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Introduction and main results

This thesis has two major sections: the increase of entropy under convolu-
tion and the dimension theory of sets and measures. While they both have
interesting results of their own and may be considered two separate subjects,
the connection between them is later found when we consider the dimensions
of self-similar sets and measures without assuming separation of any kind in
the cylinders of the associated iterated function system.

The main result in our discussion regarding the entropy of a probability
measure (Theorem 1.26) is the following: given measures µ and ν on the
unit interval such that the normalized entropy of their convolution is not too
large, i.e.

1
n
H(µ ∗ ν,Dn) ≤ 1

n
H(µ,Dn) + δ

for a small δ and all large n, either the typical restriction of µ on a dyadic
interval of length 2−n has to be close to uniform or the typical restriction of
ν has to be close to atomic. This theorem is presented by M. Hochman in [7]
and may be considered a generalization of the Freiman theorem in additive
combinatorics to the fractal regime.

In the area of fractal geometry which occupies us for the second half of
this thesis, our motivation is to study the dimensions of self-similar sets and
measures, later specializing ourselves in the case where the open set condi-
tion is not ful�lled. We discuss a conjecture stating that, for a self-similar
set on the line, the only case in which the (Hausdor�) dimension of the set
can be strictly less than the minimum of its similarity dimension and the
dimension of the ambient space, is the occurrence of an exact overlap in its
cylinders (Conjecture 4.8). The main result for us in this area (Theorem 4.9),
given again by Hochman in [7], contributes to this conjecture by stating that
a strict inequality of this kind implies a super-exponential decrease in the
distance of the cylinders of the associated IFS. A major ingredient in the
proof of this result is the conclusion of Section 1, Theorem 1.26. An imme-
diate application proves the conjecture to hold in an IFS with exponentially
separated cylinders.

The purpose of this thesis is to o�er a comprehensive introduction to the
results mentioned above. For this, it is necessary to begin with the general
theory of measure-theoretical entropy and the theory of fractal dimensions,
especially for self-similar sets and measures. We begin by recalling the stan-
dard probabilistic and measure-theoretical results and de�nitions, found in
most text-books (e.g. [12]) and used throughout the thesis, after which we
turn to multiscale analysis of the entropy of a measure. This discussion is
based mainly on Hochman's paper [7]. After arriving at the desired conclu-
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sion on this subject, Theorem 1.26, we shift our focus onto fractal geometry
and build up the subject from the basics, presenting all the tools required
in understanding the more deep results located in Section 4. Most of the
results in Sections 2 and 3 can be found in K. Falconer's book [4] or in most
text-books concerning fractal geometry and geometric measure theory.

On notations

We give a few words on the notations used in this thesis, particularly on those
on whose de�nitions one might �nd slight variation through the literature.

We will use the standard �big-O� notation; Oa(f(n)) is an unspeci�ed
real-valued function such that |Oa(f(n))| ≤ Ca · f(n) for some constant Ca
that depends on a. For example, writing f(x) = O(1/k) means that f is
bounded in absolute value by the function k 7→ 1/k multiplied by a scalar. In
particular, we note that f → 0 as k →∞. We also use the standard �little-o�
notation; if g(n) = o(f(n)), then for all ε > 0 there is an integer N such that
|g(n)| ≤ εf(n) whenever n ≥ N . For example, 1/n = o(1).

We write k0(α, β) for a number k0 that depends on parameters α and β;
for example, when we say that something holds for integers n ≥ n0(α, β),
there is an integer n0 depending on α and β such that the property holds
whenever n ≥ n0.

The set N is the set of natural numbers, N = {1, 2, . . .}. If X is a vector
space over a �eld K and A ⊂ X , then the translation of A by x ∈ X is
de�ned by A + x = {a + x | a ∈ A} and the scaling by s ∈ K is de�ned
by sA = {sa | a ∈ A}. For all �nite sets A, the notation |A| stands for the
cardinality of A. For intervals I, we use the same notation to denote the
number of integers inside I, or the cardinality of I ∩N. We de�ne the subset
notation in the following way: A ⊂ B if and only if x ∈ B for all x ∈ A.
Given a point x in a metric space (X , d), we denote the open ball of radius r
centered in x by B(x, r) = {y ∈ X | d(x, y) < r}. The closed ball is denoted
by B(x, r) = {y ∈ X | d(x, y) ≤ r}. We denote the diameter of a set E by

diam(E) := sup{d(x, y) | x, y ∈ E}.

Note that the diameter of a set equals that of its closure.

0 Measures and probability

Let X be a set. If Γ is a collection of subsets of X , we call Γ a σ-algebra if it
has the following properties:
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(i.) X ∈ Γ

(ii.) For all A ∈ Γ, X \ A ∈ Γ

(iii.) If A1, A2, . . . ∈ Γ, then
⋃∞
i=1 Ai ∈ Γ.

The pair (X ,Γ) is called a measurable space and the elements of Γ are called
measurable sets. We call a set mapping µ : Γ → [0,∞] a measure on (X,Γ)
if it has the following properties:

(i.) µ(∅) = 0

(ii.) The mapping µ satis�es σ-additivity: if A1, A2, . . . are disjoint sets in
Γ, then µ(

⋃∞
i=1 Ai) =

∑∞
i=1 µ(Ai).

If µ is a measure on (X ,Γ), the tuple (X,Γ, µ) is called a measure space.
We call a set mapping µ∗ an outer measure on X , if

(i.) µ∗(∅) = 0

(ii.) µ∗(A) ≤ µ∗(B) for all A,B ⊂ X

(iii.) µ∗(A) ≤
∑∞

i=1 µ
∗(Ai) if A ⊂

⋃∞
i=1 Ai.

Sometimes it is more convenient to adapt the one above as the de�nition of a
measure; since a measure can always be extended to an outer measure on the
whole space and an outer measure is a measure when restricted to a certain
σ-agebra, it is not always necessary to draw a distinction between the two.
We do so because in proving certain results we need to assign a measure on
a space without any pre-de�ned σ-algebra. The following is an elementary
continuity result for measures.

Theorem 0.1. Let (X,Γ, µ) be a measure space and A1, A2, . . . ∈ Γ be such
that

(i.) A1 ⊂ A2 ⊂ . . .. Then

µ

(
∞⋃
n=1

An

)
= lim

n→∞
µ(An).

(ii.) A1 ⊃ A2 ⊃ . . . and µ(Ak) <∞ for some k. Then

µ

(
∞⋂
n=1

An

)
= lim

n→∞
µ(An).
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If Γ is a Borel σ-algebra, that is, the σ-algebra of a topological space X
generated by the collection of open sets and if µ is a measure on (X ,Γ),
we then say that µ is a Borel measure. In this thesis, we will be dealing
exclusively with Borel measures and from now on assume all σ-algebras and
measures to be the Borel ones unless stated otherwise. When we say that µ is
a measure on a topological space X , the space in question is always equipped
with the Borel σ-algebra.

The support of a measure µ, denoted by supp(µ), is the largest closed
set S such that every open neighbourhood of every point in S has positive
µ-measure. We point out as a fact that although µ(X \ supp(µ)) = 0 does
not necessarily hold in a general case, it is true if µ is a �nite Borel measure
on a Euclidean space. If the support of µ is contained in a bounded subset
of X and 0 < µ(X ) < ∞, we then say that µ is a mass distribution. Given
a property P de�ned on a set of points of X , we say that the property P
holds µ-almost everywhere if the set of points where P does not hold has
µ-measure 0. We say that µ is atomic, if there is a countable partition of X
such that every element of the partition is either µ-null set (i.e. a set with
µ-measure 0) or an atom, that is, a set of positive µ-measure such that every
subset of the atom is either a null set or has measure equal to that of the
atom. In Euclidian spaces, it can be shown that a measure is atomic if and
only if it is a �nite or countably in�nite linear combination of Dirac measures
δx, de�ned by

δx(A) =

{
1, if x ∈ A,
0, otherwise

for all A. If µ is a measure on a metric space (X , d), we call it uniform if it
is �nite and the measure of an open ball depends only on its radius and not
on its center, i.e. µ(B(x, r)) = µ(B(y, r)) for all r > 0 and x, y ∈ X .

If the pairs (X ,Γ) and (Y ,∆) are measurable spaces and f : X → Y is a
mapping such that f−1(A) ∈ Γ for all A ∈ ∆, we say that f is (Γ-)measurable.
Measurability without any reference to a σ-algebra should be understood as
Borel-measurability. Particularly, if Γ and ∆ are Borel σ-algebras, we call f
a Borel function.

For all A ⊂ X , de�ne the indicator function 1A : X → {0, 1}, 1A(x) =
δx(A).

De�nition 0.2. Let (X ,Γ, µ) be a measure space. A function f̃ : X → [0,∞]
is simple, if f̃ =

∑
i∈N ai1Ai

for some ai ∈ R and Ai ∈ Γ. For all B ∈ Γ, the

integral of f̃ over B is de�ned by∫
B

f̃(x) dµ(x) =
∑
i∈N

aiµ(B ∩ Ai).
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For any measurable f : X → [0,∞], de�ne∫
B

f(x) dµ(x) = sup

{∫
B

f̃(x) dµ(x) | f ≥ f̃ is simple

}
and for measurable g : X → R, de�ne∫

B

g(x) dµ(x) =

∫
B

g+(x) dµ(x)−
∫
B

−g−(x) dµ(x),

where g+ ≥ 0, g− ≤ 0 and g = g+ + g−. If
∫
|g| dµ < ∞, we say that g is

integrable.

We often write the integral over X as
∫
f dµ when the underlying space is

clear from the context. We de�ne the integral for a non-real valued function
with countable set of values the same way we de�ne it for a simple function.

Lemma 0.3 (Fatou's lemma). Let f1, f2, . . . be non-negative, real-valued
measurable functions on X and de�ne the function f : X → [0,∞) by setting
f(x) = lim infn→∞ fn(x). Then f is measurable and∫

X
f(x) dµ(x) ≤ lim inf

n→∞

∫
X
fn(x) dµ(x).

If f : X → Y is measurable, de�ne the push-forward of µ through f as the
measure fµ = µ ◦ f−1 on Y . The following is an equivalent characterization
and is easily seen to be true by inspecting simple functions.

Theorem 0.4. If µ is a measure on X and F : X → Y is measurable, then
for every measurable f : Y → R,∫

Y
f(y) dFµ(y) =

∫
X
f ◦ F (x) dµ(x).

De�nition 0.5. Let µ and ν be measures on (X ,Γ). We call a measurable
function f : X → [0,∞] the density of µ with respect to ν if for all A ∈ Γ,

µ(A) =

∫
A

f(x) dν(x).

Given measures µ and ν on a measurable space (X ,Γ), we say that µ is
absolutely continuous with respect to ν, if ν(A) = 0 implies µ(A) = 0 for
every A ∈ Γ.

Theorem 0.6 (Radon-Nikodym theorem). If µ and ν are �nite measures on
(X ,Γ) and µ is absolutely continuous with respect to ν, then µ has a density
with respect to ν.
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We call µ a probability measure on X if µ(X ) = 1. The measure space
(X ,Γ, µ) is then correspondingly called a probability space. The elements of
Γ are called events and for any event E, µ(E) is called the probability of
E. If f is a measurable function on (X ,Γ, µ), we call it a random variable
distributed according to µ and its distribution is de�ned as the push-forward
of µ through f .

De�nition 0.7. Let f be a random variable distributed according to µ. The
expected value of f is de�ned by

E(f) =

∫
X
f(x) dµ(x).

The variance of f is then de�ned by

Var(f) = E(f 2)− E(f)2 = E
(
(f − E(f))2

)
.

The following result regarding the expected value of a random variable is
known as Markov's inequality and will prove very useful.

Theorem 0.8 (Markov's inequality). Assume f is a positive real-valued ran-
dom variable on a probability space (X ,Γ, µ). Then for all a > 0,

µ({x ∈ X | f(x) ≥ a}) ≤ E(f)

a
.

As an application of the theorem above, we bring up the weaker version
of the law of large numbers.

Theorem 0.9 (Weak law of large numbers). Assume f, f1, f2, . . . are inde-
pendent, real-valued random variables on (X ,Γ, µ) with �nite expected values
E(f1) = E(f2) = . . . = E(f). Denote by fn the mean value, fn = 1

n

∑n
i=1 fi.

Then, for any ε > 0,

lim
n→∞

µ
(
{x ∈ X

∣∣ |fn(x)− E(f)| > ε}
)

= 0.

We may also de�ne the expected value (or mean) and variance of a prob-
ability measure.

De�nition 0.10. For a probability measure µ on X , de�ne the mean by

〈µ〉 =

∫
X
x dµ(x).

The variance of µ is then de�ned by

Var(µ) =

∫
X

(x− 〈µ〉)2 dµ(x).
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We denote the set of all probability measures on X by P(X ).
Consider the space C(X ) of all continuous, bounded real-valued func-

tions on X . This clearly forms a norm space over R with the norm ‖f‖ =
supx∈X |f(x)|. By Riesz representation theorem, we may identify P(X ) as a
subspace of the Banach dual of continuous linear functionals on C(X ) by
letting µ operate on f by

∫
f dµ. We may often consider the weak-* topol-

ogy on P(X ) generated by C(X ); in this topology, a sequence of probability
measures (µn)n∈N converges to µ if and only if limn→∞

∫
f dµn =

∫
f dµ for

all f ∈ C(X ). We then say that (µn)n converges weakly to µ.
We remark that if X is compact, then the space P(X ) is compact in the

weak-* topology. This is because by Banach-Alaoglu theorem the unit ball of
(C(X ))∗ is compact in the weak-* topology and since P(X ) belongs to the
unit sphere (in the dual norm ‖φ‖ = sup‖f‖=1 |φ(f)|), it su�ces to see that it
is weak-* closed. This is, however, easy to see: if µ is the weak limit of (µn)n,
then µ(X ) =

∫
1 dµ = limn→∞

∫
1 dµn = 1. The following theorem gives a

well-known equivalent de�nition for the weak convergence, one that will be
more useful for us in practice.

Theorem 0.11. If µ, µ1, µ2, . . . are probability measures on a topological
space X , the sequence (µn) converges weakly (converges in the weak-* topol-
ogy) to the probability measure µ if

lim inf
n→∞

µn(U) ≥ µ(U)

for all open sets U ⊂ X .

Another way to give structure to the space P(X ) is by extending it into
a metric space.

De�nition 0.12. Let µ and ν be probability measures on (X ,Γ). De�ne the
total variation distance between µ and ν as

‖µ− ν‖ = sup
E∈Γ
|µ(E)− ν(E)|.

Theorem 0.13. The space (P(X ), ‖ · ‖) is a complete metric space.

Proof. It is clear that ‖·‖ is indeed a metric in P(X ). Let (µn)n∈N be a Cauchy
sequence in P(X ), i.e. for every ε > 0 there exists an integer N such that
‖µn − µm‖ < ε for all n,m ≥ N . For every E ∈ Γ, the sequence (µn(E))n∈N
is then a Cauchy sequence in R. By completeness of R, we �nd a converging
subsequence (µnk

(E))k∈N. Let µ be the set function E 7→ limk→∞ µnk
(E) for

all E ∈ Γ; note that the convergence in k is uniform over E ∈ Γ. We claim
that µ is a probability measure.
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Clearly µ(∅) = 0 and µ(X ) = 1. Let A1, A2, . . . belong to Γ and be
disjoint. Since the convergence of (µnk

(E))k is uniform in E, for any ε > 0
we may choose k0 so that |µ(E) − µnk

(E)| < ε for all E ∈ Γ and k ≥ k0.
Clearly µ is �nitely additive. Let N0 be so big that

∑∞
i=N0

µnk0
(Ai) < ε. Then

we have

µ

(
∞⋃
i=1

Ai

)
= µ

(
N0⋃
i=1

Ai

)
+ µ

(
∞⋃

i=N0+1

Ai

)

≤
N0∑
i=1

µ(Ai) +
∞∑

i=N0

µnk0
(Ai) + ε

≤
N0∑
i=1

µ(Ai) + 2ε.

From the �rst inequality we see that also µ(
⋃∞
i=1 Ai) ≥

∑N0

i=1 µ(Ai). Therefore
letting ε → 0 and N0 → ∞ we obtain countable additivity. Moreover, µn
converges to µ in the total variation metric: if ε′ > 0, then

‖µ− µn‖ = ‖µ− µnk
+ µnk

− µn‖ ≤ ‖µ− µnk
‖+ ‖µnk

− µn‖
≤ 2ε ≤ ε′,

when ε ≤ ε′/2 and n, k are so large that ‖µ−µnk
‖ = supE∈Γ |µ(E)−µnk

(E)| <
ε and ‖µnk

− µn‖ < ε. Therefore (P(X ), ‖ · ‖) is complete.

Given multiple measure spaces, we can de�ne a measure on their product
space as follows.

De�nition 0.14. Let (Xi,Γi, µi) be measure spaces for i = 1, . . . , k. Denot-
ing by

⊗k
i=1 Γi the σ-algebra on X1×· · ·×Xk generated by sets E1×· · ·×Ek

where Ei ∈ Γi, the product measure µ1×· · ·×µk is a measure on X1×· · ·×Xk
that satis�es

(µ1 × · · · × µk)(E1 × · · · × Ek) =
k∏
i=1

µi(Ei)

for all Ei ∈ Γi.

If f and g are random variables on X and Y , distributed according to
probability measures µ and ν respectively, we call the random variable (f, g)
on X ×Y their joint. The random variables f and g are independent, if their
joint is distributed according to µ× ν.
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Theorem 0.15 (Fubini's theorem). Let (X1,Γ1, µ1) and (X2,Γ2, µ2) be σ-
�nite measure spaces, let f : X ×Y → R be µ1×µ2 -measurable and suppose

that
∫
X1

(∫
X2
f(x, y) dµ2(y)

)
dµ1(x) <∞. Then∫

X1×X2

f(x, y) d(µ1 × µ2)(x, y) =

∫
X1

(∫
X2

f(x, y) dµ2(y)

)
dµ1(x)

=

∫
X2

(∫
X1

f(x, y) dµ1(x)

)
dµ2(y).

Corollary 0.16. Assume the space X1 × X2 is σ-�nite and A ∈ Γ1 ⊗ Γ2.
Then

(µ× ν)(A) =

∫
X2

µ(Ay) dν =

∫
X1

ν(Ax) dµ =

∫
X1

∫
X2

1A(x, y) dν(y)dµ(x),

where Ay = {x ∈ X1 | (x, y) ∈ A} and Ax = {y ∈ X2 | (x, y) ∈ A}.

Some of the main results in this thesis concern the push-forward of the
product measure through the addition map, known as the convolution mea-
sure.

De�nition 0.17. Let µ1, . . . , µk be �nite measures on a vector space X and
let π : X × · · · × X → X be the addition mapping, π(x1, . . . , xk) =

∑k
i=1 xi.

The convolution of µ1, . . . , µk is the push-forward measure

µ1 ∗ · · · ∗ µk = F (µ1 × · · · × µk) = (µ1 × · · · × µk) ◦ F−1.

For repeated self-convolutions, we use the notation µ∗k = µ ∗ · · · ∗ µ.
Clearly convolution is a commutative and multilinear operator and the con-
volution of probability measures is a probability measure. Note that if f and
g are independent random variables with distributions µ and ν respectively,
it follows from the de�nition that the distribution of X + Y is µ ∗ ν. The
proposition below is immediate from the de�nition and Fubini's theorem.

Proposition 0.18. For every A ∈ Γ, a, b ∈ R, the convolution µ∗ν satis�es
the following.

(i.) (µ ∗ ν)(A) =
∫ ∫

1A(x+ y) dµ(x)dν(y).

(ii.) (µ ∗ ν)(A) =
∫
µ(A− x) dν(x)

The following proposition gives a way to calculate the mean and variance
of a convolution measure.
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Proposition 0.19. If µ1, . . . , µk ∈ P(X ), the convolution µ = µ1 ∗ · · · ∗ µk
has a mean

〈µ〉 =
k∑
i=1

〈µi〉

and variance

Var(µ) =
k∑
k=1

Var(µi).

One particular probability measure that will be of use to us is the Gaus-
sian measure.

De�nition 0.20. The Gaussian measure with mean m and variance σ2 is
given by

γm,σ2(A) =

∫
A

ϕ

(
x−m
σ2

)
dx,

where ϕ(x) =
√

2π exp(−1
2
|x|2), for every A ∈ R.

An application of the central limit theorem asserts that given a large
number of probability measures of positive variance, their convolution can
be rescaled so that the resulting measure approaches the Gaussian measure.
We bring up the Berry-Esseen theorem that quanti�es the rate of this con-
vergence. The following variant is found in [2].

Theorem 0.21. Let µ1, . . . , µk be probability measures on R with �nite third
moments ρi =

∫
|x|3 dµi(x). Let µ = µ1 ∗ · · · ∗ µk, and let γ be the Gaussian

measure with the same mean and variance as µ. Then for any interval I ⊂ R,

|µ(I)− γ(I)| ≤ C ·
∑k

i=1 ρi
Var(µ)3/2

,

where C ∈ R is independent of k. In particular, if ρi ≤ C ′ and
∑k

i=1 Var(µ) ≥
ck for constants c, C ′ > 0, then

|µ(I)− γ(I)| = Oc,C′(k
−1/2).

0.1 Components of a measure

Throughout this thesis, a common technique we use in dealing with the
properties of a general measure is to study its small-scale components. It
turns out that most of the properties we are interested in, if shown to hold
for a randomly chosen component of the measure, can be generalized to hold
for the original measure with probability close to 1.
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Indeed, we de�ne a (countable) partition of a set X as a countable family
E = {Ei}i∈N such that the sets Ei are disjoint and X =

⋃
iEi. The sets Ei

are called the atoms of the partition E . Since we are primarily moving in
Euclidean spaces, we introduce the dyadic partition of Rd. Denote by Dn the
partition of the line into subintervals of length 2−n:

Dn =

{[
k

2n
,
k + 1

2n

) ∣∣ k ∈ Z
}
.

For any t ∈ R, write Dt = Dbtc, where btc = max{k ∈ Z | k ≤ t}. The dyadic
partition of Rd is then de�ned as Ddn = Dn × · · · × Dn. We will sometimes
omit the superscript d when the dimension of the space is clear from the
context.

For all x in Rd, let Dn(x) denote the unique cell of the partition Dn that
contains x. For an atom D, let TD : Rd → Rd denote the unique homothety
mapping D to [0, 1)d; for example, if D = [k/2n, (k + 1)/2n)d is an atom
in the dyadic partition of Rd, then the homothety TD is the a�ne mapping
x 7→ 2nx − (k, . . . , k). Given a probability measure on an atom of Dn, we
may rescale it into a measure on the unit cube by taking its push-forward
through this homothety.

De�nition 0.22. For a probability measure µ on Rd and D ∈ Dn with
µ(D) > 0, the raw D-component of µ is

µD =
1

µ(D)
µ|D

and the rescaled D-component of µ is

µD =
1

µ(D)
TDµ|D.

For x ∈ Rd with µ(Dn(x)) > 0, we write

µx,n = µDn(x)

µx.n = µDn(x).

These measures are called the (raw or rescaled) level-n components of µ for
every x with µ(Dn(x)) > 0.

We will mostly be interested in random selection of a small-scale com-
ponent, each one drawn with the probability that µ assigns to the atom in
question.

12



De�nition 0.23. Let µ be a probability measure on Rd.

(i.) De�ne the raw (or rescaled) random level-n component of µ as the dis-
crete random variable Rd → P(Rd), x 7→ µx,n (or x 7→ µx,n), distributed
according to µ.

(ii.) If I ⊂ N is a �nite set of indices, then the random level-I component,
raw or rescaled, is chosen by �rst drawing an n uniformly from I and
then choosing the level-n component independently on the choice of n,
as described above.

Note that the raw and rescaled components of a product measure µ × ν
are the products of the components of µ and ν; if D2

n = Dn×Dn is the dyadic
partition of R2d and A is a subset of R2d, then

(µ× ν)(x,y),n(A) =
1

(µ× ν)(Dn(x, y))
(µ× ν)(Dn(x, y) ∩ A)

=
1

µ(Dn(x))ν(Dn(y))

∫
Rd∩Dn(y)

µ(Dn(x) ∩ At) dν(t)

=
1

µ(Dn(x))ν(Dn(y))
(µ|Dn(x) × ν|Dn(y))(A)

= (µx,n × νy,n)(A).

Similarly, if TDn(x) and TDn(y) are the homotheties mapping Dn(x) and Dn(y)
to [0, 1)d, then (a, b) 7→ (TDn(x)(a), TDn(y)(b)) is the corresponding homothety
of Dn(x, y) and

(µ× ν)(x,y),n(D) =
1

(µ× ν)(Dn(x, y))
(µ× ν)(Dn(x, y) ∩ T−1

Dn(x,y)(D))

=
1

µ(Dn(x))ν(Dn(y))
(µ|Dn(x) × ν|Dn(y))(T

−1
Dn(x,y)(D))

= (µx,n × νy,n)(D).

For a family A of probability measures on [0, 1)d, we introduce the nota-
tion

Pi=n(µx,i ∈ A) =

∫
Rd

1A(µx,n) dµ(x).

If instead of �xing the scale i we restrict it to a set of integers, it is chosen
according to the uniform distribution u and by the law of total probability,

P0≤i≤n(µx,i ∈ A) =
n∑
k=0

Pi=k(µx,i ∈ A)u(i = l) =
1

n+ 1

n∑
i=0

∫
Rd

1A(µx,i) dµ(x).

13



Similarly, if f : P([0, 1)d)→ R and I ⊂ N, then by the law of total expecta-
tion

Ei∈I(f(µx,i)) =
1

|I|
∑
i∈I

∫
Rd

f(µx,i) dµ(x).

Generally, when dealing with components of several measures µ, ν, we assume
all the choices of components µx,i, νy,j to be independent;

Pi=n(µx,i ∈ A, νy,i ∈ B) =

∫
Rd×Rd

1A(µx,n) · 1B(νy,n) d(µ× ν)(x, y).

When we �x the scale n, the random level-n component gives averagely cor-
rect estimates for µ, as seen in the following lemma.

Lemma 0.24. If µ is a probability measure on Rd and n ∈ N,

µ = Ei=n(µx,i).

Proof. The component µx,i is a random variable Rd → P(Rd) admitting a
constant value µD at each D ∈ Dn. Hence by de�nition

Ei=n(µx,i) =

∫
Rd

µx,n dµ(x) =
∑
D∈Dn

µDµ(D) =
∑
D∈Dn

µ|D = µ.

1 Entropy of a measure

Entropy is often conceived as a measurement of chaos, or uncertainty, in a
system. In our context, we are interested in how evenly a probability measure
emphasizes the atoms of a given (usually the dyadic) partition.

Take, for example, a roll of a die with k faces. If we wanted the outcome
of a throw to be as random as possible, we would emphasize the faces so
that each of them would have an equal probability, namely 1/k. Bearing
this intuition in mind, we replace the die with an arbitrary set X , the faces
represented by a partition of the set, E . Then we emphasize the atoms of this
partition by assigning a probability measure on X and de�ne a quantity that
takes into account how evenly µ is distributed on the atoms of E .

De�nition 1.1. Let µ be a probability measure on X and let E be a count-
able, measurable partition of X . The entropy of µ with respect to E is de�ned
by

H(µ, E) = −
∑
E∈E

µ(E) log2 µ(E).

14



Here the logarithm is in base 2 and we de�ne 0 log2 0 = 0. The conditional
entropy with respect to a countable partition F is

H(µ, E|F) = −
∑
F∈F

µ(F )H(µF , E),

where µF =
1

µ(F )
µ|F is the conditional measure on F .

If the probability measure µ is discrete, we write H(µ) for the entropy
with respect to the partition into its atoms, and for a probability vector
α = (α1, . . . , αk) we write H(α) = −

∑
αi log2 αi.

We de�ne the entropy of a random variable as the entropy of its distri-
bution. Since we will only encounter it in the context of discrete random
variables, we will only give the de�nition in that case, omitting the de�nition
of di�erential entropy.

Indeed, if X and Y are discrete random variables on X with distributions
µ and ν, respectively, the entropy of X is then de�ned by

H(X) = −
∑
xi

µ(xi) log2 µ(xi),

where xi ranges over all possible values of X. If η is the distribution of the
joint of X and Y , the conditional entropy of X given Y is de�ned by

H(X|Y ) =
∑
yi

ν(yi)H(X|Y = yi),

where X|Y = yi is the random variable ω 7→ X(ω) with the conditioned

distribution γ : A 7→ η(A, yi)

ν(yi)
for every A in the associated σ-algebra. The

following lemma collects some properties of the conditional entropy of a ran-
dom variable.

Lemma 1.2. Let X and Y be discrete random variables on X and Y with
distributions µ and ν, respectively.

(i.) If η is the distribution of the joint (X, Y ),

H(X|Y ) =
∑
xi,yj

η(xi, yj) log2

ν(yj)

η(xi, yj)
.

(ii.) Conditioning a random variable never increases its entropy:

H(X|Y ) ≤ H(X).

If X and Y are independent, the equality holds.
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(iii.) If H(X) and H(Y ) are �nite, the conditional entropy obeys the follow-
ing �chain rule�:

H(X|Y ) = H(X, Y )−H(Y ).

In the proof of this lemma, we require a general result regarding convex
functions, known as Jensen's inequality.

Lemma 1.3 (Jensen's inequality). Assume f is a real-valued convex func-
tion, x1, . . . , xn are in its domain and ai > 0 for all i. Then,

f

(∑n
i=1 aixi∑n
i=1 ai

)
≤
∑n

i=1 aif(xi)∑n
i=1 ai

.

Proof. We commence the proof by induction, assuming �rst that the sum of
ai equals 1. Let λ1, λ2 be non-negative real numbers such that λ1 + λ2 = 1.
By convexity of f , we have

f(λ1x1 + λ2x2) ≤ λ1f(x1) + λ2f(x2).

Make then a hypothesis that

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi) (1.1)

for an n > 2, where
∑n

i=1 λi = 1. Then, if
∑n+1

i=1 λi =
∑n

i=1 λi + λn+1 = 1, by
convexity and the hypothesis, we have

f

(
n+1∑
i=1

λixi

)
= f

(
n∑
i=1

λixi + λn+1xn+1

)
≤

n∑
i=1

λif(xi) + λn+1f(xn+1).

Therefore, by induction, (1.1) holds for an arbitrary n. To lift the requirement
of ai summing to 1, note that if a1, . . . , an are strictly positive, replacing λi
with

ai∑n
i=1 ai

gives the desired inequality.

We can now prove Lemma 1.2.

