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Nomenclature

List of Abbreviations

kNN k-nearest neighbor

Auslan Australian sign language

CBD-GA Class boundary detection using graphical analysis

CLeVer descriptive Common principal component Loading-based Vari-
able subset selection method

CPC Common principal component

CPCA Common principal component analysis

DTW Dynamic time warping

ED Euclidean distance

EM Expectation maximization

i.i.d. Independent and identically distributed

KKT Karush-Kuhn-Tucker (condition)
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PCA Principal component analysis

PCA-SF Principal component analysis similarity factor

PIP Perceptually important point

PU Positive-unlabelled (learning)
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RW Ratanamahatana-Wanichsan (criterion)

S-C Sakoe-Chiba (window)

SC Stopping criterion
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SSL Semi-supervised learning

SVC2004 The �rst international signature veri�cation contest

SVDD Support vector data description

UTS Univariate time series

Notations

T Transpose

# Cardinality of a set

s(k) State

u(k) Action

W (k) Random disturbance

X Matrix, time series

x Vector

X(j) One feature of a multivariate time series

λi Lagrangian multiplier for an inequality constraint

E Expected value

P Probability function

L Lagrangian function

X Time series database

µj Lagrangian multiplier for an equality constraint

µk Decision rule

∇ Gradient

π Policy

‖ · ‖ Euclidean norm

J̃ Forward dynamic programming algorithm cost function
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ak
s(k)→s(k+1) Transition cost

B(x, ε) Ball with center x and radius ε

D, dom Domain set and domain operator

d(·, ·) Distance function

d∗, p∗ Dual and primal problem optimal values

f, q Objective functions for primal and dual problems

fk Function de�ning the system evolution

gi Function de�ning an inequality constraint

gk Cost functional

hj Function de�ning an equality constraint

J Dynamic programming cost function

m Number of dimensions

N Number of time series

n Number of observations, number of inequality constraints

NU Number of unlabelled instances

S Set

ti Time stamp

Uk(s
(k)) The set of admissible actions

W Warping path

x Scalar

a� A�ne hull

cl Closure

int Interior

relint Relative interior

Std Standard deviation
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Introduction

People are increasingly interested in monitoring their own lives. Some are
interested in their blood pressure, some about the amount and quality of
sleep they get and some about the daily consumption of calories. To ease
their lives, people use embedded devices that monitor their surroundings
using sensors.

In the every day business, there are many things to monitor. Shops record
surveillance videos to aid in the �ght against robberies. Steel producers mon-
itor the quality of the steel. Investment bankers are interested in the prices
of the stocks in the market.

One thing in common in all of these processes is that they produce time
series type of data. Time series do not satisfy the assumption of the data
points being independent and identically distributed (i.i.d.). Most models
created for non-temporal data are build on this particular assumption. The
vast number of sources of time series motivates us to study models that are
able to process time series type of data.

The continuously expanding masses of data have created a demand for
machine learning. Some tasks that have been automated successfully are
classi�cation and clustering. In many domains, these tasks can be automated
to a degree that the automation increases business value drastically.

In this thesis, I will study the semi-supervised classi�cation of multivari-
ate time series. The main argument is that in semi-supervised time series
classi�cation the use of temporal models is justi�ed over the non-temporal
models. In Section 1 I will carefully go through the mathematics behind
two successful algorithms: support vector data description and dynamic time
warping. Section 1 is mostly based on the existing literature in the books
[7] and [6]. In Section 2, the special characteristics of the time series are
discussed, especially the distance calculations on time series. The Section 3
is dedicated to one-class classi�cation and positive-unlabelled learning. In
Section 4 I will test the models empirically on three time series datasets.
Sections 5 and 6 conclude this thesis on observation of the results and the
possible future research.

In this thesis, I will present a novel proof to Theorem 2.9 in Section 2.3.3
and a new method for semi-supervised learning of time series called Peak
evaluation using perceptually important points in Section 3.4.3. In Section
2.3.3, I will also prove Lemmas 2.7 and 2.8 that are used in the proof to
Theorem 2.9.
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1 Optimization

Mathematical optimization is a �eld that specializes in �nding the optimal
value of an objective function under some constraints. The optimum is the
minimum value of a cost function or the maximum value of a utility func-
tion. The optimum was de�ned as the minimum or the maximum already in
the ancient Greek around 500 BC when the philosophers were interested in
�nding optima in �elds such as physics, astronomy and the quality of human
life and government [32].

In machine learning optimization is in an important role. Many models
are made �exible by introducing some hyper parameters. In some models
these parameters may be chosen automatically to best �t the data at hand.
This is achieved, for example, by minimizing a loss function, such as least
squares or log-loss.

In this thesis, two algorithms are presented that rely on optimization. The
support vector data description is heavily based on convex programming. The
dynamic time warping algorithm uses dynamic programming.

1.1 Non-linear Programming

Let us �rst �x the notation in the following de�nition.

De�nition 1.1. Let f : X → R withX ⊂ Rm be a function to be minimized.
Then a non-linear program is

minimize
x ∈ X

f(x)

subject to gi(x) ≤ 0, i = 1, . . . , n,

hj(x) = 0, j = 1, . . . , p.

(1.1)

The function f is an objective function. The functions gi and hj de�ne
inequality constraints and equality constraints, respectively. There is also
the constrain x ∈ X. This is called an abstract constraint. The constraints
de�ne a feasible region. That is the set of all the points satisfying all the con-
straints. Throughout this thesis, the objective function f and the inequality
constraints de�ning functions g1, . . . , gn are assumed to be di�erentiable.

The non-linear program in Equation (1.1) is de�ned over some domain.
The domain of the optimization problem is a set in which the objective func-
tion f and all the constraint functions gi and hi are de�ned. More formally,
the domain D of the program in Equation (1.1) is

D = dom f ∩
(

n⋂
i=1

dom gi

)
∩
(

m⋂
j=1

dom hj

)
. (1.2)
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Historically, mathematical optimization has been divided into linear and
non-linear programming. This thesis uses a modern, more meaningful division
into convex and non-convex programming [50]. The next section is dedicated
to convex programming.

1.1.1 Convex Programming

Convex programming holds many desirable properties. One of them is the
fact that any locally optimal solution to a convex program is also global
[50]. For example, the optimization of the k-means algorithm [23] minimizes
a non-convex objective function that has multiple local minima. Standard
procedure when running a k-means algorithm is to run it multiple times
with di�erent initial starting points. Even that, however, does not guarantee
global optimum, and the result is usually a sub-optimal model.

A convex program is a special case of the non-linear program in De�nition
1.1. The two elementary concepts of convex programming are a convex set
and a convex function. These concepts are illustrated in Figure 1. A set S is
convex if for any pair of points in the set S the convex combination of the
points is in the set S. More formally,

De�nition 1.2. The set S is convex if tx1 + (1− t)x2 ∈ S for all x1,x2 ∈ S
and for all t ∈ [0, 1].

There are two special cases to the convex sets. These are the empty set
and the sets with only one element {x} ⊂ Rm [50].

De�nition 1.3. Let the set X ⊂ Rm be convex. A function f : X → R is
convex if

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2) (1.3)

for all x1,x1 ∈ X and for all t ∈ [0, 1].

The link between a convex set and a convex function is that for any convex
function g the set S = {x ∈ Rm | g(x) ≤ 0} is convex. Let x1,x2 ∈ S. This
means that g(x1), g(x2) ≤ 0. Then

g(tx1 + (1− t)x2) ≤ tg(x1) + (1− t)g(x2) ≤ t ∗ 0 + (1− t) ∗ 0 = 0. (1.4)

Thus, the point tx1 + (1− t)x2 ∈ S.
Remark 1.4. A function may also be concave. The function f in De�nition 1.3
is concave if the inequality in Equation (1.3) holds with reversed direction
such that f(tx1 + (1 − t)x2) ≥ tf(x1) + (1 − t)f(x2). It is easy to see
from the inequality in Equation (1.3) that if a function f is convex, then
the function −f is concave. The following example introduces a very special
convex function that is also concave.
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x1

x2

A convex set

f (x1)

f (x2)

f

A convex function

Figure 1: Left: A convex set. The convex combination of any two points in
the set belongs to the set. Right: A convex function. The convex combination
of any two function values overestimates the true value of the function.

Example 1.5. A linear function is convex. Let c ∈ Rm. The linear function
L : X → R is de�ned as L(x) = cTx. Now, the value of the function L in
the point tx1 + (1− t)x2 is

L(tx1 + (1− t)x2) = cT (tx1 + (1− t)x2) = tcTx1 + (1− t)cTx2

= tL(x1) + (1− t)L(x2).
(1.5)

As stated in Remark 1.4, linear function is also concave. This follows from
the fact that the equality L(tx1 + (1− t)x2) = tL(x1) + (1− t)L(x2) satis�es
both inequalities in Equation (1.3) and the one in Remark 1.4.

Adding a constant and multiplying with a positive real number preserves
the direction of an inequality. This means that adding any constant to a con-
vex function or multiplying a convex function with any positive real number
results in a convex function. Also, a sum of two convex functions is a convex
function as shown in the following example.

