented bottom of till (BoT) survey lines 

using a 10 m sample spacing in areas with high Au anomalies and a 20 m sample spacing 

for a more regional exploration. The sampling lines were generally 50 m apart, however 

also larger spacings were applied for more regional work (for sample points see Fig. 8). 

Clearly anomalous gold values were recognized in 10 consecutive lines (Hugg, 1996). In 

1991, Outokumpu followed up on these anomalies with excavating seven trenches of 

72.5 m combined length. They reported short intervals containing a few tens of ppm of 

Au in the best cases (Hugg, 1996). Shortly after, they carried out an additional heavy 

mineral till survey and conducted a small ground magnetic- and IP survey (Hugg, 1996). 

Between December 1991 and December 1992, Outokumpu drilled 12 holes totaling 

706 m in length. The holes were short, with an average length of 59 m and a maximum 

length of 72.4 m (Table 3). The holes were oriented towards 315° with a dip of 50° and 

were spaced 20 or 40 m apart along eight parallel sections (Fig. 12). All but one drill hole 

intersected mineralization exceeding 1 ppm Au, with the best intervals being 2.7 m at 

14.6 ppm Au, 12 m at 2.68 ppm Au, and 1 m at 18.8 ppm Au (Table 3) (Anttonen, 1993). 

Moreover, reported core losses of up to 50 % in the mineralized zones likely undervalue 

many gold intercepts. Drilling was terminated due to a poor understanding of the gold 

occurrence with an apparent “poor correlation” between the holes, resulting in an 

evaluation of the mineralization as an “uneconomic gold occurrence” (Hugg, 1996). 

Consequently, the tenement was given up by Outokumpu in 1996.  

From 2002-2010 and 2013-2016, Mustajärvi was subject of small-scale artisanal mining 

by the company Gold Mine Siitonen & Saiho AY. The company exclusively mined heavily 

weathered outcropping mineralization, in which gold occurs in a native form and is easily 

extractable, whereas no unweathered ore was mined. As part of the artisanal mining 

activity, they excavated a 2 to 5 m deep pit, spanning 20 x 70 m, along the outcropping 

mineralized veins. Grades from tens of ppm of Au up to 100 ppm Au have been reported 

by Gold Mine Siitonen & Saiho AY (H. Siitonen, pers. comm., 2018). These gold 

concentrations were confirmed through channel sampling of the mined vein by FireFox 

Gold Corp in 2018. Channel samples yielded gold concentrations up to 140.5 ppm Au 

with visible gold along the vein.  
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Table. 3. Outokumpu drill holes at Mustajärvi from 1991-1992 with the best gold intersects (data after Anttonen, 1993). 

 

4.3 Geological overview  

The rock package at Mustajärvi can be divided into two major lithological units: 1) 

siliciclastic metasediments consisting of banded arkose quartzites, intermediate tuffites 

and mafic tuffites and 2) metavolcanic rocks comprising ultramafic lavas and tuffs, 

komatiitic basalts, mafic lavas and tuffs, and rare graphitic cherts (Table 4). The 

siliciclastic metasediments most likely belong to the Sodankylä Group with a minimum 

age of ca. 2.22 Ga which is given by the Haaskalehto gabbro intrusions (Lehtonen et al., 

1998; Hanski et al., 2010). The metasediments are characterized by a low magnetic 

response (Fig. 11A) and a relatively low apparent resistivity (Fig. 11B). The metavolcanic 

rocks are likely part of the ca. 2.06 Ga (Hanski et al., 2001) Savukoski Group. They are 

characterized by a high magnetic response and a relatively high apparent resistivity. 

Gabbro intrusions of an unknown formation are present in the SW of the study area (Fig. 

9). A 3D geological model of the Mustajärvi area is shown in Fig. 10. Ground magnetic 

data and BoT Cr-concentrations (Fig. 11D) indicate that both the siliciclastic 

metasediments and the metavolcanic rocks are intruded by gabbro intrusions. Lehtonen 

et al. (1988) list these mafic intrusions with an age of 2.0 Ga, which fits into the model of 

the host rock formation ages.  

Hole Nr. 
Azimuth 

[°] 
Dip 
[°] 

Hole length 
[m] 

Best mineralized 
interval [m] Length [m] Au [ppm] 

MJ-1 315 50 56.50 20.7-23.4 2.7 14.6 

MJ-2 315 50 50.00 22.0-23.0 1.0 12.2 

MJ-3 315 50 57.70 9.6-23.0 13.4 0.52 

MJ-3       29.3-31.7 2.4 1.03 

MJ-4 315 50 44.40 21.0-33.0 12.0 2.68 

MJ-5 315 50 63.05 43.0-44.0 1.0 1.42 

MJ-5       53.0-54.0 1.0 1.92 

MJ-6 315 50 68.20 27.85-29.05 1.2 5.45 

MJ-7 315 50 49.75 23.5-24.9 1.4 6.02 

MJ-8 315 50 72.40 45.0-45.8 0.8 0.42 

MJ-9 315 50 68.45 6.0-7.0 1.0 4.78 

MJ-9       52.0-54.0 2.0 1.2 

MJ-10 315 50 58.15 41.0-42.0 1.0 18.8 

MJ-11 315 50 60.20 34.8-36.5 1.7 1.8 

MJ-12 315 50 57.20 48.1-49.4 1.3 1.08 
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Fig. 9. Geological map of the Mustajärvi study site. Highlighted by a black rectangle is the area of the known gold 

occurrence (see Fig. 12 for a close-up view; and Fig. 10 for 3D geological model for the area indicated by the black 

rectangle). 

 

Fig. 10. 3D geological model of the area of the known gold mineralization at Mustajärvi. The 3D model covers roughly 

the area that is indicated by the black rectangle in Fig. 9. The Mustajärvi shear zone, located at the main contact between 

the rock units, is not modelled. The view is from WSW.  
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Fig. 11. Geophysical data and BoT Cr-concentrations visualizing the lithological units at Mustajärvi. (A) Ground 

magnetic survey with less detailed aero magnetics in the background. The data clearly shows all three existing 

lithologies: high values in the SW associated with gabbro intrusions, relatively high values SE of the fault zone (dashed 

line) associated with the metavolcanic rocks and relatively low values for the siliciclastic metasediments. Also, a 

demagnetized zone is visible along the fault zone. (B) IP apparent resistivity pseudo sections with ground magnetics in 

the background. The data allows to distinguish between the low resistive metasediments and the more resistive 

volcanics. The fault zone appears as a low resistivity zone dipping to the SE with ~45. (C) IP chargeability pseudo 

sections. The interpreted fault zone inhibits a high chargeability along the full extent. Also, the parts of the siliciclastic 
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metasediments that host the mineralization show elevated chargeabilities, in accordance to the low the resistivity values. 

(D) Outokumpu and FireFox Gold BoT samples with Cr-concentrations visualizing the extent of the ultramafic rocks 

mostly south of the interpreted Mustajärvi fault zone. 

The Mustajärvi fault zone is interpreted to occur along the general contact zone between 

the host rocks, likely formed due to the competency contrast of the rock types. The fault 

is indicated by several fault zone-typical geophysical features: demagnetization in ground 

magnetic surveys (Fig. 11A), a low apparent resistivity (Fig. 11B), and a high 

chargeability anomaly (Fig. 11C). Interpreted from geophysical data, the fault zone has a 

similar orientation to the host rocks, dipping to the SE with an angle of ~45 °.  

Based on geophysical data, BoT geochemistry data, and field and drill core observations, 

the siliciclastic metasediments dominantly occur on the NW side of the fault zone and the 

metavolcanic rocks dominantly on the SE side. The contact between the rock units is 

conform and rather gradual, with increasing interlayering between the rock types in 

proximity to the contact zone (Fig. 10), where also graphitic cherts have been observed 

to be interlayered with altered mafic tuff as part of the volcanic group.  

The known gold mineralization is hosted by a set of quartz-pyrite-tourmaline veins that 

show typical pinch and swell features. The mineralization is not strongly host rock 

controlled as it has been observed to be hosted by both the siliciclastic metasediments and 

the metavolcanic rocks, as well as by the contact of both units. However, the mineralized 

veins appear generally structurally controlled, with the main mineralization trend being 

parallel to the Mustajärvi fault zone (Fig. 10). A second mineralization trend, which is 

semi-exposed in the artisanal pit, runs perpendicular to the main trend. Additionally, BoT 

Au anomalies outside of the known gold occurrence are also spatially related with the 

interpreted fault zone (Fig. 13) further suggesting a strong structural control.  
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Fig. 12. Close up view of Fig. 9. Historical Outokumpu drill holes and BoT gold anomalies showing the extent of the 

mineralized veins. The artisanal mining pit is visible in the center. A set of parallel NE striking veins is proposed to be 

the main host for the gold mineralization (Fig. 10). 

 

Fig. 13. Outokumpu and FireFox Gold BoT samples with Au concentrations over the extent of the entire study area. 

High-grade gold anomalies are strongly associated with the interpreted Mustajärvi fault zone outside of the area of 

known gold occurrence.  
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5. HOST ROCKS 
 

5.1 Petrography of the host rocks 

 

5.1.1 Petrography of the siliciclastic metasediments 

The siliciclastic metasedimentary rock unit consists of banded arkose quartzite (felsic 

tuffite), intermediate tuffite and mafic tuffite. In most cases, no clear boundaries between 

the rocks can be drawn (Fig. 14) as most contacts are gradual, with the rock types being 

strongly interlayered on a meter to centimeter scale, commonly resulting in a strong 

layering typical for tuffs or tuffites (Figs. 15, 16 and 17). Observed strong banding, felsic 

clasts in a mafic matrix, an occasional gradual bedding suggest a volcaniclastic 

sedimentation. The entire metasedimentary unit could be generally described as tuffite 

with variations both in the amount of volcaniclastic sedimentary input, and variations in 

the geochemistry of the primary sedimentary input. However, the lack of porphyritic 

clasts in the arkose quartzites and the generally strong albitization and carbonatization 

make the general definition of the arkose quartzites as tuffites difficult and hence the 

general term of siliciclastic metasediments was preferred for the rock unit.  

Table 4. Overview of the rock types and their petrographic features at Mustajärvi.  

Rock type Mineral assemblage Grain size  Color Textures 

Siliciclastic 

metasediments: 

   
  

Arkose quartzite Qtz + Ab + Cb + Ms + Ser ± 

Bt, Py, Hem, Mag, Rt, Zrn 

medium-

fine 

beige banded-

bedded 

Intermediate tuffite Qtz + Ab + Ms + Cb + Bt + 

Ser ± Chl, Hem, Mag, Py, Rt, 

medium-

fine 

beige-

grey 

banded-

bedded 

Mafic tuffite Qtz + Ab + Chl + Bt + Ms + 

Cb + Ser ± Hem, Mag, Py, 

Rt, Ccp 

fine dark grey banded-

bedded, 

massive 

  
   

  

Volcanic rocks: 
   

  

Ultramafic lava Tr + Chl + Tlc + Mag + Chr 

± Ttn, Py, Ccp 

fine dark 

green 

massive 

Ultramafic tuff n/a fine dark  schistose 

Komatiitic basalt Act + Chl + Ep + Ab + Bt + 

Mag ± Ttn, Py, Ccp 

fine dark massive 

Mafic lava n/a fine black massive 

Mafic tuff n/a fine dark schistose 

Graphitic chert n/a fine dark grey-

greenish 

bedded 
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Based on thin section studies, the main mineral assemblages of the siliciclastic 

metasediments are: 

Banded arkose quartzite: quartz + albite + carbonate + muscovite + sericite ± biotite ± 

pyrite ± hematite ± magnetite ± rutile ± zircon 

Intermediate tuffite: quartz + albite + muscovite + carbonate + biotite +sericite ± chlorite 

± hematite ± magnetite ± pyrite ± rutile 

Mafic tuffite: quartz + chlorite + biotite + muscovite + albite+ carbonate + sericite ± 

hematite ± magnetite ± pyrite ± rutile ± chalcopyrite 

Fig. 14. Drill core showing least altered 

metasedimentary rock. The amount of mica is strongly 

varying in the rock package and changes gradually or 

sharply. Drill core MJ-5, depth 24.7 m.  

Fig. 15. Drill core showing 0.5-cm-thick parallel 

interlayers of mafic tuffites and arkose quartzites 

indicating a volcaniclastic sedimentation. Drill core 

MJ-5, depth 8 m. 

Fig. 16. Drill core showing porphyritic volcaniclastic sedimentation features in the top row, with felsic clasts in a mafic 

matrix. In the bottom row, strongly banded, deformed tuffite with bands of mafic/intermediate and felsic composition. 

Drill core 18MUS002, depth 5m. 
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Fig. 17. Drill core showing a ~5 cm thick arkose quartzite interlayer in an intermediate tuffite. Drill core 18MUS013, 

depth 168 m. 

Arkose quartzite 

Arkose quartzites make up the largest part (~50 vol. %) of the metasedimentary rock 

package. The rock is psammitic, typically weakly foliated, blastoclastic to granoblastic 

with rare lepidoblastic parts. Unless strongly altered or brecciated, the rock 

macroscopically shows primary bedding features including common bands of white mica-

rich layers which have a grey-greenish color (Fig. 18B). The color of the rock is generally 

beige-grey (Figs. 14 and 17) with a pinkish tint due to the common moderate to strong 

albitization, and occasionally reddish due to silicification with enclosed Fe-oxides. In 

strongly albitized and carbonated parts, the rock has a strong beige to almost orange color 

(Fig. 18).  

The main mineral assemblage consists of quartz, albite, carbonate, muscovite, sericite ± 

biotite and accessory minerals. Accessory minerals are most commonly pyrite, hematite 

and magnetite, rutile, whereas zircon is rare. The amount of accessory minerals varies 

over the rock package, but they never exceed 10 vol. % of the rock. Hematite commonly 

rims magnetite and forms hematite pseudomorphs after magnetite. The accessory 

minerals usually occur disseminated in the matrix but are locally also related to veins.  

Quartz is the main matrix constituent, making up ~45 vol. % of the matrix. The quartz 

grains are subhedral and have average sizes of 100-200 µm (Fig. 19). Locally, quartz and 

albite show signs of dynamic recrystallization with a resulting decrease in the grain size 

(50-100 µm) and the formation of a weak foliation in the rock (Fig. 20). Albite is the other 

main constituent of the matrix with an average volume of 35 %. The ratio between quartz 

and albite is mostly homogenous with an average of 60:40, but it can also rarely vary 
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from 80:20 to 40:60 within one thin section, representing the heterogeneity of the arkose 

quartzite. The grain size of albite is similar to quartz with an average of 100-200 µm (Fig. 

19). Albite grains are generally subhedral with clear polysynthetic twinning and show an 

omnipresent overprint of fine-grained sericite. The overprint ranges from very weak to 

very strong. In near-surface samples, albite is occasionally kaolinized. No other feldspar 

mineral than albite was observed in the rock package.  

Disseminated carbonate makes up roughly 10% of the matrix. Carbonate is usually 

smaller than quartz and plagioclase with average grain sizes of 50-100 µm. The 

disseminated carbonate grains are subhedral to anhedral, mainly growing in the grain 

boundaries of quartz and albite crystals (Fig. 19). Carbonate generally also shows an 

overprint by fine-grained sericite. 

Muscovite is commonly present in the entire metasedimentary rock package. In the purely 

quartzitic parts it has average concentrations of 1-5 vol. % and in the banded, mica-rich 

parts with ambiguous boundaries to intermediate tuffites, muscovite makes up 30 vol. % 

of the rock, together with accessory biotite contents. The grain size of the mostly 

subhedral muscovite ranges between 50 and 150 µm. Muscovite occurs mainly in parallel 

bands, which define foliation in the rock.  

Sericite is present in the entire rock package of the metasediments and is unrelated to 

biotite and muscovite. It occurs as a weak overprint on albite and occasionally on 

carbonate and as <30 µm sized grains disseminated in the grain boundaries of quartz and 

albite. The intensity of the sericite overprint varies drastically over the rock package and 

increases in the vicinity to veining, especially quartz-pyrite veining.  

 

 

Fig. 18. Arkose quartzite grab samples. (Left) Grab sample MJ-22 from the Mustajärvi artisanal pit. Albitized arkose 

quartzite without substantial amounts of mica. (Right) Grab sample MJ-37 from the Mustajärvi study area. Banded 
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arkose quartzite with primary bedding features of purely quartzitic parts and muscovite rich parts. The muscovite rich 

parts act as displacement planes for the visible quartz vein.  

Fig. 19. Photomicrographs of homogenous quartz and albite rich matrix of the arkose quartzite. (Left) Arkose quartzite; 

crossed polarizers; field of view ~2,4 mm. (Right) Arkose quartzite; crossed polarizers; field of view ~1.2 mm. 

Additional to quartz and albite, carbonate in the grain boundaries and a weak sericite overprint of albite are visible. 

Fig. 20. Photomicrographs of dynamic recrystallization of quartz with associated grain size reduction. Recrystallization 

has formed a slight foliation in the rock. Also visible are disseminated muscovite and abundant carbonate in the matrix. 

(Left) Arkose quartzite; crossed polarizers; field of view ~6 mm. (Right) Arkose quartzite, crossed polarizers, field of 

view ~1.2 mm.  

Intermediate tuffites 

Intermediate tuffite is the second most common rock type in the metasedimentary rock 

unit, comprising approx. 40 vol. % of it. The transition from banded arkose quartzites is 

mostly gradual, with both rocks being strongly interlayered making it often impossible to 

draw a boundary between the rock types. However, more rarely the contact can also be 

sharp and distinct (Fig. 17). Moreover, in the intermediate tuffite, quartz and albitized 

feldspar clasts rarely resemble pyroclasts in a mafic matrix that, together with a graded 

bedding, suggest a sedimentation influenced by volcanic rocks (Figs. 16, 22 and 23).  
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Whereas the arkose quartzites contain none to only accessory biotite, intermediate tuffites 

can have substantial amounts of biotite of up to 20 vol. %, with an average of 10 vol. %. 

However, in most cases, muscovite still dominates over biotite, with white mica contents 

of up to 50 vol. % (Fig. 25) and an average of 20 vol. %. Biotite concentrations of over 

10 vol. % cause the rock to appear dark (Figs. 21 and 22), making it often difficult to 

macroscopically distinguish between intermediate tuffites and mafic tuffites, however, 

intermediate tuffites are commonly less strongly foliated than mafic tuffites. Biotite 

occurs both as thin foliated bands forming a weak foliation (Fig. 24) and disseminated in 

the matrix between quartz and albite (Fig. 23). Associated with biotite is occasional 

chlorite, usually in the vicinity of carbonate. However, chlorite does not exceed 5 vol. % 

of the rock package. Muscovite commonly occurs in strongly foliated bands that are often 

associated with hematite (Fig. 25). The grain sizes of biotite and muscovite are similar, 

with average grain sizes ranging between 50 and 150 µm. The mineral characteristics of 

quartz, albite and carbonate are similar to what has been described in the arkose quartzite 

rock.  

Fig. 21. Drill core showing least altered intermediate tuffite with biotite rich bands. Drill core 18MUS013, depth 184 m. 

 

Fig. 22. Drill core sample showing intermediate tuffite (sample MJ-6-3374). Rare graded bedding features in a biotite 

rich matrix. See Fig. 23 for thin section pictures of the matrix. 
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Fig. 23. Photomicrographs of intermediate tuffite; drill hole sample MJ-6-3374m. Graded bedding and albitized 

feldspar clasts in a biotite rich matrix are indicating a volcaniclastic sedimentation. (Left) Arkose quartzite; linear 

polarizers; field of view ~6 mm. (Right) Arkose quartzite; crossed polarizers; field of view ~6 mm. 

Fig. 24. Photomicrograph of intermediate tuffite. Thin 

biotite bands (brown) form a weak foliation in the 

rock. Linear polarizers; field of view ~6 mm.  

Fig. 25. Photomicrograph of intermediate tuffite. 

Muscovite rich layer associated with abundant 

hematite, also forming a foliation in the rock. Linear 

polarizers, field of view ~6 mm. 

Mafic tuffite 

Mafic tuffite forms about 10 vol. % of the siliciclastic metasediment pile. They mostly 

comprise 0.1-to 1-m-thick interlayers, but also rare massive layers with thicknesses of up 

to 7 m. The transition from intermediate tuffite is mostly gradual. Mafic tuffites can be 

distinguished from mafic lavas by their hardness caused by the high quartz content, and 

their foliation due to the layering of quartz with biotite-chlorite bands (Figs. 28 and 29). 