Proof of Lemma 1.2. Let X and Y be random variables with distributions
µ and ν, respectively, and let η be the distribution of their joint random
variable.
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(i.) Immediately from the de�nition, we obtain

H(X|Y ) =
∑
yi

ν(yi)H(X|Y = yi)

= −
∑
yi

∑
xi

ν(yi)
η(xi, yi)

ν(yi)
log2

η(xi, yi)

ν(yi)

=
∑
xi,yj

η(xi, yj) log2

ν(yj)

η(xi, yj)
.

(ii.) Using Jensen's inequality for log2,

H(X|Y ) =
∑
xi,yj

η(xi, yj) log2

ν(yj)

η(xi, yj)

=
∑
xi,yj

µ(xi)
η(xi, yj)

µ(xi)
log2

ν(yj)

η(xi, yj)

=
∑
xi

µ(xi)
∑
yj

η(xi, yj)

µ(xi)
log2

ν(yj)

η(xi, yj)

≤
∑
xi

µ(xi) log2

∑
yj

η(xi, yj)

µ(xi)

ν(yj)

η(xi, yj)


= H(X).

If X and Y are independent,

H(X|Y ) = −
∑
xi,yj

µ(xi)ν(yj) log2 µ(xi) = H(X).

(iii.) Assuming H(X) and H(Y ) are �nite,

H(X|Y ) =
∑
xi,yj

η(xi, yj) log2

ν(yj)

η(xi, yj)

= −
∑
xi,yj

η(xi, yj) log2 η(xi, yj) +
∑
xi,yj

η(xi, yj) log2 ν(yj)

= H(X, Y )−H(Y ).

This completes the proof.
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We refer to the entropy with respect to the partition Dn as the scale-n
entropy. The normalized scale-n entropy for a probability measure is de�ned
as

Hn(µ) =
1

n
H(µ,Dn).

Below are listed some basic properties of the entropy of a probability measure
that we will be using constantly.

Lemma 1.4. Let α be a probability vector, let µ, ν be probability measures
on X and let E ,F be countable, measurable partitions of X . Entropy has the
following properties:

(i.) H(µ, E) ≥ 0, where equality holds if and only if the support of µ is
contained in a single atom of E .

(ii.) If µ is supported on k atoms of E , then H(µ, E) ≤ log2 k with equality
if and only if µ is uniform.

(iii.) If F re�nes E , then H(µ,F) ≥ H(µ, E).

(iv.) If E ∨ F = {E ∩ F | E ∈ E , F ∈ F} is the join of E and F , then
H(µ, E ∨ F) = H(µ,F) +H(µ, E|F).

(v.) The functions µ 7→ H(µ, E) and µ 7→ H(µ, E|F) are concave.

(vi.) The function µ 7→ H(µ, E) obeys the �convexity� bound

H

(
k∑
i=1

αiµi, E

)
≤

k∑
i=1

αiH(µi, E) +H(α).

Proof. Write E = {Ei}i∈N and F = {Fj}j∈N.

(i.) Clearly

H(µ, E) = −
∑
i∈N

µ(Ei) log2 µ(Ei) ≥ 0,

since 0 ≤ µ(Ei) ≤ 1 for all Ei and therefore − log2 µ(Ei) ≥ 0 for all Ei.
If H(µ, E) = 0, it means that every term in the sum equals 0, which
in turn implies that µ(Ei) = 1 for exactly one i ∈ N and µ(Ej) = 0
otherwise.
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(ii.) Assume µ(Ei) > 0 for i ∈ {1, 2, . . . , k} and µ(Ei) = 0 otherwise. Then,
since the function x 7→ − log2 x is convex and

∑k
i=1 µ(Ei) = 1, we have

from Jensen's inequality that

− log2 k = − log2

(
k∑

n=1

1

µ(Ei)
µ(Ei)

)
≤

k∑
i=1

− log2

(
1

µ(Ei)

)
µ(Ei)

=
k∑
i=1

log2 (µ(Ei))µ(Ei) = −H(µ, E).

If µ is uniform, i.e. µ(Ei) = 1/k for all 1 ≤ i ≤ k,

H(µ, E) = −
k∑
i=1

1

k
log2

1

k

=
k∑
i=1

log2 k

k

= log2 k.

and by di�erentiation we can see this is the only maximum point of
the function (x1, . . . , xk) 7→

∑k
i=1−xi log2 xi in the domain satisfying∑k

i=1 xi = 1.

(iii.) Assume F re�nes E . Then, for every Ei ∈ E there is a countable Ji ⊂ N
such that Ei =

⋃
j∈Ji Fj. Therefore

H(µ, E) = −
∑
i∈N

µ(Ei) log2 µ(Ei) = −
∑
i∈N

µ

(⋃
j∈Ji

Fj

)
log2 µ

(⋃
k∈Ji

Fk

)

= −
∑
i∈N

∑
j∈Ji

µ(Fj) log2

(∑
k∈Ji

µ(Fk)

)
≤ −

∑
i∈N

∑
j∈Ji

µ(Fj) log2 µ(Fj) = H(µ,F),

where the inequality follows from the fact that − log2 is decreasing.

(iv.) Let E ∨ F be the join of E and F . Then,

H(µ, E|F) =
∑
j∈N

µ(Fj) ·H(µFj
, E) = −

∑
j∈N

∑
i∈N

µ(Fj)µFj
(Ei) log2 µFj

(Ei)

=
∑
j∈N

∑
i∈N

µ(Ei ∩ Fj) log2 µ(Fj)−
∑
j∈N

∑
i∈N

µ(Ei ∩ Fj) log2 µ(Ei ∩ Fj)

= −H(µ,F) +H(µ, E ∨ F).
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(v.) Since
d2

dx2
(−x log2 x) =

d2

dx2

−x log x

log 2
=
−1

x log 2
< 0 for all x > 0, the

function x 7→ −x log2 x is concave on every subinterval of (0,∞). Hence
µ 7→ H(µ, E) is concave on P(X ) as a sum of concave functions. To
prove the concavity of conditional entropy, we observe the following: if
µ and ν are probability measures on Rd, 0 < t < 1 and τ = tµ+(1−t)ν,
for any F ∈ F and Borel E,

τF (E) =
1

τ(F )
τ|F (E) =

tµ|F (E) + (1− t)ν|F (E)

tµ(F ) + (1− t)ν(F )

=
tµ(F )

τ(F )
µF (E) +

(1− t)ν(F )

τ(F )
νF (E),

so τF is a convex combination of µF and νF . Therefore, by concavity
of entropy,

H(tµ+ (1− t)ν, E|F) =
∑
F∈F

τ(F )H(τF , E)

≥
∑
F∈F

τ(F )

(
tµ(F )

τ(F )
H(µF , E) +

(1− t)ν(F )

τ(F )
H(νF , E)

)
= t

∑
F∈F

µ(F )H(µF , E) + (1− t)
∑
F∈F

ν(F )H(νF , E)

= tH(µ, E|F) + (1− t)H(ν, E|F).

vi. Assume α is a probability vector. Then,

H

(
k∑
i=1

αiµi, E

)
= −

∑
l∈N

k∑
i=1

αiµi(El) log2

(
k∑
j=1

αjµj(El)

)

≤ −
∑
l∈N

k∑
i=1

αiµi(El) log2(αiµi(El))

=
k∑
i=1

αi

(
−
∑
l∈N

µi(El)(log2 αi + log2 µi(El))

)

=
k∑
i=1

αiH(µi, E)−
k∑
i=1

αi
∑
l∈N

µi(El) log2 αi

=
k∑
i=1

αiH(µi, E)−
k∑
i=1

αi log2 αi,

which completes the proof.
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From the lemma we obtain some immediate bounds for a probability
measure on the unit interval (or cube, in Rd); following from the second
statement, for µ ∈ P([0, 1]d) we have

H(µ,Dm) ≤ md (1.2)

since there are (2m)d atoms of Dm inside the cube [0, 1]d. For the correspond-
ing bound for conditional entropy, observe that any atom of Dn contains
(2−n/2−m−n)d = 2md atoms of the partition Dn+m; hence

H(µ,Dn+m|Dn) =
∑
D∈Dn

µ(D) ·H(µD,Dn+m) ≤ md.

The next lemma presents some continuity properties for the entropy.

Lemma 1.5. Let µ, ν ∈ P(Rd) and let E ,F be partitions of Rd.

(i.) If m ∈ N, K ⊂ Rd is compact and µ ∈ P(K), for every ε > 0 there is
a neighbourhood U ⊂ P(K) of µ such that |H(ν,Dm)−H(µ,Dm)| < ε
for ν ∈ U .

(ii.) If each E ∈ E intersects at most k elements of F and vice versa, then
|H(µ, E)−H(µ,F)| = O(log2 k).

(iii.) If f, g : Rd → Rk are Borel functions and ‖f(x)− g(x)‖ ≤ C · 2−m for
all x ∈ Rd, then |H(fµ,Dm)−H(gµ,Dm)| ≤ Ok(C).

(iv.) If ν(A) = µ(A + x0) for all A ∈ Rd, then |H(µ,Dm) − H(ν,Dm)| =
Od(1).

(v.) If C−1 ≤ m′/m ≤ C, then |H(µ,Dm)−H(µ,Dm′)| ≤ OC,d(1).

Proof. (i.) Let µ ∈ P(K) and let ε > 0. Since K is bounded, we may de�ne

M1 = max{| log2 µ(D)| | D ∈ Dm},
M2 = max{ν(D) | D ∈ Dm}.

Choose δ′ > 0 so that |x log2 x| < ε/2|Dm| whenever 0 ≤ x < δ′ and,

using again the boundedness of K, let 0 < δ < min
{

1
4|Dm|M1

ε, δ′
}
be

such that

| log2 ν(D)− log2 µ(D)| ≤ 1

4|Dm|M2

ε
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whenever ‖µ − ν‖ < δ and when D has positive µ-measure. Let ν ∈
B(µ, δ). Denoting by D0

n the set of atoms in the partition Dn that have
µ measure 0, we have

|H(ν,Dm)−H(µ,Dm)| = |
∑
D∈Dm

(ν(D) log2 ν(D)− µ(D) log2 µ(D)) |

≤
∑

D∈Dm\D0
m

|ν(D)(log2 ν(D)− log2 µ(D)) + (ν(D)− µ(D)) log2 µ(D)|

+
∑
D∈D0

m

|ν(D) log2 ν(D)|

≤
∑

D∈Dm\D0
m

(
ν(D)

1

4|Dm|M2

ε+ | log2 µ(D)| 1

4|Dm|M1

ε

)
+
∑
D∈D0

m

ε

|Dm|

≤
∑

D∈Dm\D0
m

ε

2|Dm|
+
ε

2
≤ ε.

(ii.) Let E and F be partitions ful�lling the hypothesis. AssumingH(µ, E) ≥
H(µ,F), by Lemma 1.4 (iv.) we have

|H(µ, E)−H(µ,F)| = H(µ, E)−H(µ,F) ≤ H(µ, E ∨ F)−H(µ,F)

= H(µ, E|F) =
∑
F∈F

µ(F )H(µF , E)

and since µF is supported on at most k atoms of E , we have∑
F∈F

µ(F )H(µF , E) ≤
∑
F∈F

µ(F ) log2 k = log2 k.

(iii.) Let f, g : Rd → Rk be such that ‖f(x)− g(x)‖ ≤ C2−m for all x ∈ Rd.
Write F = {f−1(D) | D ∈ Dkm} and G = {g−1(D) | D ∈ Dkm}. Note
that these are partitions of Rd. Now, for any D ∈ Dkm, there are Ok(C

k)
atoms of the same partition within distance C2−m from D. So, any
f−1(D) ∈ F can intersect at most Ok(C

k) atoms of G (the preimages
of the atoms closest to D in the partition Dkm) since f and g cannot
map any point to atoms with distance greater than C2−m. Hence by
(ii.),

|H(fµ,Dm)−H(gµ,Dm)| = |H(µ,F)−H(µ,G)| ≤ log2 Ok(C
k) ≤ Ok(C).

(iv.) Let ν be a translate of µ by x0, i.e. ν(A) = µ(A + x0) for all A.
We may assume that ‖x0‖ ≤ Od(1)2−m. De�ne the a�ne translation
f : Rd → Rd, f(x) = x − x0 so that we have ‖f(x) − x‖ ≤ Od(1)2−m

and ν = fµ. The statement holds by (iii.).
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(v.) Assume that C−1 ≤ m′/m ≤ C. We may assume that m′ ≥ m and
write m′ = m+ k(C) for some integer k(C) depending on C. Since any
atom of Dm then intersects 2−dm/2−dm−dk(C) = 2dk(C) atoms of Dm′ , by
(ii.) we have

|H(µ,Dm)−H(µ,Dm′)| ≤ d · k(C) = OC,d(1).

The following lemma shows that the normalized entropy µ 7→ Hn(µ) is
uniformly continuous in P([0, 1]d) and n.

Lemma 1.6. For every ε > 0, there is a δ > 0 such that if µ, ν ∈ P(Rd) and
‖µ− ν‖ < δ, then for any �nite partition A of Rd with k elements,

|H(µ,A)−H(ν,A)| < ε log2 k +H((1− ε), ε).

In particular, if µ, ν ∈ P([0, 1]d), then

|Hm(µ)−Hm(ν)| < dε+
H((1− ε), ε)

m
.

Proof. Let ε > 0 be given, let δ < ε2/18 and let µ, ν ∈ P(Rd) be such that
‖µ − ν‖ < δ. Since both µ and ν are absolutely continuous with respect to
µ+ ν, we may de�ne f and g to be the densities of µ and ν with respect to
µ + ν. De�ne the measure τ by setting τ(A) =

∫
A

min{f, g} d(µ + ν) for all
Borel sets A. Clearly τ ≤ µ and τ ≤ ν everywhere.

Let A be the subset of Rd such that f(x)− g(x) > ε/3 whenever x ∈ A.
Since

µ(A) =

∫
A

f d(µ+ ν) ≥
∫
A

g d(µ+ ν) +
ε

3
(µ+ ν)(A) = ν(A) +

ε

3
(µ+ ν)(A),

we see that (µ+ν)(A) ≤ 3δ/ε < ε/6. Similarly, if B is the set of points of Rd

such that g(x)− f(x) > ε/3 for every x ∈ B, we �nd that (µ+ ν)(B) ≤ ε/6.
Set R = Rd \ (A ∪ B) and observe that

µ(R) = 1− µ(A ∪ B) ≥ 1− (µ+ ν)(A)− (µ+ ν)(B) ≥ 1− ε/3

and (µ+ ν)(R) ≤ 2. Therefore,

τ(Rd) =

∫
R

min{f, g} d(µ+ ν) +

∫
A∪B

min{f, g} d(µ+ ν)

≥
∫
R

(f − ε/3) d(µ+ ν)

= µ(R)− ε(µ+ ν)(R)/3

≥ 1− ε.
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De�ne τ̃ =
1

τ(Rd)
τ and note that τ̃ is a probability measure that satis�es

(1− ε)τ̃ ≤ τ ≤ min{µ, ν}.

Hence we can de�ne probability measures

µ′ =
1

ε
(µ− (1− ε)τ̃)

ν ′ =
1

ε
(ν − (1− ε)τ̃)

so that we have

µ = (1− ε)τ̃ + εµ′,

ν = (1− ε)τ̃ + εν ′.

By Lemma 1.4 (v.) and (vi.), assuming H(µ,A) ≥ H(ν,A), we have

|H(µ,A)−H(ν,A)| = H(µ,A)−H(ν,A)

≤(1− ε)H(τ̃ ,A) + εH(µ′,A) +H((1− ε), ε)− (1− ε)H(τ̃ ,A)

≤ε log2 k +H((1− ε), ε).

If µ, ν ∈ P([0, 1]d), replacing A with Dm, using the approximation (1.2) in
the place of log2 k and dividing by m yields the second inequality.

If µ is a probability measure on the unit interval, by (1.2) and (ii.) of
Lemma 1.4, Hn(µ) ≤ 1 with equality if and only if µ is uniform. Also, if µ
is atomic on [0, 1], Hn(µ) tends to 0 as n tends to in�nity; we may restrict
µ on a �nite set with mass arbitrarily close to 1 by writing its support as a
countable, increasing union of �nite sets,

supp(µ) =
⋃
n∈N

An, An = {x | µ({x}) > 1/n}.

For any δ and large enough N , the normalized restriction of µ on AN is then
a probability measure on the unit interval with ‖µ−µAN

‖ < δ. By the above
lemma, |Hn(µ) − Hn(µAN

)| < ε for all n, and since Hn(µAN
) ≤ log2 |AN |/n

which tends to 0 as n grows, we have Hn(µ) < ε for all large enough n.
Our main motivation throughout the section is to �nd out what is re-

quired from two measures µ, ν ∈ P([0, 1]) for their convolution not to have
substantially greater randomness when compared to that of µ or ν; in terms
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of entropy, we want to �nd out when their (normalized) entropies are roughly
the same, or when

|Hn(µ ∗ ν)−Hn(µ)| < δ

holds with a small δ and large n. The direction Hn(µ ∗ ν) > Hn(µ)− δ holds
trivially for any measures when n is su�ciently large; see Lemma 1.25. For
the more interesting inequality

Hn(µ ∗ ν) < Hn(µ) + δ, (1.3)

if either µ is uniform or ν is atomic, the inequality turns out to hold trivially.
To see this, observe that if µ = u, the upper bound of (1.3) is just the trivial
bound of normalized entropy. On the other hand, if ν =

∑∞
i=1 aiδxi is atomic

and Ak are the sets de�ned above, for every k there is a �nite set Jk ⊂ N
such that νAk

=
∑

i∈Jk aiδxi . Therefore, by Lemma 1.6, Lemma 1.5 (iv.) and
the convexity bound of Lemma 1.4,

Hn(µ ∗ ν) = Hn

(
lim
k→∞

∑
i∈Jk

ai(µ ∗ δxi)

)

≤ lim
k→∞

∑
i∈Jk

aiHn(µ ∗ δi)−
1

n
lim
k→∞

∑
i∈Jk

ai log2 ai

≤ Hn(µ) +O(1/n) +Hn(ν) + ε

< Hn(µ) + δ

when ε is small and n is large enough, since Hn(ν) tends to 0. A more
interesting result is, however, that these two trivial conditions turn out to
be the only possible ones, in a local and statistical sense. We will see this in
Theorem 1.26, given originally by Hochman in [7].

1.1 Global and local properties of a measure

As we saw when introducing the component measures, taking the expected
value over all raw components of a �xed scale yields the original measure.
It turns out we can also approximate the entropy of a measure using the
entropies of its components.

We make an observation regarding the connection between the entropies
of raw and rescaled components. Let µ be a probability measure on Rd and �x
a point x. Observe that since the homothety TDn(x) maps Dn(x) into [0, 1)d,
the preimages of the atoms of the level-m dyadic partition of [0, 1)d are the
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atoms of the level-(n+m) dyadic partition of Dn(x). Hence

H(µx,n,Dm) = −
∑
D∈Dm

1

µ(Dn(x))
µ(T−1

Dn(x)(D)) log2

(
1

µ(Dn(x))
µ(T−1

Dn(x)(D))

)
= −

∑
D∈Dn+m

1

µ(Dn(x))
µ (D ∩ Dn(x)) log2

(
1

µ(Dn(x))
µ (D ∩ Dn(x))

)
= H(µx,n,Dn+m). (1.4)

The next lemma is a very useful tool in moving between the scales of a
measure.

Lemma 1.7. For any r ≥ 1, µ ∈ P([−r, r]d) and all integers m < n,

Hn(µ) = E0≤i<n
(
Hm(µx,i)

)
+Od

(
m

n
+

log2(2r)

n

)
.

Proof ([7], p. 17). We begin by inspecting E0≤i<n (Hm(µx,i)). For every n,
we may rewrite the expected value using conditional entropy,

Ei=n
(
Hm(µx,i)

)
=

∫
1

m
H(µx,n,Dm) dµ(x)

=
1

m

∫
H(µx,n,Dm+n) dµ(x)

=
1

m

∑
D∈Dn

µ(D)H(µD,Dm+n)

=
1

m
H(µ,Dn+m|Dn).

Hence, by the law of total expectation, we have

E0≤i<n
(
Hm(µx,i)

)
=

1

n

n−1∑
i=0

1

m
H(µ,Di+m|Di). (1.5)

By Lemma 1.5 (ii.),

H(µ,Di+m|Di) = H(µ,Di+m ∨ Di)−H(µ,Di) = H(µ,Di+m)−H(µ,Di)
= O(log2 2dm) = Od(m) (1.6)

for every i. Therefore, by introducing the error term Od(m/n) we may delete
up to m terms from the sum (1.5). This allows us to assume, without loss of
generality, that n/m ∈ N; if k is such that km ≤ n and (k + 1)m > n, we
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forget the last n − km < m terms in the sum. When m = 1, using Lemma
1.4 (iv.) and the fact that H(µ,D0) ≤ log2(2r)d we have

n−1∑
i=0

H(µ,Di+1|Di) =
n−1∑
i=0

(H(µ,Di+1 ∨ Di)−H(µ,Di))

=
n−1∑
i=0

(H(µ,Di+1)−H(µ,Di))

= H(µ,Dn)−H(µ,D0)

= H(µ,Dn|D0)

= H(µ,Dn)−Od(log2 2r).

For a general m ∈ N, using the equality above and the fact that m divides
n, we decompose the sum and obtain

n−1∑
i=0

1

m
H(µ,Di+m|Di) =

1

m

m−1∑
p=0

n/m−1∑
k=0

H(µ,D(k+1)m+p|Dkm+p)


=

1

m

m−1∑
p=0

n/m−1∑
k=0

H(µ,D(k+1)m+p)−H(µ,Dkm+p)


=

1

m

m−1∑
p=0

H(µ,Dn+p|Dp). (1.7)

We note that

H(µ,Dn) +H(µ,Dn+p|Dn) = H(µ,Dn+p ∨ Dn)

= H(µ,Dn+p)

= H(µ,Dp) +H(µ,Dn+p|Dp). (1.8)

By Lemma 1.5, we have the boundH(µ,Dp) ≤ log2 (2r · 2p)d = dp+d log2(2r)
and by (1.6),H(µ,Drm+p|Drm) = Od(p). Using the equality (1.8) and the fact
that 0 ≤ p < m, we get∣∣∣∣ 1nH(µ,Dn+p|Dp)−Hn(µ)

∣∣∣∣ =

∣∣∣∣ 1nH(µ,Dn+p|Dn)− 1

n
H(µ,Dp)

∣∣∣∣
≤ 1

n
H(µ,Dn+p|Dn) +

1

n
H(µ,Dp)

≤ Od

(
m+ log2(2r)

n

)
.
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for all p. Summing the above inequality m times as p = 0, . . . ,m− 1 yields

m ·Hn(µ) ≤
m−1∑
p=0

1

n
H(µ,Dn+p|Dp) +m ·Od

(
m

n
+

log2(2r)

n

)
.

Dividing by m gives us the sum from (1.7). Using the equality (1.5) then
�nishes the proof.

We can derive a similar approximation for the entropy of the convolution.
In this case, we only receive a lower bound for the entropy of µ. This is due
to the fact that since the components of the convolution are not equal to the
convolution of two components, we have only concavity to use in obtaining
the connection between the average small-scale entropy and the entropy of
the convolution measure.

Lemma 1.8. Let r > 0 and µ, ν ∈ P([−r, r]d). Then for m < n ∈ N,

Hn(µ ∗ ν) ≥ E0≤i≤n

(
1

m
H(µx,i ∗ νy,i,Di+m|Di)

)
+Od

(
m+ log2(4r)

n

)
≥ E0≤i≤n

(
Hm(µx,i ∗ νy,i)

)
+Od

(
1

m
+
m

n
+

log2(4r)

m

)
.

Proof ([7], p. 18). Note that for all p = 0, . . . ,m−1, using the chain rule for
conditional entropy, we have

H(µ ∗ ν,Dn+p) = H(µ ∗ ν,Dn) +H(µ ∗ ν,Dn+p|Dn)

= H(µ ∗ ν,Dn) +
∑
D∈Dn

(µ ∗ ν)(D)H((µ ∗ ν)D,Dn+p)

≤ H(µ ∗ ν,Dn) + log2 2dp

= H(µ ∗ ν,Dn) + dp.

Since µ ∗ ν has its support contained in [−2r, 2r]d and H(µ ∗ ν,Dp) ≤
d log2(4r2p) ≤ dm+ d log2(4r), using the above we can write

Hn(µ ∗ ν) ≥ 1

n
H(µ ∗ ν,Dn+p)−

dp

n

≥ 1

n
H(µ ∗ ν,Dn+p|Dp) +

1

n
H(µ ∗ ν,Dp)−

dm

n

=
1

n
H(µ ∗ ν,Dn+p|Dp) +Od

(
m

n
+

log2(4r)

n

)
.

28



Again by the chain rule, we have

H(µ ∗ ν,Dn+p|Dp) =

bn/mc−1∑
k=0

H(µ ∗ ν,Dp+(k+1)m|Dp+km) +H(µ ∗ ν,Dn+p|Dp+bn/mcm)

and since H(µ ∗ ν,Dn+p|Dp+bn/mcm) ≤ Od(m), by adding to the error term
Od(m/n) we may again assume that m divides n.

The convolution of random components µx,i ∗ νy,i is a random variable
Rd×Rd → P(Rd) distributed according to µ×ν and admits a constant value
at each D × E ∈ Dn ×Dn. Hence for any k, by bilinearity of convolution,

Ei=k(µx,i ∗ νy,i) =

∫
(µx,k ∗ νy,k) d(µ× ν)

=
∑

D,E∈Dk

(µD ∗ νE)µ(D)ν(E)

=
∑

D,E∈Dk

µ|D ∗ ν|E = µ ∗ ν.

Using the concavity of conditional entropy given by Lemma 1.4, we get

H(µ ∗ ν,Dn+p|Dp) =

n/m−1∑
k=0

H(µ ∗ ν,Dp+(k+1)m|Dp+km) +Od(m/n)

=

n/m−1∑
k=0

H
(
Ei=p+km(µx,i ∗ νy,i),Dp+(k+1)m|Dp+km

)
+Od(m/n)

≥
n/m−1∑
k=0

Ei=p+km (H(µx,i ∗ νy,i,Di+m|Di)) + Od(m/n).
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Combining this with the discussion above, we obtain

Hn(µ ∗ ν) =
1

m

m−1∑
p=0

1

n
H(µ ∗ ν,Dn)

=
1

m

m−1∑
p=0

(
1

n
H(µ ∗ ν,Dn+p|Dp) +Od

(
m

n
+

log2(4r)

n

))

≥ 1

mn

m−1∑
p=0

n/m−1∑
k=0

Ei=p+km (H(µx,i ∗ νy,i,Di+m|Di))

+Od

(
m

n
+

log2(4r)

n

)

=
n−1∑
j=0

1

n
Ei=j

(
1

m
H(µx,i ∗ νy,i,Di+m|Di)

)
+Od

(
m

n
+

log2(4r)

n

)
= E0≤i<n

(
1

m
H(µx,i ∗ νy,i,Di+m|Di)

)
+Od

(
m

n
+

log2(4r)

n

)
,

which proves the �rst inequality. To derive the second one, we need an identity
similar to (1.4). If π : Rd × Rd → Rd is the addition map, if TDn(x,y) is the
homothety of R2d mapping Dn(x, y) to [0, 1)2d, (t1, t2) ∈ Zd×Zd is the vector
by which it translates and if D ∈ Dn,

T−1
Di(x,y)(π

−1(D)) = {T−1
Di(x,y)(a, b) | a+ b ∈ D ∈ Dn}

= {(u, v) | TDi(x)(u) + TDi(y)(v) ∈ D}
= {(u, v) | 2i(u+ v) + t1 + t2 ∈ D}
= {(u, v) | u+ v ∈ 2−i(D − t1 − t2)}
= π−1(2−i(D − t1 − t2)).

Note that 2−i(D − t1 − t2) is an atom of Dn+i; denote it by D̃. We have

(µx,i ∗ νy,i)(D) = (µ× ν)(x,y),i(π−1(D))

=
1

(µ× ν)(Di(x, y))
(µ× ν)(Di(x, y) ∩ T−1

Di(x,y)(π
−1(D)))

=
1

(µ× ν)(Di(x, y))
(µ× ν)(Di(x, y) ∩ π−1(D̃))

= (µx,i ∗ νy,i)(D̃)
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and therefore

H(µx,i ∗ νy,i,Dn) = −
∑
D∈Dn

(µx,i ∗ νy,i)(D) log2(µx,i ∗ νy,i)(D)

= −
∑

D̃∈Dn+i

(µx,i ∗ νy,i)(D̃) log2(µx,i ∗ νy,i)(D̃)

= H(µx,i ∗ νy,i,Dn+i).

With this identity, we calculate

Ei=j (H(µx,i ∗ νy,i,Di+m|Di))
= Ei=j (H(µx,i ∗ νy,i,Di+m)−H(µx,i ∗ νy,i,Di))
= Ei=j

(
H(µx,i ∗ νy,i,Dm)−H(µx,i ∗ νy,i,D0)

)
= Ei=j

(
H(µx,i ∗ νy,i,Dm)

)
+Od(1),

since µx,i ∗ νy,i is supported on [0, 2)d, an area that intersects 2d+1 atoms of
D0. Applying this to the �rst inequality in the statement of the lemma, we
get

E0≤i<n

(
1

m
H(µx,i ∗ νy,i,Di+m|Di)

)
+Od

(
m

n
+

log2(4r)

n

)
=E0≤i<n

(
1

m
H(µx,i ∗ νy,i,Dm)

)
+Od

(
1

m

)
+Od

(
m

n
+

log2(4r)

n

)
=E0≤i<n

(
Hm(µx,i ∗ νy,i)

)
+Od

(
1

m
+
m

n
+

log2(4r)

n

)
which is what we wanted to show.

In our earlier discussion, we saw that the approximate equality (1.3) holds
trivially when either µ is uniform or ν is atomic. We stated that these con-
ditions turn out to be the only possible ones in a local and statistical sense;
more precisely, it means that either µ has to be almost uniform in its small-
scale components or the components of ν have to be close to atomic. We
now de�ne what it means for a measure to be �almost uniform� or �close to
atomic�.

De�nition 1.9. A probability measure µ ∈ P([0, 1]) is (ε,m)-atomic if
Hm(µ) < ε.

Recall that normalized scale-n entropy of an atomic measure approaches 0
as n tends to in�nity; hence the de�nition for approximate atomicity is quite
intuitive. In a similar manner, we de�ne almost-uniformity by comparing the
normalized entropy of a measure to that of a uniform measure.
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De�nition 1.10. A probability measure µ ∈ P([0, 1]) is (ε,m)-uniform if
Hm(µ) > 1− ε.

Almost-atomicity and almost-uniformity are properties that pass to com-
ponent measures, given a small enough scale.