Example 1.6. A sum of any two convex functions is a convex function.
Let the functions g : X1 → R and h : X2 → R be convex functions and let
f(x) = g(x)+h(x). Then f(tx1+(1−t)x2) = g(tx1+(1−t)x2)+h(tx1+(1−
t)x2) = tg(x1) + (1− t)g(x2) + th(x1) + (1− t)h(x2) = tf(x1) + (1− t)f(x2).

Example 1.7. A quadratic function f(x) = (1/2)xTQx +Ax is convex if
the matrix Q ∈ Rm∗m is positive semi-de�nite (PSD). A matrix is PSD if
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xTQx ≥ 0 for any x ∈ Rm. Examples 1.5 and 1.6 imply that it is su�cient
to show that the quadratic term is convex. Let g(x) = xTQx. Then

g(tx1 + (1− t)x2) =(tx1 + (1− t)x2)TQ(tx1 + (1− t)x2)

=t2xT1Qx1 + (1− t)2xT2Qx2 + 2t(1− t)xT1Qx2

=t[1− (1− t)]xT1Qx1 + (1− t)(1− t)xT2Qx2

+ 2t(1− t)xT1Qx2

=txT1Qx1 + (1− t)xT2Qx2

− t(1− t)xT1Qx1 − t(1− t)xT2Qx2 + 2t(1− t)xT1Qx2

=tg(x1) + (1− t)g(x2)− t(1− t)(x1 − x2)TQ(x1 − x2)

≤tg(x1) + (1− t)g(x2)

(1.6)

since (x1 − x2)TQ(x1 − x2) ≥ 0 for a PSD matrix Q and t(1 − t) ≥ 0 by
de�nition. Thus, the function g is convex, which means that the function f
is convex.

Lemma 1.8. The intersection of two convex sets, such that S = S1 ∩ S2, is
a convex set.

Proof. Let x1,x2 ∈ S. Then x1,x2 ∈ S1 and x1,x2 ∈ S2 by the de�nition
of intersection. Let us assume that x = tx1 + (1 − t)x2 /∈ S for some t ∈
(0, 1). Then, by the de�nition of intersection, x /∈ S1 or x /∈ S2. This is
a contradiction since the set S1 and S2 are convex sets. Thus, the set S is
convex.

De�nition 1.9. The non-linear program in Equation (1.1) is convex if the
objective function f is a convex function, and the feasible region is a convex
set.

The inequality constraints gi(x) ≤ 0 de�ne convex sets if the functions gi
are convex. By Lemma 1.8, the intersection of these sets is a convex set. A
set de�ned by an equality constraint hj(x) = 0 is a bit more restricted. The
set Sj = {x ∈ Rm | hj(x) = 0} is convex if hj(tx1 + (1 − t)x2) = 0 for all
x1,x2 ∈ Sj and t ∈ [0, 1]. One family of functions that satisfy this property
is a�ne functions. A�ne function is a function hj(x) = cTx+b with c ∈ Rm

and b ∈ R. Now
hj(tx1 + (1− t)x2) = cT (tx1 + (1− t)x2) + b

= tcTx1 + tb+ (1− t)cTx2 + (1− t)b
= thj(x1) + (1− t)hj(x2) = 0.

(1.7)

This property of a�ne functions leads to the following corollary:
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Corollary 1.10. The non-linear program in Equation (1.1) is convex if func-
tions f and g1, . . . , gn are convex, and the function h1, . . . , hp are a�ne.

1.1.2 Karush-Kuhn-Tucker conditions

Kuhn and Tucker [34] �rst published the necessary conditions for non-linear
programming in 1951. Later these conditions became known as Karush-
Kuhn-Tucker (KKT) conditions when it was revealed that Karush had stated
these conditions in his master's thesis in 1938. In 1959 Slater [57] formulated
the conditions under which the KKT conditions are also su�cient. The def-
initions and the proofs in this section are mainly from the book [7].

Let us consider the non-linear program in Equation (1.1). In this section,
the non-linear program is not assumed to be convex since the KKT conditions
can be derived to the non-convex programs, too. Let us �rst study duality and
then carry on to the KKT conditions. The non-linear program in Equation
(1.1) has a Lagrangian function:

De�nition 1.11. The Lagrangian function to the non-linear program in
Equation (1.1) is

L(x,λ,µ) = f(x) +
n∑
i=1

λigi(x) +

p∑
j=1

µjhj(x). (1.8)

The Lagrangian augments the objective function with the weighted con-
straint functions. These weights, λi and µj, are called Lagrangian multipliers.
When considering duality, the non-linear program in Equation (1.1) is called
a primal problem. The following de�nition de�nes a Lagrangian dual problem
to the primal problem:

De�nition 1.12. Lagrangian dual problem regarding the primal problem in
Equation (1.1) is

maximize
λ � 0,µ ∈ Rp

q(λ,µ) = inf
x∈X
L(x,λ,µ). (1.9)

In this thesis, the relation λ � 0 is used as a shorter notation for λi ≥ 0
for all i = 1, . . . n. Let the point (λ∗,µ∗) be the point that maximizes the dual
problem. Let d∗ be the value of the objective function of the dual problem
at that point. Then

d∗ = q(λ∗,µ∗) = max
λ�0,µ∈Rp

q(λ,µ) = max
λ�0,µ∈Rp

inf
x∈X
L(x,λ,µ). (1.10)
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It is straightforward to see that the optimal value of the primal problem in
Equation (1.1) has a similar form. The supremum of the Lagrangian subject
to the point (λ,µ) is

sup
λ�0,µ∈Rp

L(x,λ,µ) = sup
λ�0,µ∈Rp

[
f(x) +

n∑
i=1

λigi(x) +

p∑
j=1

µjhj(x)

]
. (1.11)

The supremum in Equation (1.11) has a value f(x) if gi(x) ≤ 0 and hi(x) = 0
for all i = 1, . . . , n and j = 1, . . . , p. If these conditions are not satis�ed, the
value is in�nite. Let the point x∗ be the point that optimizes the primal
problem in Equation (1.1). Then the optimal value of the primal problem
objective function is

p∗ = f(x∗) = sup
λ�0,µ∈Rp

L(x∗,λ,µ) = min
x∈X

sup
λ�0,µ∈Rp

L(x,λ,µ) (1.12)

because the point x∗ must be in the feasible region. This means that gi(x
∗) ≤

0 and hi(x
∗) = 0 for all i = 1, . . . , n and j = 1, . . . , p.

It is trivial that

inf
x∈X
L(x,λ,µ) ≤ L(x,λ,µ) ≤ sup

λ�0,µ∈Rp

L(x,λ,µ) (1.13)

for all x ∈ Rn, λ � 0 and µ ∈ Rp. Especially this relation holds for minimum
and maximum values such that

d∗ = max
λ�0,µ∈Rp

inf
x∈X
L(x,λ,µ) ≤ min

x∈X
sup

λ�0,µ∈Rp

L(x,λ,µ) = p∗. (1.14)

This property is called weak duality. Weak duality states that the optimal
value of the dual problem in Equation (1.9) always lower bounds the optimal
value of the primal problem in Equation (1.1). The di�erence p∗−d∗ is called
the duality gap, and it is always non-negative. In the special case when the
property in Equation (1.14) holds with equality the duality gap vanishes.
This case is called strong duality. In case of strong duality, the value d∗ is the
best lower bound for the optimal value of the primal problem in Equation
(1.1).

Let us assume that the strong duality holds. Then

f(x∗) = p∗ = d∗ = q(λ∗,µ∗)

= inf
x∈X

(
f(x) +

n∑
i=1

λ∗i gi(x) +

p∑
j=1

µ∗jhj(x)

)

≤ f(x∗) +
n∑
i=1

λ∗i gi(x
∗) +

p∑
j=1

µ∗jhj(x
∗) ≤ f(x∗)

(1.15)
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because hj(x
∗) = 0 for all j = 1, . . . , p and λ∗i gi(x

∗) ≤ 0 for all i = 1, . . . , n.
The latter inequality follows from the constraints λ∗i ≥ 0 and gi(x

∗) ≤ 0. The
inequalities in Equation (1.15) can be replaced by equalities. This means that
λ∗i gi(x

∗) = 0 for all i = 1, . . . , n because these terms must be non-negative.
This property is called complementary slackness.

Let us consider the point (x∗,λ∗,µ∗) ∈ Rm × Rn × Rp where the point
x∗ minimizes the primal problem in Equation (1.1), and the point (λ∗,µ∗)
maximizes the dual problem in Equation (1.9). Let us also assume that the
strong duality holds, such that f(x∗) = q(λ∗,µ∗). Since the point x∗ mini-
mizes the Lagrangian L(x,λ∗,µ∗) over the variable x, the gradient must be
zero at that point, such that ∇xL(x,λ∗,µ∗) = 0. Putting all this together,
one has derived Karush-Kuhn-Tucker (KKT) conditions:

Theorem 1.13 (Karush-Kuhn-Tucker condition). Let the point (x∗,λ∗,µ∗)
satisfy the strong duality. Then the point (x∗,λ∗,µ∗) also satis�es the fol-
lowing conditions:

∇f(x∗) +
n∑
i=1

λ∗i∇gi(x∗) +

p∑
j=1

µ∗j∇hj(x∗) = 0 (1.16)

gi(x
∗) ≤ 0 and hj(x

∗) = 0 (1.17)

λ∗i ≥ 0 (1.18)

λ∗i gi(x
∗) = 0 (1.19)

for all i = 1, . . . , n and j = 1, . . . ,m.