Least altered mafic tuffites are weakly to moderately foliated (Figs. 26 and 27) with the 

texture locally being either granoblastic or lepidoblastic. In biotite-rich lepidoblastic 

parts, the rock locally shows a weak crenulation cleavage (Fig. 29). Similar to the 

intermediate tuffite, biotite- or chlorite-rich parts are usually associated with abundant 

hematite which follows the lepidoblastic texture (Fig. 29). The main difference to 

intermediate tuffite is the higher chlorite and biotite content usually clearly dominating 
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over muscovite, and the slightly higher Fe-oxide content. Mafic tuffites have chlorite or 

biotite concentrations of at least 30 %, whereby either chlorite or biotite is clearly 

dominating. Both minerals show overprinting reactions between each other, with biotite 

mostly getting chloritized in the vicinity of carbonate. The grain size of biotite varies 

between 50-150 µm with an average of ~100 µm, the grain size of chlorite is slightly 

larger. The grain shapes of both minerals are mainly subhedral and only rarely euhedral 

due to veining related recrystallization (Fig. 29). For quartz, albite and carbonate, the 

same mineral characteristics apply that have been described in the arkose quartzites.  

Fig. 26. Drill core showing weakly altered mafic tuffite with concordant albite-carbonate-(quartz) veining along the 

foliation. Drill core 18MUS013, depth 72 m. 

Fig. 27. Drill core showing least altered mafic tuffite. Drill core 18MUS013, depth 180 m. 
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Fig. 28. Photomicrographs of mafic tuffite. In this sample, the matrix is dominated by abundant chlorite and quartz and 

some albite. (Left) Linear polarizers; field of view ~2.4 mm. (Right) Crossed polarizers; field of view ~2.4 mm. 

Fig. 29. Photomicrographs of the matrix of the least altered mafic tuffites. Biotite (brown) forms a foliation in the rock. 

Associated with the biotite rich layers is hematite (opaque). (Left) Mafic tuffite; linear polarizers, field of view ~6 mm. 

The contact to a quartz veinlet, parallel to the foliation, is characterized by coarse grained more euhedral biotite. (Right) 

Mafic tuffite; linear polarizers, field of view ~6 mm. Thick biotite-muscovite layer with a starting formation of a 

crenulation cleavage.  
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5.1.2 Petrography of the metavolcanic rocks 

The volcanic rock unit at Mustajärvi consists of ultramafic lavas (komatiites) and tuffs, 

komatiitic basalts, mafic lavas (tholeiites) and tuffs, and graphitic cherts. Alteration 

commonly makes it difficult to locally differentiate between the individual rock types. At 

the known mineralization, the volcanic unit occurs as 0.5-to 3-m-thick interlayers in the 

metasedimentary unit. With increasing proximity to the fault zone, which likely 

represents the general contact of volcanics and siliciclastic metasediments, layers of the 

volcanic unit get gradually thicker. The different rock types of the volcanic unit are 

interlayered with individual layers being 0.1 to 25 m in thickness, whereas more thicker 

layers are usually lavas and thinner layers are tuffs. During the first drilling campaign of 

FireFox Gold in the end of 2018, graphitic cherts have been observed to be tightly 

interbedded with altered mafic metavolcanic rocks near the interpreted overall contact 

zone of volcanic rocks and siliciclastic metasediments. The graphitic chert - mafic 

volcanic interlayering has a thickness of about 7 m and was observed in only one drill 

core. The graphitic cherts were not subject of further research in this thesis since the 

observation was made after the research part of the thesis work.  

Based on thin section studies, the main mineral associations of the volcanic rocks are: 

Komatiite: Tremolite + chlorite + talc + magnetite + chromite ± albite ± biotite ± calcite, 

rutile ± pyrite ± chalcopyrite ± pyrrhotite 

Komatiitic basalts: Actinolite + Chlorite + Epidote + albite+ biotite + magnetite ± titanite 

± pyrite ± chalcopyrite 

Ultramafic metavolcanic rocks 

Ultramafic metavolcanic rocks comprise komatiite lavas and ultramafic tuffs. The 

ultramafic tuffs occur as 0.1-to 1-m-thick interlayers both in (ultra) mafic lavas (Fig. 30) 

and in siliciclastic metasediments. The tuffs show a strong schistosity and are commonly 

strongly veined with quartz-albite-carbonate veins parallel to the schistosity (Fig. 31). 

The color of the ultramafic tuffs is generally distinctively darker than that of the 

ultramafic lavas. Unfortunately, the ultramafic tuffs have not been part of thin section 

studies since no representative sample was found during the initial thin section sampling.  

The ultramafic lavas have a komatiitic geochemistry and occur as massive layers in the 

rock package with individual thicknesses up to 25 m. The texture is lepidoblastic with a 
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distinct foliation. The rock is dark in color with a distinct greenish tint (Fig. 32). The 

matrix is dominated by fine-grained subhedral to rarely euhedral tremolite (on average 

45 vol. %) with an average grain size of 250 µm (Figs. 33 and 39) and abundant chlorite 

(35 vol. % on average) with slightly smaller grain sizes and subhedral to euhedral grain 

shapes (Figs. 33-35). Chlorite partly forms bands in the matrix causing a weak foliation 

(Fig. 33). With an increasing chlorite and talc concentration, the rock inhabits a moderate 

to strong schistosity. In some more primitive komatiites that resemble talc-chlorite schists 

chlorite dominates and forms a distinct schistosity. Occasionally, chlorite forms nest-like 

accumulations that may represent textures after primary olivine cumulates (Fig. 34). 

Pseudomorphic olivine cumulus grains can also rarely be observed macroscopically as 

dark clusters in the rock. Chlorite occasionally shows an overprint by biotite (Fig. 35). 

Magnetite occurs as thin veinlets that follow the direction of the foliation and are 

commonly accompanied by carbonate (Fig. 33). Carbonate makes up 5-10 % of the rock. 

There are also coarser-grained and more disseminated magnetite crystals that often show 

chromite remnants in their core (Fig. 36).  

Different sulphide minerals occur as accessory minerals in the ultramafic rock. The most 

common sulphide is pyrite, which occurs both in early-stage calcite veining that follows 

the foliation, and more coarse-grained disseminated in the matrix, seemingly unrelated to 

carbonate veining. Enclosed in the latter larger pyrite grains that have average grain sizes 

of 1 mm are common chalcopyrite and rare pyrrhotite (Fig. 37). Chalcopyrite also occurs 

more rarely as individual grains in carbonate and quartz-albite veins together with pyrite. 

Early-stage carbonate veinlets are commonly completely overprinted by tremolite (Fig. 

39), which is slightly coarser-grained than the matrix tremolite. Later stage carbonate 

veins are characterized by a richness of coarser-grained recrystallized matrix chlorite in 

the contact between veins and matrix.  
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Fig. 30. Drill core showing a 1-m-thick ultramafic tuff layer (bottom row) in a massive ultramafic lava. Drill core 

18MJ013, depth 9-13 m. 

Fig. 31. Drill core showing ultramafic tuff with a strong schistosity and intensive parallel quartz-albite-carbonate 

veining. Drill core 18MUS013, depth 12 m. 

Fig. 32. Drill core showing massive ultramafic lava. The slightly darker interval in the center of the figure has a 

komatiitic basalt geochemical composition. Drill core 18MUS013, depth 24 m. 

Fig. 33. Photomicrographs of ultramafic volcanic rock. Tremolite is dominating the matrix. Chlorite bands form a weak 

foliation in the rock, often accompanied by magnetite bands. Around large calcite grains grow more euhedral tremolite 

crystals. Thin magnetite bands occur along the foliation together with carbonate and chlorite. (Left) Crossed polarizers, 

field of view ~6 mm. (Right) Linear polarizers, field of view ~6 mm. 
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Fig. 34. Photomicrograph of ultramafic volcanic rock. 

Accumulations of nest-like chlorite might represent 

pseudomorphs after primary olivine clusters. Parallel 

polarizers, field of view ~2.4 mm.  

Fig. 35 Photomicrograph of ultramafic volcanic rock. 

Biotite overprint of Chlorite. Abundant rutile appears 

to be related to the biotite overprint. Parallel 

polarizers; field of view ~1.2 mm. 

Fig. 36. Photomicrograph of ultramafic volcanic rock. 

Euhedral magnetite crystal with a core consisting of 

chromite. The magnetite grains are disseminated in the 

matrix. Reflected light, field of view ~0.6 mm.  

Fig. 37. Photomicrograph of ultramafic volcanic rock. 

Partly oxidized, pyrite crystal with small inclusions of 

chalcopyrite and pyrrhotite. Reflected light, field of 

view ~2.4 mm. 

 

Fig. 38. Photomicrograph of ultramafic volcanic rock. 

Calcite veining with large pyrite crystals. The 

carbonate vein gets overgrown by more euhedral 

tremolite. Parallel polarizers, field of view ~6mm.  

Fig. 39. Photomicrograph of ultramafic volcanic rock. 

Euhedral tremolite, with larger grain sizes, 

overprinting early stage calcite veinlets. Crossed 

polarizers, field of view ~6 mm. 
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Komatiitic basalts 

Komatiitic basalts are the least common rock type of the volcanic rock unit. Similar to 

the komatiites, they occur as massive layers in the rock package with thicknesses of up to 

approx. 15 m. Moreover, they can occur as gradual interlayers in the ultramafic lavas 

(Fig. 32). The color of the rock is generally darker and does not have a distinct greenish 

tint like the komatiites (Figs. 32 and 40). 

The komatiitic basalts have a lepidoblastic texture with a weak to distinct foliation, 

whereby no schistosity has been observed. The petrography of the komatiitic basalt is 

different to the komatiites, with actinolite being the dominant amphibole instead of 

tremolite, which explains the color difference to the ultramafic rock. Actinolite is fine 

grained, fibrous and subhedral and is dominating the matrix. Abundant chlorite is again 

forming a weak foliation in the rock. Furthermore, the komatiitic basalts contain abundant 

epidote, commonly along smallish veins together with chlorite and magnetite (Fig. 41), 

but also disseminated in the matrix (Fig. 42). Rare titanite occurs as accessory mineral. 

The rock has abundant early stage quartz-plagioclase veins. These veins are often sheared 

along magnetite bands in the direction of the foliation (Fig. 43). Commonly, they are 

reopened or overprinted by later stage carbonate ± pyrite + chalcopyrite veins whose 

contacts are characterized by large euhedral chlorite-biotite crystals (Fig. 44). In the 

contact zones of large veins, euhedral and coarse-grained amphibole is formed (Fig. 45).  

Fig. 40. Drill core showing least altered komatiitic 

basalt (dry surface). Drill core MJ-6, depth 15.7 m. 

 

Fig. 41. Photomicrograph of komatiitic basalt. Coarse 

grained epidote associated with chlorite and magnetite. 

Parallel polarizers, field of view ~6 mm.  
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Fig. 42. Photomicrograph of komatiitic basalt. Epidote 

disseminated in the matrix. Crossed polarizers, field of 

view ~6 mm.  

Fig. 44. Photomicrograph of komatiitic basalt. Early 

stage qtz-plag vein getting overprinted by coarse-

grained euhedral carbonate. On the contacts of vein 

and matrix are euhedral biotite-chlorite crystals. 

Parallel polarizers, field of view ~6 mm. 

Fig. 43. Photomicrograph of komatiitic basalt. Early 

stage qtz-plag veins are getting displaced along thin 

magnetite bands that follow the foliation. Parallel 

polarizers, field of view ~6 mm.  

Fig. 45. Photomicrograph of komatiitic basalt. Quartz-

plagioclase vein with coarse grained euhedral 

amphibole in the contact zone. Parallel polarizers, field 

of view ~6 mm. 

Mafic metavolcanic rocks 

Unfortunately, no thin section studies of the mafic metavolcanic rocks were conducted 

since during the initial sampling campaign, mafic metavolcanic rocks were only found as 

angular boulders at the Mustajärvi property. Firefox’s first drilling campaign at 

Mustajärvi confirmed the mafic metavolcanic rocks to be part of the volcanic rock unit at 

the Mustajärvi study site, comprising mafic lavas and mafic tuffs.  

The mafic lavas occur as massive units with thicknesses of more than 17 m. 

Macroscopically, the rock inhabits a massive texture with a weak foliation (Fig. 46). In 

most cases, the rock is highly magnetic, which represents an effective tool to distinguish 
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between komatiitic basalts and mafic lavas, since the komatiitic basalts are only weakly 

magnetic.  

The mafic tuff layers are usually thinner than the lavas and not as massive, with individual 

layer thicknesses ranging from 0.1 m to 5 m. The tuffs are tightly banded, consisting of a 

mafic matrix, which is interbedded with lenses or bands made of albite and quartz (Figs. 

47 and 48). Occasionally, these bands and lenses are deformed and reoriented. In one drill 

core, at intersects near the general contact zone of siliciclastic metasediments and 

volcanics, altered mafic tuffs show an intense interbedding with graphitic cherts (Fig. 48) 

over an interval of approx. 7 m. The graphitic chert interval generally appears as a zone 

of strong deformation and shows cross-cutting veining by pyrite-rich quartz-albite ± 

carbonate veins, with pyrite and carbonate commonly being oxidized (Fig. 48). Graphite 

occurs in graphite-rich bands with thicknesses of more than 0.3 m (Fig. 48).  

Fig. 46. Drill core showing massive mafic lava. Drill core 18MUS013, depth 36 m. 

Fig. 47. Drill core showing a strongly banded mafic tuff layer. Perhaps a zone of strong deformation. Drill core 

18MUS013, depth 131 m. 
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Fig. 48. Drill core showing interbedded mafic tuff and graphitic chert. The mafic tuff in the top row shows albite and 

quartz veins in a mafic matrix and is most likely a zone of strong deformation. The unit is strongly veined with pyrite 

rich quartz-albite-(carbonate) veins, that are commonly oxidized. The bottom row comprises abundant graphite that is 

broken up, unlike the rest of the core. Drill core 18MUS013, depth 45 m. 
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5.2. Alteration 

 

5.2.1 Regional alteration 

The degree of regional alteration is generally high in the Honkavaara Formation 

metasediments and weak to moderate in the Savukoski volcanic rocks (Lehtonen et al. 

1998). It mainly consists of an overall moderate to strong albitization, mostly in the 

metasediments, and a weak to strong carbonate overprint in both rock units. Furthermore, 

abundant very early-stage quartz-albite veins, commonly with a carbonate overprint and 

early-stage carbonate veins occur in all host rocks. 

Siliciclastic metasediments 

Regional alteration in the siliciclastic metasediments consists of an overall moderate to 

strong albitization, a moderate carbonate overprint and a minor sericitization. Regional 

albitization caused the replacement of all feldspars by albite, which make up 20-60 % of 

the rock (see Chapter 5.1.1) and furthermore caused an enrichment of sodium in strongly 

albitized rocks. This resulted in a strong beige to pinkish appearance of the altered rocks 

(Fig. 49). Thin section studies show that the regional carbonate overprint is pronounced 

in these strongly albitized rocks. Carbonatization is occasionally the strongest in the most 

intensively albitized rocks, however, this could not be identified as a common rule. 

Furthermore, regional albitization includes local albite micro-veinlets reminding of 

stockwork veining (Fig. 51), quartz-albite veinlets and abundant massive quartz-

albite ± carbonate veins. The quartz-albite veinlets and the more massive veins show 

distinct bleached albitization halos in the metasedimentary host rock unit (Fig. 50) that is 

caused by a replacement of micas by albite. Additional to the albite enrichment, quartz-

albite veins commonly relate to a moderate to strong silicification in the rock. This 

silicification correlates with albitization and occurs both as vein halos and as a pervasive 

alteration in brecciated, strongly veined rocks (Fig. 53). Regional silicification is thought 

to be minor, mostly caused by excess Si being released by regional alteration processes 

with a subsequent recrystallization of the Si as quartz, whereas the most strongly silicified 

rocks are thought to be part of an intermediate to proximal alteration zone related to 

mineralizing fluids. There appear to be many veining events at Mustajärvi, including 

multiple quartz-albite ± carbonate vein sets, and whereas some of these veins might be 

attributed to mineralization, some of them were likely formed during earlier-stage 

regional alteration. Some of the existing veins show narrow veinlets of tourmaline in the 
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contact zones of vein and host rock. More rarely, tourmaline veining can also be massive 

and strongly brecciate the host rock, which is likely related to mineralization processes.  

Regional carbonatization is indicated by disseminated carbonate crystals in the matrix, 

usually making up 5-10 % of the rock mass, by abundant thin calcite veinlets and by 

massive quartz-albite ± carbonate veins. Carbonate clearly overprints the albitized matrix 

and is thought to be of a later stage than the albitization. Also in the massive quartz-albite 

veins, carbonate is mostly seen as an overprinting feature rather than being a primary 

component.  

A weak sericite overprint, which can be observed in all studied samples, could also be 

attributed to regional alteration. The fine-grained sericite mainly grows in the grain 

boundaries of the quartz and albite matrix, but also occasionally weakly overprints the 

centers of albite and carbonate crystals, indicating the sericite alteration to be later stage. 

Furthermore, rarely weak to moderate scapolitization can be observed in the siliciclastic 

metasediments, occasionally related to veins (Fig. 52) but often also as dissemination in 

the matrix.  

Fig. 49. Drill core showing regionally strongly albitized rock. Drill core 18MUS013 at depth 86 m. 

Fig. 50. Drill core showing a quartz-albite vein with a distinct albitization halo in the least altered intermediate tuffites. 

Drill core 18MUS014, depth 127 m. 
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Fig. 51. Drill core showing least altered intermediate tuffite with thin albite micro veinlets in the more brittle parts of 

the rock. Drill core 18MUS013, depth 50 m. 

 

Fig. 52. Drill core showing scapolitization in weakly altered intermediate tuffite. Drill core 18MUS014, depth 143 m. 

 

Mafic to ultramafic volcanic rocks  

The metavolcanic rock unit is less affected by regional alteration compared to the 

siliciclastic metasediments. Alteration mostly includes the same early-stage quartz-albite 

veins with a carbonate overprint that occur in the metasediments. However, in the 

volcanic rocks, only very rarely a clear alteration halo can be seen. In most cases, these 

veins also have notable sulphide minerals, mainly pyrite, some chalcopyrite and minor 

pyrrhotite. Also abundant carbonate veins occur, mainly concordantly, in the rock.  

Despite the observed weak regional alteration in the metavolcanic rock unit, the 

ultramafic tuffs are generally strongly altered. They show strong carbonate veining, with 

the matrix often being completely altered to biotite. Moreover, rare listvenites were 

observed in drill core as products of intense carbonate + potassic alteration in ultramafic 

tuffs. In most cases, listvenites occur in the contact zone between ultramafic tuffs and 

siliciclastic metasediments (Fig. 53). Listvenites are often referred to as “chromium 

marbles” in the local literature and are known to occur in several locations along the 

Sirkka line, e.g. at Hirvilavanmaa and Levijärvi-Loukinen (Holma & Keinänen, 2007). 

The listvenites at Mustajärvi mainly consist of fuchsite and carbonate, including calcite 

and dolomite-ankerite, and accessory minerals including chlorite, biotite, quartz, albite, 

rutile, pyrite and minor chalcopyrite. Despite the strong alteration intensity of the 
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listvenites, the rocks are considered to be have been generated by regional alteration, since 

the observed ultramafic tuffs near the known mineralization are not altered to this extent.  

Fig. 53. Drill core showing ultramafic tuff (top row) in contact with albitized and silicified siliciclastic metasediments 

(bottom row). In the contact zone between the rock units occurs listvenite as a totally carbonate altered ultramafic tuff 

(middle row). Drill core 18MUS001, depth 63 m. 
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5.2.2 Alteration related to mineralization 

Mineralization-related alteration halos in orogenic gold systems are commonly cryptic 

and less developed than in many other hydrothermal mineral deposits (Goldfarb et al., 

2005). Especially in clastic metasedimentary host rocks, as at Mustajärvi, such alteration 

can be subtle due to a low reactiveness of the rocks (Goldfarb et al., 2005). Due to an 

overall strong regional alteration, the mineralization-related alteration is especially 

ambiguous at Mustajärvi and is mostly difficult to determine.  Moreover, there appear to 

be different mineralization styles at Mustajärvi, with each of them having individual 

alteration assemblages. Figure 54 gives a unified overview of the spatial alteration 

sequence related to ore-forming fluids that is distinctively different from regional 

alteration and generally applies to most mineralization styles.  

 

Fig. 54. Schematic overview of the paragenetic alteration sequence around the known mineralization at Mustajärvi. 