Lemma 1.11. If µ ∈ P([0, 1]) is (ε,m)-atomic, then for k < m,

P0≤i<m
(
µx,i is (ε′, k)-atomic

)
> 1− ε′

for ε′ =
√
ε+O

(
k
m

)
.

Proof. By Lemma 1.7,

E0≤i<m
(
Hk(µ

x,i)
)

= Hm(µ) +O

(
k

m
+

log2(1)

m

)
< ε+O

(
k

m

)
.

By Markov's inequality, we have

P0≤i<m
(
µx,i is (ε′, k)-atomic

)
= P0≤i<m

(
Hk(µ

x,i) < ε′
)

= 1− P0≤i<m
(
Hk(µ

x,i) ≥ ε′
)

≥ 1− E0≤i<m (Hk(µ
x,i))

ε′

> 1− ε+O (k/m)

ε′

= 1− ε′,

when ε′ =
√
ε+O

(
k
m

)
.

Lemma 1.12. If µ ∈ P([0, 1]) is (ε, n)-uniform, then for every 1 ≤ m < n,

P0≤i<n
(
µx,i is (ε′,m)-uniform

)
> 1− ε′

for ε′ =
√
ε+O

(
m
n

)
.

Proof. As in the previous proof, Lemma 1.7 gives us

E0≤i<n
(
Hm(µx,i)

)
= Hn(µ)−O

(
m

n
+

log2(1)

n

)
> 1− ε−O

(m
n

)
.
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Since normalized entropy on the line is never greater than 1 for a measure
on [0, 1], Markov's inequality gives us

P0≤i<n
(
µx,i is (ε′,m)-uniform

)
= P0≤i<n

(
Hm(µx,i) > 1− ε′

)
= 1− P0≤i<n

(
1−Hm(µx,i) ≥ ε′

)
≥ 1− 1− E0≤i<n (Hm(µx,i))

ε′

> 1− ε+O(m/n)

ε′

= 1− ε′,

when ε′ =
√
ε+O

(
m
n

)
.

The following result is also a consequence of Markov's inequality and will
prove useful in some occasions.

Lemma 1.13. Suppose that A ⊂ P([0, 1]) and that

P0≤i<n(µx,i ∈ A) > 1− ε.

Then there is a subset I ⊂ {0, . . . , n− 1} with |I| > (1−
√
ε)n and

Pi=q
(
µx,i ∈ A

)
> 1−

√
ε

for all q ∈ I.

Proof. De�ne a function f : {0, . . . , n − 1} → [0, 1], by setting f(q) =
Pi=q(µx,i ∈ A) for all q. Then

E0≤q<n(f(q)) =
1

n

n−1∑
q=0

Pi=q(µx,i ∈ A) = P0≤i<n(µx,i ∈ A) > 1− ε.

By Markov's inequality,

P0≤q<n
(
f(q) > 1−

√
ε
)

= 1− P0≤q<n
(
1− f(q) ≥

√
ε
)

≥ 1− 1− E0≤q<n(f(q))√
ε

>

√
ε− 1 + 1− ε√

ε
= 1−

√
ε.

Let I be the subset of {0, . . . , n−1} such that f(q) = Pi=q (µx,i ∈ A) > 1−
√
ε

for every q ∈ I. Since the probability above depends only on the uniform
selection of 0 ≤ q < n, the inequality states that |I| > (1−

√
ε)n.
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1.2 Covering lemmas

We collect here some basic covering lemmas that we require later on, when
we need to classify scales of a measure based on the average behaviour of its
components on that scale.

Lemma 1.14. Let I ⊂ {0, . . . , n} and m ∈ N be given. Then there is a
subset I ′ of I such that

I ⊂ I ′ + [0,m] =
⋃
i∈I′

[i, i+m]

and [i, i+m] ∩ [j, j +m] = ∅ for distinct i, j ∈ I ′.

Proof. We de�ne I ′ inductively. If I is empty, I ′ = ∅ is the subset of the
lemma. Assuming I is nonempty, �rst set I ′ = {min I}. Then, if the set
I \
⋃
i∈I′ [i, i+m] is nonempty, add the smallest of its elements to I ′. Do this

until I ⊂ I ′ + [0,m]; because I is bounded, this occurs at some point.

Lemma 1.15. Let I, J ⊂ {0, . . . , n} and m ∈ N, δ > 0. Suppose that

|[i, i+m] ∩ J | ≥
(

1− δ

2

)
|[i, i+m]| =

(
1− δ

2

)
(m+ 1)

for all i ∈ I. Then there is a subset J ′ ⊂ J such that

|J ′ ∩ (J ′ − l)| ≥
(

1− δ − l

m+ 1

)
|I|

for all 0 ≤ l ≤ m.

Proof. Let I ′ ⊂ I be the subset given by Lemma 1.14. De�ne

J ′ = J ∩

(⋃
i∈I′

[i, i+m]

)
.

Then

J ′ ∩ (J ′ − l) =

(⋃
i∈I′

(J ∩ [i, i+m])

)
∩

(⋃
i∈I′

(J ∩ [i, i+m])− l

)
⊃
⋃
i∈I′

((J ∩ [i, i+m]) ∩ ((J ∩ [i, i+m])− l)) .

Note that since

|J ∩ [i, i+m]| ≥ (1− δ/2)|[i, i+m]|
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and

| ((J ∩ [i, i+m])− l) ∩ [i, i+m]| ≥
(

1− δ

2
− l

|[i, i+m]|

)
|[i, i+m]|,

the intersection of J ∩ [i, i+m] and (J ∩ [i, i+m])− l di�ers from the interval
[i, i+m] by at most (

δ

2
+
δ

2
− l

m+ 1

)
|[i, i+m]|

elements for all i ∈ I ′. Since I ⊂ Ui∈I′ [i, i+m],

|J ′ ∩ (J ′ − l)| ≥
(

1− δ − l

m+ 1

) ∣∣ ⋃
i∈I′

[i, i+m]
∣∣ ≥ (1− δ − l

m+ 1

)
|I|.

Lemma 1.16. Let m, δ be given, and let I1, J1 and I2, J2 be two pairs of
subsets of {0, . . . , n} satisfying the assumptions of Lemma 1.15. Suppose also
that I1 ∩ I2 = ∅. Then there exist J ′1 ⊂ J1 and J ′2 ⊂ J2 with J ′1 ∩ J ′2 = ∅ and
|J ′1 ∪ J ′2| ≥ (1− δ)2|I1 ∪ I2|.

Proof. Let I ′1 ⊂ I1 be the subset given by Lemma 1.14 and

J ′1 = J1 ∩

⋃
i∈I′1

[i, i+m]

 .

By Lemma 1.15, choosing l = 0, we have |J ′1| ≥ (1− δ)|I1|. Let

U =
⋃
i∈I′1

[i, i+m].

As in the proof of Lemma 1.15, we see that |J ′1| = |U ∩ J1| ≥ (1 − δ)|U |.
Since I1 ⊂ U and I1 ∩ I2 = ∅, we have

|J ′1 ∩ I2| ≤ |U | − |I1| ≤
1

1− δ
|J ′1| − |I1|.

Using the fact that |J ′1| ≥ (1− δ)|I1|, we get

|J ′1 ∪ I2| = |J ′1|+ |I2| − |J ′1 ∩ I2|

≥ |J ′1|+ |I2| −
(

1

1− δ
|J ′1| − |I1|

)
≥ |I2| −

δ

1− δ
|J ′1|+ |I1|

≥ (1− δ)(|I1|+ |I2|). (1.9)
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Now replace I1 with I2 \ J ′1 and J1 with J2. We see that the pair I2 \ J ′1, J2

satis�es the conditions of Lemma 1.15; |[i, i + m] ∩ J2| ≥ (1 − δ/2)(m + 1)
for all i ∈ I2 \ J ′1 ⊂ I2. If I

′
2 ⊂ I2 is the subset given by Lemma 1.14, de�ne

Ũ =
⋃

i∈I′2\J ′1

[i, i+m]

and set J ′2 = J2 ∩ Ũ . By Lemma 1.15, |J ′2| ≥ (1− δ)|Ũ | ≥ (1− δ)|I2 \ J ′1|. We
approximate

|J ′2 ∩ J ′1| ≤ |Ũ | − |I2 \ J ′1| ≤
1

1− δ
|J ′2| − |I2 \ J ′1|

and then, using |J ′2| ≥ (1− δ)|I2 \ J ′1|, we get

|J ′2 ∪ J ′1| = |J ′2|+ |J ′1| − |J ′2 ∩ J ′1|

≥ |J ′2|+ |J ′1| −
1

1− δ
|J ′2|+ |I2 \ J ′1|

≥ (1− δ)|I2 \ J ′1|+ |J ′1|
≥ (1− δ)|I2 ∪ J ′1|.

Combining this with (1.9) gives |J ′1 ∪ J ′2| ≥ (1 − δ)2|I1 ∪ I2|, so that it only
remains to show that J ′1 and J ′2 are disjoint. However, if this is not the case,
we can replace J ′1 with J ′1 \ J ′2 without a�ecting the lower bound derived
above.

1.3 Local properties of the convolution measure

We now begin investigating the small-scale behaviour of a convolution mea-
sure as the number of measures in the convolution increases. The central
limit theorem tells us that if we have a large number of probability mea-
sures, their convolution may be rescaled so that it approaches the Gaussian
measure of same mean and variance. Since the Gaussian has a continuous
density function, with small enough scale we may observe it to be near uni-
form. As a consequence, we state that the components of a convolution of
multiple probability measures are typically almost uniform.

Proposition 1.17. Let σ > 0, δ > 0 and let m ≥ 2 be an integer. Then
there exists an integer p = p0(σ, δ,m) such that for all k ≥ k0(σ, δ,m), the
following holds. Let µ1, . . . , µk ∈ P([0, 1]), let µ = µ1 ∗ · · · ∗ µk, and suppose
that Var(µ) ≥ σk. Then

Pi=p−blog2

√
kc
(
µx,i is (δ,m)-uniform

)
> 1− δ.
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Note that p − blog
√
kc can and generally will be negative; hence the

conclusion of the proposition primarily concerns the components supported
on intervals of length Op(

√
k) = Oσ,δ,m(

√
k) (note that µ is a probability

measure on the interval [0, k]).

Proof of Proposition 1.17 ([7], p. 22). Let γ be a probability measure on R
with continuous density function f , that is, γ(I) =

∫
I
f(x) dx for all I ⊂ R.

Let I be an interval and assume x ∈ I is such that f(x) 6= 0. Applying the
mean value theorem to the function y 7→

∫ y
−∞ f(t) dt yields∣∣∣∣ γ(I)

diam(I)
− f(x)

∣∣∣∣ ≤ sup
z∈I
|f(x)− f(z)|.

Since f is continuous, the right-hand side tends to 0 as the endpoints of I
approach x. Hence, for any D ∈ Dn with positive γ-mass,∣∣∣∣ γ(D)

diam(D)
− f(x)

∣∣∣∣ = o(1)

for some x ∈ D ∈ Dn with f(x) 6= 0, as n → ∞. For any given m and
assuming n is large enough,

γ(D)

γ(E)
=
γ(D)/diam(D)

γ(E)/diam(E)
≈ f(x)

f(y)
≈ 1,

when D,E ∈ Dn+m have positive mass and D,E ⊂ Dn(x). In other words,
for every x the distribution of γx,n on the level-m dyadic subintervals of [0, 1)
approaches the uniform distribution as n tends to in�nity. Moreover, the rate
of this convergence depends only on the modulus of continuity of the density
function f . Let now G denote the family of all Gaussian measures restricted
to the interval I = [−R,R], with mean 〈γ〉 = 0 and variance Var(γ) ∈ [σ, 4].
For any ε > 0, by choosing R large enough we may assume that γ(I) > 1− ε
for every γ ∈ G since now the mass of I depends only on Var(γ). We point out
that the family of all densities of measures in G is an equicontinuous family;

recall that these functions are of the form x 7→ 1√
2πVar(γ)

e
− x2

2Var(γ)2 , so the

modulus of continuity of any function depends only on Var(γ). Restricting
the variance on a compact interval with 0 excluded bounds the modulus
uniformly.

Since the function µ 7→ H(µ,Dm) is continuous on P([0, 1]), writing u
for the uniform distribution on [0, 1) we conclude that limn→∞Hm(γx,n) =
Hm(u) = 1 for every Gaussian γ. Note that by equicontinuity this conver-
gence is uniform in the set G. Using Fatou's lemma, we obtain

lim inf
p→∞

Ei=p(Hm(γx,i)) ≥
∫

lim inf
n→∞

Hm(γx,p) dγ = 1− ε (1.10)
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for all γ ∈ G. Let p0(δ,m) be such that Ei=p(Hm(γx,i)) > 1 − (δ/2)2 for all
p ≥ p0 and γ ∈ G. By Markov's inequality, we have

Pi=p(Hm(γx,i) > 1− δ/2) = 1− Pi=p(1−Hm(γx,i) > δ/2)

≥ δ/2− 1 + Ei=p(Hm(γx,i))

δ/2

≥ δ/2− 1 + 1− (δ/2)2

δ/2
= 1− δ/2. (1.11)

Now, let µ1, . . . , µk ∈ P([0, 1]), set µ = µ1 ∗ · · · ∗ µk and �x numbers

σ, δ ∈ (0, 1). De�ne a mapping F : [0, 1]→ [0, 2−blog2

√
kc],

F (x) = 2−blog2

√
kcx

and set µ′ = Fµ; the measure µ′ is µ scaled by a factor of 2−blog2

√
kc. We

want to apply the Berry-Esseen theorem (Theorem 0.21) to µ′. Since µi are
probability measures on [0, 1], their third moments

ρi =

∫ 1

0

x3 dµi ≤
∫ 1

0

1 dµi = 1

for all i, and by assumption, σk ≤
∑k

i=1 Var(µi) = Var(µ). Using these

bounds, we receive the corresponding bounds for µ′; since 1/
√
k ≤ 2−blog2

√
kc ≤

2/
√
k, for the mean we have

〈µ′〉 = 〈Fµ〉 =

∫
x dFµ =

∫
2−blog2

√
kcx dµ = 2−blog2

√
kc〈µ〉

and for the variance

Var(µ′) =

∫
(x− 〈Fµ〉)2 dFµ = 2−2blog2

√
kcVar(µ) ∈

[
1

k
kσ,

4

k
k

]
= [σ, 4].

If π : Rk → R is the addition map, for all A ⊂ R,

π−1(F−1(A)) =

{
(x1, . . . , xk)

∣∣ k∑
i=1

2−blog2

√
kcxi ∈ A

}

=

{
2blog2

√
kc(x1, . . . , xk)

∣∣ k∑
i=1

xi ∈ A

}
= F−1(π−1(A))
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and therefore

µ′ = F (µ1 ∗ · · · ∗ µk) = (µ1 × · · · × µk) ◦ π−1 ◦ F−1

= (µ1 × · · · × µk) ◦ F−1 ◦ π−1

= µ′1 ∗ · · · ∗ µ′k.

For the third moments of µ′i = Fµi we have the bounds

ρ′i =

∫
x3 dFµi = 2−3blog2

√
kc
∫
x3 dµ ≤ O(1)k−3/2.

Applying the �rst inequality in the Berry-Esseen theorem to µ′, if γ is a
Gaussian with the same mean and variance as µ′, we have

|µ′(I)− γ(I)| ≤ O(1) · k · k
−3/2

σ3/2
= Oσ(k−1/2)

for all intervals I. In particular, µ′ agrees with γ on intervals of length 2−m−p

to a degree that can be made arbitrarily small by taking k large in a manner
depending on σ and p. By Lemma 1.6, for any ε′ and large enough k,

|Hm((µ′)x,i)−Hm(γx,i)| < ε′.

Choosing p ≥ p0(σ, δ,m), k ≥ k0(σ, δ,m) and combining the above with
(1.10) and (1.11), if ε′ is small with respect to δ we have

Pi=p
(
Hm((µ′)x,i) > 1− δ

)
> 1− δ, (1.12)

since the rate of convergence in (1.10) does not depend on k. For every A ⊂ R,

(µ′)x,p(A) =
1

µ
(

2blog2

√
kcDp(x)

)µ(2blog2

√
kc(Dp(x) ∩ T−1

Dp(x)(A))
)

=
1

µ(Dp−blog2

√
kc(y))

µ(Dp−blog2

√
kc(y) ∩ T−1

Dp−blog2
√
kc(y))(A))

= µy,p−blog2

√
kc(A),

where y = 2blog2

√
kcx. Hence, the inequality (1.12) scaled back to µ is

Pi=p−blog2

√
kc(Hm(µx,i) > 1− δ) > 1− δ,

which is what we wanted to show.
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The following proposition specializes this results for a k-fold self convolu-
tion. We now require the average variance of components of any �xed scale
to be positive.

Proposition 1.18. Let σ, δ > 0 and let m ≥ 2 be an integer. Then there
exists a p = p1(σ, δ,m) such that for all su�ciently large k ≥ k1(σ, δ,m), the
following holds. Let µ ∈ P([0, 1]), �x an integer i0 ≥ 0, and write

λ = Ei=i0
(
Var(µx,i)

)
.

If λ > σ, then for j0 = i0 − blog2

√
kc+ p and ν = µ∗k, we have

Pj=j0
(
νx,j is (δ,m)-uniform

)
> 1− δ.

Proof ([7], p. 23). Let µ, λ andm be given. Fix integers k and p. We will later
see how large they should be. Let i0 ≥ 0 and de�ne j0 = i0 − blog2

√
kc + p

as in the statement. Denote by µ̃ the k-fold self-product µ̃ = µ× · · · × µ and
let π : Rk → R be the addition map

π(x1, . . . , xk) =
k∑
i=1

xi.

Then ν = µ∗k = πµ̃ and, since µ̃ = Ei=i0(µ̃x,i),

ν = π (Ei=i0(µ̃x,i))

= π

 ∑
D∈Di0

µ̃(D)µ̃D


=
∑
D∈Di0

µ̃(D)πµ̃D

= Ei=i0(πµ̃x,i).

Denoting πµ̃x,i0 by η, we will �rst show that for a δ1 > 0 depending on δ,
the measure η satis�es

Pj=j0
(
ηy,j is (δ1,m)-uniform

)
> 1− δ1. (1.13)

Note that the random component µ̃x,i0 is a product of components of µ,
µ̃x,i0 = µx1,i0×· · ·×µxk,i0 and the marginal measures µxj ,i0 are independently
distributed according to µ. Note also that the raw components di�er from
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the rescaled ones only by a scaling factor 2i0 and a translation; for all A, if
D = [k2−i0 , (k + 1)2−i0) is the level-i0 atom containing xj,

µxj ,i0(A) =
1

µ(D)
µ(D ∩ A)

=
1

µ(D)
µ
(
D ∩ (2−i0((2i0A− k) + k))

)
= µxj ,i0(2i0A− k).

Hence the expected variance of the raw components is 2−2i0λ. Recall that
Var(πµ̃x,i0) =

∑k
j=1 Var(µxj ,i0). For any δ2 > 0, the weak law of large numbers

tells us there is such a k that

Pi=i0
(∣∣∣∣1kVar(πµ̃x,i)− 2−2iλ

∣∣∣∣ < 2−2iδ2

)
> 1− δ2.

Note that since the rescaled components are measures on [0, 1), λ is �nite.
Since λ > σ by assumption, if we choose δ2 small enough in a manner de-
pending on σ, the inequality in the event above implies

Var(πµ̃x,i0) ≥ 2−2i0 · kσ > 2−2i0 · kσ/2 (1.14)

with probability greater than 1− δ2 over the choice of µ̃x,i0 .
By the inequality above, Var(η) ≥ σ1(σ)k, so by Proposition 1.17 there

exists an integer p = p′0(σ1(σ), δ1,m) = p0(σ, δ1,m) such that for all k ≥
k0(σ, δ1,m), we have

Pj=i0+p−blog2

√
kc
(
ηy,j is (δ1,m)-uniform

)
> 1− δ1.

Here the scale is increased by i0 because the components µxj ,i0 are probability
measures on Di0(xj) ∈ Di0 instead of on [0, 1] as in the statement of the
proposition; replacing [0, 1] with Di0(xj) and increasing the scaling of F in

the proof by 2i0 we arrive at the same result with scale i0+p−blog2

√
kc = j0.

In the discussion above, we assumed the inequality (1.14) to hold. Since
it holds with probability greater than 1− δ2, what we have calculated is

Pi=i0
(
Pj=j0

(
ηy,j is (δ1,m)-uniform

)
> 1− δ1

)
> 1− δ2.

Using concavity of entropy and Markov's inequality, we can estimate
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Ej=j0
(
Hm(νx,j)

)
=

1

m
H(ν,Dj0+m|Dj0)

=
1

m
H (Ei=i0(η),Dj0+m|Dj0))

≥ Ei=i0
(

1

m
H (Ej=j0(ηy,j),Dj0+m|Dj0)

)
≥ Ei=i0

(
Ej=j0

(
1

m
H(ηy,j,Dj+m|Dj)

))
= Ei=i0

(
Ej=j0

(
Hm(ηy,j)

))
≥ (1− δ1)Ei=i0

(
Pj=j0

(
Hm(ηy,j) > 1− δ1

))
≥ (1− δ1)2Pi=i0

(
Pj=j0

(
Hm(ηy,j) > 1− δ1

)
> 1− δ1

)
> (1− δ1)3

by choosing δ2 < δ1. Hence,

Pj=j0
(
νx,j is (δ,m)-uniform

)
≥ 1− 1− Ej=j0 (Hm(νx,j))

δ

> 1− 1− (1− δ1)3

δ
> 1− δ,

when we choose δ1 < 1− (1− δ2)1/3.

We point out a quite intuitive and useful connection between the entropy
and variance of a measure.

Lemma 1.19. Let m be an integer and let ε > 0 be small. For all µ ∈
P([0, 1]), the following holds: if Var(µ) < ε, then Hm(µ) ≤ 1/m+Om(ε) and
if Hm(µ) < ε, then Var(µ) ≤ 2−m +Om(ε),

Proof. Let µ ∈ P([0, 1]) and let D′ be the union of two atoms of Dm closest
to 〈µ〉. Let k2−m be the endpoint of this interval closest to 〈µ〉. Assume that
Var(µ) < ε. Then

ε > Var(µ) =

∫
[0,1]

(x− 〈µ〉)2 dµ ≥
∫

[0,1]\D′
(x− 〈µ〉)2 dµ

≥ (k2−m − 〈µ〉)2µ([0, 1] \D′)
≥ 2−4mµ([0, 1] \D′),
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since (x− 〈µ〉)2 ≥ (k2−m− 〈µ〉)2 whenever x is outside D′ and by the choice
of D′, (k2−m − 〈µ〉)2 ≥ (2−2m)2.

Hence µ(D) ≤ 24mε for allD ∈ Dm\D′ and−
∑

D∈Dm\D′ µ(D) log2 µ(D) ≤
Om(ε), since the function x 7→ x log2 x is continuous and the sum is �-
nite. Again, since D′ contains two atoms of Dm, −

∑
D∈D′ µ(D) log2 µ(D) ≤

log2(2) = 1. Combining these upper bounds, we have Hm(µ) ≤ Om(ε)+1/m.
Assume then that Hm(µ) < ε. Then there is exactly one atom D′′ ∈ Dm

with µ-measure close to 1 and µ(D) ≤ Om(ε) for every other D ∈ Dm \D′′.
Therefore,

Var(µ) =

∫
[0,1]

(x− 〈µ〉)2 dµ ≤
∑

D∈Dm\D′′
1 · µ(D) + 2−2mµ(D′′) ≤ Om(ε) + 2−m.

We conclude that a probability measure with small variance is locally
almost atomic.

Corollary 1.20. Let m ∈ N and ε > 0. For N > N(m, ε) and 0 < δ <
δ(m, ε,N), if µ ∈ P([0, 1]) and Var(µ) < δ, then

P0≤i<N
(
Var(µx,i) < ε and µx,i is (ε,m)-atomic

)
> 1− ε.

Proof. Let N be an integer. Using Lemma 1.19, choose an integer m′ =
m′(ε,m) > m and a positive ε′ = ε′(ε,m′) < ε such that the inequality
Hm′(µ

x,i) < ε′ implies Var(µx,i) ≤ 2−m
′
+Om′(ε

′) < ε. Then it su�ces to �nd
such N and δ that Var(µ) < δ implies

P0≤i<N
(
Hm′(µ

x,i) < ε′ and Hm(µx,i) < ε
)
> 1− ε. (1.15)

Indeed, choose N(m, ε) and ε′′ = ε′′(m, ε) so that by Lemma 1.11, the
inequality HN(µ) < ε′′ implies

P0≤i<N
(
Hm′(µ

x,i) < ε′
)
> 1− ε′. (1.16)

Then, since m′ > m,

Hm(µx,i) ≤ m′

m

1

m′
·H(µx,i, Dm′) =

m′

m
Hm′(µ

x,i)

and when ε′ < m/m′ · ε,

P0≤i<N
(
Hm(µx,i) < ε

)
≥ P0≤i<N

(
Hm′(µ

x,i) < ε′
)
> 1− ε′ > 1− ε. (1.17)
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Note that the inequality 1.16 and therefore also the inequality above hold
with all N > N(m, ε), since ε′ ≥

√
ε′′ +O(m/N(m, ε)) ≥

√
ε′′ +O(m/N).

Finally, increase N and choose δ = δ(m, ε,N) so that Var(µ) < δ implies
HN(µ) ≤ 1/N + ON(δ) < ε′′ by Lemma 1.19. Now (1.16) and (1.17) imply
(1.15), which in turn implies the statement of the corollary.

As a conclusion of Propositions 1.17 and 1.18, we show that for any
probability measure on the unit interval, the typical components of the k-
fold self convolution are almost uniform, unless the typical components of
the measure itself are almost atomic.

Theorem 1.21. Let 0 < δ < 1 and let m ≥ 2 be an integer. Then for
k ≥ k2(δ,m) and all su�ciently large n ≥ n2(δ,m, k), the following holds. For
any µ ∈ P([0, 1]), there are disjoint subsets I, J ⊂ {1, . . . , n} with |I ∪ J | >
(1− δ)n such that, writing ν = µ∗k,

Pi=q
(
νx,i is (δ,m)-uniform

)
≥ 1− δ for q ∈ I, (1.18)

Pi=q
(
µx,i is (δ,m)-atomic

)
≥ 1− δ for q ∈ J. (1.19)

Proof ([7], p. 25). Let 0 < δ < 1 and m ≥ 2 be given. In this proof, k1(·)
and p1(·) are the functions from Proposition 1.18. Let ρ̃ : (0, 1] → (0, 1] be
a function with the following requirements that become more clear over the
course of the proof: for all σ ∈ (0, 1],

1) ρ̃(σ) <
σ

2

2) ρ̃(σ) < (ρ′)2, where ρ′ = ρ′(δ, σ) is a small number speci�ed later

3) ρ̃(σ) < δ.

De�ne a decreasing sequence σ0 > σ1 > . . . recursively by setting σ0 = 1 and
σi = ρ̃(σi−1) for all i ≥ 1. Fix a probability measure µ on [0, 1] and a large
integer n; we shall later see how large an n is desirable. For 0 ≤ q < n, write

λq = Ei=q
(
Var(µx,i)

)
.

Since the intervals (σi, σi−1] are disjoint, there is an integer 1 ≤ s ≤ 1 + 2
δ

such that P0≤q<n (λq ∈ (σs, σs−1]) < δ
2
; if this was not the case, we would

have P0≤q<n (λq ∈ (σs, σs−1]) ≥ δ
2
for all s ∈ [1, 1 + 2/δ] and

P0≤q<n

(
λq ∈ (σ⌊

1+
2
δ

⌋, 1]

)
≥
⌊

2

δ
+ 1

⌋
δ

2
> 1.
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For this s, de�ne

σ = σs−1,

ρ = ρ̃(σ) = σs

and set

I ′ = {0 ≤ q < n | λq > σ},
J ′ = {0 ≤ q < n | λq ≤ ρ}.

Then by the choice of s, we have

P0≤q<n (λq /∈ (σs, σs−1]) = P0≤q<n (λq ≤ ρ) + P0≤q<n (λq > σ)

=
|I ′ ∪ J ′|

n
> 1− δ

2
. (1.20)

Let k ≥ k1(σ, δ,m) and let l ≥ 0 be the integer

l = blog2

√
kc − p1(σ, δ,m).

Since n may be taken arbitrarily large with respect to l, by deleting at most
l elements of I ′ we can assume that I ′ ⊂ [l, n] and that the size bound of
(1.20) remains valid. Let

I = I ′ − l ⊂ [0, n− l].

Since k ≥ k1(σ, δ,m), by Proposition 1.18,

Pi=q
(
νx,i is (δ,m)-uniform

)
> 1− δ for q ∈ I,

which is (1.18).
By de�nition of J ′,

Ei=q
(
Var(µx,i)

)
= λq ≤ ρ for q ∈ J ′.

Using this and Markov's inequality, we get

Pi=q
(
Var(µx,i) <

√
ρ
)

= 1− Pi=q
(
Var(µx,i) ≥ √ρ

)
≥ 1− λq√

ρ
≥ 1−√ρ for q ∈ J ′. (1.21)

Fix a small ρ′ = ρ′(δ, σ) and a large integer N = N(l, δ, ρ′) for which we
add more speci�c requirements over the remainder of the proof. By taking n
large relative to N and l, we can assume that I ′, J ′ ⊂ {l, . . . , n − N} while
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having the size bound of (1.20) still valid. By the de�nition of ρ̃, we have
ρ < min{δ, (ρ′)2, σ/2} and hence by Corollary 1.20 (with

√
ρ in the place

of the δ in the lemma and min{ρ′, σ/2, δ} in the place of ε), any measure
θ ∈ P([0, 1]) satisfying Var(θ) <

√
ρ also satis�es

P0≤i<N
(
Var(θy,i) < σ/2 and θy,i is (δ,m)-atomic

)
> 1− ρ′.

We point out the following, quite intuitive identity:

(µx,q)TDq(x)(x),i =
1

µx,q(Di(TDq(x)(x))
µx,q|Di(TDq(x)(x)) ◦ T

−1
Di(TDq(x)(x))

=
1

µ(Dq+i(x))
(µ|Dq(x) ◦ T−1

Dq(x))|Di(TDq(x)(x)) ◦ T−1
Di(TDq(x)(x))

=
1

µ(Dq+i(x))
µ|Dq+i(x) ◦ (TDi(TDq(x)(x)) ◦ TDq(x))

−1

=
1

µ(Dq+i(x))
µ|Dq+i(x) ◦ T−1

Dq+i(x)

= µx,q+i.