Proof. The proof is in the derivation.

1.1.3 Slater's condition

In the previous section, it was shown that the strong duality ensures that the
KKT conditions hold. The strong duality, however, does not hold generally
even for convex programs. This is shown in the following example.

Example 1.14. Let us consider a minimization problem

minimize
x ∈ R

x

subject to x2 ≤ 0.
(1.20)

This minimization problem is clearly a convex program. Its Lagrangian is
L(x, λ) = x+λx2. The objective function of the dual problem is the in�mum
of the Lagrangian, such that q(λ) = infx∈R(x + λx2) with λ ≥ 0. If λ = 0,
then clearly q(0) = −∞.

13



Let us assume that λ > 0. Now, x+λx2 is a parabola that opens upwards,
and its minimum is at the root of its derivative. Let us set the derivative to
zero such that Dx(x + λx2) = 1 + 2λx = 0. The derivative vanishes at
x = −1/2λ so the parabola reaches its minimum at that point. Using this
information, the cost function of the dual problem is

q(λ) = inf
x∈R

(x+ λx2) = − 1

2λ
+ λ

(
− 1

2λ

)2

= − 1

4λ
. (1.21)

The function q has no maximum when λ ≥ 0. This means that the dual
problem has no solution. For this reason, d∗ is unde�ned, and d∗ 6= p∗.

The problem of ensuring the strong duality, as demonstrated in Example
1.14, has lead to the study of constraint quali�cations. There are various
constraint quali�cations that ensure strong duality. For convex programming,
one such constraint quali�cation is Slater's condition. The Slater point and
Slater's condition are de�ned later in this section in De�nitions 1.17 and 1.18,
respectively. These de�nitions use the de�nition of relative interior.

De�nition 1.15. The relative interior of a set S ⊂ Rm is

relint(S) = {x ∈ S | B(x, ε) ∩ a�(S) ⊂ S} (1.22)

for some ε > 0.

In Equation (1.22) the set B(x, ε) := {x′ ∈ Rm | ‖x′ − x‖ ≤ ε} is a ball
with a center x and radius ε. The operator ‖ · ‖ is the Euclidean norm.

De�nition 1.16. Euclidean norm of a point x ∈ Rm is

‖x‖ := (xTx)1/2 =

√√√√ m∑
i=1

xi2. (1.23)

Also, in Equation (1.22) the set a�(S) := {∑k
i=1 αixi ∈ Rm | αi ∈ R, xi ∈

S,
∑k

i=1 αi = 1} is an a�ne hull of the set S for any k = 1, 2, . . ..
Let us assume convexity from now on. Slater's condition is de�ned for a

convex program.

De�nition 1.17. Slater point is a point in the relative interior of the domain
D that satis�es gi(x) < 0 for all i = 1, . . . , n.

De�nition 1.18 (Slater's Condition). The convex program in Equation (1.1)
satis�es Slater's condition if there is a Slater point in its feasible region.
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Before proving that Slater's condition implies strong duality for convex
program, let us prove two helpful theorems: Supporting Hyperplane Theorem
and Separating Hyperplane Theorem.

Theorem 1.19 (Supporting Hyperplane Theorem). Let the set S ⊂ Rm be
convex and non-empty. Let x̄ /∈ int(S) be a point that is not in the interior
of the set S. Then there is a hyperplane such that aT x̄ ≤ b and aTs ≥ b for
all s ∈ S.

Proof. If the point x̄ is not in the interior of the set S, then it is either outside
the closure of the set S or in the boundary of the set S. These two cases are
proven separately. Let us �rst assume that x̄ /∈ cl(S).

Let a point x̂ ∈ cl(S) be the projection of the point x̄ to the set cl(S). In
other words, the inequality ‖x̂ − x̄‖ ≤ ‖x − x̄‖ holds for all x ∈ cl(S). Let
us de�ne a = x̂− x̄ and b = aT x̂. The vector a and the scalar b will de�ne
the supporting hyperplane.

This �rst case can be proven with a contradiction. Let us assume that
the theorem does not hold for x̄ /∈ cl(S). This means that there is some
x ∈ cl(S) with aTx < b. Because the set cl(S) is convex, there is a point
xt = tx+ (1− t)x̂ ∈ cl(S) with all t ∈ [0, 1]. It will be shown here that, with
some t su�ciently close to zero, the point xt is closer to the point x̄ than its
projection x̂. In other words, it will turn out that ‖xt − x̄‖ < ‖x̂ − x̄‖ for
some t ∈ [0, 1].

The vector xt − x̄ can be written as

xt − x̄ = tx+ (1− t)x̂− x̄ = (x̂− x̄) + t(x− x̂) = a+ t(x− x̂). (1.24)

The squared norm of the vector xt − x̄ is then

‖xt − x̄‖2 = ‖a+ t(x− x̂)‖2

= aTa+ t2‖x− x̂‖2 + 2taT (x− x̂)

= ‖x̂− x̄‖2 + t
(
2(aTx− aT x̂) + t‖x− x̂‖

)
.

(1.25)

Here, the term aTx − aT x̂ = aTx − b < 0 by the assumption that the
theorem does not hold for x̄ /∈ cl(S). Note that the term aTx − aT x̂ does
not depend on the variable t. When the multiplier t is small enough, the term
2(aTx−aT x̂)+t‖x−x̂‖ < 0. Then, from Equation (1.25), it can be seen that
‖xt − x̄‖ < ‖x̂ − x̄‖ for some xt ∈ cl(S). This inequality is a contradiction
since x̂ was selected so that ‖x̂ − x̄‖ ≤ ‖x − x̄‖ for all x ∈ cl(S). This
contradiction proves that aTx ≥ b for all x ∈ cl(S).

Let us now prove the second case. Let us assume that x̄ ∈ cl(S). Let the
sequence {xk} converge to the point x̄ so that xk /∈ cl(S) for all k = 1, 2, . . ..
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S

Figure 2: A visual proof of Supporting Hyperplane Theorem 1.19. The shaded
area is a convex set. The normal vectors of the hyperplanes are the unit length
vectors α̃k in the direction of the vectors x̂k − xk. This sequence of normal
vectors converges to the normal vector a of the hyperplane that supports the
convex set.

This sequence exists because x̄ /∈ int(S). Let the projections of these points
to the set cl(S) be x̂k. From the previous part of this proof, it is known
that there exists a hyperplane such that aTkx ≥ bk for all x ∈ cl(C) with
ak = x̂k − xk and bk = aTkxk for all k = 1, 2, . . .. Dividing by a positive real
number does not change the direction of the inequality, so the inequality

ãTkx :=

(
ak

‖x̂k − xk‖

)T
x ≥ bk

‖x̂k − xk‖
=: b̃k (1.26)

holds for all x ∈ cl(S). The vector ãk has a norm ‖ãk‖ = 1. This is illustrated
in Figure 2 where the arrows denote the vectors ãk. Let us de�ne a :=
limk→∞ ãk and b := aT x̄. Now the supporting hyperplane satis�es aTx ≥ b
for all x ∈ cl(S). Finally, the proposition aTs ≥ b holds for all s ∈ S because
S ⊂ cl(S).

Theorem 1.20 (Separating Hyperplane Theorem). Let the sets S1 and S2

be convex, non-empty, disjoint sets, such that S1 ∩ S2 = ∅. Then there is a
hyperplane that separates them.

Proof. Let us de�ne a new set Y so that Y = {u− v | u ∈ S1, v ∈ S2}. Let
us �rst show that this set is convex, and 0 /∈ Y . Then Supporting Hyperplane
Theorem 1.19 can be applied to the point 0 and the set Y .
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The set Y is convex because its elements are sums of elements from convex
sets. Also, 0 /∈ Y . If it would be that 0 ∈ Y , then 0 = u − v meaning that
u = v. Then u ∈ S1 and u = v ∈ S2 which is a contradiction since the sets
S1 and S2 are disjoint.

From Theorem (1.19) it is known that there is a hyperplane such that
aT0 ≤ b and aTy ≥ b for all y ∈ Y . This means that aTy ≥ aT0 = 0, which
implies that aT (u−v) ≥ 0. From this result, it can be seen that the inequality
aTu ≥ aTv holds for all u ∈ S1 and v ∈ S2. Especially this is true for the
in�mum and the supremum, which means that infu∈S1 a

Tu ≥ supv∈S2
aTv.

This inequality proves the existence of the separating hyperplane.

Since the non-linear program is assumed to be convex, let us assume that
the equality constraints de�ning function hj are a�ne. These constraints can
be presented compactly as an equation (h1(x), . . . , hp(x))T = Ax − b = 0
with A ∈ Rp×m and b ∈ Rp. For the following proof, let us assume that
rank(A) = p so the rows of Jacobian regarding the equality constraints are
linearly independent. If this condition is not satis�ed, then either there are
contradicting or unnecessary equality constraints [2].

Let us make another simplifying assumption that the set D has a non-
empty interior. This means that int(D) = {x ∈ Rm | B(x, ε) ⊂ D} 6= ∅
for some ε > 0. Then relint(D) = int(D). This assumption simpli�es the
following proof at the cost of some generality. The proof will, however, remain
general enough for the rest of this thesis.