The letters M and V stand for metasediments and volcanic rocks, respectively, indicating in which rock unit the 

alteration occurs. Black represents alteration that is most likely related to mineralization; green represents regional 

background alteration. The data is based on drill core observations. The proximal zone ranges from 0-5 m distance to 

mineralization, the intermediate zone from 5-25 m and the distal zone from 25 m to 100 m.  
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Albitization 

The degree of mineralization-related albitization is ambiguous due to the siliciclastic 

metasediments being locally strongly albitized through regional alteration throughout the 

rock package. However, it is evident that the metasediments in the proximal alteration 

zone are in all cases strongly albitized (Figs. 56 and 57). This is emphasized by outcrop 

observations and shallow-depth drill core intercepts, which show a total kaolinization in 

the proximal surroundings of the mineralization (kaolinization mainly replaces the 

feldspars in the rock, whereas quartz remains unaffected) (Figs. 98 and 101). 

Furthermore, quartz-albite veining appears to increase with a decreasing distance to 

mineralization. The veining increases in vein sizes, alteration halos and abundancy. 

Whereas regional albite-quartz veins are mostly parallel to the foliation, possible 

mineralization related quartz-albite veins often cut across the foliation (Fig. 55).  

Silicification 

The host rocks at Mustajärvi are regionally weakly silicified, with the degree of 

silicification mostly strongly correlating with the degree of albitization. Silicification 

occurs as alteration halos around quartz- and quartz-albite veins and is locally pervasive 

in strongly veined and brecciated rocks. In general, the silicification increases with a 

decreasing proximity to the mineralization, however the degree of it varies strongly. Some 

mineralization intervals were observed to exhibit no substantial amounts of silicification, 

not even increased amounts of quartz veins (Fig. 56), whereas other mineralization types 

show intense silicification in their proximal alteration zone comprising a pervasive quartz 

overprint in the matrix, which is often recognizable by a red-colored staining of the matrix 

likely due to oxidation of Fe-oxide inclusions in quartz grains (Fig. 57). These distinct 

alteration features do not only occur in the siliciclastic metasediments but also more rarely 

in the volcanic rock unit (Fig. 58).  

Fig. 55. Drill core showing a cross cutting quartz-albite vein albitizing the siliciclastic host rock. Drill core MJ-5, depth 

45 m. 
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Fig. 56. Drill core showing massive pyrite mineralization in strongly albitized intermediate tuffite. The mineralization 

is atypically poor in quartz and general silicification. This intersection grades 2 m at 45.1 ppm Au. Drill core 

18MUS010, depth 126 m. 

Fig. 57. Drill core showing tourmaline-rich pyrite mineralization in intensively silicified intermediate tuffite. The 

mineralization itself lacks quartz veining, but the silicification is very strong. Drill core 18MUS014, depth 90 m. 

Fig. 58. Drill core showing a massive quartz-albite vein silicifying and albitizing the mafic tuff host rock. Drill core 

18MUS013, depth 128 m. 

Carbonatization 

Regional alteration-related carbonatization most likely consists of an early-stage 

carbonate overprint of the matrix, including early-stage, mostly concordant quartz-albite-

carbonate veins. In the distal to intermediate alteration zone, additional quartz-calcite-
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(tourmaline) veins can be observed, which clearly cut across earlier, regional alteration-

related veins. In the intermediate to proximal alteration zone, the dominant 

mineralization-related carbonate mineral changes slightly from calcite to dolomite and 

ankerite, whereby calcite usually remains a major constituent of the vein. 

Dolomite/ankerite veins are usually thicker and more dominant than the calcite veins, and 

the individual ankerite-dolomite crystals have larger grain sizes than calcite. 

Mineralization-related carbonate veins are, furthermore, thought to be less foliation-

parallel and more cross-cutting than regional alteration veins (Fig. 59). In some parts, a 

very strong carbonatization completely overprints the host rock, giving it a conglomerate-

like appearance by overprinting all matrix minerals except for quartz (Fig. 60). 

Commonly these total carbonatization intervals go in hand with other strong alteration 

features, such as intense tourmalinization (Fig. 69) or albitization. In most cases, 

carbonatization is associated with albitization, with the correlation weakening in close 

proximity to the mineralization. In most mineralization types, the degree of 

carbonatization is the strongest at the boundary between intermediate and proximal 

alteration zone at a distance of approx. 5-15 m from the mineralization. In proximity to 

mineralization (<5 m), carbonatization appears to seize, both in siliciclastic 

metasediments and metavolcanic rocks.  

In the volcanic rock unit, the carbonatization is generally stronger. Intense carbonate-

(quartz) stockwork veining is frequently observed in pervasively altered biotite rocks 

resulting in a pure biotite-carbonate-quartz rock (Fig. 61). Common calcite stockwork 

veining is seen to be overgrown by biotite (Fig. 62), whereas larger ankerite/dolomite 

veins clearly cross-cut zones of biotitization (Fig. 63). Previously described listvenites 

have not been observed in the proximal to intermediate alteration zone and are thus 

thought to be products of regional alteration related to strong faulting of the rock package. 

However, given the scarcity of drilling observations and the intensity of the alteration, it 

is possible that they are products of intermediate mineralization-related alteration.  

Fig. 59. Drill core showing a massive cross cutting ankerite-dolomite vein in strongly albitized intermediate tuffite. 

Drill core 18MUS013, depth 102 m. 
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Fig. 60. Drill core showing a laminated ankerite-

dolomite vein with quartz clasts which give the vein a 

conglomeratic appearance. A small late stage calcite 

vein is cutting the vein perpendicularly. Drill core MJ-

9, depth 41.3 m. 

 

 

Fig. 62. Photomicrograph of carbonatization. Matrix 

of stockwork calcite veining and biotite. No cross 

cutting of the veins with biotite was observed 

Microscopic view of Fig. 61. Crossed polarizers, field 

of view ~6 mm.  

 

Fig. 61. Grab sample of a strongly carbonatized 

ultramafic rock from the artisanal mining pit (sample 

MJ-1). The center of the sample mainly comprises 

stockwork calcite veining, whereas on the right part 

thicker ankerite/dolomite veining dominates that cross 

cuts the calcite veining. The matrix of the rock has 

been pervasively altered to biotite. 

Fig. 63. Photomicrograph of carbonatization. Thick 

ankerite/dolomite-quartz veining is clearly cross-

cutting biotite that forms the matrix. Biotite is locally 

observed to be recrystallized in the contact zone of 

biotite and vein (see bottom of the picture). 

Microscopic view of Fig. 61. Crossed polarizers; field 

of view ~6 mm.  

Biotitization 

Biotitization related to mineralization occurs both in the siliciclastic metasediments and 

in the metavolcanic rocks. In the metavolcanic rocks it mostly consists of a pervasive 

alteration from chlorite to biotite, typically associated with intense carbonate-(quartz) 

veining (Figs. 61-63). This pervasive biotitization in the metavolcanic rocks is believed 
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to be an intermediate to proximal alteration feature. In the metasediments, biotite 

enrichment occurs as biotite stringers, which have no apparent main orientation (Fig. 64), 

and as disseminated biotite in the matrix, which is easily distinguishable as dark spots in 

a bleached matrix (Fig. 65). However, in both features, biotite can be easily mistaken as 

tourmaline. Biotitization in siliciclastic metasediments has been observed to be restricted 

to the proximal alteration zone, making it a useful tool to predict nearby mineralization.  

 

Fig. 64. Drill core showing biotitization. The top row shows relatively unaltered intermediate tuffite outside of the 

proximal alteration zone. The bottom row shows the onset of the proximal alteration zone with strong biotitization. The 

rock appears bleached and shows intense biotite stringers. Drill core 18MJ010, depth 122.4 m. 

 

Fig. 65. Dill core showing biotitization. Both rows show gold mineralized intermediate tuffite that is strongly enriched 

with biotite, which occurs as biotite stringers (e.g. top row on the left) and disseminated in the host rock matrix that is 

distinguishable as dark spots in a bleached matrix (e.g. bottom row on the left). Drill core 18MJ010, depth 126.5 m. 

Sericitization 

The host rocks generally show a minor sericite overprint related to regional alteration. 

With increasing proximity to mineralization, in the intermediate to proximal alteration 

zone sericitization can increase to a strong and pervasive alteration feature (Fig. 66). In 

these parts, albite and carbonate minerals in the host rocks matrix are partly altered to 
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sericite. Sericitization often terminates in the immediate surroundings of mineralization. 

The strongly sericitized rocks macroscopically appear dull greyish and have a decreased 

hardness. In the immediate vicinity to thin barren quartz-pyrite veins, the rocks that 

appear macroscopically non-sericitized also show an increased sericite overprint on a 

microscopic scale.  

Fig. 66. Drill core showing a weakly altered and veined intermediate tuffite (top row) being affected by strong 

sericitization (bottom row). Original albite- and carbonate-bearing veins have been mostly weathered away in the 

sericitized part. Drill core 18MUS013, depth 113 m. 

Fig. 67. Photomicrograph of sericitization. Weak to 

moderate sericitization with relatively coarse-grained 

sericite overprinting the matrix grain boundaries as 

well as the cores of albite crystals. Crossed polarizers, 

field of view ~1.2 mm. 

 

Fig. 68. Photomicrograph of sericitization. Proximal 

alteration zone with intense and pervasive 

sericitization overprinting albite and carbonate 

minerals in the matrix (on the left side), whereas 

coarser-grained, vein-related albite and carbonate is 

mostly not overprinted. Crossed polarizers, field of 

view ~6 mm. 
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Tourmaline enrichment  

Thin tourmaline veinlets, often in the contact zone between quartz-albite veins and host 

rocks, occur throughout the host rock units. It is unclear whether these veins are caused 

by regional alteration or are a distal alteration zone feature related to mineralizing fluids. 

It is evident however, that tourmaline veining gets more abundant and more massive with 

increasing proximity to the mineralization where it can be a major constituent of the 

auriferous pyrite mineralization (Figs. 57 and 76). In extreme cases, tourmaline veins are 

observed to completely brecciate the host rocks (Fig. 69). Elevated amounts of tourmaline 

are in most cases observed in association with other alteration processes, such as 

albitization, strong carbonate veining (Fig. 70), intense sericitization, pyrite enrichment 

and silicification. The temporal association of tourmaline is ambiguous and unclear as it 

is often seen overprinting other alteration types, but multiple stages of tourmaline veining 

during ore formation are assumed. It is furthermore assumed that tourmaline-bearing 

quartz and carbonate veins are more likely to be related to mineralization than non-

tourmaline-bearing ones, as indicated by tourmaline bearing veins commonly cutting 

across earlier non-tourmaline-bearing veins.  

Fig. 69. Drill core showing a massive tourmaline vein brecciating a strongly albitized intermediate tuffite host rock 

(top row). In the center of the bottom row, massive tourmaline in totally altered mafic host rock (left), with a totally 

carbonated zone on the right. Drill core 18MUS013, depth 174 m. 
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Fig. 70. Tourmaline enrichment. (Left) Grab sample of a mafic tuffite with strong carbonate-tourmaline veining, 

collected from a trench near the artisanal mining pit (sample MJ-UT7). (Right) Photomicrograph of tourmalinization 

(microscopic view of sample MJ-UT7 (Left)). Tourmaline (green) is not only present in the carbonate vein (bottom of 

the picture), but also occurs abundantly as finer grains in the quartz-dominated matrix of the host rock (top part). 

Parallel polarizers, field of view ~6 mm. 

Veining 

Within the intermediate to proximal alteration zone, barren quartz-pyrite ± albite-

carbonate veins are typical, with pyrite amounting up to 75 % of the vein (Figs. 71 and 

72). The host rocks of the veins rarely show similar alteration features as the mineralized 

veins, including intense silicification. Occasionally, gold is clearly anomalous in the 

pyrite-bearing veins with concentrations up to 0.4 ppm Au and 4 ppm Te. These 

anomalous Au and Te concentrations are thought to be another indicator for proximal 

mineralization. Coevally with quartz-pyrite veins, 

quartz ± carbonate ± albite ± tourmaline veins are increasingly enriched from the distal 

to the proximal alteration zone. Similar veins were formed during regional 

metamorphism, however clear cross-cutting relationships show that many quartz veins, 

often with abundant tourmaline, are of a later stage and most likely related to the 

mineralization event. Furthermore, multiple quartz veining phases during the 

mineralizing event with complex cross-cutting relationships are likely.  

Another indicator of mineralization is the presence of magnetite-pyrite-carbonate veining 

that occasionally occurs in the proximal alteration zone (Fig. 73). These veins can be 

either barren, anomalous for gold or clearly mineralized. Also hematite-pyrite-quartz 

veins with anomalous gold concentrations of up to 0.3 ppm Au were observed in 

proximity to the mineralization (Fig. 74). 
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Fig. 71. Drill core showing a typical barren quartz-

pyrite vein with proximal alteration zone. Drill core 

MJ-7, depth 30 m. 

Fig. 72. Drill core showing a massive pyrite vein with 

only little quartz, yielding a gold value of 0.37 ppm 

Au. Drill core MJ-9, depth 50.9 m. 

Fig. 73. Magnetite-pyrite-carbonate vein. (Left) Drill core showing a magnetite-pyrite-carbonate vein in the proximal 

alteration zone. This sample is not anomalous for gold, however other magnetite-pyrite veins have been reported to be 

clearly mineralized. Drill core MJ-4, depth 35.78 m. (Right) Photomicrograph of magnetite-pyrite-carbonate vein 

(microscopic view of left figure) In bright grey is pyrite, in moderate grey is magnetite, with a dark grey matrix of 

carbonates. Reflective light, field of view ~6 mm. 

Fig. 74. Quartz-hematite-pyrite vein. (Left) Drill core sample showing a quartz-hematite-pyrite vein in the intermediate 

alteration zone, anomalous for gold and tellurium (0.28 ppm Au & 0.65 ppm Te). Drill core MJ-5, depth 52.86 m. 

(Right) Photomicrograph of quartz-hematite-pyrite vein (microscopic view of left figure). Hematite needles with 

euhedral pyrite and quartz in a lepidoblastic matrix of muscovite. Parallel polarizers, field of view ~6 mm. 
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6. MINERALIZATION 
 

6.1. Petrography of the mineralized veins 

The petrographic observations of the mineralization are mainly based on grab samples 

from the artisanal pit, since these samples were the basis for the thin section study. The 

entire historical drill core related to the gold system has been re-assayed by Outokumpu, 

resulting in a complete loss of the mineralized core. However, preliminary observations 

from the first FireFox Gold drilling campaign confirm the surface mineralization at depth 

and further indicate that different styles of mineralization exist.  

The outcropping mineralization at Mustajärvi consists of quartz-pyrite-tourmaline veins 

that show typical pinch and swell features. The microprobe work of this study shows that 

gold within the veins occurs as Au-(Bi)-telluride micro-inclusions in pyrite and as likely 

remobilized free gold. Pyrite makes up 5 to 25 % of the veins (Figs. 75-78). The amount 

of tourmaline varies strongly and ranges from ~5 % to as much as ~35 % of the vein 

volume. Accessory minerals are white mica and rare monazite. In addition to Au-(Bi)-

tellurides, the veins contain a wide array of telluride minerals including Ni-tellurides, Bi-

tellurides and Se-Bi-tellurides.  

The surface grab samples are partly heavily weathered, which has resulted in oxidation 

of pyrite to goethite causing a remobilization and possible enrichment of gold due to a 

loss of rock volume. Other supergene processes include strong kaolinization of the veins 

and the proximal host rock, and the formation of Mn-weathering crusts on the mineralized 

and barren quartz veins with MnO concentrations of up to 9.43 wt. % (see section 6.4).  

During the first drilling campaign of FireFox Gold in December 2018, a high-grade 

mineralized zone was intersected at a vertical depth of approx. 90 m. The mineralized 

zone comprises a 2-m-wide interval of massive pyrite (up to 55 %) with only marginal 

amounts of quartz and relatively low tourmaline contents (Fig. 79). The pyrite zone is 

mainly oriented along the foliation of the intermediate tuffite host rock. This interval 

represents the highest-grade drill core intersection so far obtained at Mustajärvi with 2 m 

at 45.1 ppm Au. No thin section studies were performed on this new style of 

mineralization as it was discovered very recently. The following detailed descriptions 

solely concern the surface grab samples.  
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Quartz 

Due to several recrystallization features, the primary grain sizes of quartz are difficult to 

determine. The present-stage quartz sizes range from 0.1 mm to 10 mm. Most quartz 

grains show at least one of several dynamic recrystallization features consisting of 

bulging recrystallization, grain boundary migrations with strongly lobate contacts (Fig. 

80) and subgrain rotation (Fig. 81) including subgrain formation deformation lamellae 

(Fig. 82). All quartz grains display a strong undulose extinction, which varies from 

sweeping to patchy. Fully recrystallized quartz with 120° triple junctions was not 

observed. More rarely, in some parts of the veins, quartz does not show strong signs of 

recrystallization (Fig. 87).  

Pyrite 

Pyrite occurs in grain sizes ranging from 0.1 to 10 mm, with an average of ~2 mm. The 

shape of the grains is mostly subhedral, but also euhedral and anhedral pyrite can be 

observed. Most pyrite is hosted in the finer-grained, more deformed and recrystallized 

quartz parts and is only accessory in veins parts of larger quartz grains (Figs. 77, 83 and 

84). Additionally, pyrite is generally closely associated with tourmaline. In tourmaline-

enriched parts, in which tourmaline is overprinting the rock in a vein-like fashion, pyrite 

has significant amounts of euhedral tourmaline inclusions with almost every pyrite grain 

enclosing finer-grained tourmaline (Figs. 83-86). In some cases, tourmaline even makes 

up 75% of the entire pyrite grain (Fig. 85). The borders of strong tourmaline enrichment 

are quite sharp, with pyrite outside of the enrichment zone having almost no tourmaline 

inclusions (Fig. 86). The overprinting relationships of pyrite and tourmaline are 

ambiguous, and multiple events of pyrite and tourmaline formation are assumed. This is 

supported by the fact that tourmaline inclusions partly occur only in the center of the 

pyrite grain or only in the rims of pyrite, suggesting multi-stage growth of pyrite and 

multiple tourmaline enrichment events.  

Tourmaline 

Tourmaline has grain sizes between 20 µm and 250 µm with an average of 100 µm. It is 

mostly euhedral, but with smaller grain sizes commonly being anhedral. Similarly to 

pyrite, tourmaline only rarely occurs in coarse-grained, less-deformed quartz-rich parts. 

It usually occurs in thick vein-like bands spatially associated with pyrite. Moreover, 

tourmaline is observed to form fine-grained “nests” (Fig. 87) representing either a 
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pseudomorph after a different unidentified mineral or fine-grained, recrystallized 

tourmaline after itself.  

Accessory minerals 

White mica is a common accessory mineral in the mineralized veins. It occurs as 

subhedral inclusions in pyrite and more rarely as subhedral disseminated grains in the 

quartz matrix. In most cases, it is spatially associated with pyrite and tourmaline. It 

reaches grain sizes of 0.2 mm with an average of 0.1 mm. Some white mica grains, 

especially with larger sizes, are euhedral and appear to overprint the quartz matrix (Fig. 

88). These grains are possibly a product of supergene processes.  

Monazite is another accessory gangue mineral in the mineralized veins. It was only found 

in one sample (grab sample MJ-41). The monazite grains occur in a cluster with grain 

sizes of 0.1 to 0.5 mm (Fig. 89). The observed monazite clusters are spatially associated 

with tourmaline and oxidized pyrite. Monazite could potentially be used for further 

studies to date the mineralization event.  

Telluride minerals 

The mineralized quartz-pyrite-tourmaline veins encompass a wide range of telluride 

minerals, of which calaverite (Au-telluride) and montbrayite (Au-Bi-telluride) are gold 

bearing. Other non-auriferous tellurides are abundant melonite (Ni-telluride), kawazulite 

(Se-Bi-telluride) and tellurobismuthite (Bi-telluride). Based on the only limited 

microprobe study (69 measurements), the following non-statistical order of abundance 

was observed, starting with the most abundant mineral: montbrayite, melonite, calaverite, 

kawazulite, tellurobismuthite. The telluride mineral classifications are solely based on 

their chemical composition measured with quantitative microprobe analysis (Tables 5 and 

6). 

All telluride minerals occur as micro-inclusions in pyrite, with grain sizes of 1 µm to 

10 µm. They are usually emplaced in strings or clusters in the pyrite grains (Figs. 90 and 

91), with the exception of melonite, which occurs more commonly as a single grain 

disseminated in pyrite and also shows on average larger grain sizes than the other telluride 

minerals (Fig. 92). No spatial relationship, neither between the telluride minerals 

themselves nor between the tellurides and their location in the host pyrite grain, was 

observed. 
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Gold 

For a detailed description of native gold in the mineralized veins and for further 

descriptions of the auriferous tellurides see Chapter 6.2. 