Since
√
ρ < ρ′, combining the above with (1.21) gives us

Pq≤i<q+N
(
Var(µx,i) < σ/2 and µx,i is (δ,m)-atomic

)
≥ P0≤i<N

(
Var(µx,q+i) < σ/2 and µx,q+i is (δ,m)-atomic, and Var(µx,q) <

√
ρ
)

= P0≤i<N
(
Var

(
µx,q+i

)
< σ/2 and µx,q+i is (δ,m)-atomic

∣∣ Var(µx,q) < √ρ)
· Pi=q (Var(µx,q) <

√
ρ)

> (1− ρ′)(1−√ρ) > 1− 2ρ′ for q ∈ J ′. (1.22)

De�ne the set

U =
{
h ∈ N | Pi=h

(
Var(µx,i) < σ/2 and µx,i is (δ,m)-atomic

)
> 1−

√
2ρ′
}
.

By Lemma 1.13 and the inequality (1.22),

|U ∩ [q, q +N − 1]| ≥ (1−
√

2ρ′)N for q ∈ J ′.

Applying Lemma 1.15 to J ′ and U , we obtain U ′ ⊂ U for which |U ′| >
(1− 2

√
2ρ′)|J ′| and |U ′ ∩ (U ′ − l)| > (1− 2

√
2ρ′ − l

N
)|J ′|. De�ning

J = U ′ ∩ (U ′ − l)

and choosing N, l so that l
N
<
√

2ρ′, we obtain for the size of J that

|J | ≥ (1− 3
√

2ρ′)|J ′|.
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Next we will show that I and J are disjoint. Suppose that this is not the
case and let q ∈ I ∩ J . Since I = I ′ − l, then q + l ∈ I ′. By the de�nition of
I ′, λq+l > σ. On the other hand, q ∈ J ⊂ U ′ − l implies q + l ⊂ U ′ ⊂ U , so
using the de�nition of U and assuming that ρ′ satis�es

√
2ρ′ < σ/2, we have

λq+l = Ei=q+l
(
Var(µx,i)

)
=

∫ 1

0

Var(µx,q+l) dµ

≤ σ

2
· µ({x | Var(µx,q+l) < σ/2}) + 1 · µ({x | Var(µx,q+l) > σ/2)})

=
σ

2
· Pi=q+l

(
Var(µx,i) < σ/2

)
+ 1 · Pi=q+l

(
Var(µx,i) ≥ σ/2

)
<
σ

2
+
√

2ρ′

< σ,

which is a contradiction. Hence I ∩ J = ∅.
It remains to prove the lower bound for |I ∪ J |. Since I ′ ∩ J ′ = ∅ and

|I ′∪J ′| > (1− δ
2
)n by (1.20), adding to our assumptions of ρ′ that it satis�es

3
√

3ρ′ < δ/2, we have

|I ∪ J | = |I|+ |J | ≥ |I ′|+ (1− 3
√

3ρ′)|J ′|

>

(
1− δ

2

)
|I ′ ∪ J ′| >

(
1− δ

2

)2

n > (1− δ)n,

which completes the proof.

The following lemma shows that for probability measures µ and ν on a
countable commutative group, the entropy of the convolution of µ and ν∗k

does not increase as k grows. We will afterwards generalize the result to R,
using a discretization argument.

Lemma 1.22. Let Γ ⊂ R be a countable abelian group and let µ, ν ∈ P(Γ)
be probability measures with H(µ) <∞, H(ν) <∞. Let

δk = H(µ ∗ ν∗(k+1))−H(µ ∗ ν∗k).

Then δk is non-increasing in k. In particular,

H(µ ∗ ν∗k) ≤ H(µ) + k · (H(µ ∗ ν)−H(ν)).

Proof ([7], p. 27). Let X0 and Z1, . . . , Zn be independent, bijective random
variables taking values in Γ. Let µ be the distribution of X0 and ν the distri-
bution of Zi for all i. De�ne the random variable Xn = X0 +Z1 + · · ·+Zn, the
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distribution of which is then µ ∗ ν∗k. Since Γ is commutative, given Z1 = g,
the distribution of Xn is the same as the distribution of Xn−1 + g. Hence

H(Xn|Z1) =
∑
zi∈Γ

ν(zi)H(Xn|Z1 = zi) =
∑
zi∈Γ

ν(zi)H(Xn−1 + zi)

=
∑
zi∈Γ

ν(zi)H(Xn−1) = H(Xn−1).

Furthermore, applying the chain rule for conditional entropy,

H(Z1|Xn) = H(Z1, Xn)−H(Xn)

= H(Z1) +H(Xn|Z1)−H(Xn)

= H(Z1) +H(Xn−1)−H(Xn)

= H(ν) +H(µ ∗ ν∗(n−1))−H(µ ∗ ν∗n). (1.23)

The random variable Xn is a Markov process, that is, given Xn−1 = a, the
value of Xn depends only on a and not on any of the sums X0, . . . , Xn−2.
Therefore, given a �xed value for Xn, the random variables Z1 = X1 − X0

and Xn+1 are independent. We have

H(Z1|Xn+1) =
∑
xi∈Γ

(µ ∗ ν∗(n+1))(xi)H(Z1|Xn+1 = xi)

≥
∑
xi∈Γ

(µ ∗ ν∗(n+1))(xi)H((Z1|Xn+1 = xi)|Xn)

=
∑
xi∈Γ

(µ ∗ ν∗(n+1))(xi)
∑
yj∈Γ

(µ ∗ ν∗n)(yj)H((Z1|Xn+1 = xi)|Xn = yj)

=
∑
xi∈Γ

(µ ∗ ν∗(n+1))(xi)
∑
yj∈Γ

(µ ∗ ν∗n)(yj)H(Z1|Xn = yj)

= H(Z1|Xn).

Applying (1.23) to both sides of this inequality we get

H(µ ∗ ν∗(n−1))−H(µ ∗ ν∗n) ≤ H(µ ∗ ν∗n)−H(µ ∗ ν∗(n+1))

which proves that the δk de�ned in the lemma is non-increasing. In particular,
we see that

H(µ ∗ ν∗k)−H(µ)

= H(µ ∗ ν∗k)−H(µ ∗ ν∗(k−1)) +H(µ ∗ ν∗(k−1))− . . .+H(µ ∗ ν)−H(µ)

= δk + δk−1 + . . . δ0

≤ k · δ0,

which is the second statement.
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To get the analogous statement for measures on R, we use a discretization
argument; for m ∈ N, de�ne

Mm =

{
k

2m
| k ∈ Z

}
.

Then each atom of Dm, as an interval of length 2−m, contains exactly one
element of Mm. De�ne the m-discretization map σm : R → Mm by setting
σm(x) = v if Dm(x) = Dm(v), so that σm(x) ∈ Dm(x).

We say that a measure µ ∈ P(Rd) is m-discrete if its support is con-
tained inMm. For any µ, de�ne its m-discretization σmµ as the push-forward
through σm;

σmµ =
∑
v∈Mm

µ(Dm(v)) · δv.

Observe that the scale-m entropy of a discretization is equal to that of the
original measure,

Hm(µ) =
−1

m

∑
D∈Dm

µ(D) log2 µ(D)

=
−1

m

∑
v∈Md

m

µ(Dm(v)) log2 µ(Dm(v))

= Hm(σmµ).

Similar result holds for the convolution of discretizations, up to an error term
that diminishes as the scale decreases.

Lemma 1.23. Given µ1, . . . , µk ∈ P(R) with H(µi) <∞ and m ∈ N,

|Hm(µ1 ∗ · · · ∗ µk)−Hm(σmµ1 ∗ · · · ∗ σmµk)| = O(k/m).

Proof. Denote by π : Rk → R the addition map (x1, . . . , xk) 7→
∑k

i=1 xi. Then
µ1 ∗ · · · ∗µk = π(µ1×· · ·×µk) and σmµ1 ∗ · · · ∗σmµk = π ◦σkm(µ1×· · ·×µk),
where σkm(x1, . . . , xk) = (σmx1, . . . , σmxk). Since

|π(x1, . . . , xk)− π ◦ σkm(x1, . . . , xk)| =

∣∣∣∣∣
k∑
i=1

(xi − σm(xi))

∣∣∣∣∣ ≤ k · 2−m,

the result follows from Lemma 1.5 (iii.).

We may now generalize Lemma 1.22 to probability measures on the line.
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Proposition 1.24. Let µ, ν ∈ P(R) with Hn(µ), Hn(ν) <∞. Then

Hn(µ ∗ ν∗k) ≤ Hn(µ) + k · (Hn(µ ∗ ν)−Hn(µ)) + O (k/m) .

Proof. Write µ̃ = σnµ and ν̃ = σnν for the n-discretizations of µ and ν. Since
(Mm,+) is a commutative group, we have by Lemma 1.22 that

H(µ̃ ∗ ν̃∗k) ≤ H(µ̃) + k · (H(µ̃ ∗ ν̃)−H(ν̃)).

For an n-discrete measure, the entropy with respect to partition into its
atoms is equal to the scale-n entropy. Since µ̃ ∗ ν̃∗k is also discrete, having its
support contained in

∑k
i=1 Mm, dividing the inequality above by n we obtain

Hn(µ̃ ∗ ν̃∗k) ≤ Hn(µ) + k · (Hn(µ̃ ∗ ν̃)−Hn(ν)).

We obtain the result by applying Lemma 1.23 toHn(µ̃∗ν̃∗k) andHn(µ̃∗ν̃).

Using discretizations, we may easily prove the trivial inequality Hn(µ ∗
ν) ≤ Hn(µ)−O(1/m).

Lemma 1.25. For m ∈ N and µ, ν ∈ P([−r, r]d) with Hn(µ) < ∞ and
Hn(ν) <∞,

Hm(µ ∗ ν) ≥ max{Hm(µ), Hm(ν)} −O
(

1

m

)
.

Proof. Denote the m-discretizations of µ and ν by µ̃ and ν̃ as in the previous
proof. We can write the convolution of µ̃ and ν̃ as an integral of a translation
of µ̃ in the following way:

µ̃ ∗ ν̃ =
∑
y∈Mm

µ̃(· − y)ν̃(y) =
∑
y∈Mm

µ̃(· − y)δy(y)ν̃(y) =

∫
R
(µ̃ ∗ δy) dν̃(y).

Applying concavity of entropy and Lemma 1.5 (iv.), we get

Hm(µ̃ ∗ ν̃) = Hm

(∫
(µ̃ ∗ δy) dν̃(y)

)
≥
∫
Hm(µ̃ ∗ δy) dν̃(y)

=

∫
(Hm(µ̃)−O(1/m)) dν̃(y)

= Hm(µ̃)−O(1/m).

Applying Lemma 1.23 to this inequality, we obtain

Hm(µ ∗ ν) ≥ Hm(µ̃)−O(1/m) = Hm(µ)−O(1/m).

The inequality Hm(µ ∗ ν) ≥ Hm(ν)−O(1/m) is obtained identically.
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1.4 The inverse theorem

We now have all the tools required to �nish the discussion on the conditions
in which

Hm(µ ∗ ν) ≤ Hm(ν) + δ

holds. The section focused on entropy is concluded in the proof of the fol-
lowing theorem, given by Hochman in [7]. It will be of use to us later, when
small-scale analysis of entropy turns out to be a powerful tool in analysing
some other properties of a measure.

Theorem 1.26. For every ε > 0 and integer m ≥ 1, there is a δ = δ(ε,m) >
0 such that for every n > n(ε, δ,m), the following holds. If µ, ν ∈ P([0, 1])
and

Hn(µ ∗ ν) < Hn(µ) + δ,

then there are disjoint subsets I, J ⊂ {0, . . . , n− 1} with |I ∪ J | > (1− ε)n,
such that

Pi=k
(
µx,i is (ε,m)-uniform

)
> 1− ε for k ∈ I,

Pi=k
(
νx,i is (ε,m)-atomic

)
> 1− ε for k ∈ J.

Instead of commencing to prove the theorem as it is, we formulate another
result, of which Theorem 1.26 is a formal consequence.

Theorem 1.27. For every 0 < ε1, ε2 < 1 and integers m1,m2 ≥ 2, there
exists a δ = δ(ε1, ε2,m1,m2) such that for all n > n(ε1, ε2,m1,m2, δ), if
ν, µ ∈ P([0, 1]), then either Hn(µ ∗ ν) ≥ Hn(µ) + δ, or there exist disjoint
subsets I, J ⊂ {0, . . . , n− 1} with |I ∪ J | ≥ (1− ε)n and

Pi=k
(
µx,i is (ε1,m1)-uniform

)
> 1− ε1 for k ∈ I,

Pi=k
(
νx,i is (ε2,m2)-atomic

)
> 1− ε2 for k ∈ J.

Observe that choosing ε1 = ε2 = ε′, m1 = m2 = m and assuming that
Hn(µ ∗ ν) < Hn(µ) + δ, this theorem implies Theorem 1.26.

Proof of Theorem 1.27 ([7], p. 29). Assume �rst that ε1 = ε2 and m1 =
m2 = m; we shall later remove these restrictions. Let k = k(ε,m) be as
in Theorem 1.21 with δ = ε/2 and let µ, ν ∈ P([0, 1]). De�ne

τ = ν∗k.

Assuming n is large enough, Theorem 1.21 gives us disjoint subsets I, J ⊂
{0, . . . , n− 1} such that |I ∪ J | > (1− ε/2)n and

Pi=k
(
τx,i is

(ε
2
,m
)
-uniform

)
> 1− ε

2
for k ∈ I (1.24)
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and
Pi=k

(
νx,i is (ε,m)-atomic

)
≥ 1− ε

2
for k ∈ J. (1.25)

Denote by I0 (which may be empty) the subset of I for which

Pi=k
(
µx,i is (ε,m)-uniform

)
> 1− ε for k ∈ I0. (1.26)

If |I0| > (1−ε/2)|I|, we have |I0∪J | ≥ (1−ε/2)|I|+ |J | ≥ (1−ε/2)|I ∪J | >
(1−ε/2)2n > (1−ε)n. By inequalities (1.25) and (1.26) the pair J, I0 is then
of the form presented in the second alternate statement of the theorem.

If this is not the case, we de�ne I1 = I\I0. Then |I1| = |I|−|I0| ≥ |I|ε/2 ≥
nε/4, since if we had |I| ≤ nε/2, then |J | ≥ (1−ε/2)n−nε/2 = (1−ε)n and
the theorem holds with I = ∅. Now, for all k ∈ I1, we have by independence
of µy,i and τx,i that

Pi=k
(
τx,i is

(ε
2
,m
)
-uniform and µy,i is not (ε,m)-uniform

)
>
(

1− ε

2

)
ε

≥ ε

2
.

Expressed in terms of entropy, for k ∈ I1, this event implies that

Hm(τ y,k) > 1− ε+ ε/2 > Hm(µx,k) + ε/2

and hence by Lemma 1.25, we have

Hm(µx,k ∗ τ y,k) ≥ Hm(µx,k) + ε/2−O(1/m) (1.27)

for all k ∈ I1 with µ× τ -probability greater than ε/2. For all other scales i,
we have the deterministic bound Hm(µx,i ∗ τ y,i) ≥ Hm(µx,i)−O(1/m). Let A
be the subset of R2 in which we have the bound 1.27. Using Lemmas 1.7, 1.8
and the inequalities above, and assuming m is su�ciently large with respect

52



to ε,

Hn(µ ∗ τ) ≥E0≤i<n(Hm(µx,i ∗ τ y,i)) + O
(m
n

)
=
|I1|
n

Ei∈I1(Hm(µx,i ∗ τ y,i))

+
n− |I1|

n
Ei∈I\I1(Hm(µx,i ∗ τ y,i)) + O

(m
n

)
=
|I1|
n

∑
i∈I1

1

|I1|

∫
R2

Hm(µx,i ∗ τ y,i) dµ× ν

+
n− |I1|

n
Ei∈I\I1(Hm(µx,i ∗ τ y,i)) + O

(m
n

)
>
|I1|
n

∑
i∈I1

1

|I1|

∫
R2\A

Hm(µx,i) dµ× ν

+
|I1|
n

∑
i∈I1

1

|I1|

(∫
A

Hm(µx,i) dµ× ν +
(ε

2

)2
)

+
n− |I1|

n
Ei∈I\I1(Hm(µx,i)) + O

(
1

m
+
m

n

)
=
|I1|
n

(
Ei∈I1(Hm(µx,i)) +

(ε
2

)2
)

+
n− |I1|

n
Ei∈I\I1(Hm(µx,i)) + O

(
1

m
+
m

n

)
≥E0≤i<n(Hm(µx,i)) +

nε

4n

(ε
2

)2

+O

(
1

m
+
m

n

)
=Hn(µ) +

(ε
2

)3

+O

(
1

m
+
m

n

)
.

Therefore, assuming that m and n are large and that and ε was su�ciently
small to begin with, we have

Hn(µ ∗ τ) > Hn(µ) +
ε3

10
. (1.28)

By Proposition 1.24,

Hn(µ ∗ τ) = Hn(µ ∗ ν∗k) ≤ Hn(µ) + k · (Hn(µ ∗ ν)−Hn(µ)) + O

(
k

n

)
.

Combining this with the inequality (1.28), we obtain

Hn(µ ∗ ν) ≥ Hn(µ ∗ τ)−Hn(µ)

k
+Hn(µ)−O

(
1

n

)
≥ Hn(µ) +

ε3

100k
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which is the �rst of the two alternate statements of the theorem, with δ =
ε3/100k.

So far, we have required that m is large, m = m1 = m2 and ε1 = ε2. We
will now generalize the result for arbitrary integers m1,m2 and positive real
numbers ε1, ε2. Indeed, let ε1, ε2,m1 andm2 be given, let 0 < ε′ ≤ min{ε1, ε2}
be small and choosem′ large with respect to ε′,m1,m2. Applying the previous
discussion for a large enough m′, either Hn(µ ∗ ν) > Hn(µ) + (ε′)3/100k or
we obtain I ′, J ′ ⊂ {0, . . . , n− 1} such that

Pi=k
(
µx,i is (ε′,m′)-uniform

)
> 1− ε′ for k ∈ I ′

and
Pi=k

(
νx,i is (ε′,m′)-atomic

)
> 1− ε′ for k ∈ J ′.

Assuming these events, applying Lemma 1.12 to µx,i ∈ P([0, 1]) with m1/m
′

small enough, we get

Pi≤j<i+m′
(
µx,j is (

√
2ε′,m1)-uniform

)
> 1−

√
2ε′.

Assuming that
√

2ε′ < ε and that n is large, and setting

V1 = {0 ≤ j < n | Pu=j(µ
x,u is (ε,m1)-uniform) > 1− ε},

by Lemma 1.13 we have |[i, i+m′)∩V1| > (1− (2ε′)1/4)m′ for all i ∈ I ′, since
[i, i+m′)∩ V1 contains the subset of {i, . . . , i+m′− 1} given by the lemma.
Similarly, de�ning

V2 = {0 ≤ j < n | Pu=j (νx,u is (ε,m2)-atomic) > 1− ε}

and applying Lemma 1.11 with m2/m
′ small, we obtain

Pj≤u<j+m′
(
νx,u is (

√
2ε′,m2)-atomic

)
> 1−

√
2ε′

for all j ∈ J ′. Hence, by Lemma 1.13, |[j, j +m′) ∩ V2| > (1− (2ε′)1/4)m′ for
all j ∈ J ′. Then, applying Lemma 1.16 to pairs I ′, V1 and J ′, V2, we obtain
disjoint sets I ′′ ⊂ I ′ and J ′′ ⊂ J ′ with

|I ′′ ∪ J ′′| ≥ (1− 2(2ε′)1/4)2|I ′ ∪ J ′| ≥ (1− ε′)n

when ε′ is small enough. These are the subsets of {0, . . . , n− 1} presented in
the second alternate statement of the theorem.
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We conclude this section by bringing up an immediate application of the
inverse theorem.

Theorem 1.28. For every ε > 0 and integer m, there is a δ = δ(ε,m) > 0
such that for every n > n(ε, δ,m) and every µ ∈ P([0, 1]), if

P0≤i<n
(
Hm(µx,i) < 1− ε

)
> 1− ε,

then for every ν ∈ P([0, 1]),

Hn(ν) > 3
√
ε =⇒ Hn(µ ∗ ν) ≥ Hn(µ) + δ.

Proof. Let ε be given, µ, ν ∈ P([0, 1]) and let n be large with respect to
ε. Let δ = δ(ε,m) be the number of the same name given by Theorem
1.27 and assume that Hn(µ ∗ ν) ≤ Hn(µ) + δ for all large enough n. Since
P0≤i<n (Hm(µx,i) < 1− ε) > 1 − ε, by Lemma 1.13 there is a subset I of
{0, . . . , n− 1} with cardinality |I ′| > (1−

√
ε)n, such that

Pi=k
(
Hm(µx,i) < 1− ε

)
> 1−

√
ε

for all k ∈ I ′. Hence, if I is the set of integers such that

Pi=k
(
µx,i is (ε,m)-uniform

)
> 1− ε > 1−

√
ε for k ∈ I,

it has cardinality |I| <
√
ε/n. Since Hn(µ ∗ ν) ≤ Hn(µ) + δ, Theorem 1.27

then asserts that if J is the subset of {0, . . . , n− 1} for which

Pi=k
(
νy,i is (ε,m)-atomic

)
> 1− ε for k ∈ J,

it has cardinality |J | > (1− ε)n− |I| > (1− 2
√
ε)n. By Lemma 1.7, this in

turn implies that

Hn(ν) = E0≤i<n
(
Hm(νx,i)

)
+O

(
m+ 1

n

)
=

1

n

n−1∑
k=0

∫
R
Hm(νx,k) dν +O

(
m+ 1

n

)
≤ (1− 2

√
ε)n

n
((ε(1− ε) + ε) +

2
√
εn

n
+O

(
m+ 1

n

)
= 2
√
ε+ 2ε− 2ε3/2 − ε2 − 2ε5/2 + 2ε3/2 +O

(
m+ 1

n

)
≤ 3
√
ε.
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2 Fractal dimensions

The latter half of this thesis concerns the dimensions of sets and measures.
We begin by introducing some de�nitions of dimension for both sets and
measures separately, although it turns out that the dimension of a measure
is strongly connected to the dimensions of sets included in its support. The
converse also holds; we may gain information on the structure of a set by
inspecting what kind of measures it can support.

2.1 Dimension of a set

We quote K. Falconer ([4]) to give an intuition behind the notion of fractional
dimension:

�Fundamental to most de�nitions of dimension is `measurement at scale
δ'. For each δ, we measure a set in a way that ignores irregularities of size
less than δ, and we see how these measurements behave as δ → 0.�

The �measurement at scale δ� can be done from outside, in some sense,
by covering the set using sets of some �xed form (e.g. balls or cubes) or
arbitrary sets of diameter at most δ. Or, we may approach the measurement
from inside by estimating how many disjoint sets of a �xed form we may �t
inside the set. Of the three de�nitions we introduce, Hausdor� dimension is
the most common one and is adapted as the main notion in this thesis. The
other notions we mention are the box dimension and the packing dimension.
For us, the latter two possess no substantial interest of their own, but in
some occasions will be used in deriving bounds for the Hausdor� dimension.

Let A be a bounded subset of a metric space (X , d). For any ε > 0, denote
by Nε(A) the number of closed balls of radius ε required to cover A. Since A
is bounded, this number is �nite for every ε.

De�nition 2.1. The upper box dimension of A is de�ned by

dimB(A) = lim sup
ε→0

logNε(A)

log(1/ε)
.

Similarly, we de�ne the lower box dimension as

dimB(A) = lim inf
ε→0

logNε(A)

log(1/ε)
.

If these limits both equal a, we call a the box dimension of A and denote it
by dimB A.
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The box dimension is often the easiest of the three notions to calculate or
numerically estimate. However, it is quite rough when it comes to comparing
the �size� of two sets; for example, it is easy to see from the de�nition that the
box dimension assigns any dense subset of the space, even if countable, the
full dimension, i.e. dimension equal to that of an open ball. This is due to the
lack of countable stability, a property desirable from a notion of dimension
and possessed by the two other de�nitions.

The de�nition of Hausdor� dimension takes a more measure-theoretical
approach. This allows it to retain many of the well-behaving properties of a
measure.

De�nition 2.2. Let A be a subset of a separable metric space (X , d). For
every 0 ≤ s <∞ and 0 < δ ≤ ∞, de�ne

Hs
δ(A) = inf{

∞∑
i=1

diam(Ai)
s| Ai ⊂ X , A ⊂

∞⋃
i=1

Ai, diam(Ai) ≤ δ}.

The s-dimensional Hausdor� measure of the set A is then de�ned by

Hs(A) = lim
δ→0
Hs
δ(A).

The s-dimensional Hausdor� measure is a Borel measure on X . We collect
some of its well-known properties in the following proposition. Although we
will rarely be interested in the Hausdor� measure of a set, the properties of
the measure pass, in some way, to the dimension.

Proposition 2.3. In the following statements, F is a subset of (X , d), a is
an element of X and λ is a positive real number.

(i.) The Hausdor� measure is translation invariant, that is, Hs(F + a) =
Hs(F )

(ii.) Hs(λF ) = λsHs(F )

(iii.) If Hs(F ) < ∞ for some s, then Ht(F ) = 0 for all t > s. Also, if
Hs(F ) > 0 for some s, then Ht(F ) =∞ for all t < s

(iv.) If F is a Borel set of Rn, then Hn(F ) = c(n) · Ln(F ), where Ln is the
n-dimensional Lebesgue measure and c(n) ∈ R.

The Hausdor� dimension of a set A is de�ned as the �jumping point� of
s, where the values of Hs(A) change from in�nity to zero. The existence and
uniqueness of this value follows from the third statement in the proposition
above. More explicitly, the de�nition is given as follows:
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De�nition 2.4. Let A ⊂ X . The Hausdor� dimension of A is de�ned as

dimH A = inf{0 ≤ s <∞| Hs(A) = 0} = sup{0 ≤ s <∞| Hs(A) =∞}.

Following the translation invariance of the Hausdor� measure, the Haus-
dor� dimension is also translation invariant. Also, by Proposition 2.3 (ii.),
scaling a set by a positive scalar does not change its dimension. The fol-
lowing proposition lists some additional properties quite immediate from the
de�nition.

Proposition 2.5. Let (X , d) and (Y , d′) be separable metric spaces.

(i.) Hausdor� dimension satis�es monotonicity: if E ⊂ F ⊂ X , then
dimH E ≤ dimH F

(ii.) If f : X → Y is a Lipschitz mapping, that is, there is a 0 < c < ∞
such that d′ (f(x), f(y)) ≤ c ·d(x, y) for all x, y ∈ X , then dimH f(E) ≤
dimH E for all E ∈ X .

(iii.) Hausdor� dimension is countably stable, that is, if {Fi}i∈N is a count-
able family of subsets of X , then dimH

⋃∞
i=1 Fi = supi∈N(dimH Fi)

Proof. (i.) Since any cover {Fi}i∈N of F also covers E, for each δ,

Hs
δ(E) = inf

{
∞∑
i=1

diam(Ei)
s | E ⊂

∞⋃
i=1

Ei, diam(Ei) ≤ δ

}

≤ inf

{
∞∑
i=1

diam(Fi)
s | F ⊂

∞⋃
i=1

Fi, diam(Fi) ≤ δ

}
= Hs

δ(F ).

Taking limit as δ → 0 yields Hs(E) ≤ Hs(F ) and

dimH E = inf{0 < s <∞| Hs(E) = 0}
≤ inf{0 < s <∞| Hs(F ) = 0}
= dimH F.

(ii.) Let f : X → Y be a Lipschitz mapping and let {Ui}i∈N be a cover of E
with diameter of each Ui at most δ. Then {f(Ui)}i∈N is a cover of f(E)
with diameter of each f(Ui) at most cδ. Hence, if δi = diam(Ui),

Hs
cδ(f(E)) ≤

∞∑
i=1

(cδi)
s = cs

∞∑
i=1

δsi .
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Taking in�mum over all covers {Ui}i∈N gives Hs
cδ(f(E)) ≤ csHs

δ(E) and
taking limit as δ → 0 yields

Hs(f(E)) ≤ csHs(E).

Since 0 < cs <∞ for all s, we get

dimH f(E) = inf{0 < s <∞| Hs(f(E)) = 0}
≤ inf{0 < s <∞| csHs(E) = 0}
= inf{0 < s <∞| Hs(E) = 0} = dimH E,

proving the second statement.

(iii.) Let {Fi}i∈N be a countable family of subsets of X . We have by mono-
tonicity that dimH Fi ≤ dimH (

⋃∞
i=1 Fi) for all i and hence sup(dimH Fi) ≤

dimH (
⋃∞
i=1 Fi). On the other hand, since Hs (

⋃∞
i=1 Fi) ≤

∑∞
i=1Hs(Fi),

we have

dimH

(
∞⋃
i=1

Fi

)
= inf{0 < s <∞ | Hs

(
∞⋃
i=1

Fi

)
= 0}

≤ inf{0 < s <∞ |
∞∑
i=1

Hs(Fi) = 0}

= inf{0 < s <∞ | Hs(Fi) = 0 for every i}
= sup(dimH Fi).

When we introduced the de�nition of box dimension, we remarked that
it is not countably stable. While this is true, we could easily modify the
de�nition to obtain the property. This transforms the de�nition to what is
often called the upper and lower modi�ed box dimensions.

De�nition 2.6. Let A be a subset of a metric space (X , d). The upper and
lower modi�ed box dimensions of A are de�ned by

dimMBA = inf{sup
n

dimBAn | A ⊂
∞⋃
n=1

An},

dimMB(A) = inf{sup
n

dimBAn | A ⊂
∞⋃
n=1

An}
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We omitted this remark in the beginning because it turns out that the
upper modi�ed box dimension actually coincides with our next de�nition,
the packing dimension. It is de�ned by �rst constructing the packing mea-
sure, and this construction proceeds much like the one of Hausdor� measure;
instead of �nding covers for the set, we are now packing balls inside it. Due
to this change, we also have to take an additional step in the de�nition.

De�nition 2.7. Let A be a subset of a metric space (X , d). For every 0 ≤
s <∞ and δ > 0, de�ne

P s
δ (A) = sup

∑
i∈I

diam(Bi)
s
∣∣ {Bi}i∈I is a countable family of pairwise

disjoint closed balls with diameter at
most δ and centers in A

 .

We de�ne the s-dimensional packing pre-measure of A as

P s
0 (A) = lim

δ→0
P s
δ (A).

The s-dimensional packing measure is then de�ned by

P s(A) = inf{
∞∑
i=1

P s
0 (Ai) | A ⊂

∞⋃
i=1

Ai}.

As when constructing the Hausdor� measure, we would like to de�ne the
packing measure as P s

0 . However, this set function is not yet a measure; it is
missing countable additivity. This can be seen by considering countable dense
sets as in the case of box dimension. We remark that the packing measure is
also a Borel measure.

The packing dimension is then de�ned similarly to Hausdor� dimension;
the existence of such a critical value s follows from taking the limit as δ tends
to 0 in the de�nition of P s

0 .