Theorem 1.21. Let relint(D) = int(D) and rank(A) = p. Then for this
convex program Slater's condition in De�nition 1.18 implies strong duality.

Proof. If the primal optimal solution is p∗ = −∞, then by weak duality
the dual optimal solution is d∗ ≤ p∗ = −∞. This means that d∗ = p∗, and
the proposition is always true. Let us next assume that the primal optimal
solution is �nite.

Let us �rst de�ne two disjoint, convex sets
A = {(u,v, t) | x ∈ D, gi(x) ≤ ui, hj(x) = vj, f(x) ≤ t,

i = 1, . . . n, j = 1, . . . p}
B = {(0,0, s) | s < p∗}.

(1.27)

Let us �rst show that the sets A and B can be separated by a hyperplane.
This hyperplane will de�ne a useful relation between Lagrangian and the
optimal primal value p∗.

Clearly the set B is both convex and concave since it is a half line in
Rn+m+1. The set A is also convex because the functions f , gi and hj are
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convex for a convex program. Let us study this proposition more carefully.
Let us consider the point λ(u1,v1, t1) + (1 − λ)(u2,v2, t2) ∈ Rn+m+1 and
points (u1,v1, t1), (u2,v2, t2) ∈ A. There are a point x1 that satis�es the
inequalities for (u1,v1, t1) and a point x2 that satis�es the inequalities for
(u2,v2, t2). Now

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) ≤ λt1 + (1− λ)t2 (1.28)

for any λ ∈ [0, 1] because of the convexity of the function f . The functions gi
are convex and the functions hj are a�ne and thus behave similarly to the
function f . This means that the point λx1+(1−λ)x2 satis�es the inequalities
for the point λ(u1,v1, t1) + (1− λ)(u2,v2, t2) for all λ ∈ [0, 1] and the set A
is indeed convex.

The sets A and B do not intersect. If they did, there would be a point
(0,0, t) ∈ Rn+m+1 belonging in both sets A and B. If the point (0,0, t)
belongs to the set A, there exists a point x ∈ D that satis�es all the primal
constraints gi(x) ≤ 0 and hi(x) = 0. In addition, the objective function value
at the point x has an upper bound f(x) ≤ t. If the point (0,0, t) belongs
to the set B too, the upper bound t satis�es the inequality t < p∗. This is a
contradiction since p∗ is the optimal primal solution. Thus, the sets A and
B must be disjoint.

Now that the sets A and B are shown to be convex and disjoint, let us
use Separating Hyperplane Theorem 1.20 on them. Separating Hyperplane
Theorem 1.20 states that there exist a vector (λ̃, ν̃, µ) 6= 0 and a scalar α ∈ R
satisfying the following inequalities:

(λ̃, ν̃, µ)T (u,v, t) ≥ α (1.29)

for all (u,v, t) ∈ A and

(λ̃, ν̃, µ)T (0,0, s) ≤ α (1.30)

for all (0,0, s) ∈ B.
Equation (1.29) implies that λ̃ � 0 and µ ≥ 0. If any component

in the vector λ̃ or the scalar µ were negative, the corresponding compo-
nent in (u,v, t) could be arbitrarily large and still (u,v, t) ∈ A. In other
words, for any α ∈ R there would be either ui or t with both (u,v, t) ∈
A and (λ̃, ν̃, µ)T (u,v, t) < α. This would mean that the inner product
(λ̃, ν̃, µ)T (u,v, t) would not be bounded from below. This contradicts Equa-
tion (1.29) and proves that λ̃ � 0 and µ ≥ 0. Now there are two cases: either
µ > 0 or µ = 0. Let us �rst prove that µ > 0 implies strong duality.

Equation (1.30) implies that µs ≤ α. This is true for all s < p∗. Especially
this relation holds for the supremum of the scalar s. From Equation (1.27),
it can be seen that sup s = p∗. This means that µ(sup s) = µp∗ ≤ α.
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For any x ∈ D, there is a point (g1(x), . . . , gn(x), h1(x), . . . , hp(x), f(x))
∈ A. From this and Equations (1.29) and (1.30), one can see that

n∑
i=1

λ̃igi(x) +

p∑
j=1

ν̃jhj(x) + µf(x) ≥ α ≥ µp∗ (1.31)

for any x ∈ D.
Let us divide Equation (1.31) by µ. This can be done since µ > 0 by

assumption. This results in the following equation

n∑
i=1

λ̃i
µ
gi(x) +

p∑
j=1

ν̃j
µ
hj(x) + f(x) = L(x, λ̃/µ, ˜ν/µ) ≥ p∗ (1.32)

which holds for all x ∈ D. Taking the in�mum over x of the Lagrangian in the
inequality in Equation (1.32) results in inequality infx∈D L(x, λ̃/µ, ˜ν/µ) =

q(λ̃/µ, ˜ν/µ) ≥ p∗. By weak duality q(λ̃/µ, ˜ν/µ) ≤ p∗. This means that

p∗ = q(λ̃/µ, ˜ν/µ) = d∗. In other words, strong duality holds if µ > 0.
Let us now show that µ is positive when Slater's condition holds. Let us

consider the second case where µ = 0. This selection will lead to a contra-
diction. Now Equation (1.31) implies that

n∑
i=1

λ̃igi(x) +

p∑
j=1

ν̃jhj(x) ≥ 0 (1.33)

for all x ∈ D. Especially Equation (1.33) holds for the Slater point x̃. In
addition, the Slater point satis�es the equality constraints, so

n∑
i=1

λ̃igi(x̃) ≥ 0. (1.34)

Since for the Slater point gi(x̃) < 0 for all i = 1, . . . n, the left side of the
inequality in Equation (1.34) can have non-negative value only if λ̃ = 0.
Note that Separating Hyperplane Theorem (1.20) implies that (λ̃, ν̃, µ) 6= 0.
Since µ = 0 and λ̃ = 0, the only possibility left is that ν̃ 6= 0.

Let us now show that the property ν̃ 6= 0 cannot hold. Since µ = 0 and
λ̃ = 0, the inequality in Equation (1.33) implies that

p∑
j=1

ν̃jhj(x) = ν̃T (Ax− b) ≥ 0 (1.35)

19



for all x ∈ D assuming that the function hj are a�ne. The Slater point
satis�es the equation

p∑
j=1

ν̃jhj(x̃) = ν̃T (Ax̃− b) = 0 (1.36)

by de�nition. The Slater point is in the interior of the domain D, such that
x̃ ∈ int(D). This means that there exists at least one x ∈ D that satis�es the
inequality ν̃T (Ax−b) < 0 unless AT ν̃ = 0. However, the equation AT ν̃ = 0
cannot hold for rank(A) = p and ν̃ 6= 0. From this it can be concluded that
ν̃ = 0. This means that the identity (λ̃, ν̃, µ) ≡ 0 holds, which contradicts
Separating Hyperplane Theorem 1.20. This contradiction followed from the
assumption µ = 0. Since µ is non-negative, the only possibility is that µ > 0,
which was proven earlier in this proof.

Let us summarize this section. Let the non-linear program in Equation
(1.1) be convex. Let it also satisfy the Slater's condition in De�nition 1.18.
Then there exists at least one point (x∗,λ∗,µ∗) that satis�es strong duality.
These points, which satisfy strong duality, also satisfy KKT conditions in
Theorem 1.13. In addition, the variable x∗ in any of those points is the
global optimum to the primal problem in Equation (1.1).

1.2 Dynamic Programming

In the previous section, the minimization involved only one decision: the
optimal selection of the point x∗. This section is dedicated to the systems
that involve multiple decision to be made over time. These systems are called
dynamic. The main reference in this section is [6].

1.2.1 Discrete-time Dynamic System

Discrete-time dynamic system is a system that evolves with time. Discrete-
time refers to that the system changes its state every once in a while. Let
the state of the system at time k be s(k) ∈ Sk. A state change is observed
at times k = 0, 1, . . . , K. These time instants constitute a planning horizon.
The value K is called the end of the planning horizon. These notations are
used to formally de�ne the discrete-time dynamic system.

De�nition 1.22 (Discrete-time dynamic system). Let the state s(0) ∈ S0

be a �xed �rst state in a planning horizon k = 0, 1, . . . , K. For the fol-
lowing time points, the system evolves according to a function s(k+1) =
fk(s

(k),u(k),W (k)) where u(k) ∈ Uk(s(k)) is an action taken, and W (k) ∈ Dk

is a random disturbance at the time point k.
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Let us assume that the random disturbances W (k) are independent of
each other. The domain Uk(s

(k)) is a set of actions that are allowed at the
current state. At each time point k, an action is chosen from the domain
Uk(s

(k)). The selection is done based on a rule:

De�nition 1.23. Function µk is a decision rule. It makes a decision based
on the knowledge of the current state, and it realizes as an action such that
u(k) = µk(s

(k)).

Decision rules constitute a policy :

De�nition 1.24. A policy π = (µ0, µ1, . . . , µK−1) is a sequence of decision
rules selected over the planning horizon.

A policy is a sequence of functions. The policy determines which action
to take at any time at any state. This means that the policy selected will
generate an action depending on the current state. The goal of dynamic
programming is to �nd the optimal policy. The optimal policy will determine
the optimal actions in any state.