 

  

Fig. 75. Grab sample of a relatively unoxidized quartz-

tourmaline-pyrite vein grading 10.95 ppm Au (sample 

MJ-35). Sample width is approx. 15 cm.  

Fig. 77. Grab sample of a tourmaline poor, quartz rich, 

strongly oxidized quartz-tourmaline-pyrite vein 

grading 63.8 ppm Au (sample MJ-27). Sample width 

is approx. 15 cm. 

 

 

Fig. 76. Grab sample of a tourmaline rich, oxidized 

quartz-tourmaline-pyrite vein grading 9.91 ppm Au 

(sample MJ-47). Sample width is approx. 15 cm. 

Fig. 78. Grab sample of a relatively tourmaline poor, 

moderately oxidized quartz-tourmaline-pyrite vein 

grading 14.75 ppm Au (sample MJ-34). Sample width 

is approx. 15 cm. 
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Fig. 79. Drill core showing a two-meter-thick drill intercept of high-grade pyrite mineralization (2 m at 45.1 ppm Au). 

The mineralization comprises only marginal amounts of tourmaline and quartz. Tourmaline occurs as small bands in 

pyrite. Drill core MJ010, depth 126 m. 

Fig. 80. Photomicrographs of dynamic recrystallization of quartz (Left) Dynamic recrystallization of quartz, consisting 

of bulging recrystallization with grain boundary migration with lobate contacts. In the center of the photograph, 

subgrain formation can be observed. The undulose extinction is in a transition between sweeping and patchy. Crossed 

polarizers; field of view ~6 mm. (Right) Dynamic recrystallization of quartz, consisting of grain boundary migration, 

bulging, and likely subgrain rotation in parts. Crossed polarizers; field of view ~2.4 mm. 

Fig. 81. Photomicrograph of dynamic recrystallization 

of quartz due to subgrain rotation. The undulose  

Fig. 82. Photomicrograph of deformation lamellae 

with elongated subgrains. The contacts of the quartz 
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extinction is mostly patchy. Crossed polarizers; field 

of view ~1.2 mm.  

grain are lobate due to grain boundary migration. 

Crossed polarizers; field of view ~6 mm. 

 

 Fig. 83. Photomicrographs of pyrite and tourmaline in parts of finer-grained and more deformed and recrystallized 

quartz. Crossed polarizers; field of view ~6 mm. 

Fig. 84. Photomicrographs of pyrite and tourmaline being spatially closely associated. Only little tourmaline can be 

seen in the quartz-rich parts. Crossed polarizers; field of view ~6 mm. 

Fig. 85. Photomicrographs of tourmaline association with pyrite. (Left) Linear polarizers; field of view ~6 mm. (Right) 

Reflected light; field of view ~6 mm. Strong tourmaline (green-yellow in left figure; and grey inclusions in bright pyrite 

in right figure) enrichment in-pyrite rich parts of the mineralized vein.  

 

 



63 
 

Fig. 86. Photomicrographs of tourmaline association with pyrite. On the right of the photographs, strongly tourmaline 

enriched part with pyrite of smaller grain sizes. On the left of the photograph, almost no tourmaline and the pyrite grain 

is larger, possibly indicating multiple stages of pyrite and tourmaline formation. (Left) Linear polarizers; field of view 

~6 mm. (Right) Reflected light field of view ~6 mm.  

Fig. 87. Photomicrographs of pseudomorph clusters of tourmaline in a relatively undeformed quartz matrix. (Left) 

Crossed polarizers; field of view ~6 mm. (Right) Linear polarizers; field of view ~6 mm.  

Fig. 88. Photomicrographs of accessory white mica. (Left) White mica in the quartz matrix. Quartz shows subgrain 

formation with a patchy undulose extinction. Crossed polarizers; field of view ~2.4 mm. (Right) Large euhedral white 

mica crystals, possibly related to supergene processes. Crossed polarizers; field of view ~2.4 mm. 
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Fig. 89. Photomicrographs of monazite grain cluster, together with oxidized pyrite and tourmaline. (Left) Linear 

polarizers; field of view ~2.4 mm. (Right) Crossed polarizers; field of view ~2.4 mm.  

Fig. 90. Back-scattered electron images of telluride micro-inclusions in pyrite. (Left) Set of parallel strings of 1-5 µm 

large montbrayite (bright grey) micro-inclusions in unoxidized pyrite (medium grey). (Right) Cluster of montbrayite 

micro-inclusions in unoxidized pyrite and in oxidized pyrite (dark grey) in the center of the picture. 

Fig. 91. Back-scattered electron image of telluride 

micro-inclusions in unoxidized pyrite. The telluride 

minerals are melonite (1.1), montbrayite (1.2 and 1.3), 

kawazulite (1.4), and calaverite (1.5).  

Fig. 92. Back-scattered electron image of single 

disseminated melonite micro-inclusions in the matrix 

of unoxidized pyrite, which is getting oxidized along 

cracks. 
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6.2 Gold mineralogy and distribution  

All collected grab samples of auriferous quartz-pyrite-tourmaline veins have been 

affected by supergene processes to various degrees, hence it was impossible to study 

representative unweathered mineralization. The observations can thus vary from gold 

mineralization at depth.  

As shortly described in the previous section, gold in the auriferous quartz-pyrite-

tourmaline veins occurs as Au-(Bi)-telluride micro-inclusions in pyrite and as native gold 

mainly in the cracks of oxidized pyrite grains.  

Gold in tellurides 

In unoxidized mineralized veins, gold is hosted by 1 to 10 µm sized micro-inclusions of 

calaverite and montbrayite in pyrite (Table 5). Calaverite and montbrayite mostly occur 

in a set of parallel strings or in clusters in pyrite grains and have not been observed to be 

evenly disseminated over the entire grain. With the oxidation of pyrite, most telluride 

crystals are destroyed, resulting in the formation of native Au in the oxidized pyrite grains 

(Fig. 93). Also, the formation of Se-Au-Ag solid solutions in cracks of oxidized pyrite 

has been observed once (Fig. 93), though this appears to be rare. 
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Fig. 93. Back-scattered electron image of telluride inclusions in pyrite and native gold in oxidized pyrite. Pyrite (grey: 

1:10) being oxidized to goethite (dark grey: 1.9). In the matrix of goethite are disseminated grains of native Au (white-

bright, e.g.: 1.6) and rare solid solutions of Se-Au-Ag in cracks of goethite (1.7 and 1.8). Inside the unoxidized pyrite 

grain are tellurobismuthite (1.1), calaverite (1.3 and 1.4) and montbrayite (1.5).  

Native gold 

Native gold was found in every grab sample of the auriferous quartz-pyrite-tourmaline 

veins. Most gold grains appear remobilized and occur along cracks of heavily oxidized 

pyrite (Fig. 94). However, individual smaller gold grains can also occur more 

disseminated in the matrix of goethite, mostly in proximity to unoxidized pyrite. These 

were likely formed by destruction of auriferous tellurides during oxidation and are not 

strongly remobilized (Figs. 93 and 95). Observed grain sizes of the native gold range 

between 5 µm up to 200 µm, though gold flakes up to 0.5 cm in size have also been 

extracted during artisanal mining (H. Siitonen, pers. comm., 2018). Generally, the more 

intensely the sample is oxidized, the coarser grained and more remobilized the native gold 

appears. In all cases, the remobilized gold is very pure and does not have significant Ag 

contents (Table 5).  

Native gold is spatially strictly related to goethite and was not found in unoxidized pyrite, 

further indicating that the observed native gold is remobilized. However, given the 

scarcity of studied samples and the supergene overprint, non-remobilized native gold 

being part of the unweathered gold mineralization remains a possible scenario.  

Fig. 94. Photomicrographs of remobilized native gold grains in cracks of oxidized pyrite. (Left) Multiple remobilized 

gold grains elongated over 200 µm along a crack in oxidized pyrite. Reflected light. (Right) Single, approx. 100 µm 

large remobilized gold grain in a crack of oxidized pyrite. Reflected light.  
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Fig. 95. Photomicrographs of native gold in oxidized pyrite. (Left) Cluster of disseminated gold grains in goethite, in 

proximity to unoxidized pyrite. Position and shape indicate little remobilization. Reflected light. (Right) Two 

disseminated gold grains in oxidized pyrite, likely not strongly remobilized. Reflected light.  
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6.3 Geochemistry of the mineralized veins 

The geochemical description of the mineralized veins is based on non-weathered drill 

core samples provided by FireFox Gold Corp (Table 7). The samples consist of drill core 

intercepts exceeding gold concentrations of 0.1 ppm. These non-weathered samples were 

not available during the mineralogical study described in the previous section (6.1 and 

6.2), which is based on weathered supergene samples. Supergene samples, consisting of 

channel samples along the main known outcropping gold-mineralized vein, grab samples 

from pyrite-rich boulders in the artisanal mining pit and weathered drill core intercepts 

exceeding 0.1 ppm Au, are shown in Table 8 for a comparison to evaluate supergene 

processes. The surface sampling was selective; hence the supergene samples show 

naturally higher average gold values making the evaluation of potential supergene gold 

enrichment, and the enrichment of other pathfinder elements difficult.  

The geochemistry of the mineralized veins shows strong enrichments of elements that are 

commonly elevated in orogenic gold deposits. At Mustajärvi, these elements include: Au, 

B, Bi, C (CO2), Te, and Se. Other pathfinder elements that are commonly enriched in 

orogenic gold deposits, such as Ag, As, Sb, and W (e.g. McCuaig and Kerrich, 1998; 

Goldfarb et al., 2005), are clearly elevated at Mustajärvi and correlate with gold but are 

not enriched to the same extent as the former elements. The Au/Ag ratio at Mustajärvi is 

21.4, being notably higher than the average Au/Ag ratios of orogenic gold deposits 

typically ranging between 5 to 10 (Goldfarb et al., 2005). Compatible with the low As 

values, no arsenopyrite is known from Mustajärvi and only once arsenic pyrite was 

observed in a thin section sample. Elements that are not commonly recognized to be 

elevated in orogenic gold deposits but are clearly enriched at Mustajärvi are Co and Ni, 

and moderately elevated Mo.  

Tellurium is significantly enriched with an average value of ~73 ppm and maximum 

values of more than 819 ppm in the unweathered mineralized veins (Table 7). The high 

Te concentration is related to the abundance of several telluride minerals in pyrite in the 

mineralized veins, as can be seen by the correlation factor of ~0.70 between Te and S 

(Table 7). The telluride minerals montbrayite and calaverite are the major known gold 

hosts at Mustajärvi, hence the correlation factor between Te and Au is high with ~0.77. 

With the detected concentrations, tellurium constitutes a potentially economic by-

product, comparable to the Au-Te Kankberg mine in Sweden where ore with an average 

Te grade of 186 g/t is mined (Bergman, 2011). In the supergene mineralized rocks, Te 
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reaches an average value of ~132 ppm (Table 8). The selective sampling of the supergene 

rocks makes it difficult to evaluate the possible supergene enrichment of Te. 

Cobalt concentrations in the non-weathered mineralization reach an average value of 

0.044 wt%, with maximum values up to 0.286 wt%. In the supergene mineralized rocks, 

Co concentrations average at 0.057 wt% with a maximum concentration of 0.267 wt%. 

The Co concentrations in the unweathered and weathered samples are very similar, 

making a supergene enrichment unlikely. Microprobe analyses yield Co concentrations 

of 0.12-0.76 wt%, with an average value of 0.41 wt%, in the matrix of unoxidized pyrite, 

showing that Co is bound in the lattice of pyrite (Table 6). The correlation factor between 

Co and S of 0.94 supports this claim (Table 7). During oxidation, cobalt remains in the 

lattice of pyrite, as indicated by average Co concentrations of 0.39 wt% in microprobe 

analyses of goethite, furthermore suggesting that Co is not subject of supergene 

enrichment. Primary cobalt minerals were not observed during thin section studies. The 

relatively low As concentration is in line with the fact that no common primary cobalt-

arsenic minerals, such as cobaltite or skutterudite have been detected. If the metallurgy 

permits, Co could be an economic by-product in potential mining operations.  

Nickel is relatively enriched in the mineralized veins at Mustajärvi. In the non-weathered 

environment, Ni has an average value of 115 ppm and a maximum of 689 ppm. 

Microprobe analysis shows that nickel occurs as the Ni telluride melonite in pyrite, and 

in the lattice of pyrite with average concentrations of 0.06%. Therefore, Ni is closely 

related to the amount of pyrite in the veins, as shown by the correlation factor of 0.77 

between Ni and S. In weathered, supergene samples, the average Ni concentration is at a 

level of 200 ppm. Given the selective supergene sampling, no clear enrichment processes 

can be interpreted. In the supergene environment, Ni is hosted by goethite, which has an 

average Ni concentration of 0.09 wt%. The relatively high Ni concentration in the 

mineralized veins could partly be explained by the Ni-rich ultramafic host rocks.  

The bismuth concentrations in the non-weathered mineralized veins are significantly 

enriched with an average of 42.2 ppm and a maximum value of 728 ppm. Microprobe 

studies show that the Bi enrichment at Mustajärvi is related to micro-inclusions of the Bi-

tellurides tellurobismuthite and kawazulite, and the Au-Bi telluride montbrayite in non-

oxidized pyrite (Tables 5 and 6), as indicated by correlation factors of 0.72 between Bi 

and S, and 0.75 between Bi and Au. However, the correlation between Bi and Te, with a 
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factor of 0.59, is surprisingly low. As pyrite becomes oxidized during weathering, Bi-

tellurides will be destroyed. Bismuth is not enriched in the resulting goethite grains and 

no supergene Bi-bearing phases were observed in the supergene oxidized pyrite 

assemblages. The supergene mineralized rocks have an average Bi concentration of only 

16.7 ppm, suggesting depletion in Bi during weathering processes. 

Selenium concentrations of non-weathered mineralized rocks closely resemble those of 

Bi, with an average of 48.6 ppm Se and a maximum of 621 ppm Se. Similarly to Bi, 

selenium appears to become depleted during weathering, with an average supergene Se 

concentration of only ~17 ppm. The microprobe study shows that in non-oxidized 

mineralized rocks, Se occurs both as kawazulite micro inclusions in pyrite and in the 

lattice of pyrite, as indicated by correlation factors of 0.71 between Se and Te, and 0.92 

between Se and S. In the lattice of pyrite, Se constitutes 0.05 wt% of the mineral, and 

with average pyrite volumes of ~10 % (indicated by an average S concentration of 5 %) 

in the mineralized veins, this amounts to ~50 ppm Se in the rock, suggesting that the 

lattice of pyrite is the main carrier of Se. In oxidized pyrite, Se was observed to form Se-

Au-Ag solid solutions which yielded up to 67.8 wt% Se. During stronger weathering, 

these phases are possibly destroyed, explaining the depletion of Se in supergene 

mineralized rocks.  

With an average non-weathered concentration of 5.3 ppm and a maximum of 104 ppm, 

molybdenum is moderately elevated at Mustajärvi. The average supergene concentration 

of 7.9 ppm Mo, does not suggest a clear enrichment or depletion of the element during 

weathering, given the selective supergene sampling. The source of elevated molybdenum 

is yet to be identified. No Mo-bearing minerals, such as easily identifiable molybdenite, 

have been observed during mapping, thin section studies or core logging. Molybdenum 

was not among of the elements of the microprobe analysis. Correlation factors of Mo with 

Au, Bi, Co, Se and Te are relatively high with values ranging between 0.50-0.65.  

Gold is significantly enriched in the non-weathered mineralized veins with an average 

value of ~6.5 ppm Au and a maximum grade of 73.7 ppm, based on 35 drill core samples 

exceeding 0.1 ppm in Au. Supergene gold values with an average of 12.6 ppm Au and a 

maximum of 140.5 ppm are higher. The average supergene gold concentration is partly 

higher due to a selective sampling of the supergene samples along, and not across, the 

main known mineralized gold vein. The maximum supergene gold concentration derives 
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from highly oxidized samples and is possibly a product of supergene enrichment, caused 

by a general loss of rock volume and major components during intense oxidation. In non-

weathered mineralized rock, the gold concentration is largely dependent on the amount 

of pyrite in the vein, as shown by the high correlation factor of 0.79 between Au and S. 

This is furthermore indicated by recent drill core intervals of FireFox Gold Corp, which 

intersected a 2-m-wide zone of non-oxidized massive pyrite mineralization that yielded 

45.1 ppm Au. The microprobe study shows that in non-oxidized mineralized rock, gold 

occurs in montbrayite and calaverite hosted by pyrite, which is indicated by the strong 

correlation of Au with Bi (0.75) and Te (0.77). Montbrayite shows varying chemical 

compositions, with gold concentrations ranging between 8.8 and 46.2 wt%, with an 

average of 35.0 wt%, whereas Au and Bi appear to substitute for each other, with a 

negative correlation between them in the mineral. In weathered environments, gold also 

occurs as native, remobilized gold, formed by destruction of the gold-telluride micro-

inclusions during the oxidation of pyrite. An expected decreased correlation factor of Au 

with Bi and Te cannot be observed, however, the correlation between Au and S (0.53) is 

clearly decreased in the supergene environment. The observed native gold grains are 

relatively low in silver, with an average Ag concentration of 2.75 wt%, which emphasizes 

the generally low enrichment of Ag at Mustajärvi, though low silver contents in free gold 

can also be caused by possible loss of Ag from the grains during weathering.  

Although boron was not part of the geochemical analysis, its high concentrations can be 

inferred from the high abundance of tourmaline in the mineralized veins and proximal 

wall rock. Similarly, the enrichment of CO2 can be seen by intense carbonate veining 

related to mineralization.  

The non-weathered S concentrations, with an average of ~5 wt%, indicate average pyrite 

amounts of approx. 10 %, as pyrite is the only sulphide mineral in the gold-mineralized 

veins. The maximum S value of 27.4 wt% represents the intersected 2-m-thick, massive 

pyrite zone with up to 55 % pyrite. These high values skew the averages slightly. 

Nevertheless, petrographic observations are consistent with an average pyrite amount of 

approx. 10 % in the gold-mineralized veins.  

Antimony is only slightly elevated in the non-weathered environment with an average 

concentration as low as 60 ppb and a maximum of 180 ppb. Microprobe analysis showed 

that Sb occurs in all telluride micro-inclusions with concentrations ranging between 0.2 
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and 0.5 wt% (Tables 5 and 6). In the supergene environment, antimony is clearly enriched 

with an average concentration of 290 ppb and a maximum of 1.1 ppm.  

Table 5. Chemical compositions of the Au-bearing minerals at Mustajärvi. For calaverite, the stochiometric pure 

mineral composition is given as comparison. In the case of montbrayite and native Au, different compositions were 

observed which are separately listed. The number of analyses is given by [n]. 

 

Mineral Montbrayite Calaverite  native Au 

Formula (Au,Ag,Sb,Bi,Pb)23(Te,Sb,Bi,Pb)38 AuTe2 Au (Ag) 

[wt%] 

Avg. 

meas. 

comp 

[n=5] 

Meas. 

comp. 

Avg. 

meas. 

comp 

[n=2] 

Meas. 

comp. 

Meas. 

comp. 

Meas. 

comp. 

Official 

comp. 

Avg. 

meas. 

comp. 

[n=4] 

Avg. 

meas. 

comp. 

[n=5] 

Meas. 

comp. 

Ag   0.13       0.20 1.86 7.27 

As                

Au 44.21 43.24 35.81 24.05 15.92 8.78 43.56 42.73 98.32 93.63 

Bi 5.77 1.78 13.80 24.80 36.86 39.47         

Co      
 

         

Cu    0.13 0.10           

Fe 2.55 3.31 3.18 3.46 2.56 5.00         

Ni 0.27  0.36 0.77  0.28         

Pb                

S 0.41 0.72 0.83 0.80 0.21 4.93         

Sb 0.29 0.34 0.27 0.33 0.37 0.28   0.34     

Se       0.17         

Te 45.28 54.06 46.42 45.77 51.20 43.86 56.44 56.15     

Sum 98.78 103.57 100.81 100.07 107.13 102.77 100.00 99.42 100.18 100.90 
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Table 6. Chemical compositions of non-auriferous telluride minerals, the observed Ag-Au-Se-goethite solid solution, 

pyrite, and goethite. Stochiometric pure mineral compositions are given as comparison. For the Ag-Au-Se-goethite 

solid solution, different compositions were measured, which are listed separately. The number of analyses is given by 

[n]. 

 

 

  

Mineral Melonite  

Telluro-

bismuthite Kawazulite 
Ag-Au-Se-

goethite solid 

solution 

Pyrite Goethite 

Formula NiTe2 Bi2Te3 Bi2Te1.8Se0.9S0.3 FeS2 FeO(OH) 

[wt%] 

Offic. 

comp. 