De�nition 2.8. The packing dimension of a set A is

dimP (A) = sup{0 ≤ s <∞ | P s(A) =∞} = inf{0 ≤ s <∞ | P s(A) = 0}.

It is quite interesting that this measure-theoretical de�nition leads to
the modi�cation of the box dimension that is built in a completely di�erent
way, without using any measure on the background. We only present the
connection in Rn; in a general metric space it is not necessarily true (or
would require the use of radii instead of diameters in the de�nition of P s),
since the proof makes use of the equality diam(B(x, r)) = 2r which is not
true in general case.
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Theorem 2.9. If F ⊂ Rn, then

dimP (A) = dimMB(A).

Proof. See [4], Proposition 3.8.

We will adapt the Hausdor� dimension as the main notion and in the
future will refer to it just as the dimension of A. The subscript from the
notation is also omitted, the dimension of A being denoted by dimA.

2.2 Estimating the dimension

One of the disadvantages of Hausdor� dimension is the fact that it can be,
and often is, di�cult to calculate. While an upper, �nite bound for the s-
dimensional Hausdor� measure of a set is sometimes found with relative
ease, it is the lower bound that may prove very non-trivial. An exception to
this is brought by so-called self-similar sets that inhibit extremely regular
structure, provided the self-similar parts that the set consists of, referred to
as cylinders, are su�ciently separated from each other. We return to discuss
self-similar sets in Section 3.

The following lemma may aid us in �nding a countable cover for a set,
using an arbitrarily large family of balls of bounded radii.

Lemma 2.10. Let A be a family of open balls contained in a bounded region
of a separable metric space X . There exists a countable disjoint subcollection
B of A such that ⋃

B∈A

B ⊂
⋃
B∈B

B̃, (2.1)

where B̃ is a ball concentric with B and of �ve times the radius.

Proof. Let ε > 0 and R = sup{rad(Bi) | Bi ∈ A}. Since the balls in A are
contained in a bounded region, R is �nite. Denote by An the subcollection of
A consisting of balls with radius in the interval (2−n−1R, 2−nR]. We construct
the collection B inductively.

First, set C0 = A0 and de�ne B0 as the maximal disjoint subcollection of
C0. Suppose then that the collections B0, . . . ,Bk−1 have been chosen. De�ne

Ck =

{
B ∈ Ak | B ∩ C = ∅ for all C ∈

k−1⋃
i=0

Bi

}
and let Bk be the maximal disjoint subcollection of Ck. Finally, de�ne

B =
∞⋃
n=0

Bn.
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By de�nition, B is a disjoint collection and since every Bk is �nite, B is
countable. Let B be a ball in A and n be such that B ∈ An. Then, either
B ∈ Bn, or B intersects a ball either in Bn or in

⋃n−1
i=0 Bi. In any case, B

intersects a ball B′ ∈
⋃n
i=0 Bi, and such a ball has radius rad(B′) > 2−n−1R.

Since rad(B) ≤ 2−nR, it is less than two times that of B′ and therefore
B ⊂ B̃′.

Sometimes we may receive useful upper bounds for the dimension of a set
using the following inequalities.

Proposition 2.11. For any subset E of Rn,

dimE ≤ dimP E ≤ dimBE.

Proof. To prove the �rst inequality, we show that Hs(E) ≤ P s
0 (E) for every

0 ≤ s < ∞. Then, if {Ei}i∈N is an arbitrary countable cover of E, we have
Hs(E) ≤

∑∞
i=1Hs(Ei) ≤

∑∞
i=1 P

s
0 (Ei) and taking in�mum over all such

covers yields Hs(E) ≤ P s(E). By the de�nitions of dimH and dimP , this
gives then the �rst inequality.

Indeed, let ε > 0 and let δ > 0 be such that P s
δ (E) ≤ P s

0 (E) + ε. We
may assume that P s

0 (E) is �nite, since otherwise the inequality is trivial. Let
{Bi}i∈N be a collection of balls with centers in E, diam(Bi) < δ for each i
and

∞∑
i=1

(diam(Bi))
s ≤ P s

δ (E) ≤
∞∑
i=1

(diam(Bi))
s + ε.

Since we assumed that P s
0 (E) <∞, there exists an integer k such that

∞∑
i=k+1

(diam(Bi))
s ≤ ε.

Now we apply Lemma 2.10 to the collection

A = {B(x, r) | x ∈ E, r < δ/10, B(x, r) ∩
k⋃
i=1

Bi = ∅}

to obtain a disjoint, countable subcollection {B′i}i∈N such that E \
⋃k
i=1 Bi ⊂⋃

B∈AB ⊂
⋃
i∈N 5B′i. By de�nition of P s

δ we have

k∑
i=1

(diam(Bi))
s +

∞∑
i=1

(diam(B′i))
s ≤ P s

δ (E) ≤
∞∑
i=1

(diam(Bi))
s + ε

62



and therefore
∑∞

i=1(diam(B′i))
s ≤ 2ε. Summing this up, since

⋃k
i=1 Bi ∪⋃∞

i=1 5B′i covers E, we have

Hs
δ(E) ≤

k∑
i=1

(diam(Bi))
s + 5s

∞∑
i=1

(diam(B′i))
s

≤ P s
δ (E) + 5s2ε

≤ P s
0 (E) + (1 + 5s2)ε.

Letting δ → 0 and ε→ 0 �nishes the proof of dimH E ≤ dimP E.
For the second inequality, let 0 < t < s < dimP E. Then P s

δ (E) = ∞
for every δ > 0 (P s

δ (E) decreases as δ tends to 0) and so for every δ, we
�nd disjoint balls Bi with centers in E and diameters at most δ such that∑∞

i=1(diam(Bi))
s > 1. Let nk denote the number of balls for which 2−k−1 <

diam(Bi) ≤ 2k for every k. Then, using these bounds, we may estimate
diameters of the balls in the sum above to obtain

∑∞
k=1 nk2

−ks > 1.
Now, the number nk cannot be too small for every k; namely, there exists

a k such that nk > 2kt(1−2t−s). This can be seen by assuming otherwise and
then estimating the sum above to arrive at a contradiction with the strict
lower bound of 1. By the de�nition of nk, each of these balls contains another
ball of diameter 2−k−1, so N2−k−1(E) ≥ nk. Therefore

dimBE = lim sup
ε→0

logNε(E)

log(1/ε)

≥ lim sup
k→∞

log nk
log 2k+1

≥ lim sup
k→∞

kt log 2 + log(1− 2t−s)

k + 1

= t.

Since t < s < dimP E were arbitrary, this completes the proof of the second
inequality.

If we are able to �nd a mass distribution such that the mass it gives to
subsets of small diameter is not too large, this mass distribution may be used
to bound the Hausdor� measure of any set from below.

Theorem 2.12 (Mass distribution principle). Let F be a subset of X . Sup-
pose µ∗ is an outer measure on X with µ∗(X ) < ∞ and suppose there exist
positive and �nite real numbers s, δ and c such that for all U ⊂ X with
diam(U) ≤ δ,

µ∗(U) ≤ c · diam(U)s.

63



Then Hs(F ) ≥ µ∗(F )

c
.

Proof. Let {Ui}i∈N be a cover of F with diam(Ui∈N) ≤ δ for every i and let
µ∗ be an outer measure satisfying the hypothesis. Then

µ∗(F ) ≤ µ∗

(⋃
i∈N

Ui

)
≤
∑
i∈N

µ∗(Ui) ≤ c
∑
i∈N

diam(Ui)
s.

For any ε > 0, choose a cover {Ui}i∈N of F such that diam(Ui) ≤ δ and

Hs
δ(F ) ≥

∑
i∈N

diam(Ui)
s − ε ≥ µ∗(F )

c
− ε.

Since this holds for any small δ > 0, we obtain the statement by letting
ε→ 0.

Remark 2.13. We may also apply the mass distribution principle to a Borel
mass distribution in the place of µ∗, since all the sets U can be replaced by
their closures without a�ecting their diameters.

Using the following construction, we may sometimes obtain an outer mea-
sure to use in applying the mass distribution principle.

Theorem 2.14. Let X be a set and E0 = {X}. For each n ∈ N, let En be
a �nite collection of disjoint subsets of X and let E =

⋃
n∈N En. Let ζ : E →

[0,∞] be a set mapping and assume the following conditions hold:

(i.)
⋃
E∈En = X for every n ∈ N,

(ii.) Each E ∈ En contains �nitely many sets of En+1 and there is exactly
one F ∈ En−1 such that E ⊂ F ,

(iii.) ∑
E∈E1

ζ(E) = ζ(X ).

Moreover, if E ∈ En and E =
⋃k
n=1 En for E1, . . . , Ek ∈ En+1, then

k∑
n=1

ζ(Ek) = ζ(E).

(iv.) If En ∈ En and En ⊂ En−1 for every n, the set
⋂
n∈NEn contains exactly

one point of the set X .
Then there is an outer measure µ∗ on X such that µ∗(E) = ζ(E) for all
E ∈ E .
Proof. See [13], Theorem 5.6.
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2.3 Dimension of a measure

In the case of measures, we use the notion of dimension to measure how
discrete the behaviour of the measure is. An atomic measure, for example,
has no �body� and emphasizes only individual points; therefore we would
like to say it has no dimension anywhere. On the other hand, the Lebesgue
measure on Rn somehow �lls the entire space and we want it to have the �full
dimension� n. With this motivation, we de�ne the local dimension in a point
x by comparing how the measure of a small ball centered in x relates to the
radius of the ball.

De�nition 2.15. Let µ be a �nite non-zero measure on a locally compact
metric space X and let x ∈ X . The upper and lower local dimensions of µ
are de�ned by

D(µ, x) = lim sup
r→0

log µ(B(x, r))

log r
,

D(µ, x) = lim inf
r→0

log µ(B(x, r))

log r
.

If D(µ, x) = D(µ, x) in some point x, we say that µ has local dimension in x
and denote it by D(µ, x) = D(µ, x) = D(µ, x). If the local dimension exists
and takes the same value α in µ-almost every point, we say that µ is exact
dimensional and α is its (exact) dimension, denoted by dimµ = α.

If µ has local dimension s in x, then by the de�nition µ(B(x, r)) behaves
like crs for some constant c and all small r. It turns out that if we have this
kind of knowledge of the behaviour of µ in a Borel set E of positive measure,
we may use it to estimate the s-dimensional Hausdor�- and packing measures,
and therefore the respective dimensions, of E. We restrict ourselves to Rn

because in the proof we require the fact that the diameter of a ball is two
times the radius.

Lemma 2.16. Let E ⊂ Rn be a Borel set, µ a �nite measure and 0 < c <∞.

(i.) If lim supr→0

µ(B(x, r))

rs
< c for every x ∈ E, then Hs(E) ≥ µ(E)

c

(ii.) If lim supr→0

µ(B(x, r))

rs
> c for every x ∈ E, then Hs(E) ≤ 10s

µ(Rn)

c

If µ is a Radon measure, in addition, we also have the following.

(iii.) If lim infr→0
µ(B(x, r))

rs
> c for every x ∈ E, then P s(E) ≥ µ(E)

c
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(iv.) If lim infr→0
µ(B(x, r))

rs
< c for every x ∈ E, then P s(E) ≤ 2s

µ(E)

c
.

The last two statements are included for the sake of completeness; their
proofs are omitted because they proceed in same manner as the �rst two.
The proof of the third statement also requires the Vitali covering theorem.

Proof. Let n ∈ N and de�ne the set

En = {x ∈ E | µ(B(x, r)) < crs for all 0 < r ≤ 1/n}.

Clearly (En)n∈N forms an increasing sequence of sets. By the hypothesis of
the �rst statement, for every x there exists such an n that µ(B(x, r)) < crs

whenever 0 < r ≤ 1/n; hence E =
⋃
n∈NEn and µ(E) = limn→∞ µ(En).

Fix n, let 0 < δ < 1/n and let {Ui}i∈N be a cover of E such that
diam(Ui) ≤ δ for all i. Since En ⊂ E, {Ui}i∈N is also a cover of En. For
any Ui that intersects En, if xi is a point in this intersection,

µ(Ui) ≤ µ(B(xi, diam(Ui))) < c · diam(Ui)
s

and hence
µ(En) ≤

∑
i∈N | Ui∩En 6=∅

µ(Ui) ≤ c
∑
i∈N

diam(Ui)
s.

Since {Ui}i∈N is an arbitrary cover of E with diam(Ui) ≤ δ, we have µ(En) ≤
cHs

δ(E). Letting �rst δ → 0 and then n → ∞, we obtain µ(E) ≤ cHs(E)
which is the �rst statement.

Moving on to the second one, assume �rst that E is bounded. Let δ > 0
and de�ne the family of open balls

B(δ) = {B(x, r) | x ∈ E, µ(B(x, r)) > crsand 0 < r ≤ δ}.

By the hypothesis, for every x there exists an r ≤ δ such that µ(B(x, r)) >
crs. Hence E ⊂

⋃
B∈B(δ) B. Applying Lemma 2.10 to the collection B(δ), we

obtain a disjoint, countable subcollectionB(δ)′ ⊂ B(δ) such that
⋃
B∈B(δ) B ⊂⋃

B∈B(δ)′ 5B, where 5B is the ball concentric with B and of �ve times the

radius. Thus, {5B}B∈B(δ)′ is a cover of E with the diameter of each ball at
most 10δ and

Hs
10δ(E) ≤

∑
B∈B(δ)′

diam(5B)s = 5s
∑

B∈B(δ)′

diam(B)s

≤ 10s

c

∑
B∈B(δ)′

µ(B) =
10s

c
µ

 ⋃
B∈B(δ)′

B

 ≤ 10s

c
µ(Rn).
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By letting δ → 0, we obtain the second statement for a bounded E. If E is
unbounded and Hs(E) > 10s

c
µ(Rn), we have Hs(E ∩B(0, r)) > 10s

c
µ(Rn) for

a large enough r. Since the set E∩B(0, r) is bounded, this is a contradiction.

Corollary 2.17. Let E be a Borel set of Rn, F ⊂ E and let µ be a �nite
measure.

(i.) If D(µ, x) ≥ s for all x ∈ F and µ(F ) > 0, then dimE ≥ s

(ii.) If D(µ, x) ≤ s for all x ∈ E, then dimE ≤ s

Additionally, if µ is a Radon measure,

(iii.) If D(µ, x) ≥ s for all x ∈ F and µ(F ) > 0, then dimP E ≥ s

(iv.) If D(µ, x) ≤ s for all x ∈ E, then dimP E ≤ s.

Proof. By the hypothesis of the �rst statement,

D(µ, x) = lim inf
r→0

log µ(B(x, r))

log r
≥ s

for every x ∈ F . Let t < s. Then for all small enough r, log µ(B(x, r))/ log r >
t and so for all x ∈ F ,

lim sup
r→0

µ(B(x, r))

rt
≤ lim sup

r→0
µ(B(x, r))r

− log µ(B(x,r))
log r

= 1.

By Lemma 2.16 (i.), Ht(F ) ≥ µ(F ) > 0. Since t < s was arbitrary, dimE ≥
dimF ≥ s.

Assume then that D(µ, x) ≤ s for all x ∈ E. Let t > s. By the hypothesis,
there exists a sequence (rk)k that tends to 0 such that log µ(B(x, rk))/ log rk <
t for all k ∈ N. Therefore,

lim sup
r→0

µ(B(x, r))

rt
≥ lim sup

k→∞

µ(B(x, rk))

rtk

≥ lim sup
k→∞

µ(B(x, rk))r

− log µ(B(x,rk))
log rk

k

= 1

By Lemma 2.16 (ii.), Ht(E) < 10sµ(Rn) <∞. Since t > s was arbitrary, we
have dimE ≤ s.

The proofs of statements (iii.) and (iv.) proceed identically, using Lemma
2.16 (iii.) and (iv.) and are therefore omitted.
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An immediate conclusion is that if a measure on a Euclidean space is
exact dimensional, its dimension equals the dimension of its support.

Corollary 2.18. Let µ be an exact dimensional measure on Rn and let E be
its support. Then

dimµ = dimE.

Proof. Since dimµ = D(µ, x) for all x ∈ E, the result is given by Corollary
2.17.

Since we now have seen that the lower local dimension on a set E somehow
corresponds to the Hausdor� dimension of E and the upper local dimension
corresponds to the packing dimension E, it is natural to introduce Hausdor�-
and packing dimensions for measures as well.

De�nition 2.19. Let µ be a �nite measure on X . The upper and lower
Hausdor� dimensions of µ are de�ned by

dimHµ = ess sup
x∼µ

D(µ, x),

dimHµ = ess inf
x∼µ

D(µ, x),

and the upper and lower packing dimensions are de�ned by

dimPµ = ess sup
x∼µ

D(µ, x),

dimPµ = ess inf
x∼µ

D(µ, x).

The notation ess supx∼µ stands for essential supremum. For a real-valued
Borel function f de�ned on the set X , it is de�ned by

ess sup
x∼µ

f = inf{a ∈ R | µ(f−1(a,∞)) = 0},

i.e. function f can exceed ess supx∼µ f only on a null set with respect to
µ. Since x 7→ log µ(B(x, r))/ log r is a Borel function for every r, so are its
pointwise limits D(µ, x) and D(µ, x). Similarly, essential in�mum is de�ned
by

ess inf
x∼µ

f = sup{a ∈ R | µ(f−1(−∞, a)) = 0}.

We point out the following trivial inequalities regarding the de�nitions:

dimHµ ≤ dimHµ, (2.2)

dimPµ ≤ dimPµ,

dimHµ ≤ dimPµ,

dimHµ ≤ dimPµ.
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The lower Hausdor�- and packing dimensions are completely character-
ized by the dimensions of the Borel sets the measure has mass on.

Theorem 2.20. For a �nite measure µ,

dimHµ = inf{dimE |E is Borel and µ(E) > 0}.

Additionally, if µ is a Radon measure,

dimPµ = inf{dimP E |E is Borel and µ(E) > 0}.

Proof. Let E be a Borel set with µ(E) > 0 and let s < dimHµ. By de�nition,
ess infx∼µD(µ, x) = dimHµ and therefore there exists F ⊂ E such that
D(µ, x) ≥ s for every x in F and µ(F ) = µ(E) > 0. Corollary 2.17 now
asserts that dimE ≥ s and hence

dimHµ ≤ inf{dimE |E is Borel and µ(E) > 0}.

On the other hand, for every ε > 0 there is a set F with positive µ-
measure such that D(µ, x) < dimHµ+ ε for every x ∈ F . By Corollary 2.17,
dimF ≤ dimHµ+ ε and therefore, since ε is arbitrary,

dimHµ ≥ inf{dimE |E is Borel and µ(E) > 0}.

The proofs of the statements concerning dimPµ proceed identically.

Using the characterization given by Theorem 2.20, we can derive proper-
ties for dimH that correspond to those of the Hausdor� dimension of a set,
proposed in Proposition 2.5.

Proposition 2.21. Let µ, ν, µi be �nite measures on X for all i ∈ N. The
lower Hausdor� dimension satis�es the following:

(i.) If µ is absolutely continuous with respect to ν, then dimHµ ≥ dimHν

(ii.) If f : X → Y is a Lipschitz mapping, then dimHfµ ≤ dimHµ

(iii.) If
∑∞

i=1 µi is a �nite measure, then dimH

∑∞
i=1 µi = infi∈N{dimHµi}

Proof. Let µ, ν, µi be �nite measures on X .

(i.) Since µ is absolutely continuous with respect to ν, µ(E) = 0 for every E
for which ν(E) = 0. Hence {E ⊂ X | µ(E) > 0} ⊂ {E ⊂ X | ν(E) > 0}
and

dimHµ = inf{dimE |E is Borel and µ(E) > 0}
≥ inf{dimE |E is Borel and ν(E) > 0} = dimHν.
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(ii.) Let f : X → Y be a Lipschitz mapping. Observe that due to continuity
of such mappings, f is a Borel function, and therefore fµ is a �nite Borel
measure on Y . By Proposition 2.5 (ii.), dimension of a set is never less
than the dimension of its preimage through a Lipschitz mapping. Hence

dimHfµ = inf{dimF | F ⊂ Y is Borel and µ(f−1(F )) > 0}
≥ inf{dim f−1(F ) | F ⊂ Y is Borel and µ(f−1(F )) > 0}
≥ inf{dimE | E ⊂ X is Borel and µ(E) > 0}
= dimHµ.

(iii.) Suppose that
∑∞

i=1 µi is �nite. Since µi(E) is always non-negative,

{E ⊂ X |
∞∑
i=1

µi(E) > 0} = {E ⊂ X | µi(E) > 0 for some i ∈ N}

=
∞⋃
i=1

{E ⊂ X | µi(E) > 0 }

and hence

dimH

∞∑
i=1

µi = inf{dimE |E is Borel and
∞∑
i=1

µi(E) > 0}

= inf
∞⋃
i=1

{dimE |E is Borel and µi(E) > 0}

= inf
i∈N
{dimHµi}.

The last de�nition for dimension we introduce is given as the limit of the
normalized entropy of the measure.

De�nition 2.22. Let µ be a probability measure on Rd. The upper and lower
entropy dimensions of µ are de�ned as

dimeµ = lim sup
n→∞

1

n
H(µ,Dn),

dimeµ = lim inf
n→∞

1

n
H(µ,Dn),

If dimeµ = dimeµ = a, we call a the entropy dimension of µ and denote it
by dime µ.
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A useful result is that for an exact dimensional measure, all the de�nitions
for its dimension coincide. When dealing with such measures, we may always
pick the de�nition that is the most convenient.

Theorem 2.23. A measure µ is exact dimensional if and only if dimHµ =
dimPµ.

Proof. By de�nition, µ is exact dimensional if and only ifD(µ, x) = D(µ, x) =
α for µ-almost all x. Assuming this holds, we have

dimHµ = ess inf
x∼µ

D(µ, x) = α = ess sup
x∼µ

D(µ, x) = dimPµ.

On the other hand, if dimHµ = dimPµ, all the inequalities in (2.2) hold with
equality and

ess inf
x∼µ

D(µ, x) = dimHµ = dimHµ = ess sup
x∼µ

D(µ, x).

Hence D(µ, x) is constant µ-almost everywhere. Similarly,

ess inf
x∼µ

D(µ, x) = dimPµ = dimPµ = ess sup
x∼µ

D(µ, x).

ThereforeD(µ, x) is also constant and, since ess infx∼µD(µ, x) = ess infx∼µD(µ, x),
equals D(µ, x) µ-almost everywhere.

Lemma 2.24. If µ is an exact dimensional probability measure on Rd with
bounded support, the entropy dimension exists and dimµ = dime µ.

Proof ([5], p. 193) . By Theorem 2.23, for an exact dimensional µ, dimHµ =
dimPµ = α. Denote by Dn−log2

√
d(x) the unique atom of Dn−log2

√
d that

contains x and by Bn(x) the co-centric ball of radius diam(Dn−log2

√
d(x)) =

2−n. Since x 7→ µ(Dn(x)) is constant inside each atom of Dn and Dn(x) ⊂
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Bn(x), we have by Fatou's lemma that

dimeµ = lim inf
n→∞

H(µ,Dn)

n

= lim inf
n→∞

H(µ,Dn−log2

√
d) +Od(log2

√
d)

n

≥ lim inf
n→∞

∫
Rd

− log µ(Dn−log2

√
d(x))

log 2n
dµ(x)

≥
∫
Rd

lim inf
n→∞

− log µ(Dn−log2

√
d(x))

log 2n
dµ(x)

≥
∫
Rd

lim inf
n→∞

− log µ(Bn(x))

log 2n
dµ(x)

=

∫
Rd

D(µ, x) dµ(x)

≥
∫
supp(µ)

ess inf
x∼µ

D(µ, x) dµ(x)

≥ dimHµ.

For all integers N ≥ 1, de�ne the set

AN =

{
x ∈ Rd

∣∣ − log µ(B(x, 2−n))

n
≤ d+ 1 for all n > N

}
.

Using Theorem 2.20 and the fact that µ is exact dimensional, we have

lim sup
n→∞

− log µ(Bn(x))

log 2n
= D(µ, x) = dimHµ ≤ d

for µ-almost every x. Hence µ (
⋃∞
N=1 AN) = 1 and since A1 ⊂ A2 ⊂ . . .,

limN→∞ µ(AN) = 1. Let ε > 0 be arbitrary and choose N so that µ(AN) >

1−ε. On the set AN , the functions x 7→ − log µ(B(x,2−n))
n

are uniformly bounded
by d+ 1 for every n > N . Alter the de�nition of Bn(x) so that it is the ball
concentric with Dn−1(x) and of radius 2−n. Now Bn(x) ⊂ Dn−1(x) and, using

72



Fatou's lemma and Lemma 1.5 (ii.), we have

dimeµ = lim sup
n→∞

H(µ,Dn)

n

= lim sup
n→∞

H(µ,Dn−1) +Od(1)

n

≤ lim sup
n→∞

∫
Rd

− log µ(Dn−1(x))

log 2n
dµ(x)

≤ lim sup
n→∞

∫
Rd

− log µ(Bn(x))

log 2n
dµ(x)

≤ dimPµ+ lim sup
n→∞

∫
Rd\AN

− log µ(Bn(x))

log 2n
dµ(x).

It remains to show that the integral I :=
∫
Rd\AN

− log µ(Bn(x))
log 2n

dµ(x) vanishes
as n tends to in�nity. For all N,m and n > N , de�ne the sets

Um
N,n = (Rd \ AN) ∩

{
x ∈ Rd

∣∣ − log µ(B(x, 2−n))

log 2n
≤ m+ 1

}
,

V m
N,n = (Rd \ AN) ∩

{
x ∈ Rd

∣∣ m <
− log µ(B(x, 2−n))

log 2n
≤ m+ 1

}
so that for any n > N , we have

I =

∫
Ud
N,n

− log µ(Bn(x))

log 2n
dµ+

∞∑
m=d+1

∫
Vm
N,n

− log µ(Bn(x))

log 2n
dµ

≤ (d+ 1)ε+
∞∑

m=d+1

∫
Vm
N,n

− log µ(Bn(x))

log 2n
dµ

= (d+ 1)ε+
∞∑

m=d+1

∑
D∈Dn

∫
D∩Vm

N,n

− log µ(Bn(x))

log 2n
dµ.

Observe that if − log µ(Bn(x))
log 2n

> m, then µ(Bn(x)) < 2−nm. Hence∑
D∈Dn

∫
D∩Vm

N,n

− log µ(Bn(x))

log 2n
dµ ≤ (m+ 1)2−mnO(2nd),

where O(2nd) = Odiam(supp(µ))(2
nd) is the number of atoms of Dn inside the

bounded support of µ. Moreover,

∞∑
m=d+1

(m+ 1)O(2−3mn+dn) ≤ Od(2
−n).
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It follows that for any ε > 0, dimeµ ≤ dimPµ + (d + 1)ε. Letting ε → 0
�nishes the proof.

By Lemma 1.7, we could write the entropy dimension of µ as the limit
limn→∞ E0≤i<n(Hm(µx,i)) for all integers m. However, counterexamples show
that the convergence of the expected values does not imply that the entropy
dimensions of the components µx,i would concentrate around that of µ. We
introduce the following stronger notion.

De�nition 2.25. A measure µ ∈ P(R) has uniform entropy dimension α if
for every ε > 0 and for large enough m,

lim inf
n→∞

P0≤i<n
(
|Hm(µx,i)− α| < ε

)
> 1− ε.

3 Self-similar sets and measures

Many fractals possess a structure that contains in�nitely many smaller-scale
copies of itself. Examples of sets such as these are the 1

3
-Cantor set on the

line which is the union of two smaller-scale copies of itself, and the Sierpinski
gasket on the plane which is the union of three copies of itself. Sets such as
these may be categorized as self-similar.

From now on, we are operating only in Euclidean spaces and begin by
de�ning a mapping that transforms a set into a smaller-scale copy of itself.

De�nition 3.1. Let D be a closed subset of Rn. A mapping φ : D → D is a
contraction, if there exists a 0 < c < 1 such that |φ(x)− φ(y)| ≤ c|x− y| for
all x and y in D. This c is called the (contraction) ratio of φ. If the equality
holds, φ is called a similarity.

Remark 3.2. (i.) A contraction is continuous on D.

(ii.) In Section 4, we are primarily interested in self-similar sets on the line.
Regarding this, it is useful to note that a similarity φ : R→ R may be
written as φ(x) = ±rx + a, where r is the contraction ratio of φ and
a = φ(0).

A similarity mapping gets its name from its property of transforming
sets into geometrically similar ones; it scales them with a contraction ratio
and translates them according to a constant (and possibly rotates the set, in
higher dimensional spaces).
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De�nition 3.3. Let Λ ⊂ N be a �nite set of indices, let {φi}i∈Λ be a family
of contractions on a closed set D ⊂ Rn and let X ⊂ D. We say that the set X
is invariant under the family {φi}i∈Λ if X =

⋃
i∈Λ φi(X). If φi are similarities,

we say that X is self-similar.

A �nite family of contractions Φ = {φi}i∈Λ is called an iterated function
system, or IFS. Theorem 3.4 is valid for a general IFS but after this we will
only consider those consisting of similarity mappings.

We use the following notations: Λn = Λ × . . . × Λ is the set of length-
n multi-indices, I = (i1, . . . , in) ∈ Λn is a multi-index of length n, φI =
φi1 ◦ . . . ◦ φin and rI = ri1ri2 · · · rin is the ratio by which φI contracts. It
turns out that for any iterated function system, the set invariant under its
contractions is unique. We call this unique set the attractor of the IFS.

Theorem 3.4. Denote by D the family of all compact subsets of D and let
Φ = {φi}i∈Λ be an IFS on D. De�ne φ : D → D as a transformation on D
by setting

φ(E) =
⋃
i∈Λ

φi(E)

for every E ∈ D and write φk for the k-th iterate of φ:

φ0(E) = E, φ2(E) = φ(φ(E)), . . . , φk(E) = φ(φk−1(E))

Then there exists a unique F ∈ D, called the attractor of Φ, such that

F =
∞⋂
k=1

φi(E)

for any E ∈ D such that φi(E) ⊂ E for all i.

To prove this, we need to expand D into a metric space using the following
notion of distance between sets.

De�nition 3.5. De�ne the δ-parallel body of a set A ∈ D as the set of points
within Euclidean distance δ of A;Aδ = {x ∈ Rn | d(x, a) ≤ δ for some a ∈ A}.
The Hausdor� metric on D is the mapping dH : D ×D → R,

dH(A,B) = inf{δ | A ⊂ Bδ and B ⊂ Aδ}.