The value of the policy is measured by an objective function. In this
section, the objective is to minimize a cost function. One characteristic of
dynamic programming is that the cost function consists of multiple cost func-
tionals. Let function gk be a cost functional, a function of the current state,
the action taken and a random disturbance. Its value is gk(s

(k),u(k),W (k))
for k = 0, 1, . . . , K − 1 and gK(s(K)). Now, �nding the optimal policy can be
stated as a dynamic program:

De�nition 1.25. Let the system in De�nition 1.22 evolve according the func-
tions fk, and let the costs of the states, actions and random disturbances oc-
cur according the cost functionals gk over a planning horizon k = 0, 1, . . . , K.
Then the dynamic program is

minimize
π ∈ Π

Jπ(s(0)) = E

[
gK(s(K)) +

K−1∑
k=1

gk(s
(k), µk(s

(k)),W (k))

]
subject to s(k+1) = fk(s

(k), µk(s
(k)),W (k)) , k = 0, . . . K − 1.

(1.37)

The domain Π is a set of all admissible policies. For an admissible policy,
all decisions yield an action that is allowed in the current state, such that
µk(s

(k)) ∈ Uk(s
(k)). The symbol E means expected value over all random

vectors W (0),W (1), . . . ,W (K−1).
Let us now de�ne a dynamic programming sub-problem based on De�ni-

tion 1.25:
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De�nition 1.26. Let the dynamic program be de�ned as in De�nition 1.25.
Its sub-problem over a planning horizon l = k, . . . , K is

minimize
πk ∈ Πk

Jπk
(s(k)) = E

[
gK(s(K)) +

K−1∑
l=k

gl(s
(l), µl(s

(l)),W (l))

]
subject to s(l+1) = fl(s

(l), µl(s
(l)),W (l)) , l = k, . . .K − 1

(1.38)

In Equation (1.38), the policy πk = (µk, . . . , µK−1) is a truncated policy.
The existence of sub-problems is another characteristic for dynamic program-
ming. The following section will show that a dynamic program may be solved
by breaking it down into easier sub-problems and solving them in succession.
This is possible because of the principle of optimality [5]. The following sec-
tion is dedicated on the study of that principle.

1.2.2 Bellman's principle of optimality

In 1957, Bellman stated the often quoted principle of optimality:

The Principle of Optimality. An optimal policy has the property
that whatever the initial state and initial decisions are, the re-
maining decisions must constitute an optimal policy with regard
to the state resulting from the �rst decision. [5, p. 83]

This rather general de�nition is expressed more formally using De�nitions
1.25 and 1.26 in the following statement: If the policy π∗ = (µ∗0, µ

∗
1, . . . , µ

∗
K−1)

is an optimal policy for the dynamic programming problem in Equation
(1.37), then the policy π∗k = (µ∗k, . . . , µ

∗
K−1) is an optimal policy for the

dynamic programming sub-problem in Equation (1.38) [6]. This means that
the problem in Equation (1.37) has an optimal substructure.

Let us use a shorter notation for the cost function of the sub-problem
denoted as Jk(s

(k)) := Jπk(s(k)) from now on. Let us use a similar notation for
the optimal solution to the sub-problem too, denoted as J∗k (s(k)) := Jπ∗k(s(k)).
The following theorem states the principle of optimality formally.

Theorem 1.27 (Bellman's principle of optimality). Let the policy π∗ =
(µ∗0, µ

∗
1, . . . , µ

∗
K−1) minimize the problem in Equation (1.37). Then the trun-

cated policy π∗k = (µ∗k, µ
∗
k+1, . . . , µ

∗
K−1) minimizes the sub-problem in Equation

(1.38).

Proof. This theorem is proven for �nite planning horizon k = 1, . . . , K and
discrete random vectors W (0), . . . ,W (K−1). The policy π∗ is optimal, which
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means that Jπ∗(s
(0)) ≤ Jπ′(s

(0)) for all π′ ∈ Π. Let us prove this theorem
using a contradiction. Let us assume that the policy π∗k is a sub-optimal
policy for sub-problem in Equation (1.38). The sub-optimality of the policy π∗k
means that there exists some policy π′k = (µ′k, . . . , µ

′
K−1) ∈ Πk that satis�es

the inequality
Jπ′k(s(k)) ≤ Jπ∗k(s(k)) (1.39)

for all possible states s(k) ∈ Sk. In addition, the strict inequality in Equation
(1.39) holds for at least one state s(k) that occurs with positive probability.
This assumption will lead to a contradiction.

Let p(w(i),w(j)) denote the joint probability. The joint probability is
de�ned as p(w(i),w(j)) := P(W (i) = w(i) ∩ W (j) = w(j)). Because the
disturbances are independent of each other, the equality p(w(i),w(j)) =
p(w(i))p(w(j)) holds for all i, j = 0, 1, . . . , K − 1 where i 6= j and for all
w(i) ∈ Di,w

(j) ∈ Dj.
The state s(k+1) is a random vector that is dependent on W (k). This

follows from the evolution of the system s(k+1) = fk(s
(k),u(k),W (k)). By

recursion, this means that the value of a cost functional gk(s
(k),u(k),W (k))

depends on the previous random disturbancesW (0), . . . ,W (k). On the other
hand, the value of the cost functional gk(s

(k),u(k),W (k)) does not depend
on any future disturbance W (l) for k < l as the random disturbances are
independent of each other. This means that the expected value of the cost
functional is EW (l) gk(s

(k),u(k),W (k)) = gk(s
(k),u(k),W (k))

∑
w(l) p(w(l)) =

gk(s
(k),u(k),W (k)) for all k < l.
The value of the dynamic programming cost function for the optimal

policy π∗ is

Jπ∗(s
(0)) = E

W (0),...,W (K−1)

[
gK(s(K)) +

K−1∑
l=0

gk(s
(l), µ∗l (s

(l)),W (l))

]

=
∑

w(0),...,w(K−1)

p(w(0)), . . . , p(w(K−1))

[
gK(s(K))

+
K−1∑
l=0

gk(s
(l), µ∗l (s

(l)),w(l))

]
.

(1.40)

The second equality in Equation (1.40) follows from the independence of the
random disturbances. Since the values of the cost functionals are independent
of future disturbances, the right side of Equation (1.40) can be computed in
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pieces such as

Jπ∗(s
(0)) =

∑
w(0),...,w(k−1)

p(w(0)), . . . , p(w(k−1))

[
k−1∑
l=0

gl(s
(l), µ∗l (s

(l)),w(l))

+
∑

w(k),...,w(K−1)

p(w(k)), . . . , p(w(K−1))

[
gK(s(K))

+
K−1∑
l=k

gl(s
(l), µ∗l (s

(l)),w(l))

]]
.

(1.41)

Again, using the assumption of independent disturbances, Equation (1.41)
can be rewritten using expected values. Then the nested expected value is
nothing else than the optimal value of the sub-problem in Equation (1.38).
Now the optimal value may be written using the sub-problem value such that

Jπ∗(s
(0)) = E

W (0),...,W (k−1)

[
k−1∑
l=0

gl(s
(l), µ∗l (s

(l)),W (l))

+ E
W (k),...,W (K−1)

[
gK(s(K)) +

K−1∑
l=k

gl(s
(l), µ∗l (s

(l)),W (l))

]]

= E
W (0),...,W (k−1)

[
k−1∑
l=0

gl(s
(l), µ∗l (s

(l)),W (l)) + Jπ∗k(s(k))

]
.

(1.42)

Using the linearity of the expected value, the following inequality holds:

Jπ∗(s
(0))

= E
W (0),...,W (k−1)

[
k−1∑
l=0

gl(s
(l), µ∗l (s

(l)),W (l))

]
+ E
W (0),...,W (k−1)

Jπ∗k(s(k))

> E
W (0),...,W (k−1)

[
k−1∑
l=0

gl(s
(l), µ∗l (s

(l)),W (l))

]
+ E
W (0),...,W (k−1)

Jπ′k(s(k)).

(1.43)

The last inequality is strict since there is at least one state s(k) that corre-
sponds to a probability p(w(0), . . . ,w(k−1)) > 0 with Jπ′k(s(k)) < Jπ∗k(s(k)).
This follows from the assumption of the policy π∗k being sub-optimal. From
Equation (1.43), it can be see that the policy

πl = (µ∗0, . . . , µ
∗
k−1, µ

′
k, . . . , µ

′
K−1) (1.44)
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results in a lower over all cost function value Jπl(s(0)) < Jπ∗(s
(0)). This is

a contradiction, since the policy π∗ is optimal policy. This proves Bellman's
principle of optimality.

Bellman's principle of optimality makes it possible to divide the dynamic
program in Equation (1.37) into sub-problems. The reasoning behind this is
that if the sub-problems are not solved optimally, then the solution to the
dynamic program cannot be optimal. This strategy e�cient because each
sub-problem is a dynamic program. This means that the sub-problems may
be divided further by using Bellman's principle of optimality. This recursion
can then be used until solving the sub-problems becomes trivial. This idea is
presented formally in Algorithm 1.