Avg. 

meas 

comp 

[n=6] 

Offic. 

comp. 

Avg. 

meas 

comp 

[n=2] 

Offic. 

comp 

Avg. 

meas 

comp 

[n=9] 

Meas. 

comp 

Meas. 

comp 

Offic. 

comp. 

Avg. 

meas 

comp 

[n=7] 

Offic. 

comp. 

Avg. 

meas 

comp

[n=4] 

Ag             26.14 15.67        

As                  0.03   0.04 

Au             10.70 7.21        

Bi     52.20 52.44 57.39 54.95            

Co             0.23 0.33  0.41   0.39 

Cu                        

Fe           3.11 31.52 38.42 46.55 46.09 62.85 51.94 

Ni 18.70 17.97              0.06   0.09 

Pb                        

S         1.32 2.96     53.45 52.68   0.03 

Sb   0.48   0.22   0.21            

Se       0.15 9.76 5.51 8.16 5.48  0.05   0.01 

Te 81.30 80.35 47.80 44.91 31.54 32.15       0.01   0.03 

Sum 100.0 98.79 100.00 97.71 100.0 98.88 76.75 67.11 100.00 99.33 62.85 52.53 
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Table 7. Left: Selected element concentrations of unweathered gold-mineralized drill intercepts exceeding 0.1 ppm Au 

(data from FireFox Gold). Right: Correlation of selected elements, based on the same samples as left column. 

Geochemistry of unweathered gold mineralization  

Correlation of selected elements for unweathered 

gold mineralization 

Nr. of samples: 35 Nr. of samples: 35 

Element Min. Max. Avg. 

Std. 

deviation Ag Au Bi Co Se Te 

Ag_ppm 0.50 2.40 0.62 0.44 1.00 0.45 0.40 0.45 0.42 0.38 

Al_wt% 0.04 2.50 0.60 0.66 0.10 -0.04 0.12 0.09 0.16 0.13 

As_ppm 2.50 19.00 5.29 4.35 0.49 0.54 0.59 0.59 0.61 0.37 

Au_ppm 0.11 73.72 6.46 15.41 0.45 1.00 0.75 0.82 0.74 0.77 

Ba_ppm 3.00 581.00 46.06 118.32 -0.15 0.00 -0.07 0.08 0.05 -0.16 

Bi_ppm 0.03 728.00 42.19 133.68 0.40 0.75 1.00 0.78 0.76 0.59 

Ca_wt% 0.01 12.90 1.91 2.75 -0.24 -0.62 -0.58 -0.66 -0.49 -0.44 

Co_ppm 1.20 2860.00 440.55 759.30 0.45 0.82 0.78 1.00 0.95 0.70 

Cr_ppm 7.40 1030.00 110.27 234.42 -0.14 -0.11 0.01 0.02 -0.06 -0.26 

Cu_ppm 1.10 39.10 6.77 8.84 0.42 0.60 0.53 0.68 0.79 0.57 

Fe_wt% 0.68 28.40 6.14 7.67 0.48 0.76 0.80 0.83 0.86 0.69 

K_wt% 0.01 2.31 0.28 0.59 0.10 0.00 0.04 0.09 0.12 0.06 

Mg_wt% 0.01 2.95 0.99 0.90 -0.11 -0.35 -0.14 -0.21 -0.06 -0.26 

Mn_ppm 35.00 2550.00 548.00 651.34 -0.25 -0.59 -0.57 -0.62 -0.46 -0.47 

Mo_ppm 0.50 104.00 5.28 18.14 0.30 0.54 0.65 0.56 0.59 0.50 

Na_wt% 0.02 0.08 0.05 0.02 -0.04 -0.10 0.00 -0.19 -0.28 -0.08 

Ni_ppm 8.20 689.00 114.81 158.75 0.44 0.72 0.78 0.86 0.86 0.68 

P_ppm 73.00 2060.00 402.54 337.14 -0.29 -0.35 -0.35 -0.40 -0.31 -0.24 

Pb_ppm 2.50 87.90 10.24 15.62 0.22 0.58 0.60 0.62 0.62 0.46 

S_wt% 0.00 27.40 5.06 8.13 0.48 0.79 0.72 0.94 0.92 0.70 

Sb_ppm 0.02 0.18 0.06 0.05 0.42 0.51 0.66 0.46 0.52 0.27 

Se_ppm 0.12 621.00 48.61 121.94 0.42 0.74 0.76 0.95 1.00 0.71 

Sr_ppm 1.50 46.70 11.16 10.24 -0.27 -0.51 -0.41 -0.54 -0.35 -0.41 

Te_ppm 0.32 819.00 73.16 170.42 0.38 0.77 0.59 0.70 0.71 1.00 

Th_ppm 5.00 21.00 6.06 3.30 -0.11 -0.03 0.13 -0.04 -0.07 -0.14 

Ti_ppm 4.00 2540.00 288.23 679.36 -0.03 -0.13 -0.16 -0.07 -0.09 -0.16 

V_ppm 1.10 292.00 33.68 64.10 -0.06 -0.08 -0.06 -0.02 -0.05 0.01 

Zn_ppm 0.50 135.00 12.24 24.94 -0.01 0.23 0.37 0.28 0.27 0.28 
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Table 8. Left: Selected element concentrations of supergene mineralized samples at Mustajärvi comprising weathered 

drill core intersects exceeding 0.1 ppm Au, weathered bedrock channel samples and weathered grab samples from the 

artisanal mining pit (both also exceeding 0.1 ppm Au). The sampling was selective. Right: Correlation of selected 

elements, based on the same samples as left column. 

Geochemistry of weathered gold mineralization  

Correlation of selected elements for weathered 

gold mineralization 

Nr. of samples: 53 Nr. of samples: 53 

Element Min. Max. Avg. 

Std. 

deviation Ag Au Bi Co Se Te 

Ag_ppm 0.02 4.20 0.78 0.87 1.00 0.64 0.50 0.39 0.45 0.30 

Al_wt% 0.08 55.80 3.93 7.65 -0.32 -0.08 -0.13 0.00 -0.36 0.12 

As_ppm 1.30 62.30 14.14 14.36 0.47 0.69 0.43 0.68 0.39 0.73 

Au_ppm 0.05 140.50 12.57 23.89 0.64 1.00 0.73 0.77 0.68 0.79 

Ba_ppm 10.00 1560.00 219.55 356.27 -0.40 -0.21 -0.45 0.04 -0.42 0.14 

Bi_ppm 0.01 193.50 16.71 33.51 0.50 0.73 1.00 0.54 0.72 0.49 

Ca_wt% 0.02 0.46 0.19 0.12 -0.19 -0.27 -0.26 -0.25 -0.52 -0.07 

Co_ppm 22.20 2670.00 569.44 508.31 0.39 0.77 0.54 1.00 0.75 0.81 

Cr_ppm 21.90 1100.00 192.87 216.47 -0.15 0.23 -0.03 0.40 0.03 0.53 

Cu_ppm 1.10 47.70 14.69 13.33 0.12 0.35 0.16 0.57 0.20 0.54 

Fe_wt% 1.60 194.00 30.45 38.82 0.50 0.26 0.17 0.28 0.44 0.12 

K_wt% 0.01 8.71 1.01 1.56 -0.20 -0.49 -0.72 -0.41 -0.59 -0.39 

Mg_wt% 0.02 2.28 0.49 0.45 -0.09 -0.20 -0.17 -0.15 -0.36 -0.10 

Mn_ppm 49.00 73000 3704 12302 -0.43 -0.08 -0.22 0.29 -0.11 0.33 

Mo_ppm 0.40 31.70 7.92 8.36 0.31 0.73 0.47 0.81 0.49 0.80 

Na_wt% 0.03 4.41 0.91 1.03 -0.15 -0.15 -0.30 -0.17 -0.46 0.06 

Ni_ppm 14.00 642.00 199.78 139.71 0.32 0.63 0.29 0.86 0.53 0.82 

P_ppm 0.01 2560.00 596.81 524.33 0.10 0.22 0.01 0.32 -0.03 0.47 

Pb_ppm 2.40 281.00 41.85 45.75 0.27 0.36 0.26 0.30 0.33 0.41 

S_wt% 0.00 39.10 1.68 5.68 0.39 0.53 0.42 0.45 0.72 0.28 

Sb_ppm 0.00 1.13 0.29 0.23 0.14 0.49 0.30 0.70 0.41 0.70 

Se_ppm 0.24 89.00 16.96 23.09 0.45 0.68 0.72 0.75 1.00 0.51 

Sr_ppm 2.50 603.00 44.85 98.12 -0.37 0.01 -0.08 0.33 -0.04 0.29 

Te_ppm 0.55 750.00 131.69 193.44 0.30 0.79 0.49 0.81 0.51 1.00 

Th_ppm 0.16 16.30 5.18 3.51 -0.09 -0.12 -0.17 0.13 -0.15 0.20 

Ti_ppm 5.00 2030.00 491.19 537.90 -0.27 -0.18 -0.30 -0.05 -0.32 -0.02 

V_ppm 0.06 365.00 98.54 82.94 -0.04 0.13 0.05 0.37 0.12 0.33 

Zn_ppm 5.00 121.00 52.60 31.56 0.04 0.09 0.03 0.29 0.05 0.34 
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Figure 96 compares the Te/Au ratio at Mustajärvi with the ratio of other orogenic Au and 

intrusion-related Au deposits. The data shows that the Te/Au ratio of 11.3 at Mustajärvi 

is greater than that of the mantle and continental crust and significantly above the average 

ratio of orogenic and intrusion-related gold deposits, but still within the range of these 

gold systems. However, it is not yet clear what implications tellurium-rich gold deposits 

have. The relationship between tellurium-rich gold deposits and their size, gold grade, 

formation age, host lithologies, sulphide volumes, etc. are still unclear and subject of 

future research (Goldfarb et al., 2017).  

 

Fig. 96. Diagram showing Te and Au concentrations of multiple orogenic and intrusion-related Au deposits including 

their median and the Mustajärvi gold deposit. The data from Mustajärvi is based on non-weathered mineralized drill 

core intercepts exceeding 0.1 ppm in Au (amount of samples: 35) (Table 7). Also shown are average Te/Au ratios of 

the mantle and continental crust. (Modified after Spence-Jones & Jenkin et al., 2018).  
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6.4 Supergene processes 

The outcropping mineralized rocks at Mustajärvi are subject to intense weathering 

processes. The outcropping veins and the proximal host rock are affected by strong clay 

alteration of feldspar (Fig. 98) resulting in the formation of pink and white-beige clay 

minerals, likely kaolinite. This is emphasized by the enrichment of Al in the weathered 

mineralized rocks with average values of 3.9 wt%; and a maximum of 55.8 wt% Al, as 

opposed to average Al concentrations of 0.6 wt% in the non-weathered gold-bearing 

veins. Furthermore, gossan-like, dark-blue-greyish Mn-weathering crusts form in the 

intensively clay-altered zones of the artisanal mining pit. The weathering crust has only 

been observed to form on quartz-rich mineralized- and non-mineralized veins (Fig. 100). 

The Mn concentrations reach up to 7.3 wt% in these samples (Table 8). No Mn-

weathering crusts have been described or observed in any parts of the drill core, likely 

because the process is restricted to the surface. The intense clay alteration zone reaches 

from the surface to a depth of at least 25 m, based on Outokumpu and FireFox Gold drill 

holes that intercepted heavily kaolinized mineralization up to a vertical depth of 26 m 

(Drill core MJ-4 and 18MUS002; Fig. 101). This strong weathering caused heavy core 

losses of up to 50 %, in the mineralized zone. However, not all parts of the mineralization 

show signs of intense clay alteration to the same level of depth. The Outokumpu drill 

holes also intercepted non-kaolinized mineralized veins at vertical depths of 15.8 m (Drill 

core MJ-1). Overall, the intensive clay alteration is interpreted to be generally 5-25 m 

deep (Fig. 97).  
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Fig. 97. Sketch profile through the soil and rock package at Mustajärvi (sketch after Craw and Kerr, 2017).  

Other supergene processes within this zone are the heavy oxidation of pyrite to goethite 

and the weathering of carbonates. The majority of grab samples of mineralized veins at 

Mustajärvi are heavily oxidized (Fig. 99), however also few relatively unoxidized 

samples were found. The oxidation and weathering of the mineralized rocks possibly 

causes a supergene enrichment of gold in the clay-altered zone due to a loss of rock 

volume. Heavily weathered samples yielded gold concentrations of up to 140.5 ppm (Fig. 

98) and visible gold has been observed. The remobilization of gold due to oxidation has 

been described in greater detail in section 6.2. Partial oxidation of the mineralization is 

thought to continue deeper than the clay altered zone, generally down to depths of ~50 m. 

The intensity of both clay alteration and oxidation are strongly structurally controlled. 

The first drill cores by FireFox Gold Corp show that short intervals of strong kaolinization 

and partial oxidation of pyrite can be observed until depths of 120 m in a zone of heavily 

broken rock that likely represents a fault zone.  
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Fig. 98. Weathering of the gold-mineralized veins in the artisanal pit. (Left) View of the main outcropping mineralized 

vein towards ENE. The vein is heavily oxidized and kaolinized and thus was easily recoverable during artisanal mining. 

(Top right) Same vein as in left figure, view from the top. This section of the oxidized and kaolinized vein graded 

140.5 ppm Au. The brown oxidized pyrites and the beige clay minerals are easy to identify. Visible gold is present. 

(Bottom right) Strong kaolinization in the western part of the pit, looking south. Beige and pink clay minerals and 

brown Fe-oxides are easily distinguishable. This western section of the pit has gold concentrations of up to ~7 ppm Au.  
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Fig. 99. Grab sample of a heavily oxidized quartz-

tourmaline-pyrite vein grading 79.8 ppm Au (sample 

Mus-3). Only a large quartz clast and some relictic 

pyrite are recognizable. Sample width is approx. 

15 cm. 

Fig. 100. Grab sample of a Mn weathering crust 

(blueish-grey) (sample MJ-25). The Mn crust is 

located on the outer, vuggy parts of a quartz-pyrite 

vein. The center of the sample is oxidized pyrite 

(brown). The sample is grading 13.1 ppm Au. Sample 

width is approx. 15 cm. 

 

Fig. 101. Drill core showing strongly kaolinized and oxidized mineralized zone. Intense kaolinization causes strong 

core loss. At 34.35 m is a 0.3-m-wide quartz-pyrite vein that grades 11.6 ppm Au. Drill core 18MUS105, depth 30-

37 m. 
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7. STRUCTURAL CONTROL 
 

The mineralized veins at Mustajärvi appear to be mainly structurally controlled by the 

contact between Sodankylä Group siliciclastic metasediments and Savukoski Group 

volcanics, outlined by ground magnetic studies and IP resistivity studies (see Chapter 

4.3). The main outcropping vein is oriented nearly parallel to the main lithological contact 

and to the orientation of the host rock, with an average strike and dip of ~70/55 SSE (Fig. 

102). This is emphasized by BoT Au anomalies and drill core intercepts, which 

furthermore indicate that the main mineralizing trend consists of several parallel aligned 

veins offset from the main lithological contact (Fig. 10). The contact itself is interpreted 

to be a fault zone (Mustajärvi fault), as indicated by several geophysical features 

comprising demagnetization in ground magnetic surveys (Fig. 11A), a low apparent 

resistivity (Fig. 11B) and a high chargeability (Fig. 11C). As the Mustajärvi fault is 

associated with the contact between the host rocks, it is striking roughly NE with a dip of 

~45° to the SE (Fig. 10). This orientation coincides with the nearby terminating Porkonen 

shear zone (Fig. 108). In the southwest of the study area, the Mustajärvi fault is interpreted 

to be connected to the first-order transcrustal Venejoki thrust system (Fig. 108), which 

can be traced to reach the mantle at a depth of 42 km (Patison et al., 2006; Niiranen et al., 

2014).  

One subcropping auriferous vein, which is exposed in the western part of the artisanal pit, 

is oriented perpendicular to the main mineralizing trend and strikes near parallel to the 

main joint direction with an average strike of 150-160° (Figs. 103 and 107). This vein 

trend was proven to continue at depth by FireFox Golds drilling, where vertical veins, 

partly auriferous, with a strike of 155° occur. Veins of this second trend appear to have 

lower grades of Au. This vein trend 2 could represent minor transfer faults within the rock 

package, partly auriferous due to possible remobilization of mineralization.  
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Fig. 102. Probable and proven veins at Mustajärvi, based on outcrop observations, BoT Au anomalies and drill core 

intercepts. The outcropping mineralization is marked with a black rectangle and is shown in detail in Fig. 103. A ground 

magnetic map is shown in the background.  

 

Fig. 103. Two gold mineralization trends in the artisanal mining pit, indicated by FireFox Gold channel sampling. For 

a detailed view of the western part of trend 1, see Fig. 104.  
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Fig. 104. Close up view of Fig, 103 (western part of trend 1) showing FireFox Gold channel samples with Au 

concentrations. The thickness and the gold grades of the outcropping main mineralized vein increase towards the left 

of the aerial photograph, indicating a pinch and swell structure of the mineralized veins.  

The outcropping mineralization was mapped in detail to gain a more reliable 

understanding of the structural controls at Mustajärvi (Fig. 105). The host rocks have an 

average dip of 160/55. The measured joint directions in the outcrop are mainly vertical to 

the bedding of the host rocks, with a general trend of ~230/80-060/80 (Fig. 107). The 

outcropping main mineralized vein follows the orientation of the host rocks, whereby it 

shows a strong pinch and swell nature, which is supported by drill core observations. In 

the majority of the outcrop, the mineralized vein has a thickness of around 0.3 m, whereby 

it swells up to a minimum of 1 m in the central part of the outcrop, which was the main 

target of the artisanal mining (Figs. 105 and 106). In this central part, not only the 

thickness but also the gold grade increases drastically.  
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Fig. 105. Three-dimensional geological map of the artisanal mining pit. In green are shown metavolcanic rocks, in 

yellow siliciclastic metasediments; in red the mineralized vein; in blue water; and in brown soil cover. Numbers with 

a dip symbol show dip direction and dip values and those without a dip symbol show joint directions.  

 

 

Fig. 106. Outcropping main mineralized vein in the artisanal mining pit. The vein is recognizable by its brown 

weathering colors. View towards ENE; field of view represents approx. the geological map of Fig. 105 (~8 m width). 
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Fig. 107. Rose diagram of the measured joint directions in the artisanal mining pit outcrop. 

 

 

Fig. 108. Regional structural overview of Mustajärvi including the first order Venejoki thrust system and the second 

order Mustajärvi fault zone. Aeromagnetic- and more detailed ground magnetic geophysical data are shown in the 

background. Other structures than the Mustajärvi fault zone are after Niiranen (2015). 
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8. DISCUSSION 
 

Geological setting 

The siliciclastic metasedimentary rocks are believed to belong to the Sodankylä Group. 

However, it is uncertain to which formation they belong, as they share characteristics that 

are typical for both the Virttiövaara Formation and the Honkavaara Formation. 

Virttiövaara Formation rocks mainly consist of sericite quartzites, orthoquartzites and 

sericite schists, with fuchsite typically staining the rocks green, and cross bedding, graded 

bedding, herring bone structures and mud cracks (Lehtonen et al., 1998). Honkavaara 

Formation rocks comprise quartzites, siltstones, carbonate rocks and basic and acid 

volcanic rocks, which are typically strongly albitized (Eilu, 1994; Lehtonen et al., 1998). 

The siliciclastic metasediments at Mustajärvi consist of banded arkose quartzites and 

intermediate tuffites and mafic tuffites, which could be described as siltstones. 

Furthermore, they commonly show cross bedding and graded bedding features and rarely 

have a rare green coloring due to sericite-fuchsite, however, they are also generally 

intensively albitized. Hence, they are combining typical characteristics of both 

formations. Also on published geological maps, the Mustajärvi metasediments are 

assigned to different formations, with Lehtonen et al. (1998) assigning them to the 

Virttiövaara Formation and the most recent geological map (GTK:n Bedrock of Finland 

-DigiKp, 2016) provided by the Geological Survey of Finland (GTK) showing the rocks 

as part of the Honkavaara Formation.  