The Hausdor� metric is indeed a metric; for anyA ∈ D, clearly dH(A,A) =
0. Also, for all A,B, dH(A,B) = dH(B,A) since the de�nition is symmetric.
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The triangle inequality is also satis�ed: if A,B,C ∈ D, then

dH(A,C) + dH(C,B)

= inf{δ1 | A ⊂ Cδ1 and C ⊂ Aδ1}+ inf{δ2 | B ⊂ Cδ2 and C ⊂ Bδ2}
≥ inf{δ1 + δ2 | A ⊂ Cδ1 ⊂ Bδ1+δ2 and B ⊂ Cδ2 ⊂ Aδ2+δ1}
≥ inf{δ | A ⊂ Bδ and B ⊂ Aδ}
= dH(A,B).

Remark 3.6. Let φ be a contraction with ratio c and let a ∈ A and b ∈ B.
Note that since d(a, b) ≤ 1

c
δ implies d(φ(a), φ(b)) ≤ δ, A ⊂ B1

c
δ
implies

φ(A) ⊂ φ(B)δ and therefore

dH(φ(A), φ(B)) = inf{δ | φ(A) ⊂ φ(B)δ and φ(B) ⊂ φ(A)δ}

≤ inf

{
c
1

c
δ
∣∣ A ⊂ B1

c
δ
and B ⊂ A1

c
δ

}
= c · dH(A,B). (3.1)

We can now prove Theorem 3.4.

Proof of Theorem 3.4. Let Φ be an IFS and let φ be the mapping de�ned
in the theorem. As continuous mappings, contractions map compact sets to
compact sets. Let E ∈ D be such that φi(E) ⊂ E for all i. For example, we
can choose E = D ∩ B(0, r) with large enough r; for all i, φi(D) ⊂ D and
since φi are contracting, φi(B(0, r)) ⊂ B(0, r) when r is large enough.

Since φ(E) ⊂ E, φk(E) ⊂ φk−1(E) for every k and therefore φk(E) is
a decreasing sequence of non-empty compact sets. De�ne F =

⋂∞
i=k φ

k(E)
as the non-empty compact intersection of this sequence. Observe that since
φk(E) is a decreasing sequence,

⋃
i∈Λ

φi(F ) = φ(F ) = φ

(
∞⋂
i=1

φk(E)

)
=
∞⋂
i=1

φk+1(E) = F,

so F is invariant under Φ. We now show that this F is unique. Observe that
if A,B ∈ D,

dH(φ(A), φ(B)) = dH

(⋃
i∈Λ

φi(A),
⋃
i∈Λ

φi(B)

)
≤ max

i∈Λ
dH(φi(A), φi(B)),

(3.2)
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where the last inequality follows from the fact that if δ is such that for
every i the δ-parallel body (φi(A))δ contains φi(B), then

⋃
i∈Λ(φi(A))δ =(⋃

i∈Λ φi(A)
)
δ
contains

⋃
i∈Λ φi(B). Using the equality (3.1), we see that

max
i∈Λ

dH(φi(A), φi(B)) ≤ max
i∈Λ

(ci · dH(A,B))

=

(
max
i∈Λ

ci

)
dH(A,B) (3.3)

Therefore, if A and B are invariant under Φ, by combining (3.2) and (3.3)
we get

dH(A,B) = dH(φ(A), φ(B)) ≤
(

max
i∈Λ

ci

)
dH(A,B),

implying that dH(A,B) = 0 and A = B.

From now on, we only consider IFSs consisting of similarity mappings.

Remark 3.7. By Theorem 3.4, any self-similar set is completely speci�ed by
the associated IFS.

We may extend the notion of self-similarity to probability measures. If
we attach a probability to each of the similarities of an IFS, a self-similar
measure distributes the mass of 1 to its attractor X with each cylinder φI(X)
emphasized by a probability pI .

De�nition 3.8. Let Φ be an IFS and (pi)i∈Λ a probability vector, i.e. pi are
positive and

∑
i∈Λ pi = 1. A Borel probability measure µ on a metric space

X is called self-similar with respect to Φ if it satis�es

µ =
∑
i∈Λ

pi · φiµ. (3.4)

Theorem 3.9. Given an IFS Φ and a probability vector (pi)i∈Λ, the self-
similar measure associated to them exists and is unique.

Proof. Let X be the attractor of Φ. We de�ne a new metric d on P(X) by
setting

d(µ, ν) = sup

{∣∣∣∣∫ f dµ−
∫
f dν

∣∣∣∣ ∣∣ f is a Lipschitz mapping with Lip(f) ≤ 1

}
.

We show that (P(X), d) is a complete metric space. It is clear that d is a
metric. Let (µn)n be a Cauchy sequence so that

lim
n>m→∞

∣∣∣∣∫ f dµn −
∫
f dµm

∣∣∣∣ = 0
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uniformly in f . Since P(X) is compact in the weak-* topology, we may pick a
weakly converging subsequence (µnk

)k with limit µ. Then µnk
→ µ also in d;

if this was not the case, there would be a c > 0 such that for any k there exists
a Lipschitz function f with Lip(f) ≤ 1 such that |

∫
f dµnk

−
∫
f dµ| > c.

But now, if k is large enough, we have |
∫
f dµnl

−
∫
f dµ| > c/2 for all l > k

which contradicts the weak convergence of (µnk
)k. So for any ε > 0, we have

d(µn, µ) ≤ d(µn, µnk
) + d(µnk

, µ) < ε

when n and k are large enough. Therefore (P(X), d) is complete.
De�ne F : P(X) → P(X) by setting F (µ) =

∑
i∈Λ pi · φiµ. Then F is a

contraction mapping in d: for any µ, ν ∈ P(X),

d(F (µ), F (ν)) ≤
∑
i∈Λ

pi sup

{∣∣∣∣∫ f ◦ φ dµ−
∫
f ◦ φ dν

∣∣∣∣ ∣∣ Lip(f) ≤ 1

}
=
∑
i∈Λ

piri sup

{∣∣∣∣∫ r−1
i f ◦ φ dµ−

∫
r−1
i f ◦ φ dν

∣∣∣∣ ∣∣ Lip(f) ≤ 1

}
≤ (max

i
ri)d(µ, ν),

since r−1
i f ◦φi is a Lipschitz mapping with Lip(r−1

i f ◦φi) ≤ 1. Let r = maxi ri.
We show that there exists a unique measure τ ∈ P(X) such that F (τ) = τ ;
this result actually holds for any contraction in a complete metric space and
is known as Banach �xed-point theorem.

Indeed, let θ ∈ P(X) be arbitrary. De�ne the sequence (θn)n ⊂ P(X) by
setting θn = F n(θ) = F ◦· · ·◦F (θ) for every n ∈ N. This sequence is Cauchy;

d(θn, θn+1) ≤ rnd(θ, F (θ)) = Mrn,

where M = d(θ, F (θ)). Therefore, for all m,n, n > m,

d(θn, θm) ≤
n−m−1∑
i=0

d(θm+i, θm+i+1) ≤Mrm
n−m−1∑
i=0

ri

= Mrm
1− rn−m

1− r
→ 0

as m → ∞. Since (P(X), d) is complete, this sequence converges to a prob-
ability measure τ ∈ P(X). Since

d(F (τ), τ) ≤ d(F (τ), F n(τ)) + d(F n(τ), τ) < ε
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for any ε whenever n is large enough, we have τ = F (τ) =
∑

i∈Λ pi · φiτ.
Finally, if η is also a probability measure on X, we have

d(F n(η), τ) ≤ d(F n(η), F n(θ)) + d(F n(θ), τ)

≤ rnd(η, θ) + d(F n(θ), τ)

→ 0

as n→∞, so τ is unique.

3.1 Dimension of a self-similar set

Given that the cylinders φi(X) of an IFS are su�ciently separated from each
other, the structures of its attractor and any self-similar measure associated
to it are understood quite well. The main result of this section, the open
set condition, states this separation condition explicitly. When this condition
holds, we can derive a consistent way of calculating the dimension of the
attractor and any self-similar measure associated to the IFS.

If X is the attractor of an IFS on the real line with disjoint cylinders, its
dimension is the solution s to the equation

Hs(X) = Hs

(⋃
i∈Λ

φi(X)

)
=
∑
i∈Λ

Hs(riX + ai) =
∑
i∈Λ

rsiHs(X)

which simpli�es to
∑

i∈Λ r
s
i = 1 if Hs(X) is positive and �nite. We aim to

loosen the requirement of disjointness by introducing the following de�nition.

De�nition 3.10 (The open set condition (OSC)). Let Φ be an IFS. We say
that Φ satis�es the open set condition, or OSC, if there exists a bounded,
open ∅ 6= V ⊂ Rn for which⋃

i∈Λ

φi(V ) ⊂ V

φi(V ) ∩ φj(V ) = ∅ for all i 6= j.

Additionally, if V ∩ X 6= ∅, where X is the attractor of Φ, we say that Φ
satis�es the strong OSC (SOSC).

Theorem 3.11. Let Φ be an IFS that satis�es the open set condition and
let X be its attractor. The dimension of X is the unique s ≥ 0 that satis�es∑

i∈Λ r
s
i = 1. Moreover, for this s, 0 < Hs(X) <∞.

In the proof of this theorem, we require the following geometrical result.
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Lemma 3.12. Let {Vi}i∈N be a collection of disjoint open subsets of Rn such
that each Vi contains a ball B(xi, a1r) and is contained in a ball B(yi, a2r).
Then any ball B(x, r) intersects at most (1 + 2a2)na−n1 of the closures Vi.

Proof. If Vi intersects B(x, r), then Vi ⊂ B(x, (1 + 2a2)r), since the diameter
of Vi is at most 2a2r. Suppose that q of the sets Vi intersect B(x, r). Again,
all of these Vi are contained in B(x, (1 + 2a2)r) and therefore the disjoint
balls B(xi, a1r) ⊂ Vi are also contained in B(x, (1 + 2a2)r). So we have

q(a1r)
nL(B(0, 1)) = qL(B(xi, a1r))

≤ L(B(x, (1 + 2a2)r))

= (1 + 2a2)nrnL(B(0, 1))

which gives the stated bound for q.

We now prove Theorem 3.11, adapting the argument from Falconer's book
[4], Theorem 9.3.

Proof of Theorem 3.11. We need only check that the Hausdor� measure ofX
is strictly positive and �nite for an s that satis�es

∑
i∈Λ r

s
i = 1. As previously

noted, we can write X =
⋃
I∈Λn φI(X) for any n. We will see that these covers

of X provide a suitable upper estimate to the Hausdor� measure.
Let δ > 0. Because the mapping φI has a contraction ratio rI = ri1 · · · rin

with every ri < 1 and the diameter of X is �nite, we may choose such an n
that diam(φI(X)) = rIdiam(X) ≤ δ. Therefore, we have

Hs
δ(X) ≤

∑
I∈Λn

diam(φI(X))s =
∑
I∈Λn

rsIdiam(X)s

=

(∑
i1∈Λ

rsi1

)
· · ·

(∑
in∈Λ

rsin

)
diam(X)s = diam(X)s.

Since δ > 0 is arbitrary, it follows that Hs(X) ≤ diam(X)s <∞.
It remains to �nd a lower bound for Hs(X). Let

ΛN = {(i1, i2, . . .) | ik ∈ Λ}

be the set of all in�nite sequences of indices in Λ and let

ΛN
I = {(i1, . . . , in, qn+1, . . .) | qk ∈ Λ}

be the collection of sequences in ΛN with a �xed initial segment (i1, . . . , in) =
I. Set En = {ΛN

I }I∈Λn and E =
⋃
n∈N En. Let ζ be a set mapping on E with

ζ(ΛN
I ) = rsI and ζ(ΛN) = 1. We show that E and ζ satisfy the conditions
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of Theorem 2.14 and then use the outer measure given by the theorem in
applying the mass distribution principle.

Clearly the sets ΛN
I are disjoint for all I ∈ Λn and

⋃
I∈Λn ΛN

I = ΛN for
every n. Each ΛN

I ∈ En is a subset of the unique ΛN
J ∈ En−1 with the same

�xed initial segment of length n− 1 and contains |Λ| subsets of En+1. By the
de�nition of ζ, ∑

i∈Λ

ζ(ΛN
i ) =

∑
i∈Λ

rsi = 1 = ζ(ΛN)

and for every ΛN
I with I ∈ Λn, if Ji ∈ Λn+1 is the multi-index I extended

with i ∈ Λ, ΛN
I =

⋃
i∈Λ ΛN

Ji
and∑

i∈Λ

ζ(ΛN
Ji

) =
∑
i∈Λ

rsIr
s
i = rsI = ζ(ΛN

I ).

Finally, if ΛN
(i1) ⊃ ΛN

(i1,i2) ⊃ . . .,⋂
k→∞

ΛN
(i1,...,ik) = {(i1, i2, . . .)} ⊂ ΛN.

Hence the conditions hold.
Let µ∗ be the outer measure on ΛN given by Theorem 2.14. Transform µ∗

into an outer measure on X by de�ning

µ̃(A) = µ∗

({
(i1, i2, . . .)

∣∣ ∞⋂
k=1

φ(i1,...,ik)(X) ⊂ A

})

for all subsets A of X.
Next we show that µ̃ satis�es the conditions of the mass distribution

principle. Let V be the open set given by the OSC. Denoting by V the
closure of V , we have V ⊃ φ(V ) =

⋃
i∈Λ φi(V ). By the uniqueness of the

attractor of an IFS (Theorem 3.4), the sequence of iterates φk(V ) converges
to X. Therefore, X =

⋂∞
k=1 φ

k(V ) ⊂ V and for each I ∈ Λn, φI(X) ⊂ φI(V ).
Let B be any ball in Rd with radius r < 1. For each in�nite sequence

(i1, i2, . . .) ∈ ΛN, curtail it after the �rst ik for which(
min
i∈Λ

ri

)
r ≤ ri1ri2 · · · rik ≤ r (3.5)

and denote the set of all multi-indices obtained this way by Q. Then for
every (i1, i2, . . .) ∈ ΛN there is exactly one k such that (i1, . . . , ik) ∈ Q. Since
φi(V ) ⊂ V are disjoint by assumption, for any pair (i1, . . . , ik), (j1, . . . , jl) ∈
Q, the sets φi1(φ(i2,...,ik)(V )) and φj1(φ(j2,...,jl)(V )) are disjoint and from this
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it follows that the family {φI(V )}I∈Q is disjoint. Observe that we may write
X =

⋃
I∈Q φI(X); in the presentation X =

⋃
i∈Λ φi(X), write φi(X) =⋃

j∈Λ φ(i,j)(X) for every index (i) /∈ Q. Inductively, repeat this process for
every φ(i1,...,ik)(X) with (i1, . . . , ik) /∈ Q. We will arrive at the conclusion
eventually, since Q is �nite and every in�nite sequence (i1, i2, . . .) has a pre-
�x in Q. We conclude that

X =
⋃
I∈Q

φI(X) ⊂
⋃
I∈Q

φI(V ). (3.6)

Now, as in Lemma 3.12, choose a1 and a2 so that V contains a ball of
radius a1 and is contained in a ball of radius a2. Then, for all I ∈ Q, the set
φI(V ) contains a ball of radius rIa1 and one of radius (mini∈Λ ri)a1r, and is
contained in a ball of radius rIa2 and hence in a ball of radius a2r, by inequal-
ity (3.5). Denote by Q1 the set of those multi-indices I ∈ Q such that B inter-
sects φI(V ). By Lemma 3.12, there are at most q = (1+2a2)na−n1 (mini∈Λ ri)

−n

elements in Q1.
Observe that if

⋂∞
k=1 φ(i1,...,ik)(X) ⊂ (X∩B), by (3.6),

⋂∞
k=1 φ(i1,...,ik)(X) ⊂⋃

I∈Q φI(V ) and
⋂∞
k=1 φ(i1,...,ik)(X) ⊂ B. More speci�cally, φI(V ) ∩B for the

I ∈ Q that is the unique pre�x obtained from (i1, i2, . . .). Now, since µ̃ has
its support contained in X, we have

µ̃(B) = µ̃(X ∩ B) = µ

({
(i1, i2, . . .) |

∞⋂
k=1

φ(i1,...,ik)(X) ⊂ (X ∩ B)

})

≤ µ

( ⋃
I∈Q1

ΛN
I

)
≤
∑
I∈Q1

µ(ΛN
I ) =

∑
I∈Q1

rsI ≤
∑
I∈Q1

rs ≤ qrs,

using the inequality (3.5).
Let U ⊂ Rn be such that diam(U) < 1. Since U is contained in a ball of

radius diam(U), we have µ̃(U) ≤ q · diam(U)s. Mass distribution µ̃ hereby

satis�es the mass distribution principle and it follows that Hs(X) ≥ µ̃(X)
q

=

q−1 > 0.
Combining the upper and lower bounds, we have 0 < Hs(X) < ∞ and

therefore dimX = s.

3.1.1 One dimensional Sierpinski gasket

We take an example of a particular self-similar set on the plane that is the
attractor of a set of three similarities. In Section 4, we return to this particular
attractor to inspect the dimension of its projection to the line that turns out
not to be as well-behaving as the set itself.
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De�ne F as the subset of R2 consisting of points with an expansion in
base 3 with negative powers of the base and digits (0, 0), (0, 1), (1, 0); that is,

F =
{∑

an3−n | an ∈ {(0, 0), (1, 0), (0, 1)}
}
.

The set F is known as the one dimensional Sierpinski gasket (the Sierpinski
gasket is de�ned by replacing all occurrences of 3 with 2 in the de�nition
above) and it is the attractor of the IFS Φ de�ned by contractions

φ1(x, y) =
(x

3
,
y

3

)
, φ2(x, y) =

(
x+ 1

3
,
y

3

)
, φ3(x, y) =

(
x

3
,
y + 1

3

)
.

To see this, note that if (x, y) ∈ F , φ1(x, y) = 3−1(x, y) =
∑
an3−n−1 =∑

an3n, where a0 = (0, 0) and ak = ak−1 for k ≥ 1. In a similar way we see
that φi(F ) ⊂ F for all i. Writing φ(A) =

⋃3
i=1 φi(A) for all A ⊂ R2 and φk

for the k-th iterate of φ, this implies that
⋂∞
k=1 φ

k(F ) ⊂ F . On the other
hand, for any (x, y) ∈ F ,

(x, y) =
∞∑
n=1

an3−n = lim
k→∞

k∑
n=1

an3−n = lim
k→∞

φi1 ◦ . . . ◦ φik(a0) ∈
∞⋂
k=1

φk({a0}),

so F ⊂
⋂∞
k=1 φ

k(F ) and hence F is the unique attractor of Φ.
Consider the open rectangle U = (0, 1/2)2 ⊂ R2. For each contraction φi

and (x, y) ∈ U , φi(x, y) ∈ (0, 1/2+1
3

)2 = (0, 1/2)2 and

φ1(U) =
(
0, 1

6

)2
,

φ2(U) =
(

1
3
, 1

2

)
×
(
0, 1

6

)
,

φ3(U) =
(
0, 1

6

)
×
(

1
3
, 1

2

)
are disjoint. Hence Φ satis�es the open set condition and dimF is the unique
s for which

3
(

1
3

)s
= 1,

that is, dimF = 1.

3.2 Dimension of a self-similar measure

To obtain a formula for the dimension of a self-similar measure, we require
the associated IFS to satisfy the strong version of the open set condition.
However, in Euclidean spaces, those two conditions turn out to be equivalent,
as proven by A. Schief in [11].
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Proposition 3.13. In Rd, if an IFS Φ satis�es the OSC, it also satis�es the
SOSC.

Proof. See [11], Theorem 2.1.

The formula for the dimension was introduced by A. Deliu, J. Geronimo,
R. Shonkwiler and D. Hardin in [1]. It also holds for an IFS with a countable
number of similarities, see e.g. [9].

Theorem 3.14. Let µ be a self-similar measure associated to an IFS Φ that
satis�es the SOSC. Then the dimension of µ is given by

dimµ =

∑
pi log(pi)∑
pi log(ri)

.

Proof. See [1], Theorem 1.

A measure being exact dimensional implies that its structure is similar
almost everywhere. Due to their regular structure, it is quite natural for self-
similar measures to have this property. This was proven by D. Feng and H.
Hu in [6].

Theorem 3.15. Self-similar measures are exact dimensional.

Proof. See [6], Theorem 2.12.

Adding to their regularity in one-dimensional case, it turns out that self-
similar measures possess a uniform entropy dimension.

Proposition 3.16. Let µ ∈ P(R) be a self-similar measure and α = dimµ.
Then µ has uniform entropy dimension α.

By the translation and scaling invariance of Hausdor� dimension, we may
assume without loss of generality that the attractor X ⊂ [0, 1] and that
0 ∈ X. Observe that if µ has point mass, its dimension

dimµ = inf{dimE |E is Borel and µ(E) > 0} = 0 = lim
n→∞

Hn(µ),

since µ gives positive mass to a countable set; particularly, for any given
ε′ > 0, µ is (ε′, n)-atomic for a large n. Combining this with Lemma 1.11 and
taking ε′ small enough with respect to ε, we get P0≤i<n (Hm(µx,i) < ε) > 1−ε,
which is the statement of the proposition. From now on, we assume that µ
distributes no mass to countable sets.

Before we can prove the proposition in general case, we require two lem-
mas regarding the component measures of µ. Consider �rst the case of the
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contractions in the associated IFS contracting by a uniform ratio r. Then
Φ = {φi}i∈Λ with φi(x) = r(x − ai) for all i. Fix a point x̃ in the attractor
X and de�ne probability measures

µ
[n]
x,k = c ·

∑
I ∈ Λn

φI x̃ ∈ Dk(x)

pI · φIµ,

where c = c(x, x̃, k, n) is a normalizing constant. Observe that µ
[n]
x,k di�ers

from µx,k in that instead of restricting µ =
∑

I∈Λn pI · φIµ to the atom
Dk(x), we include or exclude each term in its entirety depending on whether
φI x̃ ∈ Dk(x).

For 0 < ρ < 1, we de�ne an integer

l(ρ) = dlog ρ/ log re,

so that ρ and rl(ρ) di�er only by a multiplicative constant.

Lemma 3.17. For every ε > 0, there is a 0 < ρ < 1 such that, for all k and
n = l(ρ2−k),

Pi=k
(∥∥∥µx,i − µ[n]

x,i

∥∥∥ < ε
)
> 1− ε.

Furthermore, ρ can be chosen independently of x̃ and the result holds for any
translate of µ.

Proof ([7], p. 31). Since µ has no point mass by assumption, given ε > 0,
there is a δ > 0 such that every interval of length δ has µ-mass less than
ε2/2. Choose such an integer q that rq < δ/2 and let ρ = rq.

Let k ∈ N and let l = l(2−k) so that

2−kr ≤ r

⌈
−k

log2 r

⌉
= rl ≤ 2−k.

Let I ∈ Λl, and consider those J ∈ Λq such that the support of φIJµ is not
contained in an atom of Dk. Since all the contractions φIJ contract with a
ratio rl+q, the support is contained in an interval of length 2−k · δ/2; hence
there is an interval E of length 2−k · δ centered at one of the endpoints of an
atom of Dk that contains the support of φIJ . Since φI contracts with ratio
at most 2−k, the support of φIµ is contained in an interval of length 2−k and
hence gives positive mass to at most two such intervals E. Combining this
with the fact that φIµ(E) < ε2/2 for each such E, we conclude that in the
representation

µI =
1

pI

∑
J∈Λq

pIJ · φIJµ,
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at least 1 − ε2 of the mass comes from terms supported entirely on just
one atom of Dk. Since this is true for all I ∈ Λl, it is also true for the
representation

µ =
∑

U∈Λl+q

pU · φUµ =
∑
I∈Λl

(∑
J∈Λq

pIJ · φIJµ

)
=
∑
I∈Λl

pIµI .

Denote by µ̃ the sum of terms that are supported on a single atom. Then

Ei=k
(∥∥∥µx,i − µ[n]

x,i

∥∥∥) ≤ Ei=k (‖µx,i − µ̃x,i‖) + Ei=k
(∥∥∥µ̃x,i − µ[n]

x,i

∥∥∥)
=
∑
D∈Dk

‖µD − µ̃D‖µ(D) +
∑
D∈Dk

∥∥∥µ̃D − µ[n]
D

∥∥∥µ(D)

< ε2,

since µ and µ̃ agree on the mass of D ∈ Dk except for the terms only partly
supported on D, but their mass is at most ε2/2. Also, if φI(x̃) /∈ Dk(x) and
the support of φIµ is partly inside Dk(x), the mass of such sets is at most
ε2/2 and otherwise agrees with that given by µ̃. Returning to the statement
of the lemma, Markov's inequality gives us

Pi=k
(∥∥∥µx,i − µ[n]

x,i

∥∥∥ < ε
)

= 1− Pi=k
(∥∥∥µx,i − µ[n]

x,i

∥∥∥ ≥ ε
)

≥ 1−
Ei=k

(∥∥∥µx,i − µ[n]
x,i

∥∥∥)
ε

> 1− ε. (3.7)

The second statement follows from the fact that our choice of parameters did
not depend on x̃ and the proof is invariant under translation of µ.

Lemma 3.18. For ε > 0, for large enough m and all k,

Pi=k
(
Hm(µx,i) > α− ε

)
> 1− ε,

and the same holds for any translate of µ.

Proof ([7], p. 32). Fix an integer k, let ε > 0 and choose using Lemma 1.6 an
0 < ε′ < ε such that ‖ν−ν ′‖ < ε′ implies | 1

m
H(ν,Dm+k)− 1

m
H(ν ′,Dm+k))| <

ε/2 for every m and every ν, ν ′ ∈ P([0, 1]). This is possible, since for any k,
‖ν − ν ′‖ < ε′ implies ‖ν(2−k·)− ν ′(2−k·)‖ < ε′ and the scale-(m+ k) entropy
of ν is the scale-m entropy of ν(2−k·).

Choose such an integer q that rq < ε′/2 and denote rq = ρ. De�ne µ′ as
a translation of µ scaled down by a factor of σ ≤ ρ and translated by an x0,
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µ′(A) = µ(σ−1A + x0). With large m, since H(µ′,Dm) = H(µ,Dm−log2 σ) +
O(1) by Lemma 1.5 (iv.), the (ii.) of the lemma gives us

|H(µ,Dm−blog2 σc)−H(µ′,Dm)| ≤ O(1)

since any atom of the partition Dm−log2 σ intersects at most two atoms of the
partition Dm−blog2 σc. By the (v.) of the same lemma,

|H(µ′,Dm)−H(µ,Dm)| ≤ Oσ(1).

Let l = l(ρ2−k). Combining the inequality above with the de�nition of α =
limn→∞Hn(µ), we may choose m large enough so that

|Hm(µ′)− α| < ε/2. (3.8)

Since µ
[l]
x,k =

∑
J∈Λl,... pJ · φJµ, we have

1

m
H(µ

[l]
x,k,Dk+m) ≥

∑
J∈Λl,...

pJ
m
H(φJµ,Dm)

> α− ε/2

by concavity of entropy and by the fact that for every J , since φJµ is just a
translation of µ scaled down by a factor of at most ρ, we may choose m so
that (3.8) holds for every J .

By Lemma 3.17,
∥∥∥µx,k − µ[l]

x,k

∥∥∥ < ε′ with µ-probability greater than 1−ε′,

and hence by the choice of ε′, we have | 1
m
H(µx,k,Dm+k)− 1

m
H(µ

[l]
x,k,Dm+k)| <

ε/2. Combining this with the identity Hm(µx,k) = 1
m
H(µx,k,Dm+k) from

Section 1 (equation (1.4)), we have the statement of the lemma. The second
statement follows again from the translation invariance of the proof.

We are now ready to prove the uniformity of the entropy dimension for a
self-similar measure.

Proof of Proposition 3.16 ([7], p. 32). Let 0 < ε < 1 be given and �x an
ε′ < ε2/16. Let m be large enough so that

P0≤i<n
(
Hm(µx,i) > α− ε′

)
=

1

n

n−1∑
k=0

Pi=k
(
Hm(µx,i) > α− ε′

)
> 1− ε′ (3.9)

for any n, by Lemma 3.18. Assuming n large enough, we have |Hn(µ)−α| < ε′

and therefore by Lemma 1.7,

|E0≤i<n
(
Hm(µx,i)

)
− α| < ε′.
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Assuming the event of (3.9), Hm(µx,i) − α + ε′ > 0, the inequality above
combined with Markov's inequality implies that

P0≤i<n
(
Hm(µx,i) + ε′ < α + ε′′

)
= 1− P0≤i<n

(
Hm(µx,i)− α + ε′ ≥ ε′′

)
≥ 1− E0≤i<n (Hm(µx,i))− α + ε′

ε′′

> 1− 2ε′

ε′′

≥ 1− ε′′, (3.10)

when ε′′ = 2
√
ε′ < ε/2. Hence, (3.9) combined with (3.10) gives

P0≤i<n
(
|Hm(µx,i)− α| < ε

)
≥ (1− ε′)(1− ε′′) = 1− 2ε′′ > 1− ε,

which is the statement of the proposition; this �nishes the proof of the case
with uniform contraction ratios.

Assume then that the IFS is non-uniformly contracting and write φi(x) =
rix + ai for the contractions. Let 0 < r < 1, let n be given and denote by
Λ(n) the set of arbitrarily long multi-indices I ∈ Λ∗ =

⋃∞
m=1 Λm such that

rI < rn ≤ rJ , where J is obtained from I by removing the last element of
the tuple. With this de�nition, the numbers {rI | I ∈ Λ(n)} are all within a

multiplicative constant of each other. Now de�ne µ
[n]
x,k as before but summing

over Λ(n) instead of Λn,

µ
[n]
x,k = c ·

∑
I ∈ Λ(n),

φI(x̃) ∈ Dk(x)

pI · φIµ.

With this modi�cation, all the previous arguments go through; the uniformity
of contraction ratios was explicitly used only in the discussion leading to
(3.7), but by the de�nition of Λ(n), the arguments regarding the length of the
support of φIµ hold and since each multi-index I ∈ Λ∗ has a unique pre�x
in Λ(n), we can compare the sum-presentations of µ̃ and µ

[n]
x,k as in (3.7).

4 Self-similar sets with overlaps

In this section, we focus only on iterated function systems on the line. As-
sociated similarities are written φi(x) = rix + ai or φi(x) = ri(x + ai) with
ri < 1 and ai ∈ R, whichever expression is more convenient.

From the previous section, we have a consistent way of calculating the
dimension of a self-similar object when su�cient separation conditions hold.
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However, generally we can expect no separation of this kind and there may
be overlaps in the cylinders of the associated IFS. To compare the dimensions
of an object with and without assuming the OSC and SOSC, we de�ne the
similarity dimension for self-similar sets and measures.

De�nition 4.1. Let X be the attractor of an IFS Φ and let µ be the self-
similar measure associated to a probability vector (p1, . . . , p|Λ|). The simi-
larity dimension of X, denoted by dimS X, is the unique s ≥ 0 satisfying∑

i∈Λ r
s
i = 1. The similarity dimension of µ is de�ned by

dimS µ =

∑
i∈Λ pi log pi∑
i∈Λ pi log ri

.