Algorithm 1 Backward Dynamic Programming Algorithm

1: JK(s(K)) = gK(s(K))
2: for all k = K − 1, . . . , 1, 0 do
3: Jk(s

(k)) = minu(k)∈Uk(s(k)) EW (k) [gk(s
(k),u(k),W (k)) +

Jk+1(fk(s
(k),u(k),W (k)))]

4: end for

Algorithm 1 starts by solving the trivial problems JK(s(K)). These re-
sults are then used to solve the preceding sub-problems. The following theo-
rem proves that Algorithm 1 yields an optimal solution, which is J∗k (s(k)) =
Jk(s

(k)).

Theorem 1.28. Let the random disturbances come from domains Dk that
are �nite or countable. Let E[gk(s

(k), µk(s
(k)),w(k))] < ∞ for all admissi-

ble policies πk = (µk, . . . , µK) with decision rules µk(s
(k)) ∈ Uk(s(k)). Then

the value Jk(s
(k)) in Algorithm 1 is the optimal cost function value for the

program in Equation 1.38. Let u(k)∗ be the solution to the kth minimization
problem in Algorithm 1. If there exist optimal decisions satisfying identity
u(k)∗ ≡ µ∗k(s

(k)), then π∗ = (µ∗0, µ
∗
1, . . . , µ

∗
K−1) is the optimal policy to the

program in Equation 1.37.

Proof. Theorem 1.28 is proven by using induction. The case where k =
K is trivial since there is no action to take. It means that JπK (s(K)) =
E[gK(s(K))] = gK(s(K)) with the optimal policy being πK = ∅. Let us now
consider the cases where k < K.

Let us assume that the Algorithm 1 gives an optimal solution for some
k + 1. In other words, let Jk+1(s(k+1)) = J∗k+1(s(k+1)). For the index k, the
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optimal value J∗k (s(k)) for the sub-problem in Equation (1.38) is

J∗k (s(k)) = min
(µk,πk+1)∈Πk

E

[
gK(s(K)) +

K−1∑
l=k

gl(s
(l), µl(s

(l)),W (l))

]
(1.45)

by De�nition 1.26. In Equation (1.45), a shorter notation is used for the policy
(µk, πk+1) := (µk, µk+1, . . . , µK−1) = πk. This shorter notation highlights the
relation between the cost functions Jπk and Jπk+1

that are the cost functions
of the successive sub-problems.

Let us use Bellman's principle of optimality to Equation (1.45): If the
policy (µ∗k, π

∗
k+1) minimizes the cost function Jπk(s(k)), then the policy π∗k+1

minimizes the cost function Jπk+1
(s(k)). This means that

J∗k (s(k)) = min
µk

E
W (k)

[
gk(s

(k), µk(s
(k)),W (k))

+ min
πk+1∈Πk+1

E
W (k+1),...,W (K−1)

[
gK(s(K))

+
K−1∑
l=k+1

gl(s
(l), µl(s

(l)),W (l))

]]
= min

µk
E

W (k)

[
gk(s

(k), µk(s
(k)),W (k)) + J∗k+1(s(k+1))

]
(1.46)

where µk(s
(k)) ∈ Uk(s

(k)). In Equation (1.46), the state at the time k + 1
can be written as s(k+1) = fk(s

(k),u(k),W (k)). Then, for any state s(k), the
expression on the right side of Equation (1.46) is minimized by minimiz-
ing over the action u(k). Now, by the induction assumption Jk+1(s(k+1)) =
J∗k+1(s(k+1)), the equation in Step 3 of Algorithm 1 holds since

J∗k (s(k)) = min
uk∈Uk(s(k))

E
W (k)

[
gk(s

(k),u(k),W (k)) + Jk+1(fk(s
(k),u(k),W (k)))

]
= Jk(s

(k)).

(1.47)

Thus, by induction, Algorithm 1 gives the optimal solution at each index k
such that Jk(s

(k)) = J∗k (s(k)).

1.2.3 Deterministic discrete-time dynamic system

Deterministic discrete-time dynamic system is a special case of the system
presented in De�nition 1.22. In the absence of the disturbance, the discrete-
time dynamic system is deterministic. This means that the next state is
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determined fully by the current state and the action taken, such as s(k+1) =
fk(s

(k),u(k)). In this case, the cost functional is �xed on a �xed state and
a �xed action. Instead of the cost functional, a transition cost is used. The
transition cost is de�ned as ak

s(k)→s(k+1) = gk(s
(k),u(k)) with u(k) ∈ Uk(s(k))

for all k = 0, 1, . . . , K − 1 and aK
s(K)→s(K+1) = gk(s

(K)).
To be precise, the transition cost is not well de�ned if two di�erent actions

on a same state result in a same successive state s(k+1) = fk(s
(k),u(k)) =

fk(s
(k),v(k)) for some u(k),v(k) ∈ Uk(s

(k)) with u(k) 6= v(k). In these cases,
let us select ak

s(k)→s(k+1) = min{gk(s(k),u(k)), gk(s
(k),v(k))} because the higher

cost could never be in the optimal solution.
For completeness, let us set transition costs for illegal transitions and

self-transitions, too. Let ak
s(k)→s(k+1) = ∞ for illegal transitions with the

state change s(k+1) = fk(s
(k),u(k)) where u(k) /∈ Uk(s(k)). For self-transitions,

ak
s(k)→s(k+1) = 0 with the state change s(k) = s(k+1). Both de�nitions apply
for all k = 0, 1, . . . , K − 1. Now, the complete de�nition for the transition
cost is

aks(k)→s(k+1) =


0 , if s(k) = s(k+1)

gk(s
(k),u(k)) , if u(k) ∈ Uk(s(k))

∞ , otherwise.

(1.48)

Using the transition cost notation instead of the cost functionals, cost func-
tion J can be written as

Jπ(s(0)) = E
W (0),...,W (K−1)

[gK(s(K)) +
K−1∑
k=0

gk(s
(k), µk(s

(k)))]

= gK(s(K)) +
K−1∑
k=0

gk(s
(k), µk(s

(k)))

= aKs(K)→s(K+1) +
K−1∑
k=0

aks(k)→s(k+1) .

(1.49)

The expected value over the random disturbances in Equation (1.49) can also
be removed because in a deterministic system, the cost functionals do not
depend on any random disturbances.

Knowing the transition costs ak
s(k)→s(k+1) , �nding the optimal policy is a

minimization problem, or more speci�cally, a shortest path problem:

De�nition 1.29. Let the transition costs be de�ned as in Equation (1.48).
Then the shortest path problem is
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minimize
(s(0), . . . , s(K))

Jπ(s(0)) = aKs(K)→s(K+1) +
K−1∑
k=0

aks(k)→s(k+1) . (1.50)

The shortest path problem in De�nition 1.29 may be solved recursively
using backward dynamic programming algorithm:

JK(s(K)) = gK(s(K)) = aK
s(K)→s(K+1)

Jk(s
(k)) = min[gk(s

(k),u(k)) + Jk+1(s(k+1))]

= min[ak
s(k)→s(k+1) + Jk+1(s(k+1))]

(1.51)

with an optimal solution J0(s(0)) = min[a0
s(0)→s(1) + J1(s(1))].

Remark 1.30. Theorem 1.28 requires the cost functional values gk(x
(k),u(k))

to be �nite. In this section, however, the transition costs are de�ned to be
in�nite for illegal transitions. This de�nition was chosen only to keep the
notation more simple. For the same results, the transition costs do not need
to be in�nite for illegal transitions. A large enough value M would su�ce.
Let the constant M be remarkably greater than the sum of all the legal
transitions, de�ned as

∑K−1
k=0

∑
s(k)∈Sk

∑
u(k)∈Uk(s(k)) gk(s

(k),u(k))�M <∞.

Let the transition cost be ak
s(k)→s(k+1) = M for illegal transitions where

s(k+1) = fk(s
(k),u(k)) and u(k) /∈ Uk(s

(k)). Now the algorithm in Equation
(1.51) would never pick an illegal transition if there is a legal transition avail-
able. Also, if J0(s(0)) ≥ M , it means that no admissible policy exists. With
this remark in mind, the solution in Equation (1.51) is can be seen as optimal
by Theorem 1.28.

Since there are no disturbances, and every state can be calculated from
the actions taken, the shortest path problem may be reversed. In a reversed
problem, the state s(0) is the �nal state, and the �ctitious state s(K+1) is
the �rst state of the system. Let us de�ne transition costs as aK−k

s(k+1)→s(k) :=

ak
s(k)→s(k+1) . These are the costs for reversed transitions, and they are equal

to the original, non-reversed costs. Let us also de�ne states t(k) := s(K−k+1),
which means that s(l) = t(K−l+1). The reversed shortest path problem is

minimize
(s(1), . . . , s(K+1))

J̃π(s(K+1)) = aKs(1)→s(0) +
K∑
k=1

aK−k
s(k+1)→s(k) , (1.52)

which is equivalent to
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minimize
(t(0), . . . , t(K))

J̃π(t(0)) = aK
t(K)→t(K+1) +

K−1∑
k=0

ak
t(k)→t(k+1) . (1.53)

The minimization problem in Equation (1.53) has been solved in Equation
(1.51). When the replacement t(k) = sK−k+1 is used, the result is the forward
dynamic programming algorithm.

J̃K(s(1)) = aK
s(1)→s(0) = a0

s(0)→s(1)

J̃k(s
(K−k+1)) = min[ak

s(K−k+1)→s(K−k) + J̃k+1(s(K−k))]

= min[aK−k
s(K−k)→s(K−k+1) + J̃k+1(s(K−k))]

(1.54)

with an optimal solution J̃0(s(K+1)) = min[aK
s(K)→s(K+1) + J1(s(K))]. This al-

gorithm is presented formally in Algorithm 2.