The volcanic rocks most likely belong to the Savukoski Group. However, it is unclear to 

which formation they belong as the volcanic unit at Mustajärvi comprises both ultramafic 

metavolcanic rocks, which are typical for the upper Savukoski Group (Sattasvaara 

Formation), and rare graphitic schists, which are characteristic for lower Savukoski 

Group rocks (Matarakoski Formation) (Lehtonen et al., 1998). Lehtonen et al. (1998) 

regard the Mustajärvi volcanic rocks as Matarakoski Formation, whereas the most recent 

GTK geological map, (GTK:n Bedrock of Finland -DigiKp, 2016), assigns them to the 

Pittarova Formation. Hence, all map authors place the Mustajärvi metavolcanic rocks 

relatively low in the Savukoski Group, despite the fact that the metavolcanic rocks 

comprise distinct ultramafic volcanic rocks.  

The contact between the siliciclastic metasediments and the metavolcanic rocks at 

Mustajärvi appears to be gradual with an increasing amount of volcanic interlayers in the 
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metasediments in proximity to the contact. Regarding the paleoenvironment, as described 

by Lehtonen et al. (1998), the metasediments might represent Sodankylä Group 

sedimentation of mainly siliciclastic material in environments, that transition from being 

influenced by tidal waves, over shallow water conditions, to subaqueous conditions, 

representing a continuous deepening of the rift basin setting. At advanced stages of the 

rift basin deepening, lower Savukoski Group graphitic schists started to form, which mark 

a key horizon in the CLGB. Those graphitic schists can rarely be seen at Mustajärvi but 

are a distinct feature at the contact of the metasediments and metavolcanic rocks. A 

reactivation of magmatic activity, likely plume related, caused the deepened basin to 

quickly fill with mafic and ultramafic volcanic rocks represented by the upper Savukoski 

Group; rocks that make up the major part of the volcanic unit at Mustajärvi. Thus, the 

geological evolution of the CLGB during the Sodankylä Group and Savukoski Group, as 

described by Lehtonen et al. (1998), fits into what can be seen in the rock package at 

Mustajärvi, with a strongly albitized metasedimentary unit showing bedding features in 

the stratigraphic bottom; rare graphitic cherts at the contact of the metasediments and 

volcanics; and massive mafic and ultramafic metavolcanic rocks at the stratigraphic top.  

Alteration 

The relationship between regional alteration and mineralization-related alteration is 

ambiguous. Regional alteration is interpreted to comprise moderate to strong albitization 

in the siliciclastic metasediments, and moderate carbonatization both in the metavolcanic 

unit and in the metasediments, which is consistent with many other deposits in the CLGB, 

e.g., Saattopora (Eilu et al., 2007). Pre-mineralization albitized metasediments are typical 

for the Honkavaara Formation in the Sodankylä Group (Lehtonen et al., 1998). Eilu 

(1994) interprets this albitization to be partly related to diagenetic processes, driven by a 

high heat flow regime of the rift zone, and involving sea water interaction. Eilu (1994) 

finds another cause for albitization and partial carbonatization in the onset of the 

magmatic activity that caused the formation and emplacement of the Savukoski Group 

volcanic rocks onto the metasediments at Mustajärvi, creating breccia zones and large 

hydrothermal cells in the system, triggering alteration. An additional regional alteration 

event could be found in association with the early Svecofennian orogeny, with the 

formation of intense fracture zones within the CLGB, which maintain fluid flow, likely 

enhanced by associated synorogenic silicic plutonism (Eilu, 1994).  
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Auriferous veins at Mustajärvi generally occur in the most intensively albitized parts of 

the metasediments. However, it is not entirely evident, whether the strongly albitized 

rocks that host mineralization were albitized by mineralizing fluids during the 

mineralization event or whether the auriferous veins preferably intruded into the most 

albitized rocks and thereby the most competent rocks, as is described by common models 

for vein formations in orogenic gold systems (e.g., Goldfarb et al., 2005). The author 

thinks that the latter scenario is more tenable, since equally intense albitized 

metasediments can be observed in the rock package without related gold-bearing veins.  

The observed mineralization-related alteration features are mostly consistent with 

commonly described alteration processes typical for orogenic gold deposits (Goldfarb et 

al., 2005). Yet, the mineralization-related alteration is generally quite subtle and only 

occasionally, alteration features can clearly be assigned to it. This is concordant with 

general descriptions of orogenic gold-related alteration in clastic metasedimentary rocks, 

which are typically less reactive (Goldfarb et al., 2005). Furthermore, some alteration 

features occur only selectively and are not ubiquitous; perhaps a sign for different 

mineralization styles. For example, an intense biotitization can be seen in the proximal 

alteration zone of the high-grade massive pyrite mineralization in the metasediments, 

whereas generally, biotite enrichment is commonly only poorly developed in other 

mineralized intervals in the metasediments. The formation of biotite as an alteration 

product, at Mustajärvi co-present with sericite, is typically described to be an indicator 

for uppermost greenschist facies conditions (Eilu et al., 1999; Goldfarb et al., 2005). 

Other alteration features, such as tourmaline enrichment, can be seen in the proximity of 

almost every mineralized vein at Mustajärvi.  

Mineralogy of the gold-mineralized veins 

The gold mineralization at Mustajärvi is typical for orogenic gold deposits, consisting of 

quartz-tourmaline-pyrite veins with thicknesses commonly ranging between 0.15 m and 

1.0 m. The veins mainly consist of quartz, varying amounts of tourmaline (5-35 vol.%), 

and average pyrite amounts of 10 vol.%. Pyrite is the only sulphide mineral in the gold-

bearing veins, indicating vein formation conditions with T <400 °C and P <2.5 kbar in a 

hydrothermal environment that was not strongly reduced (Goldfarb et al., 2005). 

Orogenic gold deposits typically have average sulphide mineral amounts of 2-5 % 

(Goldfarb et al., 2005), which is lower than the average pyrite amount at Mustajärvi. 

However, this is not something extraordinary and can be seen in many orogenic gold 
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deposits around the world (R. Goldfarb, pers. comm., 2019). At Mustajärvi, it is evident 

that the gold concentration of the veins is broadly linked to the pyrite amounts, with 

higher gold grades in pyrite-rich veins, emphasized by gold occurring as telluride micro-

inclusions in pyrite. Gold-bearing tellurides in orogenic gold deposits are not uncommon, 

e.g., in the giant Golden Mile deposit, Western Australia (>60 Moz mined gold) approx. 

20 % of the gold is hosted by tellurides (Shackleton et al., 2003). However, it is 

uncommon for orogenic gold systems to have all gold hosted by tellurides. The formation 

of gold-bearing tellurides can be caused by a variety of mechanisms in orogenic gold 

deposits, including phase separation, wallrock interaction, cooling, and possibly 

condensation and fluid mixing (Shackleton et al., 2003). Due to a lack of data, it is not 

possible to determine what triggered gold-telluride formation over native Au formation 

at Mustajärvi. Furthermore, given the only limited amount of microprobe analysis, and 

the fact that all studied samples were, to some extent, affected by weathering processes, 

it is possible that the here presented gold mineralogy is not representative for unweathered 

gold mineralization at depth. Hence, it remains possible that native Au is part of the 

deeper, non-weathered gold-mineralized system.  

At a vertical depth of 90 m, a 2-m-wide zone of massive pyrite mineralization with an 

average pyrite amount of ~50 vol.%, and small amounts of quartz and tourmaline has 

been observed. This massive pyrite mineralization yielded the highest gold grades so far 

observed at Mustajärvi, with 2 m at 45.1 ppm Au. It is not yet possible to say whether 

this zone is a different, more massive, higher-grade mineralization style that is 

characteristic for greater depths at Mustajärvi or whether it is just a unique structural or 

lithological feature, e.g., a local dilutional jog or a local replacement zone. This massive 

high-grade zone has not yet been followed up by further drilling and it was not part of the 

thin section study or microprobe analysis.  

As part of future research, accessory monazite within the gold-mineralized veins could 

be utilized to date the vein formation event. 

Geochemistry of the gold-mineralized veins 

The geochemistry of the mineralized veins at Mustajärvi is typical for orogenic gold 

deposits with strongly enriched elements comprising Au, B, Bi, C (CO2), Te, and Se. 

Other pathfinder elements that are commonly enriched in orogenic gold deposits, such as 
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Ag, As, Sb, and W are only elevated, but do positively correlate with gold. Atypical for 

orogenic gold deposits are strongly enriched concentrations of Ni and Co.  

The enrichment of Ni, which is mainly hosted in the lattice of pyrite but also occurs as 

Ni-telluride micro inclusions in pyrite could be explained by the abundance of ultramafic 

rocks in the rock package. At Mustajärvi, these ultramafic lavas and tuffs were found to 

have Ni concentrations up to 1000 ppm, with averages of roughly 500 ppm Ni. The 

correlation of enriched Ni in gold mineralization and ultramafic host rocks has been 

observed in many gold occurrences along the Sirkka line (e.g., Korkalo, 2006). Similarly 

to Ni, the source of strongly enriched Co in the mineralized veins could be found in the 

ultramafic host rocks, as Co concentrations up to 110 ppm were detected in ultramafic 

lavas. The entire metavolcanic rock unit has an average Co concentration of ~50 ppm, 

whereas the metasediments only have ~5 ppm Co on average. An enriched Co 

concentration has been detected in many gold occurrences along the Sirkka line (Korkalo, 

2006; Eilu et al. 2007), and it has been generally attributed to be sourced from ultramafic 

host rocks, however, this still remains debated.  

Structural control 

The assumed structural setting at Mustajärvi is in accordance with common structural 

models of orogenic gold deposits (e.g., Goldfarb et al., 2005), which involve a first-order 

structure that collects and channelizes fluids and metals, and a second-order fault that 

traps and precipitates the metals. In the case of Mustajärvi, these structures are likely 

represented by the transcrustal first-order Venejoki thrust fault system, which lies approx. 

2 km south of Mustajärvi, and by the second-order Mustajärvi shear zone. Common 

structural models can include minor third-order splays off the second order fault; at 

Mustajärvi, possibly being represented by the auriferous veins, whose distribution pattern 

could be explained by a set of minor listric faults originating from the Mustajärvi shear 

zone or by a system of several smaller shear zones related to the larger Mustajärvi shear. 

These third-order splays would also explain the strong alteration that repeatedly occurs 

in the host rock package without correlating mineralization.  

The first-order structure that Mustajärvi is associated with could, however, also be 

represented by the Porkonen shear zone, which has the same orientation as the Mustajärvi 

shear zone and terminates approx. 2 km east of Mustajärvi. The Porkonen shear zone is a 

first-order major structure that cuts through a large segment of the CLGB. The potential 



91 
 

association of the Mustajärvi mineralization with the Porkonen shear zone is supported 

by the nearby Ahvenjärvi and Lammasvuoma gold occurrences, of which the former is 

located ca. 2 km to the NW of Mustajärvi and the latter 2 km to the SE (Fig. 108). The 

gold-mineralized veins at Ahvenjärvi (also called Isomaa) and Lammasvuoma have the 

same structural orientation as those at Mustajärvi, striking roughly 45-70° with a ~45° 

dip to the SE (Huhtelin, 1991; Patison, 2007). The same strike direction and the proximity 

of the first-order Porkonen shear zone and the Mustajärvi, Ahvenjärvi and Lammasvuoma 

gold occurrences suggests a potential structural connection between the features.  
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9. CONCLUSIONS 
 

The Mustajärvi mineralization represents a typical orogenic gold occurrence. It has a 

strong structural control, being hosted by the second-order Mustajärvi shear zone, which 

is interpreted to be a splay off the first-order transcrustal Venejoki thrust complex, 

situated approx. 2 km south of the occurrence. The Mustajärvi shear zone likely formed 

due to the competency contrast between the Sodankylä Group siliciclastic 

metasedimentary rocks and Savukoski Group metavolcanic host rocks. The auriferous 

veins are interpreted to be related to minor third-order structures associated with the 

second-order Mustajärvi shear zone.  

Gold within the veins occurs as Au-telluride (calaverite) and Au-Bi-telluride 

(montbrayite) micro-inclusions in pyrite. Other telluride minerals include the Ni-telluride 

melonite, the Bi-telluride tellurobismuthite, and the Bi-Se-telluride kawazulite. As pyrite 

got oxidized during weathering, the telluride micro-inclusions were destroyed and gold 

was remobilized and deposited as free gold, mainly in the cracks of goethite. The 

geochemistry of the mineralized veins is typical for orogenic gold deposits, with strongly 

enriched elements comprising Au, B, Bi, C (CO2), Te and Se; and with Ag, As, Sb and 

W being elevated and correlating positively with gold. Atypical for orogenic gold 

deposits are the enrichments of Ni and Co, which, however, can also be seen in many 

gold occurrences along the nearby Sirkka thrust system.  

It appears that two different mineralization styles exist at Mustajärvi. The outcropping 

and near-surface mineralized veins are approx. 0.15 m to 1 m wide and consist mainly of 

quartz, tourmaline and pyrite. The second, higher-grade mineralization style was proven 

at a vertical depth of 90 m, comprising a 2-m-wide zone of massive pyrite mineralization 

(50 % pyrite) with only little amounts of quartz and relatively low tourmaline contents. 

This second style of mineralization has yet to be followed up by further drilling and 

indicates the openness of the gold mineralization in all directions, with great potential for 

a more extensive gold-mineralized system especially at depth. 
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Appendices 

 

1.1 EPMA results for telluride minerals 

 

1.2 EPMA results for pyrite, native Au, goethite, and Ag-Au-Se-goethite solid solution 

Sample 

ID

Analysis 

No.    Se       S        Co       Au       As       Fe       Ni       Bi       Ag       Sb       Te       Cu       Pb    Total Mineral

MJ-19 21 0 0.719 0.081 43.24 0 3.312 0 1.782 0.125 0.34 54.056 0.079 0 103.734 Montbrayite

MJ-19 16 0 0.138 0.064 46.152 0 2.027 0.205 5.532 0.045 0.264 46.993 0 0 101.42 Montbrayite

MJ-27 35 0 0.824 0.09 40.752 0 3.346 0.722 4.582 0 0.309 45.49 0.022 0 96.137 Montbrayite

MJ-27 36 0 0.54 0.028 43.433 0 2.61 0.107 5.58 0.013 0.291 43.783 0 0 96.385 Montbrayite

MJ-27 51 0 0.295 0.013 44.871 0 2.271 0.268 5.27 0.033 0.338 45.893 0 0 99.252 Montbrayite

MJ-41 58 0 0.251 0.108 45.858 0 2.491 0.036 7.899 0 0.258 44.238 0 0 101.139 Montbrayite

MJ-27 45 0 1.285 0 36.08 0 3.559 0.223 11.652 0.053 0.22 44.899 0.189 0 98.16 Montbrayite

MJ-41 64 0 0.377 0.08 35.542 0 2.792 0.5 15.951 0.05 0.328 47.944 0.079 0 103.643 Montbrayite

MJ-27 46 0 0.795 0.072 24.052 0 3.456 0.771 24.797 0.064 0.327 45.769 0.101 0 100.204 Montbrayite

MJ-41 66 0 0.212 0.022 15.924 0 2.562 0 36.86 0.029 0.365 51.204 0 0 107.178 Montbrayite

MJ-19 18 0.166 4.933 0.049 8.781 0 5.004 0.283 39.471 0 0.281 43.855 0 0 102.823 Montbrayite

MJ-41 55 0 0.058 0 42.772 0 1.441 0.008 0.026 0.289 0.341 57.503 0 0 102.438 Calaverite

MJ-41 56 0 0.098 0.008 43.55 0 1.416 0.07 0.021 0.051 0.382 56.57 0 0 102.166 Calaverite

MJ-41 57 0 0.094 0 43.173 0 1.713 0.04 0 0.347 0.288 57.025 0.048 0 102.728 Calaverite

MJ-41 65 0 0.111 0.063 41.421 0 1.563 0.084 0 0.093 0.358 53.517 0.007 0 97.217 Calaverite

MJ-27 40 5.802 5.632 0.057 0 0 5.613 0.016 52.085 0.015 0.217 31.105 0 0 100.542 Kawazulite

MJ-27 39 5.998 2.031 0.045 0 0 1.445 0 56.028 0.008 0.174 32.429 0 0 98.158 Kawazulite

MJ-27 37 6.046 1.948 0 0 0 2.761 0.007 54.237 0.016 0.291 31.958 0 0 97.264 Kawazulite

MJ-27 39 5.998 2.031 0.045 0 0 1.445 0 56.028 0.008 0.174 32.429 0 0 98.158 Kawazulite

MJ-27 40 5.802 5.632 0.057 0 0 5.613 0.016 52.085 0.015 0.217 31.105 0 0 100.542 Kawazulite

MJ-27 42 6.015 2.118 0.103 0 0 2.934 0 56.635 0.01 0.181 32.203 0.031 0 100.23 Kawazulite

MJ-27 43 5.26 5.686 0.062 0 0 5.12 0.015 53.257 0.043 0.178 30.942 0.025 0 100.588 Kawazulite

MJ-27 44 6.065 1.731 0.038 0 0 2.231 0 55.175 0.078 0.241 32.64 0.022 0 98.221 Kawazulite

MJ-27 49 6.215 1.759 0.022 0 0 2.946 0.008 55.181 0 0.232 32.303 0 0 98.666 Kawazulite

MJ-27 50 2.21 3.516 0 0 0 1.72 0.035 57.141 0.019 0.165 33.375 0 0 98.181 Kawazulite

MJ-27 52 5.951 2.18 0.035 0 0 3.23 0.041 54.845 0 0.204 32.363 0 0 98.849 Kawazulite

MJ-19 6 0.056 0.573 0.019 0 0 2.47 0.01 52.517 0.028 0.224 45.108 0 0 101.005 Tellurobismuthite

MJ-41 54 0.234 0.168 0.027 0 0 1.268 0 52.364 0.016 0.214 44.709 0.009 0 99.009 Tellurobismuthite

MJ-19 5 0 1.216 0.038 0 0 3.589 17.544 0.056 0 0.444 79.361 0.03 0.034 102.312 Melonite

MJ-19 15 0 0.152 0.043 0 0 1.181 18.35 0.019 0 0.515 81.872 0 0 102.132 Melonite

MJ-19 22 0 0.689 0.019 0 0 2.038 18.744 0.011 0.002 0.447 82.732 0 0 104.682 Melonite

MJ-19 23 0 0.438 0 0 0 2.116 18.382 0.051 0 0.514 80.944 0.048 0 102.493 Melonite

MJ-27 34 0 0.453 0.065 0 0 2.668 18.03 0.032 0 0.499 81.115 0 0 102.862 Melonite

MJ-27 47 0 0.419 0.055 0 0 2.26 16.741 0.004 0 0.449 76.073 0.021 0 96.022 Melonite

Sample 

ID

Analysis 

No.    Se       S        Co       Au       As       Fe       Ni       Bi       Ag       Sb       Te       Cu       Pb    Total Mineral

MJ-19 7 0.058 52.63 0.295 0 0 46.464 0.081 0 0.015 0.014 0 0.02 0 99.577 Pyrite

MJ-19 20 0.003 52.452 0.254 0 0.054 46.004 0.063 0 0.012 0 0.016 0 0 98.858 Pyrite

MJ-9 32 0.015 52.684 0.415 0.008 0.019 45.353 0.089 0 0 0.009 0 0 0 98.592 Pyrite

MJ-4 33 0.024 52.503 0.76 0.033 0.061 46.097 0.093 0 0 0.014 0 0 0 99.585 Pyrite

MJ-27 41 0.061 52.438 0.539 0 0 46.588 0.038 0 0 0 0 0.004 0 99.668 Pyrite

MJ-41 63 0.078 53.374 0.501 0.02 0 46.21 0.084 0 0.018 0.003 0.025 0 0 100.313 Pyrite

MJ-47 67 0.081 52.713 0.122 0.005 0.058 45.88 0 0 0 0.039 0 0.013 0 98.911 Pyrite

MJ-19 24 0 0.282 0.034 98.314 0.054 2.409 0 0 0.283 0 0 0.002 0 101.378 Native Au

MJ-27 48 0.058 0.186 0.022 98.151 0.037 1.749 0 0 1.188 0.006 0 0.024 0 101.421 Native Au

MJ-19 8 0 0.047 0 99.595 0.018 1.141 0 0 1.224 0.024 0.007 0.097 0 102.153 Native Au

MJ-41 59 0 0.093 0.044 97.917 0.032 0.339 0 0 2.559 0.009 0.045 0 0 101.038 Native Au

MJ-19 10 0 0.009 0.015 97.638 0.003 0.952 0.007 0 4.054 0 0 0 0 102.678 Native Au

MJ-19 9 0.02 0 0.033 93.63 0 1.548 0.024 0 7.266 0 0.005 0 0 102.526 Native Au

MJ-41 60 8.158 0.034 0.232 10.699 0.002 31.521 0.038 0 26.144 0 0.095 0 0 76.923

MJ-41 61 5.481 0.013 0.334 7.212 0.034 38.415 0.039 0.012 15.669 0 0.071 0 0 67.28

MJ-19 12 0.029 0.05 0.384 0.018 0.063 52.123 0 0 0 0 0 0 0 52.667 Goethite

MJ-19 13 0.017 0.046 0.479 0 0.012 51.513 0.26 0 0 0 0.008 0 0.001 52.336 Goethite