Remark 4.2. The similarity dimension is well-de�ned in the sense that we
may use any iteration of the IFS in the de�nition: clearly

∑
I∈Λn

rsI =

(∑
i1∈Λ

rsi1

)
· · ·

(∑
in∈Λ

rsin

)
= 1

if and only if
∑

i∈Λ r
s
i = 1. Also, if we write pI = pi1pi2 · · · pin for any I ∈ Λn,

we have∑
I∈Λn pI log pI∑
I∈Λn pI log rI

=

∑
i∈Λ

∑
I∈Λn−1 pipI log pi +

∑
i∈Λ

∑
I∈Λn−1 pipI log pI∑

i∈Λ

∑
I∈Λn−1 pipI log ri +

∑
i∈Λ

∑
I∈Λn−1 pipI log rI

=

∑
i∈Λ pi log pi +

∑
I∈Λn−1 pI log pI∑

i∈Λ pi log ri +
∑

I∈Λn−1 pI log rI

and continuing the iteration, we arrive at∑
I∈Λn pI log pI∑
I∈Λn pI log rI

=
n
∑

i∈Λ pi log pi

n
∑

i∈Λ pi log ri
= dimS µ.

Using these concepts, we may bound the dimensions in the case where
the open set condition does not hold.

Lemma 4.3. For any self-similar X and µ, the following bounds hold:

(i.) dimX ≤ min{1, dimS X}

(ii.) dimµ ≤ min{1, dimS µ}

Proof. Because X ⊂ R and the support of µ is contained in X, clearly
dimX ≤ dimR = 1 and dimµ ≤ dimR = 1. The representation X =
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⋃
I∈Λn φI(X) gives a suitable upper bound for the Hausdor� measure of X.

As in the proof of Theorem 3.11, for any s and δ we can estimate

Hs
δ(X) ≤

∑
I∈Λn

diam(φI(X))s =
∑
I∈Λn

rsIdiam(X)s

=

(∑
i1∈Λ

rsi1

)
· · ·

(∑
in∈Λ

rsin

)
diam(X)s,

since diam(φI(X)) ≤ (maxi∈Λ ri)
ndiam(X) < δ when n is large enough. If

s > dimS X,
∑

ij∈Λ r
s
ij
< 1 for all 1 ≤ j ≤ n. By letting n → ∞, we see

that Hs
δ(X) = 0 for every δ. Therefore dimX ≤ dimS X, proving the �rst

statement.
The bound for dimµ is a bit more awkward. The reader is suggested to

refer to the discussion below Theorem 4.9 where the following concepts are
introduced in more detail.

Let r =
∏

i∈Λ r
pi
i and n′ = n log2(1/r). De�ne the n-th generation approx-

imation of µ, ν(n) =
∑

I∈Λn pI · δφI(0), as in the discussion after the statement
of Theorem 4.9. In the proof of the theorem, it is noted that

lim
n′→∞

1

n′
H(ν(n),Dn′) = dimµ.

Using this, we obtain

dimµ = lim
n′→∞

1

n′
H(ν(n),Dn′)

= lim
n′→∞

∑
D∈Dn′

(∑
I∈Λn pIδφI(0)(D)

)
log2

(∑
I∈Λn pIδφI(0)(D)

)
−n′

≤ lim
n′→∞

∑
D∈Dn′

(∑
I∈Λn pIδφI(0)(D) log2 pI

)
n
∑

i∈Λ pi log2 ri

= lim
n′→∞

∑
I∈Λn pI log2 pI

n
∑

i∈Λ pi log2 ri

= lim
n′→∞

∑
i∈Λ

∑
I∈Λn−1 pipI log2 pi +

∑
i∈Λ

∑
I∈Λn−1 pipI log2 pI

n
∑

i∈Λ pi log2 ri

= lim
n′→∞

∑
i∈Λ pi log2 pi +

∑
I∈Λn−1 pI log2 pI

n
∑

i∈Λ pi log2 ri
.

By continuing the iteration, we arrive at the limit

lim
n′→∞

n
∑

i∈Λ pi log2 pi

n
∑

i∈Λ pi log2 ri
= dimS µ.
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We say that two cylinders of an IFS overlap if they are the same function
and can be written as two di�erent compositions of similarities.

De�nition 4.4. Let Φ = {φi}i∈Λ be an IFS. We say that an exact overlap
occurs in Φ if there are distinct multi-indices I, J ∈ Λn such that φI = φJ .

Remark 4.5. In the de�nition we could equivalently require overlapping of
cylinders in any two scales: if there are multi-indices of di�erent length, I ∈
Λn and J ∈ Λm, such that φI = φJ , then IJ, JI ∈ Λn+m and φI ◦φJ = φJ ◦φI .

If an exact overlap occurs, then X and any associated self-similar measure
can be expressed using an IFS that is a proper subset of {φI}I∈Λn , where n
is the level at which the overlap of cylinders occurs. This always leads to a
decrease in the similarity dimension of the attractor: if φK = φJ and s is such
that

∑
I∈Λn rsI = 1, then

∑
I∈Λn, I 6=J r

s
I < 1. Also, any self-similar measure

can be written µ = (pK + pJ) · φKµ +
∑

I∈Λn, I 6=J,K pI · φIµ and because
log(pK + pJ) > log pK + log pJ , the similarity dimension also decreases.

De�nition 4.6. Let Φ = {φi}i∈Λ. De�ne the distance between cylinders φI
and φJ by

d(I, J) =

{
∞, if rI 6= rJ

|φI(0)− φJ(0)|, if rI = rJ

and as a tool for identifying exact overlaps, de�ne

∆n = min{d(I, J) | I, J ∈ Λn, I 6= J}.

Remark 4.7. We make a few observations regarding d and ∆n.

(i.) Assume d(I, J) = 0 for some multi-indices I and J . Write φI(x) =
rIx + aI , where aI ∈ R is the total translation of x by similarities
{φi}i∈I . Then, φI(0) = aI = aJ = φJ(0) by de�nition and φI = φJ .
Note that since rI = rJ , we could de�ne the distance using any x ∈ X
in the place of 0.

(ii.) An exact overlap occurs if and only if ∆n = 0 for some n.

(iii.) The number ∆n converges to 0 exponentially. To see this, observe that
the exponentially many multi-indices Λn give rise to only polynomi-
ally many contraction ratios rI ; by a basic �stars-and-bars� combina-
toric argument, the amount of di�erent length-n contraction ratios is(
n+ |Λ| − 1
|Λ| − 1

)
which is a polynomial of degree |Λ|. Hence the number

of di�erent contraction ratios is bounded by O(n|Λ|) and there are two
distinct I, J with rI = rJ and |φI(0)− φJ(0)| ≤ Odiam(X)(|Λ|−nn−|Λ|).
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4.1 The dimension drop

We will now point our focus onto the dimension of a general self-similar mea-
sure. Assuming the separation conditions do not hold, it is largely unknown
whether the bounds for its dimension presented in Lemma 4.3 hold with
equalities or strict inequalities. The main motivation behind the results in
this section is the following conjecture.

Conjecture 4.8. If the bounds in Lemma 4.3 hold with strict inequalities,
there is an exact overlap in the cylinders of the associated IFS.

Utilizing the notion of distance between cylinders, the following theorem
by Hochman [7] is our main result in this discussion.

Theorem 4.9. Let Φ be an IFS on R. If there is a self-similar measure µ
associated to Φ that satis�es dimµ < min{1, dimS µ}, then ∆n → 0 super-
exponentially, i.e. lim(− 1

n
log ∆n) =∞.

Particularly, if the conclusion fails, we know that dimµ = dimS µ for
every self-similar measure associated to Φ. As with Proposition 3.16, we will
�rst consider the case in which Φ is uniformly contracting with contraction
ratio of r.

Let µ be a self-similar measure associated to Φ and write pI = pi1pi2 · · · pin
for its probability vector (pi)i∈Λ and for all multi-indices I ∈ Λn. We de�ne
the n-th generation approximation of µ by

ν(n) =
∑
I∈Λn

pI · δφI(0).

Lemma 4.10. The n-th generation approximation ν(n) is a probability mea-
sure on X and converges weakly to µ.

Proof. Clearly ν(n)(∅) = 0. Assume A1, A2, . . . ⊂ R are disjoint. Then

ν(n)

(
∞⋃
k=1

Ak

)
=
∑
I∈Λn

pI · δφI(0)

(
∞⋃
k=1

Ak

)

=
∑
I∈Λn

pI

∞∑
k=1

δφI(0)(Ak) =
∞∑
k=1

ν(n)(Ak)

and

ν(n)(X) =
∑
I∈Λn

pI =

(∑
i1∈Λ

pi1

)
· · ·

(∑
in∈Λ

pin

)
= 1.
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Let (a, b) be an open interval in R. Since µ is a Borel measure, we have

µ(a, b) = lim
k→∞

µ

([
a+

1

k
, b− 1

k

])
.

Let ε > 0 be arbitrary and choose such N that µ(a, b) < µ
[
a+ 1

N
, b− 1

N

]
+ε.

Choose also an integer ñ so that rñdiam(X) < 1
N

and let n ≥ ñ, I ∈ Λn.
Since |φI(0) − φI(x)| ≤ rndiam(X) for any x ∈ X, we note that if φI(x) ∈[
a+ 1

N
, b− 1

N

]
, then φI(0) ∈ (a, b). Denoting by Q the set of all multi-indices

I of length n such that φ−1
I (
[
a+ 1

N
, b− 1

N

]
) 6= ∅, we have

ν(n)(a, b) =
∑
I∈Λn

pI · δφI(0)(a, b) =
∑

I: φI(0)∈(a,b)

pI ≥
∑
I∈Q

pI

≥
∑
I∈Λn

pI · µ(φ−1
I (
[
a+ 1

N
, b− 1

N

]
)) = µ

([
a+ 1

N
, b− 1

N

])
> µ(a, b)− ε.

Letting ε → 0 gives us ν(n)(a, b) ≥ µ(a, b). Since this can be done for every
n ≥ ñ and every open set in R is a countable union of disjoint open intervals,
we have lim infn→∞ ν

(n)(U) ≥ µ(U) for all open U ⊂ R.

Note that the entropy of ν(n) with respect to the partition Dn′ may not
be equal to the entropy with respect to the partition into its atoms which

is
∑

I∈Λn pI log2

(∑
φI(0)=φJ (0) pJ

)
. This is the case when there are distinct

I and J of length n such that φI(0) 6= φJ(0) but they belong to the same
atom of Dn′ . We want to use the approximation measure ν(n) to identify exact
overlaps in the cylinders of Φ and hence it is desirable that the aforementioned
case does not occur with large n.

Indeed, if the entropy with respect to the partition into its atoms is sub-
stantially greater than H(ν(n),Dn′), we are interested in the rate of n′ at
which this excess entropy appears. Since limk→∞H(ν(n),Dk) = H(ν(n)), it
does appear eventually. The excess entropy at scale k relative to the en-
tropy at scale n′ is the conditional entropy H(ν(n),Dk|Dn′) = H(ν(n),Dk)−
H(ν(n),Dn′).

The following theorem states that for a measure with dimension strictly
less than 1, the excess entropy that appears at very small scale is negligible
and hence ν(n) may be used in identifying exact overlaps.

Theorem 4.11. Let µ be a self-similar measure on R de�ned by an IFS with
uniform contraction ratios. Let ν(n) be the approximation of µ de�ned above
and n′ = nblog2(1/r)c. If dimµ < 1, then

lim
n→∞

1

n′
H(ν(n),Dqn′ |Dn′) = 0 for every q > 1.
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Proof ([7], p. 33). Observe that in the expression µ =
∑

I∈Λn pI ·φIµ, all φIµ
are translates of one another due to every φI having contraction ratio rn. If
we de�ne τ (n) by scaling µ down by rn, τ (n)(A) = µ(r−nA), for every A ⊂ X
we may write

µ(A) =
∑
I∈Λn

pI · µ ◦ φ−1
I (A)

=
∑
I∈Λn

pI · µ(r−n(A− φI(0)))

=
∑
I∈Λn

pI · (δφI(0) ∗ τ (n))(A)

= (ν(n) ∗ τ (n))(A),

using the bilinearity of convolution.
De�ne the functions f, g : X × X → R by f(x, y) = x + 2−n

′
y and

g(x, y) = x. Observe that f(ν(n) × µ) = ν(n) ∗ τ (n) and g(ν(n) × µ) = ν(n),
and that |f(x, y) − g(x, y)| = |y| ≤ 2−n

′
diam(X) for all x, y ∈ X. Hence by

Lemma 1.5 (iii.),

|H(µ,Dn′)−H(ν(n),Dn′ | = |H(ν(n) ∗ τ (n),Dn′)−H(ν(n),Dn′)|
= Odiam(X)(1). (4.1)

Fix a q > blog2(1/r)c and use the notation a ≈ b to indicate that the
di�erence tends to 0 as n tends to in�nity. By (4.1),

1

n′
H(ν(n),Dn′) ≈

1

n′
H(µ,Dn′) ≈ dimµ.

Suppose now that α = dimµ < 1. Consider the identity immediate from the
conditional entropy formula in Lemma 1.4,

1

qn
H(µ,Dqn)

=
n′

qn
·
(

1

n′
H(µ,Dn′)

)
+
qn− n′

qn
·
(

1

qn− n′
H(µ,Dqn|Dn′)

)
=
blog2(1/r)c

q

(
1

n′
H(µ,Dn′)

)
+
q − blog2(1/r)c

q

(
1

qn− n′
H(µ,Dqn|Dn′)

)
.

As n tends to in�nity, the terms 1
qn
H(µ,Dqn) and 1

n′
H(µ,Dn′) tend to α.

Since r and q are independent of n, we obtain the limit

lim
n→∞

1

qn− n′
H(µ,Dqn|Dn′) = α. (4.2)
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From the identity ν(n) = Ei=n′
(
ν

(n)
y,i

)
which is the equality (0.24) in Section

0, and the bilinearity of convolution, we get

µ = ν(n) ∗ τ (n) = Ei=n′
(
ν

(n)
y,i ∗ τ (n)

)
.

Since ν
(n)
y,n′ has its support contained in an interval of length 2−n

′
and τ (n)

in an interval of length rndiam(X) = O(2−n
′
), the support of each measure

ν
(n)
y,n′ ∗ τ (n) is of order O(2−n

′
). Hence,

|H(ν
(n)
y,n′ ∗ τ

(n),Dqn|Dn′)−H(ν
(n)
y,n′ ∗ τ

(n),Dqn)|

= |H(ν
(n)
y,n′ ∗ τ

(n),Dqn)−H(ν
(n)
y,n′ ∗ τ

(n),Dn′)−H(ν
(n)
y,n′ ∗ τ

(n),Dqn)|

= H(ν
(n)
y,n′ ∗ τ

(n),Dn′)
= O(1).

By concavity of conditional entropy from Lemma 1.4,

H(µ,Dqn|Dn′) = H(ν(n) ∗ τ (n),Dqn|Dn′)

≥ Ei=n′
(
H(ν

(n)
y,i ∗ τ (n),Dqn|Dn′)

)
= Ei=n′

(
H(ν

(n)
y,i ∗ τ (n),Dqn)

)
+O(1).

Combining this with (4.2), we get

lim sup
n→∞

1

qn− n′
Ei=n′

(
H(ν

(n)
y,i ∗ τ (n), Dqn)

)
≤ α. (4.3)

We also note the equality

lim
n→∞

1

qn
H(µ,Dqn) = lim

n→∞

1

qn− n′
H(µ,Dqn−n′)

= lim
n→∞

1

qn− n′
H(τ (n),Dqn) = α, (4.4)

since τ (n) is µ scaled down by 2−n
′
. By Lemma 1.25, for each component ν

(n)
y,n′ ,

1

qn− n′
H(ν

(n)
y,n′ ∗ τ

(n),Dqn) ≥ 1

qn− n′
H(τ (n),Dqn) +O

(
1

qn− n′

)
.

By taking limits when n→∞, we get

lim
n→∞

1

qn− n′
H(ν

(n)
y,n′ ∗ τ

(n),Dqn) > α− δ
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for any component ν
(n)
y,n′ and δ > 0, and therefore

lim
n→∞

Pi=n′
(

1

qn− n′
H(ν

(n)
y,i ∗ τ (n),Dqn) > α− δ

)
= 1.

On the other hand, by Markov's inequality and (4.3),

Pi=n′
(

1

qn− n′
H(ν

(n)
y,i ∗ τ (n),Dqn) + δ < α + δ′

)
= 1− Pi=n′

(
1

qn− n′
H(ν

(n)
y,i ∗ τ (n),Dqn)− α + δ ≥ δ′

)

≥ 1−
1

qn−n′Ei=n′
(
H(ν

(n)
y,i ∗ τ (n), Dqn)

)
− α + δ

δ′

≥ 1− δ′,

when δ′ =
√
δ and n is large. This combined with the previous limit gives

lim
n→∞

Pi=n′
(∣∣∣∣ 1

qn− n′
H(ν

(n)
y,i ∗ τ (n),Dqn)− α

∣∣∣∣ < δ′
)
> 1− δ′.

Replacing α with the limit from (4.4), we have

lim
n→∞

Pi=n′
(∣∣∣∣ 1

qn− n′
H(ν

(n)
y,i ∗ τ (n),Dqn)− 1

qn− n′
H(τ (n),Dqn)

∣∣∣∣ < δ′
)
> 1−δ′

(4.5)
for any δ > 0.

Let ε > 0. By the uniformity of the entropy dimension (Proposition 3.16)
and the assumption that α < 1, for small enough ε, large enough m and large
n,

Pn′≤i<qn′
(
Hm((τ (n))x,i) < 1− ε

)
≥ Pn′≤i<qn′

(
Hm((τ (n))x,i) < α− ε

)
> 1− ε.

The bounds for i here follow from the fact that the components of τ (n) are
identically distributed to those of µ when the scale is decreased by 2−n

′
.

Choose now δ > 0 so that δ′ is smaller than ε and smaller than the δ(ε,m)
in the statement of Theorem 1.28. Assuming n is su�ciently large, we apply
the theorem in question to the measure ν

(n)
y,i in the event of equation (4.5).

By the theorem, since 1
qn−n′H(ν

(n)
y,i ∗ τ (n),Dqn) < 1

qn−n′H(τ (n),Dqn) + δ′, each

component must satisfy 1
qn−n′H(ν

(n)
y,i ,Dqn) < ε. Hence by (4.5),

lim
n→∞

Pi=n′
(

1

qn− n′
H(ν

(n)
y,i , Dqn) < ε

)
> 1− δ′ > 1− ε. (4.6)
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Thus, from the de�nition of conditional entropy and the inequality above,
we conclude that

lim
n→∞

1

qn− n′
H(ν(n),Dqn|Dn′) = lim

n→∞

1

qn− n′
∑
D∈Dn′

ν(n)(D)H(ν
(n)
D ,Dqn)

= lim
n→∞

1

qn− n′
Ei=n′

(
H(ν

(n)
y,i ,Dqn)

)
= lim

n→∞
Ei=n′

(
1

qn− n′
H(ν

(n)
y,i ,Dqn)

)
< ε(1− ε) + ε

< ε′ (4.7)

for some ε′ > 0 that goes to 0 with ε. The second to last inequality follows
from the fact that when i = n′, ν

(n)
y,i is supported on 2qn−n

′
intervals of the

partition Dqn and hence outside the event of (4.6), the random variable has

the bound 1
qn−n′H(ν

(n)
y,i ,Dqn) < log2(2qn−n

′
)/(qn− n′) = 1.

To get the limit in the form it was in the theorem, we have yet to do
some simple modi�cations; by Lemma 1.5 (v. ), since qn′/qn = blog2(1/r)c
for each n, we have∣∣∣∣ 1

n′
H(ν(n),Dqn′)−

1

n′
H(ν(n),Dqn)

∣∣∣∣ ≤ Or

(
1

n′

)
.

Note that as a consequence of (4.7), we have

lim
n→∞

1

n′
H(ν(n),Dqn|Dn′) <

(
q

blog2(1/r)c
− 1

)
ε′.

Combining these, we get

lim
n→∞

1

n′
H(ν(n),Dqn′ |Dn′) = lim

n→∞

(
1

n′
H(ν(n),Dqn′)−

1

n′
H(ν(n),Dn′)

)
≤ lim

n→∞

(
1

n′
(
H(ν(n),Dqn)−H(ν(n),Dn′)

)
+Or

(
1

n′

))
= lim

n→∞

1

n′
H(ν(n),Dqn|Dn′)

< ε′′

for ε′′ =
(

q
blog2(1/r)c − 1

)
ε′ which goes to 0 with ε. We may also depose of the

requirement q > blog2(1/r)c, since in this case the last limit above equals 0
trivially. This �nishes the proof.
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By the theorem,
1

n′
H(ν(n),Dqn′) is close to the normalized scale-n′ entropy

of ν(n) which in turn approaches the dimension of µ as n′ grows. In particular,
1

n′
H(ν(n),Dqn′) ≈ dimµ < dimS µ implies that for every q, there are distinct

multi-indices I and J of length n and φI(0), φJ(0) belonging to the same
atom of Dqn′ and therefore ∆n′ < 2−qn

′
; we will discuss this with more detail

in the proof of Theorem 4.9 after generalizing the result above to an IFS with
non-uniform contraction ratios.

Let Φ = {φi | φi(x) = rix+ai for all x ∈ R}i∈Λ, let (pi)i∈Λ be a probability
vector and de�ne

r =
∏
i∈Λ

rpii

so that log2 r is the expected value of log2 ri when ri are chosen randomly,
each with probability pi. Note that if I = (i1, . . . , in) ∈ Λn is chosen with
probability pI , by the law of large numbers,

lim
n→∞

P
(∣∣∣∣ log2 rI

n
− log2 r

∣∣∣∣ < ε

)
= 1

for all ε > 0. De�ne again n′ = nblog2(1/r)c. By the above, since rn = 2−n
′
,

we have
rI = rn(1+o(1)) = 2−n

′(1+o(1)) (4.8)

with probability that tends to 1 as n tends to in�nity.
In the non-uniform case, we cannot use the partition Dn to detect exact

overlaps, since φI(0) = φJ(0) may happen for some I, J ∈ Λn with di�erent
contraction ratios. To take this into account, we slightly modify the approx-
imation measure of µ and de�ne the probability measure ν̃(n) on R × R by
setting

ν̃(n) =
∑
I∈Λn

pI · δ(φI(0),rI).

De�ne also the partition of R× R,

D̃n = Dn ×F ,

where F is the (uncountable) partition of R into points.

Theorem 4.12. Let µ be a self-similar measure on R and ν̃(n) as above. If
dimµ < 1, then

lim
n→∞

1

n′
H(ν̃(n), D̃qn′ |D̃n′) = 0 for every q > 1.
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Proof ([7], p. 35). For any integer n, de�ne the set of all length-n contraction
ratios

Rn = {rI | I ∈ Λn}.
As the number of length-n multi-indices |Λ|n gives rise to only polynomially
many contraction ratios, we may write |Rn| ≤ O(n|Λ|). Since ν̃(n) is sup-
ported on |Rn| points of {R}×F , we have H(ν̃(n), {R}×F) = O(log2 n) and
consequently for all k, since D̃k = (Dk ×F) ∨ ({R} × F),

H(ν̃(n), D̃k) = H(ν̃(n), (Dk ×F)|({R} × F)) +H(ν̃(n), {R} × F)

= H(ν(n),Dk) +O(log2 n).

Thus
H(ν̃(n), D̃qn|D̃n′) = H(ν(n),Dqn|Dn′) +O(log2 n)

and we only have to show that for every q > 1,

1

qn
H(ν(n),Dqn|Dn′)→ 0 as n→∞.

Since for every ε > 0, |H(ν(n),D(1−ε)n′) − H(ν(n),Dn′)| ≤ O(log2 2εn
′
) by

Lemma 1.5 (ii.), we may write

H(ν(n),Dqn|D(1−ε)n′) = H(ν(n),Dqn|Dn′)−O(n′ε)

and hence it will su�ce for us to show that

lim sup
n→∞

1

qn
H(ν(n),Dqn|D(1−ε)n′) = o(1) as ε→ 0.

For a length-n contraction ratio t ∈ Rn, let

Λn,t = {I ∈ Λn | rI = t},

pn,t =
∑
I∈Λn,t

pI ,

so (pn,t)t∈Rn is a probability vector. In the following we sometimes consider
I ∈ Λn and t ∈ Rn as random elements drawn according to the probabilities
pI and p

n,t, respectively. Then, a random I ∈ Λn,t is drawn according to the
conditional probability that I ∈ Λn with a given t = rI ; this is pI/p

n,t. We
introduce expressions PI∈Λn(·),PI∈Λn,t(·) and Pt∈Rn(·) in the same manner as
in Section 0. With this notation, we may consider I 7→ δφI(0) as a discrete
random variable and de�ne

ν(n,t) = EI∈Λn,t(δφI(0)) =
1

pn,t

∑
I∈Λn,t

pI · δφI(0).
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This is clearly a probability measure on R and represents the part of ν(n)

coming from contractions with ratio t; indeed,

ν(n) =
∑
t∈Rn

pn,t
1

pn,t

∑
I∈Λn,t

pI · δφI(0) = Et∈Rn(ν(n,t)).

For t > 0, de�ne τ (t) as the measure µ scaled by t;

τ (t)(A) = µ(t−1A).

Much like in the proof of the previous theorem, by rearranging the sums and
using bilinearity of convolution, we have

µ(A) =
∑
I∈Λn

pI · µ(r−1
I (A− φI(0)))

=
∑
I∈Λn

pI · (δφI(0) ∗ τ (rI))(A)

=
∑
t∈Rn

pn,t

(
1

pn,t

∑
I∈Λn,t

pI · (δφI(0) ∗ τ (t))

)
(A)

=
∑
t∈Rn

pn,t
(
ν(n,t) ∗ τ (t)

)
(A)

= Et∈Rn

(
ν(n,t) ∗ τ (t)

)
(A).

Now �x an arbitrary ε > 0. Replacing n′ with (1− ε)n′ in the discussion
leading to (4.2) in the previous proof, we obtain

α = lim
n→∞

1

qn− (1− ε)n′
H(µ,Dqn|D(1−ε)n′)

and using concavity of conditional entropy,

α ≥ lim sup
n→∞

1

qn− (1− ε)n′
Et∈Rn

(
H(ν(n,t) ∗ τ (t),Dqn|D(1−ε)n′)

)
. (4.9)

By (4.8),

lim
n→∞

PI∈Λn

(
2−n

′(1+ε) < rI < 2−n
′(1−ε)

)
= 1

or, replacing rI with t,

lim
n→∞

Pt∈Rn

(
2−n

′(1+ε) < t < 2−n
′(1−ε)

)
= 1. (4.10)
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Since

lim
n→∞

1

qn− (1− ε)n′
H(τ (2−n′(1±ε)),Dqn)

= lim
n→∞

1

qn− (1− ε)n′
H(µ,Dqn−(1±ε)n′)

= α, (4.11)

we conclude that

lim
n→∞

Pt∈Rn

(
1

qn− (1− ε)n′
H(τ (t),Dqn) ≥ (1− ε)α

)
= 1. (4.12)

Assuming the event of (4.10) and using the fact that ν
(n,t)
y,n′ ∗τ (t) has its support

contained in intervals with combined length of at most O(1) · 2−n′(1−ε), we
have

H(ν
(n,t)
y,n′ ∗ τ

(t),Dqn|D(1−ε)n′) = H(ν
(n,t)
y,n′ ∗ τ

(t),Dqn)−H(ν
(n,t)
y,n′ ∗ τ

(t),D(1−ε)n′)

= H(ν
(n,t)
y,n′ ∗ τ

(t),Dqn)−O(1).

Using the above, equations (4.9), (4.10), and concavity of conditional entropy,
we get

α ≥ lim sup
n→∞

1

qn− (1− ε)n′
Et∈Rn

(
Ei=n′

(
H(ν

(n,t)
y,i ∗ τ (t),Dqn|D(1−ε)n′

))
= lim sup

n→∞

1

qn− (1− ε)n′
Et∈Rn

(
Ei=n′

(
H(ν

(n,t)
y,i ∗ τ (t),Dqn

))
. (4.13)

By Lemma 1.25, for every component ν
(n,t)
y,i ,

1

qn− (1− ε)n′
H(ν

(n,t)
y,i ∗ τ (t),Dqn) ≥ 1

qn− (1− ε)n′
H(τ (t),Dqn)

+O

(
1

qn− (1− ε)n′

)
.

Combining this with (4.12), we get

lim
n→∞

Pt∈Rn

(
1

qn− (1− ε)n′
H(ν

(n,t)
y,i ∗ τ (t),Dqn) > (1− ε)α− δ

)
= 1

for every δ > 0. Let δ = δ(ε) be such that it tends to 0 with ε but large
enough so that α ≤ (1− ε)α+ δ/2. Assuming n is large, we apply Markov's
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inequality and (4.13) to obtain

Pt∈Rn,i=n′

(
1

qn− (1− ε)n′
H(ν

(n,t)
y,i ∗ τ (t),Dqn) + δ < (1− ε)α + δ′

)
= 1− Pt∈Rn,i=n′

(
1

qn− (1− ε)n′
H(ν

(n,t)
y,i ∗ τ (t),Dqn) + δ − (1− ε)α ≥ δ′

)

≥ 1−

1

qn− (1− ε)n′
Et∈Rn

(
Ei=n′

(
H(ν

(n,t)
y,i ∗ τ (t),Dqn

))
+ δ − (1− ε)α

δ′

≥ 1− δ/2

δ′

≥ 1− δ′

for δ′ =
√
δ/2. Hence we have

lim
n→∞

Pt∈Rn,i=n′

(∣∣∣∣ 1

qn− (1− ε)n′
H(ν

(n,t)
y,i ∗ τ (t),Dqn)− (1− ε)α

∣∣∣∣ < δ′
)
≥ 1−δ′

and replacing α with the limit from (4.11),

lim
n→∞

Pt∈Rn,i=n′

(∣∣∣∣ 1

qn− (1− ε)n′
(
H(ν

(n,t)
y,i ∗ τ (t),Dqn)−H(τ (t),Dqn)

)∣∣∣∣ < δ′
)

≥ 1− δ′ (4.14)

Let ε′ > 0. As in the previous proof, we apply Proposition 3.16 to the measure
τ (n) and assuming α < 1, ε′ is small and m, n are large, we obtain

Pn′≤i<qn′
(
Hm((τ (n))x,i) < 1− ε′

)
≥ Pn′≤i<qn′

(
Hm((τ (n))x,i) < α− ε′

)
> 1− ε′.