Algorithm 2 forward dynamic programming algorithm

1: J̃K(s(1)) = a0
s(0)→s(1)

2: for all k = K − 1, . . . , 1, 0 do
3: J̃k(s

(K−k+1)) = mins(K−k) [aK−k
s(K−k)→s(K−k+1) + J̃k+1(s(K−k))]

4: end for

2 Time Series

Time series are a sequence of observations made over time. Some examples
of time series are market capitalization indices, such as S&P 500, electrocar-
diograph and audio �les. Ding et al. [17] de�ne time series in discrete time
as a set of pairs of time stamps and observations.

De�nition 2.1. Let xi ∈ R be an observation that occurs at time ti. Time
series is a set of pairs T = {(xi, ti)}n(i=1) with ti < tj for all i < j.

The time series T is a sample from some continuous signal. Usually, the
sampling rate is assumed to be �xed [19, 24, 71], so that ∆ti := ti − ti−1

is constant for all i. In these cases the time stamp is usually irrelevant and
may be dropped. With this assumption, the time series has the following
representation:

De�nition 2.2. Univariate time series X = (x1, . . . , xn) is an ordered se-
quence of data points or a vector.
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The series X de�ned this way is called a univariate time series (UTS).
A data point xi is usually called a feature or a dimension. In this thesis,
however, it is called an observation or a dimension to avoid confusion when
talking about feature subset selection in section 2.2.

There may be multiple simultaneous measurements for capturing di�erent
aspects of a single event. This kind of arrangement creates multiple time series
that are logically connected by the event. These time series can be processed
as one multivariate time series (MTS). MTS are de�ned using the de�nition
of UTS in De�nition 2.2:

De�nition 2.3. Multivariate time series is a collection of univariate time
series X = (X(1), . . . ,X(m)) with X(j) being a univariate time series of
length n for all j = 1, . . . ,m.

In this thesis, the UTS X(j) in De�nition 2.3 is called a feature of the
MTS. The MTS in De�nition 2.3 may also be presented as a matrix X ∈
Rn∗m. It is also possible to present it as a sequence of multivariate observa-
tions X = (x1, . . . ,xn) similarly to De�nition 2.2.

Classi�cation of time series data poses multiple challenges. First, time
series may have di�erent lengths. This means that the vectors to be compared
may be of di�erent dimension. Second, if MTSs consist of multiple features,
classi�cation may su�er from so-called curse of dimensionality [18]. Third,
time series are collections of observations that are usually highly correlated to
the previous and subsequent observations. This means that there are multiple
ways to de�ne distance between time series. Some distances represent the
di�erence between time series well, while other distances may not.

The following sections will review some of the methods to tackle these
challenges. Section 2.1 is about preprocessing of time series. Section 2.2
presents methods to reduce the number of features to tackle the curse of
dimensionality. In section 2.3, some commonly used distance measures to
compare the time series are discussed.

2.1 Preprocessing of time series data

There are two preprocessing steps that the time series generally require:
resampling and Z-normalization. Resampling transforms the time series into
desired length [48]. Z-normalization eliminates the scale and o�set di�erences
between the time series [4]. Both of these methods are designed for UTSs.
They both, however, can be generalized to MTSs by performing them on
each feature one at the time.
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2.1.1 Natural cubic spline interpolation and resampling

Time series resampling consists of two steps: interpolation and the actual
resampling. Interpolation step approximates the continuous signal behind
the discrete time series data. In this thesis, the choice for the interpolation
method is cubic spline. Cubic spline has a property called smoothness. Many
signals in real world are smooth. Let us now de�ne cubic spline:

De�nition 2.4. Cubic spline is a piecewise smooth function S : [t1, tn]→ R.
Its value at the time stamp t is

S(t) =



C1(t) , if t1 ≤ t < t2

. . .

Ci(t) , if ti ≤ t < ti+1

. . .

Cn−1(t) , if tn−1 ≤ t ≤ tn

(2.1)

where functions Ci(t) = dit
3 + cit

2 + bit + ai are third degree polynomials
with di, ci, bi, ai ∈ R and di 6= 0 for all i = 1, . . . , n− 1.

In this context, smooth means that the second derivative S ′′ is continuous
on the interval (t1, tn) ⊂ R. The cubic spline in Equation (2.1) consists of n−1
third degree polynomials C1, . . . , Cn−1. This means that there are 4(n − 1)
coe�cients to solve.

Cubic spline interpolates the time series X = {(xi, ti)}ni=1 if

Ci(ti) = xi and Ci(ti+1) = xi+1 (2.2)

for all polynomials Ci : R → R with i = 1, . . . , n − 1. Cubic spline must
also be smooth. This means that the �rst and the second derivatives must
be continuous. The smoothness condition is ensured by constraints

C ′i(ti+1) = C ′i+1(ti+1) (2.3)

C ′′i (ti+1) = C ′′i+1(ti+1) (2.4)

for all i = 1 . . . , n−2. In total, there are 4(n−1)−2 constraints in Equations
(2.2), (2.3) and (2.4). A good choice for the two missing constraints is

C ′′1 (t1) = C ′′n−1(tn) = 0 (2.5)

if the time series to be interpolated is not known to be periodic. With this
constraint in Equation (2.5) the spline is natural cubic spline.
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The next step is the actual resampling. The time series X can be resam-
pled into any length n′ by using the natural cubic spline interpolation. Let
t′1 = t1, t

′
n′ = tn and t′j ∈ (t1, tn) with t′j 6= t′k for all j, k = 2, 3, . . . n′ − 1.

These are the new time stamps for the resampled time series. The resampled
time series is then

X ′ = {(S(t′j), t
′
j)}n

′

j=1. (2.6)

2.1.2 Z-normalization

In most cases, each time series must be Z-normalized so that comparing them
would be meaningful [28]. The Z-normalization can handle the scale invari-
ance and o�set [54]. For example, in the Australian sign language dataset
[27], some people might have wider range of movement when signing the
same sign. The Z-normalization is de�ned as

zi =
xi − µ
Std(X)

(2.7)

for all i = 1, . . . , n. In Equation (2.7), µ denotes the mean of the time series
X and Std(X) is its standard deviation.

2.2 Feature Subset Selection of Time Series

In this thesis, a MTS is represented as a matrix X ∈ Rn∗m with n being
the length of the time series, and m is the number of features. The features
are the individual UTS that constitute the MTS instance in De�nition 2.3.
Feature subset selection is one important step in time series classi�cation
pipeline. Feature subset selection reduces the number of features by selecting
the best features from all the m features of the MTS.

Another way to compress the time series is to use dimensionality reduc-
tion. This means that the number of observations is reduced in each feature
from the total of n dimensions. This is usually done to reduce the size of the
time series on a drive and to speed up the computations, such as similarity
searches, in large databases [65]. These optimizations are out of the scope of
this thesis, so the dimensionality reduction techniques will be omitted.

MTS data su�ers from the curse of dimensionality1just the same as other
forms of data-analysis [18]. As the m increases, the MTS tend to be more
equidistant. This hurts classi�cation. The feature subset selection is a less
researched topic than the traditional dimension reduction for i.i.d data [22].
CLeVer is one of the few feature subset selection techniques in the litera-
ture. It is an unsupervised technique, which means that the data do not
need to be annotated beforehand. It is used in this thesis because of this
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particular property. Unsupervised learning and its relation to supervised and
semi-supervised learning is discussed more in detail in Section 3. Let us �rst
take a look at principal component analysis method since CLeVer builds on
that method.

2.2.1 Common Principal Component Analysis

Principal component analysis (PCA) is a widely used method for dimension-
ality reduction and feature selection used in many disciplines [36]. It can be
used as a feature selection method in an unsupervised setting. LetX ∈ Rn∗m

be a matrix representing MTS. Its principal components are the eigenvectors
pi of its covariance matrix Σ ∈ Rm∗m [62]. The covariance between two
features is

Cov(X(i),X(j)) = sij =
1

n− 1

n∑
k=1

(X
(i)
k − µi)(X

(j)
k − µj) (2.8)

where µl is the mean of the feature X(l). The covariance matrix is the ma-
trix Cov(X) := Σ = [sij]

m
i,j=1. The reduced dimensionality representation of

matrix X is calculated as Y = XP k where P k = (p1, . . . , pk)
T ∈ Rm∗k is a

matrix of k dominant eigenvectors of the covariance matrix Σ, and k < m
[62]. In other words, the matrix Y is a projection of the matrix X to the
subspace spanned by the k eigenvectors with the largest eigenvalues.

The scales of the features a�ect the covariance matrix Σ. To get mean-
ingful results, the features must be of a similar scale. One way to achieve this
is to use correlations instead of covariances. In this thesis, Z-normalization
is used for similar results. The Z-normalization is a natural choice here since
it is a usual step in the time series classi�cation pipeline.