MJ-19 14 0 0.01 0.327 0 0 51.593 0.108 0.014 0 0 0.025 0 0 52.077 Goethite

MJ-41 62 0 0.019 0.361 0.002 0.088 52.54 0 0.077 0.004 0 0.073 0 0 53.164 Goethite

Ag-Au-Se-goethite 

solid solution



 

1.3 EPMA results for standards, and unassigned and void measurements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 

ID

Analysis 

No.    Se       S        Co       Au       As       Fe       Ni       Bi       Ag       Sb       Te       Cu       Pb    Total Mineral

std FeS2 1 0.013 52.231 0.006 0.049 0.052 46.727 0.029 0 0 0 0 0 0 99.128 Stdandard: Pyrite

std FeS2 2 0.027 52.893 0.018 0 0 46.517 0 0 0 0 0 0 0 99.455 Stdandard: Pyrite

std FeS2 3 0.004 52.688 0 0.039 0 47.084 0.056 0 0.007 0 0.028 0 0 99.906 Stdandard: Pyrite

MJ-19 31 0 1.912 0.046 0 0 2.723 0.055 0 0.011 0.211 34.285 0.052 37.244 76.539 unassigned-Pb phase

MJ-19 4 0.258 1.499 0.044 0 0 2.488 1.968 48.593 0.033 0.325 47.312 0 0 102.52 unassigned/void

MJ-19 17 0 0.373 0.013 43.092 0 2.69 0.047 1.035 0.06 0.442 56.727 0 0 104.479 unassigned/void

MJ-19 18 0.166 4.933 0.049 8.781 0 5.004 0.283 39.471 0 0.281 43.855 0 0 102.823 unassigned/void

MJ-19 19 0 11.4 0.107 36.489 0 9.029 0.018 0 0.067 0.274 49.711 0 0 107.095 unassigned/void

MJ-19 11 0 0 0.447 0.035 0.087 52.247 0.07 0.129 0 0.012 0.189 0.059 0 53.275 unassigned/void

MJ-19 26 0.033 54.545 0.163 0.002 0.076 50.24 0.157 0 0.013 0 0.03 0.015 0 105.274 unassigned/void

MJ-19 27 1.654 33.445 0.139 0 0 29.222 0.081 29.135 0.02 0.078 18.579 0 0 112.353 unassigned/void

MJ-19 28 0 45.935 0.179 8.135 0 41.481 0.363 0.057 0 0.09 13.735 0 0 109.975 unassigned/void

MJ-19 29 3.456 2.334 0.034 0 0 3.768 0.032 54.488 0.028 0.216 30.622 0 0 94.978 unassigned/void

MJ-19 30 67.808 0.092 0.072 0 0 12.23 0.001 0.038 0 0 1.25 0 0 81.491 unassigned/void

MJ-27 38 0 0.714 0.021 40.757 0 3.175 1.599 0.785 0 0.271 49.993 0 0 97.315 unassigned/void

MJ-27 53 0.007 0.07 0.007 100.964 0 3.437 0.041 0 0.424 0 0 0.06 0 105.01 unassigned/void

MJ-19 25 0 0.211 0 0 0 1.015 24.596 0 0 0.748 148.675 0 0.008 175.253 void



 

2.1 Geochemical analysis of collected grab samples (mainly from the artisanal mining pit) 

 

 

 

SAMPLE Description Ag_ppm Al_pct As_ppm Au_ppm Ba_ppm Be_ppm Bi_ppm Ca_pct Cd_ppm Ce_ppm Co_ppm Cr_ppm Cs_ppm Cu_ppm Fe_pct Ga_ppm Ge_ppm Hf_ppm In_ppm K_pct La_ppm

MJ-1 Biotite altered metakomatiite with intense qtz-carb-sulfide veining <0.01 2.28 2.7 <0.005 60 2.57 0.06 7.87 <0.02 17.3 18 1350 20.3 32.8 7.47 9.19 0.13 0.6 0.035 2.45 8.7

MJ-3 Intensively oxidised quartz-pyrite-tourmaline vein 2.78 0.38 21.9 55.8 20 0.54 44.6 0.07 0.18 177 1450 193 0.09 41.6 33.8 4.26 0.56 0.3 <0.005 0.02 88.2

MJ-4 Oxidised quartz-pyrite-tourmaline vein 0.96 1.34 11.4 8.67 50 0.4 44.2 0.08 0.58 18.1 629 78 0.05 4.2 17.8 6.97 0.19 0.6 0.007 0.02 8.4

MJ-10 Strongly albitized and carbonatised arkose quartzite <0.01 6.76 7.8 0.058 30 0.59 0.29 4.09 0.03 44.3 144 36 0.06 2.1 4.64 16.35 0.15 5.7 0.011 0.18 21

MJ-10.1 Siliciclastic Metasediment 0.01 7.38 4.5 0.052 30 0.7 0.26 3.22 0.03 10.85 44 8 <0.05 3.3 2.87 20.2 0.07 6.4 0.01 0.17 4.4

MJ-12 Siliciclastic Metasediment; quartz-plagioclase & carbonate veins <0.01 5.35 3.3 0.012 30 0.4 0.06 4.9 0.03 17.55 68.5 23 0.08 1.6 5.55 12.7 0.08 2.7 0.019 0.14 8.1

MJ-19 Oxidised quartz-pyrite-tourmaline vein; quartz rich, tourmaline poor 0.68 0.08 4.7 13.45 10 0.11 14.4 0.02 0.04 4.36 513 222 <0.05 2.4 10 0.63 0.15 <0.1 0.006 0.01 2.3

MJ-20 Quartz vein 0.12 0.09 1.4 1.905 10 0.05 14.25 0.02 0.04 2.68 48.7 41 0.05 1.1 1.6 0.5 <0.05 0.1 <0.005 0.01 1.2

MJ-22 Least altered albitized arkose quartzite 0.01 6.1 0.5 0.022 200 0.87 1.77 0.23 <0.02 2.45 1.7 84 0.08 0.5 0.75 15.2 <0.05 4.5 0.006 0.59 1.2

MJ-23 Quartz vein 0.01 0.07 1 0.016 20 0.1 0.2 0.02 <0.02 3.11 13.1 43 0.07 1.2 0.69 0.34 0.05 <0.1 <0.005 0.01 1.3

MJ-24 Intensively carbonated and brecciated intermediate tuffite 0.01 4.5 22.2 0.016 190 0.86 0.05 6.74 0.14 5.07 24.8 79 0.08 95.4 4.94 9.54 0.1 1.4 0.029 1.2 2.2

MJ-25 Mn weathering crust on quartz vein 0.37 0.26 7.4 13.1 1370 1.25 0.5 0.08 1.16 8.38 1290 227 0.06 22.1 16.05 3.09 0.14 0.1 0.006 0.34 5

MJ-26 Carbonate-magnetite-pyrite vein <0.01 0.03 0.9 0.018 10 <0.05 0.03 11.5 0.04 7.84 49 1 <0.05 1.1 27.5 3.93 0.32 <0.1 0.016 0.01 3.6

MJ-27 Oxidised quartz-pyrite-tourmaline vein; quartz rich, tourmaline poor 2.42 0.66 12.4 63.8 30 0.37 193.5 0.11 0.07 32 1180 115 0.05 8.2 28.8 4.42 0.42 0.3 0.005 0.02 16

MJ-28 Listvenite <0.01 4.17 22.2 0.051 160 0.76 0.2 3.83 0.03 3.95 22.3 1330 0.25 34.3 9.26 10.75 0.13 0.8 0.065 1.43 1.9

MJ-29 Albitised intermediate tuffite with magnetite veining <0.01 3.28 0.4 0.015 2240 1.06 0.06 0.06 <0.02 44.5 9.8 67 0.23 3.9 10.9 10.9 0.17 2.1 0.041 1.75 22.9

MJ-30 Intensively altered ultramafic tuff; carbonated <0.01 2.35 5.9 0.028 520 0.37 0.18 4.11 0.17 1.77 69.1 1120 0.34 3.2 6.2 7.5 0.07 0.5 0.032 1.16 0.6

MJ-31 Listvenite 0.01 2.89 1 <0.005 410 0.82 0.04 10.15 0.02 3.92 7.5 1630 0.24 1.7 4.47 9.5 0.09 0.5 0.113 1.62 1.5

MJ-32 Least altered mafic lava 0.03 6.84 3.2 0.01 230 0.58 0.07 5.85 0.1 16.3 52 86 0.07 85.7 7.93 17.35 0.11 2.5 0.085 0.29 6.7

MJ-33 Quartz vein 0.01 0.08 1 0.313 30 0.09 0.75 0.04 <0.02 1.64 11.8 52 0.06 1.7 0.73 0.34 <0.05 <0.1 <0.005 0.01 0.8

MJ-34 Oxidised quartz-tourmaline-pyrite vein 1.2 1.21 10.4 14.75 70 0.31 64.2 0.07 0.38 17.85 562 74 0.08 4.3 19.2 5.74 0.25 0.6 0.006 0.05 8.6

MJ-35 Rel. unoxidised quartz-pyrite-tourmaline vein 0.85 0.88 7.3 10.95 20 0.31 32.1 0.03 0.13 4.75 869 61 <0.05 4.4 16.05 4.5 0.33 0.3 <0.005 0.01 2.1

MJ-36 Deformed intermediate tuffite 0.02 6.29 0.6 0.112 280 1.17 0.22 0.31 0.03 24.4 97 99 0.3 2.9 1.32 15.25 0.08 5.4 0.009 1.01 12.3

MJ-37 Least altered banded arkose quartzite 0.01 7.84 0.4 0.014 1260 1.94 0.1 0.15 <0.02 2.14 3.3 162 0.3 0.4 1.53 33.6 0.08 4 0.03 2.46 1.3

MJ-38 Strongly altered ultramafic tuff <0.01 5.77 <0.2 0.007 390 1.38 0.08 2.11 <0.02 12.55 48.8 1400 3.3 0.2 7.12 20.2 0.18 1.6 0.027 4.13 6.2

MJ-39 Oxidised quartz-pyrite-tourmaline vein 0.41 1.42 5.5 5.25 10 0.32 22 0.06 0.04 3.61 564 65 <0.05 3.3 11.45 7.16 0.27 0.8 0.007 0.01 1.6

MJ-40 Mn weathering crust on quartz vein 0.18 0.23 4.1 3.9 1560 0.94 0.47 0.08 1.99 14.15 793 137 <0.05 5.1 7.9 3.62 0.11 0.1 <0.005 0.43 6.9

MJ-41 Oxidised quartz-pyrite-tourmaline vein 0.9 1.09 8.2 12 30 0.3 36.9 0.06 0.29 13.65 636 89 <0.05 4.9 16.5 6.03 0.23 0.4 0.006 0.02 6.2

MJ-42 Intensively oxidised quartz-pyrite-tourmaline vein 1.18 0.47 17.5 34.7 20 0.47 40.6 0.05 0.19 272 1060 221 0.07 41.3 31.6 5.34 0.61 0.3 0.006 0.02 134.5

MJ-44 Least altered komatiite-chlorite shist <0.01 4.21 1.1 0.044 90 0.94 0.12 4.55 0.05 3.68 65.6 1640 0.22 22.9 7.9 12.55 0.11 0.7 0.074 0.22 1.8

MJ-46 Strongly altered ultramafic tuff <0.01 5.84 0.9 0.018 270 1.87 0.06 3.69 <0.02 7.2 37.8 1390 3.4 0.9 7.6 20.5 0.13 1.5 0.03 3.76 3.2

MJ-47 Oxidised quartz-tourmaline-pyrite vein; tourmaline rich 0.72 1.99 7.8 9.91 20 0.46 28.7 0.08 0.18 15.5 702 104 <0.05 30.7 15.3 9.97 0.27 0.8 0.01 0.03 7.4

MJ-UT1 Mafic tuffite?! 0.01 7.54 4 0.033 130 0.85 0.1 0.79 <0.02 8.4 36.1 196 0.12 196 7.17 19.05 0.12 0.9 0.057 0.34 3.4

MJ-UT3 Least altered mafic lava 0.03 6.68 2.1 0.011 80 0.47 0.03 5.54 0.16 15.5 54.6 37 0.33 90.1 10.85 18.3 0.13 1.7 0.089 0.11 6.8

MJ-UT5 Least altered komatiite <0.01 3.17 1.7 <0.005 150 0.47 0.09 6.97 0.03 6.81 112.5 1660 0.17 36.4 7.74 10.7 0.11 0.8 0.062 0.17 2.7

MJ-UT7 Intensively veined, carbonated albitized mafic tuffite 0.01 7.28 0.8 0.005 470 2.47 0.05 1.33 <0.02 25 13.1 121 1.24 1.3 3.54 27 0.1 4.7 0.019 2.59 10

MJ-UT7.2 Intensively veined, carbonated albitized mafic tuffite <0.01 6.71 0.5 <0.005 390 2.47 0.04 1.84 <0.02 19.45 12.4 103 1.23 0.9 3.56 23.7 0.1 4.2 0.02 2.27 7.4



 

 

 

 

 

SAMPLE Li_ppm Mg_pct Mn_pct Mo_ppm Na_pct Nb_ppm Ni_ppm P_pct Pb_ppm Rb_ppm Re_ppm S_pct Sb_ppm Sc_ppm Se_ppm Sn_ppm Sr_ppm Ta_ppm Te_ppm Th_ppm Ti_pct Tl_ppm U_ppm V_ppm W_ppm Y_ppm Zn_ppm Zr_ppm

MJ-1 44.7 7.55 0.328 0.28 0.02 0.2 445 0.022 1.2 470 <0.002 0.1 0.11 17.6 1 1.8 32.3 <0.05 0.21 0.11 0.212 2.06 0.2 128 0.8 6.4 8 12.9

MJ-3 1.9 0.1 0.0257 17.8 0.04 0.1 329 0.256 43.8 1.7 <0.002 0.16 0.27 10.3 37 0.2 9.4 <0.05 440 6.06 0.008 <0.02 60 62 4.7 17.7 54 10.1

MJ-4 3.3 0.37 0.0397 11.75 0.14 0.3 173.5 0.108 50.6 1.1 <0.002 0.43 0.28 11 30 0.4 31.7 <0.05 44.2 1.49 0.031 <0.02 30 111 2.4 10.7 17 20.3

MJ-10 0.7 1.56 0.101 0.79 5.52 9.1 50 0.138 1.2 5.3 <0.002 0.98 0.72 13.4 2 1.9 43.8 0.62 0.89 3.97 0.685 <0.02 1.6 105 3.6 16.8 11 209

MJ-10.1 1.6 1.03 0.0903 0.92 6.12 16.2 28.6 0.139 1.5 2.8 <0.002 0.38 0.69 8.9 1 1.6 46 1.07 0.3 3.23 1.125 0.02 1.8 139 6.6 13.8 8 234

MJ-12 0.8 1.92 0.127 0.41 4.27 2.2 42.6 0.094 1.2 4.3 <0.002 0.45 0.3 21.5 1 0.9 39.9 0.17 0.24 1.26 0.269 <0.02 0.6 99 1 10.3 9 96.4

MJ-19 0.5 0.02 0.0073 3.7 0.03 <0.1 154 0.038 10.9 0.4 <0.002 1.4 0.11 1.8 30 <0.2 2.5 <0.05 70.7 0.27 <0.005 <0.02 7.8 17 0.8 2.5 12 1.3

MJ-20 1 0.02 0.0073 2.38 0.04 0.1 14 0.007 6 0.4 <0.002 0.02 0.11 1 3 <0.2 3.7 <0.05 32.1 0.22 <0.005 <0.02 1.7 7 0.3 1.2 5 3.4

MJ-22 1.4 0.14 0.004 0.97 4.78 2.6 7.6 0.063 2.6 13.8 <0.002 <0.01 0.16 3.7 <1 1.1 38.6 0.22 0.39 7.37 0.108 0.03 1.2 32 6.1 6.3 2 150

MJ-23 0.5 0.01 0.0181 2.65 0.04 0.1 6.9 0.004 1.7 0.9 <0.002 0.01 0.12 1.4 1 <0.2 2.8 <0.05 0.7 0.1 <0.005 <0.02 2.4 5 2.9 0.9 <2 0.9

MJ-24 4.3 3.05 0.182 0.76 1.89 2 39.2 0.042 0.6 19.7 <0.002 0.03 0.34 33.8 1 0.6 52.6 0.15 0.1 0.83 0.279 <0.02 0.4 114 0.6 7.4 91 45.6

MJ-25 2 0.05 5.26 29.1 0.05 0.1 292 0.057 5.3 3.2 <0.002 0.04 0.17 4.4 14 0.2 438 <0.05 369 0.41 0.005 0.09 18.3 31 0.8 4.8 23 5.3

MJ-26 0.5 5.22 0.53 0.45 0.01 <0.1 157.5 0.001 5.9 0.3 <0.002 0.47 0.12 11 1 <0.2 202 <0.05 0.21 0.77 <0.005 <0.02 1.2 97 0.1 14.7 10 0.5

MJ-27 1.4 0.2 0.0381 7.32 0.08 0.1 249 0.075 27.6 0.7 <0.002 0.89 0.22 7.2 81 0.3 16.3 <0.05 201 4.19 0.015 <0.02 17.9 76 3.7 9.5 39 12.1

MJ-28 2.9 4.93 0.279 0.31 1.31 0.2 273 0.018 1.1 41.6 <0.002 0.08 0.58 29.2 <1 0.8 30 <0.05 0.1 0.16 0.164 0.05 0.3 184 2 4.2 3 26.5

MJ-29 2.8 0.49 0.0122 1.2 0.07 4.3 23.1 0.026 0.7 52.4 <0.002 0.03 0.24 3.9 <1 1.5 17.5 0.1 0.05 5.2 0.081 0.07 1.5 37 4.3 4.1 3 70

MJ-30 10.5 10.3 0.161 0.32 0.04 0.1 951 0.011 2 46.1 <0.002 0.15 1.45 18.7 1 0.2 150.5 <0.05 0.24 0.03 0.134 0.3 0.1 126 <0.1 2.4 85 12.2

MJ-31 3.8 5.9 0.239 0.8 0.05 0.1 301 0.011 0.6 67.2 <0.002 0.01 0.65 21.7 <1 0.3 85 <0.05 0.05 0.1 0.073 0.08 0.2 151 0.1 6.1 5 11.6

MJ-32 8.3 3.81 0.144 1.25 2.03 6.5 69.6 0.059 0.9 6.5 0.002 0.2 0.16 47 1 1 107.5 0.43 0.13 0.57 0.865 0.12 0.5 311 <0.1 26.6 128 81.2

MJ-33 0.4 0.02 0.0348 3.55 0.04 0.2 7.1 0.002 1.1 0.6 <0.002 0.02 0.11 1.2 1 <0.2 3.7 <0.05 1.53 0.16 <0.005 <0.02 2.1 3 1.1 0.9 <2 0.7

MJ-34 2.7 0.3 0.0673 8.75 0.12 0.3 154.5 0.092 23.3 1.7 <0.002 2.06 0.24 9.9 45 0.3 25.2 <0.05 56 1.45 0.025 <0.02 26.9 92 2 9.3 19 18.9

MJ-35 2.8 0.25 0.0099 4.11 0.1 0.2 174.5 0.026 17.9 0.3 0.006 9.53 0.21 7.9 89 0.3 20.9 <0.05 41 0.65 0.017 <0.02 7.1 59 0.7 13.9 11 8.4

MJ-36 3.7 0.57 0.0414 0.69 4.28 3.5 56.1 0.061 <0.5 29.2 <0.002 0.01 0.18 5.8 <1 1.5 74 0.34 0.71 7.53 0.148 0.06 1.5 49 2 7.3 8 182

MJ-37 2.8 0.34 0.0043 0.48 3.43 4.4 11.7 0.039 0.8 83.7 <0.002 0.01 0.25 12.4 <1 1.8 52 0.39 0.57 7.87 0.217 0.15 1.9 112 4.3 5.9 4 133.5

MJ-38 18.2 6.53 0.0719 0.38 0.03 2.8 455 0.029 1.1 233 <0.002 0.01 0.14 25 1 1.1 14.3 0.18 0.2 0.84 0.45 0.5 1.6 217 0.6 5 9 52.7