Continuing along the lines of the proof of the previous theorem, we choose δ
smaller than the constant of the same name in Theorem 1.28 and apply the
theorem in question to the components ν

(n,t)
y,i . We conclude that given the

event of (4.14), it follows that 1
qn−(1−ε)n′H(ν

(n,t)
y,i ,Dqn) < ε′. Hence, by (4.14),

lim
n→∞

Pt∈Rn,i=n′

(
1

qn− (1− ε)n′
H(ν

(n,t)
y,i ,Dqn) < ε′

)
≥ 1− δ′.

We then conclude, using Lemma 1.4 (vi.) and the facts that H((pn,t)t∈Rn) ≤
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O(log2 |Rn|) ≤ O(log2 n) and H(ν(n,t),D(1−ε)n′) = H(ν(n,t),Dn′) +O(εn′),

lim sup
n→∞

1

qn− (1− ε)n′
H(ν(n),Dqn|D(1−ε)n′)

= lim sup
n→∞

1

qn− (1− ε)n′
H
(
Et∈Rn(ν(n,t)),Dqn|D(1−ε)n′

)
≤ lim sup

n→∞
Et∈Rn

(
1

qn− (1− ε)n′
H(ν(n,t),Dqn|Dn′)

)
+O(ε)

= lim sup
n→∞

Et∈Rn

 1

qn− (1− ε)n′
∑
D∈Dn′

ν(n,t)(D)H(ν
(n,t)
D ,Dqn)

+O(ε)

= lim sup
n→∞

Et∈Rn

(
1

qn− (1− ε)n′
Ei=n′

(
H(ν

(n,t)
y,i ,Dqn)

))
+O(ε)

≤ ε′(1− δ′) + δ′
1

qn− (1− ε)n′
log2

(
2qn−n

′
)

+O(ε)

≤ ε′′(ε, δ′),

which is what we wanted to prove.

We can now derive Theorem 4.9.

Proof of Theorem 4.9 ([7], p. 5). Let µ be a self-similar measure with dimµ <
{1, dimS µ}. De�ne ν̃(n) and n′ as before. Note that the conclusion of Theorem
4.12 is equivalent to

lim
n→∞

1

n′
H(ν̃(n), D̃qn′) = dimµ

for every q > 1. Hence, by our assumption, for any q and all su�ciently large
n, we have

1

n′
H(ν̃(n), D̃qn′) < dimS µ.

Since ν̃(n) =
∑

I∈Λn pI ·δ(φI(0),rI), if each pair (φI(0), rI) belonged to a di�erent
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atom of D̃qn′ = Dqn′ ×F , we would have

1

n′
H(ν̃(n), D̃qn′) ≥ −

1

n log2(1/r)

∑
I∈Λn

pI log2 pI

=

∑
i∈Λ

∑
I∈Λn−1 pipI log2 pi +

∑
i∈Λ

∑
I∈Λn−1 pipI log2 pI

n
∑

i∈Λ pi log2 ri

=

∑
i∈Λ pi log2 pi +

∑
I∈Λn−1 pI log2 pI

n
∑

i∈Λ pi log2 ri
...

=
n
∑

i∈Λ pi log2 pi

n
∑

i∈Λ pi log2 ri

= dimS µ

which is a contradiction. Thus there must be two distinct I, J ∈ Λn for which
(φI(0), rI) and (φj(0), rJ) lie in the same atom of Dqn′ ×F . This means that
∆n ≤ |φI(0)− φJ(0)| ≤ 2−qn

′
and

lim
n→∞

(
− 1

n
log2 ∆n

)
≥ lim

n→∞

(
qn′

n

)
= qblog2(1/r)c

for every q > 1.

We can also derive from Theorem 4.9 a corresponding result for the di-
mension of the attractor.

Corollary 4.13. If X is the attractor of an IFS on R and dimX < min{1, dimS X},
then lim(− 1

n
log2 ∆n) =∞.

Proof. De�ne the self-similar measure µ =
∑

i∈Λ r
dimS X
i · φiµ with similarity

dimension

dimS µ =

∑
i∈Λ r

dimS X
i dimS X log2 ri∑
i∈Λ r

dimS X
i log2 ri

= dimS X.

Since the support of µ is contained in X, we have dimµ ≤ dimX so by
assumption, dimµ < min{1, dimS µ}. Hence by Theorem 4.9, ∆n converges
to 0 super-exponentially.

4.2 Applications

Theorem 4.9 and Corollary 4.13 settle a number of cases of the Conjecture 4.8.
We take a look at three examples of this. First we discuss an IFS where the
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parameters of the contractions are algebraic numbers and show that in this
case, the dimension drop can only happen in the presence of exact overlaps.
Then we return to the one dimensional Sierpinski gasket and show that while
by Mastrand's projection theorem the dimension remains unchanged when
projected onto the line from (Lebesgue-) almost any direction, the number
of such angles is in fact countable. Finally, we show that for a family of
contractions with parameters being real analytic functions of t on a compact
interval, the set of t in which the dimension drop can occur has packing (and
therefore also Hausdor�) dimension 0.

4.2.1 IFSs with algebraic parameters

Let ri and ai be algebraic numbers and consider an IFS where the contractions
are of the form φi(x) = rix+ ai.

Theorem 4.14. For IFSs on R de�ned by algebraic parameters, there is
a dichotomy: either there are exact overlaps, or the attractor X satis�es
dimX = min{1, dimS X}.

Before proving this, we bring up some de�nitions and results from alge-
braic number theory. Most of the proofs are omitted.

De�nition 4.15. A complex number α is algebraic, if there is a polynomial
f with rational coe�cients such that f(α) = 0. The degree of α is the de-
gree of the unique minimal, monic polynomial fα for which fα(α) = 0. The
conjugates of α are the other roots of fα.

De�nition 4.16. If E is a �eld containing F as a sub�eld and x ∈ E, de�ne
the extension �eld F (x) as the smallest sub�eld of E containing both F and
x. We call the extension �nite, if it is �nite dimensional as a vector space
over F .

Lemma 4.17. Let α be an algebraic number of degree d. Then Q(α) is a
vector space over Q with basis {1, α, . . . , αd−1}.

Proof. See [3], Lemma 3.9.

Lemma 4.18. If a1, . . . , ak are algebraic numbers, then Q(a1, . . . , ak) =: K
is a �nite extension of Q. Moreover, there is a θ ∈ K such that K = Q(θ).

Proof. See [3], Lemmas 3.8., 3.9. and 3.10.

De�nition 4.19. The norm of an algebraic number α is de�ned as the
determinant of the linear transformation πα : Q(α)→ Q(α), πα(x) = αx and
is denoted by

N(α) = det(πα).
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Lemma 4.20. Let α be an algebraic number and α = α1, . . . , αu its conju-
gates. Then then norm of α is an integer and is given by

N(α) =
u∏
i=1

αi.

Proof. See [10], Propositions 1.9. and 1.10.

The �nal algebraic result we require is the following lemma, given by
Hochman in [7].

Lemma 4.21. Let A ⊂ R be a �nite set of algebraic numbers over Q. Then
there is a constant 0 < s < 1 such that for any degree-n polynomial P in the
elements of A, either P = 0 or |P | > sn.

Proof ([7], p. 40). By Lemma 4.18, we may choose an algebraic number α
such that A = {a1, . . . , al} ⊂ Q(α). Without changing the statement, we
may multiply every element in A by an integer and by Lemma 4.17 assume
that all the elements of A are integer polynomials of α of degree at most d
and coe�cients bounded by N for some d,N that depend only on α. Hence
we may write the polynomial P as

P =
n∑
k=0

mka
k
k =

n∑
k=0

mk

(
d∑
i=0

ni,kα
i

)k

=
nd∑
k=0

ñkα
k,

where ñk ∈ N and |ñk| ≤ N . Therefore it su�ces to show that any such
expression is either 0 or greater than sn in absolute value for an 0 < s < 1
independent of n. By replacing s with s1/d and changing nd to n′, we may
assume that d = 1.

Denote by σ1, . . . , σu the maximal set of automorphisms of Q(α) (i.e.
isomorphisms Q(α) → Q(α)) with σi(α) 6= σj(α) for distinct i, j. Note that
σi(α) =: αi are the conjugates of α, since for the minimal monic polynomial
fα of α, fα(σi(α)) = σi(fα(α)) = 0. If P 6= 0, then by Lemma 4.20

u∏
i=1

σi(P ) =
u∏
i=1

(
n∑
k=0

ñkσi(α)k

)
∈ Z.

We conclude that

1 ≤

∣∣∣∣∣
u∏
i=1

σi(P )

∣∣∣∣∣ = P ·
u∏
i=2

∣∣∣∣∣
n∑
k=0

nkσi(P )k

∣∣∣∣∣
≤ P ·

u∏
i=2

n∑
k=0

nk|αi|k

≤ P · (n ·N · αnmax)u,
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where αmax = max{|α2|, . . . , |αu|}.

We can now prove Theorem 4.14.

Proof of Theorem 4.14 ([7], p. 6). Let ri, ai be algebraic and write φi(x) =
rix+ ai. For all distinct multi-indices I, J ∈ Λn, the distance |φI(0)− φJ(0)|
is a degree-n polynomial of ri and ai. Hence by Lemma 4.21 it either equals 0
or is greater than sn for a constant 0 < s < 1 depending only on the numbers
ri and ai. Thus either ∆n = 0, implying an exact overlap, or ∆n ≥ sn and

lim
n→∞

(
− 1

n
log2 ∆n

)
≤ lim

n→∞

(
sn

n

)
= 0

and the statement follows from Corollary 4.13.

Remark 4.22. By the proof, in any IFS where the cylinders are either equal or
exponentially separated, the dimension drop may only occur in the presence
of exact overlaps.

4.2.2 Projecting the Sierpinski gasket

In Section 3 we considered the one dimensional Sierpinski gasket and showed
that its dimension is indeed 1. We will now take a look at what happens to
the dimension when we project the set onto the line.

De�ne the linear projection mappings πt(x, y) = tx+ y and consider the
set Ft = πt(F ).

Lemma 4.23. The set Ft is the attractor of an IFS Φ de�ned by the con-
tractions

φ1(x) =
1

3
x, φ2(x) =

1

3
(x+ 1), φ3(x) =

1

3
(x+ t).

Proof. Recall from Section 3 that F is the attractor of{
θ1 : (x, y) 7→

(
x
3
, y

3

)
, θ2 : (x, y) 7→

(
x+1

3
, y

3

)
, θ3 : (x, y) 7→

(
x
3
, y+1

3

)}
.

Hence

πt(F ) = πt

(
3⋃
i=1

θi(F )

)
=

3⋃
i=1

πt(θi(F )),

where

πt(θ1(x, y)) =
tx+ y

3
= φ1(πt(x, y)),

πt(θ2(x, y)) =
tx+ t+ y

3
= φ3(πt(x, y)),

πt(θ3(x, y)) =
tx+ 1 + y

3
= φ2(πt(x, y)).
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Therefore the projection set Ft also has similarity dimension 1. It was
conjectured by H. Furstenberg in 1970's that dimFt = 1 whenever t is irra-
tional. Since R. Kenyon showed in [8] (Lemma 6.) that an exact overlap can
only occur for certain rational values of t, this conjecture is a special case of
Conjecture 4.8.

Theorem 4.24. If t /∈ Q, then dimFt = 1.

Proof ([7], p. 7). Fix a t and suppose that dimFt < 1. Let Λ = {0, 1, t} so
that φi(x) = 1

3
(x+ i) for all φi ∈ Φ. For all multi-indices I ∈ Λn,

φI(0) = φi1 ◦ . . . ◦ φin(0) =
1

3

(
1

3

(
. . .

(
1

3
in

)
. . .+ i2

)
+ i1

)
=

n∑
k=1

ik3
−k

and hence

|φI(0)− φJ(0)| =

∣∣∣∣∣
n∑
k=1

ik3
−k −

n∑
k=1

jk3
−k

∣∣∣∣∣
=

∣∣∣∣∣∑
ik 6=t

ik3
−k −

∑
jk 6=t

jk3
−k − tqI,J

∣∣∣∣∣
= |pI,J − tqI,J |,

where qI,J ≥ 0 (possibly multiplied by −1) is the sum of terms that are
multiplied by t, and pI,J is what remains of the sum after removing tqI,J .
Both pI,J and qI,J are rational numbers belonging to the set

Sn =

{
n∑
i=1

ai3
−i | ai ∈ {−1, 0, 1}

}
.

Therefore there are pn, qn ∈ Sn such that ∆n = |pn− tqn|. By Corollary 4.13,
∆n converges to 0 super-exponentially; particularly, for large enough n,

|pn − tqn| < 30−n. (4.15)

If qn = 0 for this n, then |pn| < 30−n. Since pn is a rational number with
denominator 3n, this can only happen if pn = 0, implying that ∆n = 0 and
t ∈ Q.

Suppose then that qn 6= 0 for all large n. Since qn is rational with denom-
inator 3n, we have qn ≥ 3−n. Dividing (4.15) by qn we get |t−pn/qn| < 10−n.
By the triangle inequality,∣∣∣∣pn+1

qn+1

− pn
qn

∣∣∣∣ ≤ ∣∣∣∣t− pn+1

qn+1

∣∣∣∣+

∣∣∣∣t− pn
qn

∣∣∣∣ < 2 · 10−n
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for large enough n. Since pn, qn, pn+1, qn+1 ∈ Sn+1,
pn+1

qn+1

− pn
qn

is rational with

denominator at most 3n+13n+1 = 9n+1. Hence∣∣∣∣pn+1

qn+1

− pn
qn

∣∣∣∣ 6= 0 =⇒
∣∣∣∣pn+1

qn+1

− pn
qn

∣∣∣∣ ≥ 9−(n+1).

But for large n, 2·10−n < 9−n+1, implying that pn/qn = pn+1/qn+1. Therefore,
there is an N such that |t− pN/qN | < 10−n for all n > N , which means that
t = pN/qN ∈ Q.

4.2.3 Parametric families of self-similar sets and measures

Let S ⊂ R be a compact interval, let ri : S → (−1, 1) \ {0} and ai : S → R
for all i ∈ Λ. For each parameter t ∈ S, de�ne contractions φi,t : R → R by
φi,t(x) = ri(t)(x−ai(t)). For a multi-index I ∈ Λn, de�ne φI,t = φi1,t◦· · ·◦φin,t
and set

∆I,J(t) = φI,t(0)− φJ,t(0).

If t is �xed, the distance ∆n = ∆n(t) associated to an IFS {φi,t}i∈Λ is always
greater than the minimum of |∆I,J(t)| over distinct multi-indices I, J ∈ Λn

since it is the minimum over pairs with equal contraction ratios. Thus, if
limn→∞(− 1

n
log2(∆n)) = ∞, the number min{|∆I,J(t)| | I, J ∈ Λn} also

converges to 0 super-exponentially and hence Theorem 4.9 may be used to
conclude the following.

Theorem 4.25. Let Φt = {φi,t}i∈Λ be a parametrized IFS as above, with ri
and ai real analytic. For every ε > 0, let

Eε =
∞⋃
N=1

⋂
n>N

( ⋃
I,J∈Λn

∆−1
I,J(−εn, εn)

)

and
E =

⋂
ε>0

Eε.

Then for t ∈ S \ E, for every probability vector p = (pi), the associated self-
similar measure µt of Φt satis�es dimµt = min{1, dimS µt}, and the attractor
Xt of Φt satis�es dimXt = min{1, dimS Xt}.

Proof. We show that if the conclusion of the theorem does not hold for a
given t ∈ S, then t belongs to the set E. Indeed, assume t ∈ S is such that
dimµt < min{1, dimS µt}. Then by Theorem 4.9 and the discussion above,
min{|∆I,J(t)| | I, J ∈ Λn} → 0 super-exponentially and for any ε > 0 there
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exists an integer n(ε) such that whenever n ≥ n(ε), |∆I,J(t)| < εn for some
pair I, J ∈ Λn. Hence t ∈

⋃
I,J∈Λn ∆−1

I,J(−εn, εn) for all n ≥ n(ε); this means
that t ∈ Eε. Since ε was arbitrary, t ∈ E.

We aim to show that the set E is small in the sense of packing dimension,
implying the parameters in E are somehow �exceptional�; hence we call it
the set of exceptional parameters. We extend the de�nition of ∆I,J to in�nite
sequences I, J ∈ ΛN by

∆I,J(t) = lim
n→∞

∆In,Jn(t),

where In and Jn are the length-nmulti-indices consisting of the �rst n integers
of I and J . The de�nition by limit is well-de�ned, since (φIn,t(0))n∈N converges
for all t; for any ε > 0,

|φIn,t(0)− φIn,t(φJ,t(0))| ≤ |rIn(t)||φJ,t(0)| ≤ max
i∈Λ,t∈S

|ri(t)|n < ε

for large enough n and any multi-index J . Since S is compact and the estima-
tion above does not depend on the indices of In, the convergence is uniform
over S and Λn. Hence, if ai and ri are real analytic in a neighbourhood of S,
so are the functions ∆I,J .

Theorem 4.26. Let S ⊂ R be a compact interval, let r : S → (−1, 1) \ {0}
and ai : S → R be real analytic, and let Φt = {φi,t}i∈Λ be the associated
parametric family of iterated function systems, as above. Suppose that for all
I, J ∈ ΛN,

∆I,J ≡ 0 on S if and only if I = J.

Then the set E of exceptional parameters in Theorem 4.25 has packing di-
mension 0.

The proof of this theorem is based on a transversality method. For multi-
indices or sequences I, J , denote by I∧J the longest common initial segment
of I and J and let |I ∧ J | denote its length, |I ∧ J | = min{k | ik 6= jk} − 1.
Let

rmin = min
i∈Λ
{min
t∈S
|ri(t)|},

so 0 < rmin < 1. For a k-times continuously di�erentiable function F : S → R,
write F (p) = dp

dtp
F for all p ≤ k and

‖F‖S,k = max
p∈{0,...,k}

{max
t∈S
|F (p)(t)|}.

Finally, we write
Rk = max

i∈Λ
‖ri‖S,k.
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De�nition 4.27. The family of iterated function systems {Φt}t∈S is trans-
verse of order k if ri and ai are k-times continuously di�erentiable and there
is a constant c > 0 such that for every n ∈ N and distinct multi-indices
I, J ∈ Λn,

|∆(p)
I,J(t0)| ≥ c · |I ∧ J |−p · rI∧J(t0)

for all t0 ∈ S and for p = p(t0) ∈ {0, . . . , k}.

This notion of transversality is used by Hochman in [7].

Proposition 4.28. Suppose ri and ai are real analytic on S. Suppose also
that for I, J ∈ ΛN, ∆I,J ≡ 0 on S if and only if I = J . Then the associated
family {Φt}t∈I is transverse of order k for some k.

Proof ([7], p. 38). For all i and t, write φi,t(x) = ri(t)(x+ai(t)). Note that for
all t ∈ S, we may extend ri and ai analytically to a complex neighbourhood
Ut of t on which |ri| are still uniformly bounded away from 1; writing ri(z) =∑∞

k=1 ak(z− t0)n, ri is complex analytic in the disc in which the power series
converges, and by continuity there is an open neighbourhood in the complex
plane in which |ri| < 1. The function ai extends similarly.

De�ne ∆I,J(z) as before for multi-indices I, J and z ∈ Ut, and note that
for I, J ∈ ΛN, the limit ∆I,J(z) = limn→∞∆In,Jn(z) is uniform in Ut. Since
the uniform limit of analytic functions on an open set is analytic, ∆I,J(t) is
real analytic on S.

Denote by U, V the sequences obtained from I, J ∈ ΛN by removing the
common part I ∧ J from both of them and write

∆̃I,J(t) = ∆U,V (t).

Then
∆I,J(t) = rI∧J(t)∆̃U,V (t).

We di�erentiate ∆̃I,J(t) p times using the general Leibniz rule and the ex-
pression above to obtain

∆̃
(p)
I,J(t) =

dp

dtp
(rI∧J(t)−1 ·∆I,J(t))

=

p∑
q=0

(
p

q

)
· d

q

dtq
(rI∧J(t)−1) ·∆(p−q)

I,J (t).

A calculation shows that we can approximate the derivative of rI∧J(t)−1 by∣∣∣∣ dqdtq (rI∧J(t)−1)

∣∣∣∣ ≤ Oq,rmin,Rq

(
|I ∧ J |q · rI∧J(t)−1

)
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([7], p. 38). Therefore we have the bound

|∆̃(p)
I,J(t)| ≤

p∑
q=0

∣∣∣∣(pq
)
· d

q

dtq
(rI∧J(t)−1) ·∆(p−q)

I,J (t)

∣∣∣∣
≤

p∑
q=0

∣∣∣∣(pq
)
·Oq,rmin,Rq

(
|I ∧ J |q · rI∧J(t)−1

)
·∆(p−q)

I,J (t)

∣∣∣∣
≤ Op,rmin,Rp

(
max
0≤q≤p

(
|I ∧ J |q · rI∧J(t)−1 · |∆(q)

I,J(t)|
))

. (4.16)

Suppose that the family {Φt} is not transverse of any order. Then by de�ni-
tion, for any k and ck > 0, there exist an n(k) and distinct I(k), J(k) ∈ Λn(k),
and a parameter tk ∈ S such that

|∆(p)
I(k),J(k)(tk)| < ck · |I(k) ∧ J(k)|−p · rI(k)∧J(k)(tk)

for all 0 ≤ p ≤ k. Combining this with (4.16), there exists c′k = Ok,Rk
(ck)

such that

|∆̃(p)
I(k),J(k)(tk)| ≤ Op,rmin,Rp

(
max
0≤q≤p

(
|I(k) ∧ J(k)|q · rI(k)∧J(k)(tk)

−1 · |∆(q)
I(k),J(k)(tk)|

))
≤ Op,rmin,Rp

(
max
0≤q≤p

(
|I ∧ J |q−p · ck

))
≤ c′k.

For all k, choose ck so that c
′
k < 1/k. Denote by U(k), V (k) the multi-indices

obtained from I(k) and J(k) by removing the common part I(k) ∧ J(k), so
that the �rst elements of U(k) and V (k) di�er and ∆U(k),V (k) = ∆̃I(k),J(k).
We have

|∆(p)
U(k),V (k)(tk)| ≤ c′k < 1/k for all 0 ≤ p ≤ k. (4.17)

Since S is a compact interval, there is a converging subsequence (tkl) of (tk).
De�ne t0 = liml→∞ tkl and U = limh→∞ U(klh), V = limh→∞ V (klh), the
latter two convergences de�ned in the sense that all the coordinates of the
multi-indices stabilize eventually to the corresponding coordinate in the limit
sequence. The subsequence (klh) is constructed in the following way.

For h = 1, choose I(kl1) so that there are in�nitely many multi-indices
with the same �rst element as I(kl1) in the sequence (I(kl)). If we have
chosen I(klh) ∈ Λn(klh ) for some h, the next element in the subsequence is
then chosen to be a multi-indice of length at least n(klh +1) (we may assume
that n(k) increases in k) with the �rst n(klh) elements corresponding to I(klh)

112



and with in�nitely many multi-indices of the same pre�x still remaining in
the sequence I(kl). The sequence (J(klh)) can be obtained simultaneously.

Since U(klh) and V (klh) di�er in their �rst symbols for all h, so do U and
V and they are distinct. As before, the convergence ∆U(klh ),V (klh ) → ∆U,V is
uniform in S and, since ∆U(klh ),V (klh ) are analytic, the same holds for the p-th
derivatives. Using (4.17), we obtain

|∆(p)
U,V (t0)| = lim

h→∞
|∆(p)

U(klh ),V (klh )(tklh )| = 0

for all p ≥ 0. Since ∆U,V is real analytic and vanishes along with its derivatives
in t0, Liouville's theorem asserts that ∆U,V ≡ 0 on S, which contradicts the
hypothesis.

Before we move onto the implications of transversality, we need the fol-
lowing lemma.

Lemma 4.29. Let k ∈ N, and let F be a k-times continuously di�erentiable
function on a compact interval S ⊂ R. Let M ≥ ‖F‖S,k, and let 0 < b < 1
be such that for every x ∈ S there is a p ∈ {0, . . . , k} with |F (p)(x)| > b.
Then for every 0 < ρ < (b/2)2k , the set F−1(−ρ, ρ) ⊂ S can be covered by
Ok,M,|S|(1/b

k) intervals of length at most 2(ρ/b)1/2k each.

Proof ([7], p. 38). We prove the statement by induction on k. If k = 0, by
hypothesis |F (0)(x)| = |F (x)| > b for all x ∈ S. Hence F−1(−ρ, ρ) = ∅ for
0 < ρ < b/2 = (b/2)20 , so the assertion is trivial.

Assume then the statement holds for k−1. Denote by S ′ a maximal closed
interval in F−1[−b, b] and let G = F ′|S′ . Assuming F satis�es the hypothesis
for k, |G(p)(x)| = |F (p+1)(x)| > b for 0 ≤ p ≤ k − 1 and M ≥ ‖F‖S,k ≥
‖G‖S′,k−1, so G satis�es the hypothesis for k − 1 with the same values of b

and M . Additionally,
√
bρ <

√
ρ < (b/2)2k−1

, so by the induction hypothesis
we know that G−1(−

√
bρ,
√
bρ) can be covered by Ok,M,|S|(1/b

k−1) intervals

of length at most 2(
√
bρ/b)1/2k−1

= 2(ρ/b)1/2k−1
each.

Denote by U the union of this cover and by S ′′ the set of the closures of the
maximal subintervals in S ′\U . Since removing Ok,M,|S|(1/b

k−1) intervals from
S ′ splits it into at most Ok,M,|S|(1/b

k−1) + 1 intervals, we know that |S ′′| ≤
Ok,M,|S|(1/b

k−1). Now, on each interval in S ′′ we have |G| = |F ′| ≥
√
bρ, so

by continuity of F ′, either F ′ ≥
√
bρ or F ′ ≤ −

√
bρ in every interval of S ′′.

Therefore, for all I ∈ S ′′, F is strictly monotonic in I and I∩F−1(−ρ, ρ) is an
interval of length at most 2ρ/

√
bρ = 2

√
ρ/b ≤ 2(ρ/b)1/2k . As a summary of

this discussion, we have covered S ′∩F−1(−ρ, ρ) by Ok,M,|S|(1/b
k−1) intervals

of length 2(ρ/b)1/2k each.
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We have yet to show that there are Ok,M,|S|(1/b) maximal intervals S ′ ⊂
F−1 ([−b, b]) such as the one in the discussion above. Assume S ′ is an interval
of this kind. If S ′ = S, the proof is complete, since then only one interval is
included in the cover. Otherwise, by continuity of F and maximality of S ′,
there is a point a ∈ S ′ with |F (a)| = b. There is also a point a′ ∈ S ′ with
|F (a′)| < ρ < (b/2)2k. Since |F ′| ≤ M , we conclude that |S ′| ≥ |a′ − a| ≥
(b−ρ)/M ≥ b/2M . Moreover, since the intervals S ′ are disjoint, their number
is at most |S|/(b/2M) = Ok,M,|S|(1/b). This completes the induction step.

Theorem 4.30. If {Φt}t∈S satis�es transversality of order k ≥ 1 on the
compact interval S and the mappings ri, ai are real analytic, then the set E
of exceptional parameters in Theorem 4.25 has packing dimension 0.

Proof ([7], p. 39). We aim to calculate the box dimension of E and then use
it in bounding the packing dimension. Write

M = sup
n
{ sup
I,J∈Λn

‖∆I,J‖S,k}.

Since ri, ai are real analytic, supIn,Jn∈Λn ‖∆In,Jn‖S,k <∞ for all n. As the limit
function ∆I,J is also real analytic for all I, J ∈ ΛN , the complex extensions

of the derivatives ∆
(p)
In,Jn

, In, Jn ∈ Λn converge locally uniformly to ∆
(p)
I,J and

since S is compact, ∆
(p)
In,Jn

(t)→ ∆
(p)
I,J(t) uniformly on S. Hence M is �nite.

Since the family {Φt} is transverse, there is a constant c > 0 such that
for every t ∈ S, every n and all distinct multi-indices I, J ∈ Λn,

|∆(p)
I,J(t)| > c · |I ∧ J |−p · r|I∧J |min for some p ∈ {0, . . . , k}.

By replacing c with c′ < 1, we may assume that c < 1.
Let n be given and �x distinct I, J ∈ Λn. Let b = b(n) = cn−krnmin so that

the hypothesis of Lemma 4.29 is satis�ed for the function ∆I,J and this b.

Then, for all 0 < ρ < (b/2)2k , the set {t ∈ S | |∆I,J(t)| < ρ} can be covered

by Ok,M,c,|S|(1/b
k) intervals of length 2(ρ/b)1/2k each.

Let now ε > 0 be such that ρ = εn satis�es ρ < (b(n)/2)2k = (cn−krnmin)2k

for all n. By the discussion above, we �nd covers of at most Ok,M,c,|S|(1/b
k)

intervals for all sets {t ∈ S | |∆I,J(t)| < εn}, for every distinct I, J ∈ Λn.
Ranging over all such pairs we �nd that the set

Eε,n :=
⋃

I,J∈Λn,I 6=J

(∆I,J)−1(−εn, εn)

can be covered byOk,M,c,|S|(|Λ|n/b(n)k) intervals of length at most 2(εn/b(n))1/2k

each. Now, de�ning

E ′ε =
∞⋃
N=1

⋂
n>N

Eε,n,
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we have for the set Eε in Theorem 4.25 that

Eε =
∞⋃
N=1

⋂
n>N

( ⋃
I,J∈Λn

(∆I,J)−1(−εn, εn)

)
⊂ E ′ε.

Hence the set of exceptional parameters E =
⋂
ε>0 Eε ⊂ E ′ε. For each ε and

N , adding to the error term when convenient, we have

dimB

(⋂
n>N

Eε,n

)
≤ lim sup

n→∞

log
(
Ok,M,c,|S|(|Λ|n/b(n)k)

)
− log

(
(εn/b(n))1/2k

)
= lim sup

n→∞

log
(
Ok,M,c,|S|(1)(nk)k|Λ|nk/rnkmin

)
Ok(1) log (nkεn/rnmin)

= Ok(1) lim sup
n→∞

log
(
nk|Λ|n/rnmin

)
+ logOk,M,c,|S|(1)

log(nkεn/rnmin)

= Ok(1) lim sup
n→∞

log(nk/n|Λ|/rmin)

log(nk/nε/rmin)

= Ok(1)
log(|Λ|/rmin)

log(ε/rmin)

which tends to 0 as ε → 0, uniformly in N . Since dimP ≤ dimB, the inter-
section has packing dimension 0 and hence

dimP E ≤ dimP E
′
ε = sup

N
dimP

(⋂
n>N

Eε,n

)
= 0.

We now obtain Theorem 4.26 by combining Proposition 4.28 and Theorem
4.30.
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