MJ-39 2.3 0.42 0.0076 4.91 0.16 0.3 129.5 0.016 18.2 0.5 0.003 6.27 0.15 12.4 71 0.5 37.3 <0.05 28.9 0.76 0.033 <0.02 5.8 97 0.7 6.4 8 26.3

MJ-40 1.9 0.06 7.3 31.7 0.05 0.1 176.5 0.054 6.5 2.1 <0.002 0.04 0.19 2.2 5 0.2 603 <0.05 99 0.54 <0.005 0.13 16.7 53 0.7 8.4 28 2.9

MJ-41 3 0.3 0.0334 7.75 0.12 0.2 170.5 0.094 36.6 0.6 <0.002 1.86 0.23 9.9 49 0.4 24.7 <0.05 45.6 1.08 0.022 <0.02 21.5 87 1.5 7.9 21 13.7

MJ-42 1.9 0.1 0.0305 25.2 0.04 0.1 292 0.319 47.2 1 <0.002 0.03 0.25 10.2 29 0.2 11.7 <0.05 439 9.21 0.008 <0.02 68.2 62 4.4 15.7 63 13

MJ-44 13.8 12.15 0.142 0.34 0.29 0.8 1070 0.013 <0.5 16.9 0.002 0.01 0.19 32.4 1 0.5 21.5 0.05 0.54 0.1 0.114 0.04 0.5 180 <0.1 10.8 61 23.5

MJ-46 21.5 6.73 0.0659 0.25 0.03 2 526 0.028 0.8 229 0.003 0.01 0.24 27.3 1 2.9 16.3 0.14 18.5 0.78 0.427 0.45 7.2 223 0.5 5.3 11 53.4

MJ-47 2.4 0.57 0.0244 7.35 0.22 0.5 181.5 0.053 20.1 1 0.004 4.49 0.26 17.1 67 0.7 47.3 <0.05 29.6 1.06 0.045 <0.02 16.1 151 1.9 11.4 15 30.9

MJ-UT1 16.3 4 0.044 0.92 2.06 3.5 98.4 0.031 0.6 3.7 0.003 0.17 0.15 45.7 1 0.4 183 0.24 0.41 0.32 0.646 0.04 0.3 277 0.1 4.4 24 32.7

MJ-UT3 5.1 3.32 0.178 0.56 2.4 4.7 43.1 0.058 1.3 2.5 0.005 0.09 0.41 45.7 1 1.2 144 0.3 0.21 0.45 0.885 0.03 0.2 350 <0.1 32.7 118 56.5

MJ-UT5 11.8 11.05 0.116 0.18 0.25 0.7 962 0.017 <0.5 6.3 0.003 0.58 0.3 25.4 1 0.6 46.7 0.05 0.07 0.11 0.231 0.04 0.6 172 <0.1 14.4 63 28.6

MJ-UT7 14.7 3.85 0.0639 0.5 2.75 3.4 114.5 0.024 1.1 78.5 0.003 0.01 0.32 16.6 1 2.1 97 0.35 0.15 7.39 0.252 0.23 1 161 0.4 7.5 6 168

MJ-UT7.2 14.5 3.94 0.0516 0.35 2.66 6.7 88.8 0.022 1 108.5 0.002 0.01 0.28 14.6 1 2 86.8 0.37 0.07 7.96 0.242 0.2 4.5 116 0.5 7 6 149



 

2.2 Geochemical analysis of historic Outokumpu drill core (the sample format MJ-X-YYYY gives information about the core ID (X) and depth 

of the sample (YY.YY = e.g. 12.34 m down dip)).  

 

 

 

 

 

 

SAMPLE Description Ag_ppm Al_pct As_ppm Au_ppm Ba_ppm Be_ppm Bi_ppm Ca_pct Cd_ppm Ce_ppm Co_ppm Cr_ppm Cs_ppm Cu_ppm Fe_pct Ga_ppm Ge_ppm Hf_ppm In_ppm K_pct La_ppm

MJ-3-4225 Quartz-tourmaline-pyrite vein in arkose quartzite host rock 0.01 6.64 0.7 0.079 20 0.74 0.44 0.72 1.14 3.25 74.7 142 0.14 11 2.42 15.2 0.06 2.3 <0.005 0.18 1.6

MJ-3-4273 Quartz-pyrite vein in arkose quartzite host rock <0.01 4.04 1.3 0.073 20 0.49 0.14 0.26 0.04 1.16 137.5 69 0.06 5.5 4.42 8.62 0.13 1.4 0.005 0.08 0.6

MJ-3-5002 Albitized, carbonated intermediate tuffite <0.01 6.01 <0.2 0.005 130 0.98 0.06 2.43 <0.02 5.05 1.2 92 0.47 0.7 1.24 17.9 0.07 3.6 0.009 0.83 2.4

MJ-3-5570 Altered intermediate tuffite <0.01 5.38 0.5 <0.005 20 0.73 0.1 3.18 <0.02 13.9 4.8 19 0.82 2.8 1.18 11.5 0.06 0.7 0.005 0.39 8

MJ-4-3578 Magnetite-pyrite-carbonate vein 0.01 3.24 2.5 0.018 1660 2.29 0.22 9.26 <0.02 51.8 64.9 246 0.42 3.7 21.5 8.38 0.18 1 0.404 1.54 23

MJ-4-3876 Least altered mafic tuffite; albitised 0.01 6.87 0.5 <0.005 690 1.83 0.03 0.59 <0.02 3.85 9 111 0.97 6.1 3.32 24.6 0.09 5 0.02 2.87 1.4

MJ-4-4098 Mafic tuffite, carbonated, albitised, hematite rich <0.01 6.16 0.3 <0.005 490 1.53 0.03 3.49 <0.02 7.48 16.1 103 1.1 1 5.11 20 0.11 4.3 0.019 2.89 3

MJ-4-4204 Brecciated, albitized and carbonated quartzite/intermediate tuffite 0.01 6.57 0.6 0.005 250 1 0.03 3.87 <0.02 5.46 2.3 91 0.24 2.3 1.71 15.7 0.06 4.7 0.009 1.2 3

MJ-5-0885 Intensively carbonated and albitized arkose quartzite <0.01 6.58 0.5 <0.005 30 0.99 0.03 4.69 <0.02 13.7 2.2 69 <0.05 2.8 1.65 17.5 <0.05 4.5 0.007 0.09 11.2

MJ-5-1305 Intermediate tuffite 0.01 6.42 0.5 <0.005 310 2.07 0.04 4.34 <0.02 17 6.4 82 0.68 1.8 2.33 18.45 0.07 4 0.011 1.01 7.2

MJ-5-4690 Quartz vein with carbonate-(tourmaline) overprint 0.04 0.94 0.5 0.029 70 0.16 0.2 3.05 <0.02 10.35 6.1 27 0.23 2.8 0.84 2.38 <0.05 0.5 <0.005 0.43 7.2

MJ-5-4880 Strongly albitized, carbonated veined arkose quartzite 0.01 6.7 <0.2 0.041 70 1.43 0.15 2.22 0.03 12.5 4.1 121 0.33 4.1 1.19 16.3 0.05 5.2 <0.005 0.36 9.1

MJ-5-4970 Albitized intermediate tuffite with quartz-pyrite vein 0.01 6.35 0.4 0.025 120 1.41 0.13 2.34 <0.02 4.7 5.2 109 0.4 1.1 1.93 13.05 0.05 5 <0.005 0.51 2.4

MJ-5-5286 Intermediate tuffite with qtz-pyrite-hematite veining <0.01 7.06 1 0.283 780 2.2 1.05 0.63 <0.02 5.52 76.6 107 0.46 1.7 4.91 23.3 0.09 4.6 0.037 3.05 2.6

MJ-6-1573 Least altered komatiitic basalt 0.03 5.49 1.1 0.012 90 0.37 0.27 6.63 <0.02 7.39 60 835 0.21 236 8.12 14.45 0.06 0.5 0.069 0.46 2.5

MJ-6-2532 chloritized, pyritized mafic volcanic with quartz-plagioclase veining 0.03 6.58 80.3 0.02 740 2.73 4.35 0.44 <0.02 3.96 228 104 0.26 97.1 7.82 14.25 0.08 1.2 0.06 1.81 1.6

MJ-6-3218 Intensively albitized, and carbonate arkose quartzite 0.01 6.49 0.6 <0.005 20 0.83 0.04 2.07 <0.02 1.78 1.5 12 <0.05 2.4 0.84 15.15 <0.05 3.5 <0.005 0.06 0.6

MJ-6-3374 Least altered intermediate tuffite <0.01 6.75 0.3 <0.005 410 1.86 0.06 0.55 <0.02 3.42 2.5 160 0.75 1.9 1.81 19.3 <0.05 4.2 0.007 1.45 1.6

MJ-6-4632 Least altered intermediate tuffite <0.01 7.95 0.2 <0.005 1210 2.88 0.02 0.62 <0.02 26.7 5.3 115 0.49 1.3 2.63 23.5 0.1 3.6 0.042 4.03 12.5

MJ-6-4785 Intensively albitized, and carbonate arkose quartzite <0.01 5.55 0.3 <0.005 40 0.79 0.03 2.35 <0.02 7.23 1.6 51 0.05 1.4 1.03 12.4 <0.05 2 <0.005 0.22 3.4

MJ-6-5676 Least altered intermediate tuffite <0.01 6.39 0.2 <0.005 390 1.5 0.02 0.67 <0.02 3.55 4.5 91 0.46 1 1.56 18.1 0.06 1.9 0.012 1.58 1.5

MJ-6-6468 Albitized and carbonated intermediate tuffite (partly bleached) <0.01 5.89 0.3 <0.005 80 0.91 0.02 1.62 <0.02 3.14 2.4 80 0.14 1.6 1.11 12.4 <0.05 2 <0.005 0.34 1.4

MJ-7-2947 Arkose uartzite with quartz-pyrite- (tourmaline) vein <0.01 5.99 1.3 0.207 90 0.93 0.33 0.51 <0.02 28.2 225 115 0.17 4.2 3.86 12.45 0.19 3.5 <0.005 0.35 15.6

MJ-7-3018 Silicified arkose quartzite with quartz- (tourmaline) veining 0.01 5.91 0.4 <0.005 100 1.26 0.03 0.59 <0.02 8.53 1.5 72 0.21 1.9 0.77 16.9 <0.05 2.3 <0.005 0.4 5.2

MJ-9-2683 Brecciated intermediate tuffite, veined <0.01 6.66 0.4 0.031 210 1.39 0.04 0.52 <0.02 2.56 2.1 100 0.7 2.2 1.85 19.1 <0.05 4.4 0.007 0.76 1.4

MJ-9-3495 Brecciated, carbonated mafic tuffite; veined <0.01 5.61 <0.2 <0.005 450 1.2 0.03 4.12 <0.02 11.3 11.6 87 1.52 1 3.34 16.15 0.07 4.2 0.012 1.81 6.4

MJ-9-4130 Completely altered carbonate rock; relictic quartz clasts 0.03 2.1 <0.2 0.006 250 0.62 0.13 13.05 <0.02 67.3 8.8 111 0.3 2 3.24 8.19 0.11 0.7 0.014 0.33 35.5

MJ-9-5087 Quartz-pyrite veining in altered arkose quartzite 0.09 4.51 3.3 0.371 60 0.62 2.2 0.2 0.02 27.7 467 116 0.3 9.2 7.69 12.3 0.13 1.7 <0.005 0.34 13.2

MJ-9-6093 Least altered arkose quartzite/intermediate tuffite 0.01 6.21 0.2 <0.005 830 1.31 0.05 0.39 0.02 9.59 1.6 162 0.2 2.1 0.83 18.8 0.05 3 0.021 1.39 5.1

MJ-9-6450 heavily altered komatiitic basalt 0.01 5.04 0.3 <0.005 180 1.78 0.04 5.8 <0.02 7.48 24.7 978 0.95 1.1 5.91 21.9 0.08 1.5 0.012 1.49 3.8



 

 

 

 

 

 

 

 

 

SAMPLE Li_ppm Mg_pct Mn_pct Mo_ppm Na_pct Nb_ppm Ni_ppm P_pct Pb_ppm Rb_ppm Re_ppm S_pct Sb_ppm Sc_ppm Se_ppm Sn_ppm Sr_ppm Ta_ppm Te_ppm Th_ppm Ti_pct Tl_ppm U_ppm V_ppm W_ppm Y_ppm Zn_ppm Zr_ppm

MJ-3-4225 1.3 0.36 0.0223 1 5.37 1.8 34.6 0.024 6.9 4.8 <0.002 1.7 0.15 2.7 6 0.7 48.5 0.12 0.57 0.85 0.041 0.03 1.1 32 3.9 4.1 28 84.5

MJ-3-4273 0.7 0.09 0.0074 1.47 3.23 0.5 63.3 0.016 4.7 1.8 <0.002 4.41 0.11 0.5 6 0.4 28.9 <0.05 0.91 0.65 0.015 0.02 1 18 2 4.6 9 47.2

MJ-3-5002 2.8 1.39 0.0955 0.35 4.16 2.8 8.3 0.032 0.9 23.2 <0.002 0.01 0.1 7.6 <1 0.8 28.2 0.19 0.12 3.87 0.11 0.05 1.4 60 1.7 4.8 <2 128.5

MJ-3-5570 6.9 1.98 0.143 0.58 3.35 1.7 11.2 0.022 0.7 15.7 <0.002 0.01 0.07 2.4 <1 0.3 28.1 0.06 <0.05 0.71 0.03 0.05 2 12 1 7.2 <2 25.3

MJ-4-3578 2.9 4.55 0.605 0.64 0.25 0.8 108 0.013 1.5 51.2 <0.002 0.9 0.15 16.4 3 1.3 44.1 <0.05 0.18 1.07 0.144 0.07 2.3 85 7.8 14.8 13 32.5

MJ-4-3876 7.5 1.72 0.0268 0.8 2.07 9.3 55.3 0.056 1.3 116.5 <0.002 0.02 0.11 10.9 1 1.9 39.2 0.56 0.09 9.82 0.27 0.22 1.9 85 2.2 5.8 12 170.5

MJ-4-4098 9.1 3.98 0.0701 0.44 1.37 5.3 96.2 0.056 1.3 127 <0.002 <0.01 0.09 11 <1 1.3 51.1 0.5 <0.05 10.6 0.303 0.23 3.4 84 1.3 7.2 10 150

MJ-4-4204 3.5 0.69 0.0467 0.58 3.93 3.6 18.3 0.057 1.3 36 <0.002 <0.01 0.23 5.4 1 1.2 75.1 0.33 <0.05 8.65 0.176 0.07 1.7 48 1.4 7.8 5 162

MJ-5-0885 0.5 1.96 0.0825 0.4 5.56 2.2 24.4 0.056 2.1 1.4 <0.002 <0.01 0.3 10.8 <1 0.4 87.4 0.2 <0.05 3.64 0.099 <0.02 3.6 37 1.6 10 6 159

MJ-5-1305 13 3.64 0.106 0.66 3.66 3.6 102.5 0.053 1.1 47.6 <0.002 <0.01 0.53 9.8 <1 1 96.9 0.24 <0.05 4.43 0.183 0.1 4.3 61 0.6 13.7 9 137.5

MJ-5-4690 3.1 0.57 0.102 1.11 0.36 0.3 9.8 0.007 1.8 12.8 <0.002 0.03 0.1 4.4 2 0.2 16 0.07 0.31 0.59 0.013 0.03 3.9 11 1.2 3.2 3 17.5

MJ-5-4880 2.3 0.9 0.0498 0.52 5.1 3.2 20.8 0.063 10.7 12.2 <0.002 0.26 0.27 8.4 3 1.2 75.3 0.26 0.09 8.58 0.139 0.03 14.6 53 9.1 8.7 23 179.5

MJ-5-4970 2.7 1.21 0.0556 0.37 4.71 2.3 27.2 0.057 1.2 18.6 <0.002 0.65 0.15 7.9 5 1 75.1 0.19 0.08 7.81 0.105 0.06 1.3 63 4.9 5.9 5 166

MJ-5-5286 4.4 0.65 0.0266 0.55 1.83 6.5 25.9 0.054 2.2 114 <0.002 0.31 0.19 10.9 3 2.9 32.7 0.33 0.65 10.35 0.241 0.17 3.1 83 7.3 9.2 5 153.5

MJ-6-1573 14.1 8 0.154 0.33 1.33 1.2 529 0.023 0.9 12.7 <0.002 0.06 0.67 37.3 1 0.6 169 0.09 <0.05 0.3 0.459 0.04 0.3 257 0.2 15 70 10.2

MJ-6-2532 19.2 3.22 0.0428 175.5 1.14 7 174.5 0.024 4.9 42.6 0.103 2.78 0.3 25.4 3 0.3 54.8 0.13 0.31 0.92 0.136 0.08 1.3 156 0.3 5.2 21 44.1

MJ-6-3218 0.7 0.71 0.0455 0.85 5.73 4 8.5 0.054 0.8 0.9 <0.002 0.01 0.15 1.6 <1 0.6 48.6 0.24 <0.05 2.5 0.081 <0.02 1.2 5 6 6 4 120

MJ-6-3374 5.8 1.05 0.0155 1.14 3.83 2.3 28 0.044 1 50.7 <0.002 0.01 0.1 6.7 <1 1.9 79.6 0.22 <0.05 5.12 0.151 0.12 1.4 63 0.9 3.7 7 140

MJ-6-4632 7.2 1.12 0.0392 0.5 1.8 5.8 36.3 0.045 0.8 127 <0.002 <0.01 0.13 10.4 <1 1.5 27.8 0.45 <0.05 7.49 0.262 0.15 1.3 96 1.7 5.1 5 122.5

MJ-6-4785 1 0.68 0.0452 0.57 4.86 1.8 12.3 0.035 0.9 3.7 <0.002 0.01 0.17 3 <1 0.4 45.5 0.13 0.06 1.42 0.058 0.03 0.7 22 2.1 3.4 4 72.6

MJ-6-5676 4.8 1.13 0.0099 0.6 3.43 2.5 33.6 0.017 0.9 57.5 <0.002 0.01 0.06 5.9 1 0.8 46 0.18 <0.05 2.29 0.102 0.11 1.9 56 1.3 2 5 68.4

MJ-6-6468 1.6 0.87 0.0252 1.2 4.65 1.3 26.4 0.019 1 12.9 <0.002 0.01 0.09 3.8 <1 0.4 70.5 0.07 <0.05 2.21 0.059 0.03 0.9 43 2 2.8 3 72.8

MJ-7-2947 2 0.49 0.0161 1.03 4.5 1.1 73.9 0.029 1.7 13.2 <0.002 3.16 0.11 4.3 50 0.9 54.9 0.1 0.4 4.08 0.067 <0.02 1.4 39 1.9 4.5 9 121

MJ-7-3018 1.6 0.46 0.0128 0.48 4.89 3.2 15.8 0.029 1.5 14.2 <0.002 0.01 0.12 3.8 <1 1.1 63.1 0.11 <0.05 3.59 0.076 0.04 2.3 35 3.8 3.1 4 80.5

MJ-9-2683 5.5 0.89 0.0203 0.56 4.77 2.9 37.1 0.054 1.1 34.5 <0.002 0.01 0.19 8.2 <1 2 64.2 0.21 0.06 5.92 0.184 0.12 1.8 71 3.4 7.5 7 150

MJ-9-3495 7.5 3.13 0.142 0.43 2.59 3.4 61.1 0.048 1 92.6 <0.002 <0.01 0.06 8.4 <1 1.2 62.8 0.33 <0.05 8.15 0.234 0.24 2.5 70 1.6 8.4 7 141

MJ-9-4130 3.6 4.31 0.463 1.16 1.13 3.8 45.4 0.019 1.7 13.6 <0.002 0.01 0.1 9.5 1 0.6 40.1 <0.05 0.57 1.89 0.035 0.04 5.5 74 2.3 16.9 6 24.7

MJ-9-5087 4.9 0.29 0.0066 1.71 3.23 2 133.5 0.015 57.7 12 0.002 7.82 0.13 2.8 20 0.5 29.5 0.09 3.8 1.45 0.031 0.03 0.9 118 1.2 5.1 9 58.1

MJ-9-6093 2.2 0.28 0.0084 0.64 3.5 2.9 9.9 0.018 7.6 42.6 <0.002 0.02 0.15 5.7 <1 1.1 43.1 0.17 <0.05 3 0.109 0.06 1.2 66 1.2 3.6 7 107.5

MJ-9-6450 20.5 7.05 0.0862 2.68 1.01 11.8 652 0.025 2.8 81.8 0.006 0.01 0.27 28.3 1 1.2 65.8 0.06 0.05 0.42 0.265 0.16 15.4 224 0.7 10.5 9 48.9



 

3. Photographs of Outokumpu drill core samples. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

 