Common principal component analysis (CPCA) is a generalization of
PCA that can be used to analyse a MTS database. There are two steps
to obtaining CPCA for the MTS database. First, every MTS is described by
the t most important principal components. These are the eigenvectors that
correspond to the largest eigenvalues. The �rst common principal component
(CPC) is then obtained by bisecting the angles between the �rst principal
components of each MTS. The other common principal components are ob-
tained in a similar fashion. [69]

The CPCA algorithm is presented in Algorithm 3. In Algorithm 3, the
matrix T (t) is a truncation matrix. Let us de�ne the truncation matrix as

1This term is a little misleading in this context. The curse of dimensionality is caused

mainly by the number of features rather than the dimensionality of a time series. This is

because the observations close to each other in a time series are highly correlated.
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T (t) = [I t 0t,m−t] ∈ Rt∗m. The truncation matrix selects the �rst t rows of
matrix U ∈ Rm∗m according to the equation U tr = T (t)U .

Algorithm 3 Common Principal Component Analysis
Require: MTS database X with N time series, number of latent variables t
Ensure: Common principal component matrix C
1: H = 0 ∈ Rm∗m

2: C = 0 ∈ Rt∗m

3: for all X ∈ X do

4: Z ← Z-normalize X
5: Calculate covariance matrix Σ = Cov(Z)
6: U ,S,UT ← SV D(Σ)
7: Truncate matrix U according U tr = T (t)U
8: H ←H +UT

trU tr

9: end for

10: V ,S,V T ← SV D(H)
11: Truncate matrix V according V tr = T (t)V
12: C ← V tr

CPCA can be used to transform the original features into latent features.
The CPCs are stored in the matrix C in Algorithm 3. The transformed time
series are computed similarly to PCA such that Y = XCT . The matrix Y ∈
Rn∗t is the transformed time series, and its features are linear combinations
of the features of the original time series X.

The CPCA �nds the latent features of the original time series. In ideal
case, CPCA compresses the relevant information from the MTS into just a
few features. This, however, may not always be desirable since it makes the
results harder to interpret. In this thesis, the original, untransformed features
are kept for easier interpretation. The following method, CLeVer, selects the
most relevant features from the original features.

2.2.2 CLeVer-family

CLeVer is one of the few feature subset selection methods designed specially
for multivariate time series [22]. It is based on CPCA. The common principal
components of CPCA can be used for feature ranking and clustering [69]. The
CLeVer-family feature subset selection selects the features from the original
features without transforming them. This makes results easier to interpret.

The CLeVer-family does not �x the number of common principal com-
ponents. Instead it requires the eigenvectors of the covariance matrices to
explain at least δ percent of the variance of each MTS. The number of CPCs

34



tmax is determined at the run-time. The value tmax is de�ned as the minimum
number of eigenvectors that explain at least δ percent of the variance of each
MTS. Algorithm 3 will be augmented so that it �nds the value tmax. This
augmented CPCA algorithm is presented in Algorithm 4.

Algorithm 4 Common Principal Component Analysis for CLeVer

Require: MTS database X with N time series, threshold δ
Ensure: Common principal component matrix C
1: H = 0 ∈ Rm∗m

2: tmax = 0
3: for all X ∈ X do

4: Z ← Z-normalize X
5: Calculate covariance matrix Σ = Cov(Z)
6: U ,S,UT ← SV D(Σ)
7: Save U in U
8: t = arg mint=1,...,m

∑t
i=0 Sii such that

∑t
i=0 Sii ≥ δ ∗∑m

i=0 Sii
9: if t > tmax then

10: tmax ← t
11: end if

12: end for

13: for all U ∈ U do

14: Truncate matrix U according U tr = T (tmax)U
15: H ←H +UT

trU tr

16: end for

17: V ,S,V T ← SV D(H)
18: Truncate matrix V according V tr = T (tmax)V
19: C ← V tr

The CLeVer-family consist of three feature subset selection methods:
CLeVer-Rank, CLeVer-Cluster and CLeVer-Hybrid. All three CLeVer algo-
rithms �rst calculate the CPC matrix C in Algorithm 4. The elements in
the matrix C ∈ Rtmax∗m have a useful interpretation. The element Cij is the
contribution of the feature j to the CPC i. The CLeVer algorithms use this
interpretation.

CLeVer-Rank is the most simple of the CLeVer algorithms, and it will be
presented �rst. In CLeVer-Rank, the features are ranked based on the matrix
C. CLeVer-Rank assigns each feature a score s using the interpretation of the
elements in the matrix C. The score of the feature j is the Euclidean norm of
the column j in the matrix C, de�ned as sj = (

∑tmax

i=1 C
2
ij)

1/2. CLeVer-Rank
then simply chooses the k highest scoring features.

CLeVer-Cluster and CLeVer-Hybrid both cluster the features based on the
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columns in the matrix C in k clusters using k-means. The hypothesis is that
the features in the same cluster are highly correlated since they yield similar
patterns to the matrix C. In CLeVer-Cluster and CLeVer-Hybrid, one feature
is selected from each cluster. CLeVer-Cluster selects the feature closest to the
centroid of the cluster since it can be seen as the most correlated feature to
the other features in the cluster. CLeVer-Hybrid scores each feature within
the cluster similarly to CLeVer-Rank method and then selects the highest
scoring feature from each cluster. To recap, both CLeVer-Cluster and CLeVer-
Hybrid select one feature from each cluster but the di�erence between them is
that CLeVer-Cluster selects the feature closest to the centroid, while CLeVer-
Hybrid selects the highest scoring feature within the cluster.

2.3 Distance and Similarity Measures

This section is a review of some distances commonly used for time series. A
distance is a function d : Rm × Rm → [0,∞) that measures the dissimilarity
between two objects x,y ∈ Rm. For the function d to be a distance, it must
satisfy three conditions:

De�nition 2.5. Let x,y ∈ Rm. Function d : Rm×Rm → [0,∞) is a distance,
if

1. d(x,y) ≥ 0

2. d(x,y) = 0⇔ x = y

3. d(x,y) = d(y,x).

In this thesis, there are two other dissimilarity measures that are not
distances. The �rst one is the pseudo-distance. It is a function d that satis�es
the conditions 1 and 3 in De�nition 2.5 and d(x,x) = 0. The second one is the
asymmetric dissimilarity measure that is even more general. The asymmetric
dissimilarity measure requires non-negativity according to the condition 1 in
De�nition 2.5 and d(x,x) = 0. On the other hand, there are also more speci�c
distance measures than the distance in De�nition 2.5. One especially useful
speci�cation is the metric:

De�nition 2.6. Metric is a distance that satis�es the triangle inequality
d(x,y) ≤ d(x, z) + d(z,y) for all x,y, z ∈ Rm.

Many methods, especially those that index time series, assume triangle
inequality [38]. This means that if the distance measure used is not a metric,
there may occur unexpected behavior and unreliable results with many much
researched methods.
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There are numerous di�erent distances designed to measure the distance
of time series. One charasteristic to time series distances is the property
called elasticity [38]. Elasticity is the ability of a distance measure to locally
"stretch" time series. Non-elastic measures can only compare observations
with equal time stamps or indices. Elastic measures are able to compare
observations with almost equal time stamps or indices depending on the
data. This procedure of comparing nearby time stamps or indices is called
time shifting [38].

Marteau [38] de�nes three categories for time series distance measures:

1. non-elastic metric measures,

2. elastic measures that are not metric,

3. metric elastic measures.

Non-elastic metric measures are metrics that do not allow time shifting. Elas-
tic measures that are not metrics allow time shifting but do not satisfy the
triangle inequality in De�nition 2.6. Metric elastic measures are metrics that
allow time shifting.

The following sections will present three distance measures for time series.
First is the Euclidean distance (ED), second is the Dynamic Time Warping
(DTW) distance and third is a similarity factor based on Principal Com-
ponent Analysis (PCA-SF). Of these distance measures, ED and PCA-SF
are non-elastic metrics, and DTW is a non-metric elastic measure. Elastic
metrics are not considered in this thesis since they depend greatly on hyper-
parameters that are hard to optimize in semi-supervised setting.

ED is selected because of its popularity and easy implementation. DTW
is selected because of its strong mathematical foundation and the fact that
it's value has been proven empirically in numerous studies [3]. PCA-SF is
selected because of the noise reducing properties of PCA.

2.3.1 Euclidean Distance

Euclidean distance is the simplest distance measure for time series of equal
length. It is de�ned between two equal length UTSs. The Euclidean distance
of two time series X and Y of length n is ED(X,Y ) = (

∑n
i=1(xi − yi)2)1/2.

The Euclidean distance can be generalized to two equal length MTSs.
Let xi,yi ∈ Rm be observations at time stamp i on time series X and Y ,
respectively. Let d(xi,yi) be a distance between those observations. Then
the Euclidean distance between the two time series X and Y is

ED(X,Y ) =

(
n∑
i=1

d(xi,yi)
2

)1/2

. (2.9)
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MTSs commonly vary in length [24]. However, Euclidean distance can-
not handle time series of unequal length. To overcome this shortcoming time
series may be reinterpolated [48]. In this thesis, a natural cubic spline in
De�nition 2.4 is used to approximate the continuous process behind the dis-
crete sampling. A discrete time series of desired length is then received by
sampling the approximation with a �xed rate.

2.3.2 Dynamic Time Warping

Dynamic time warping (DTW) is a much-researched algorithm that measures
the distance between two time series. DTW computes the distance in a time-
normalized manner, and it is based on dynamic programming [52]. The time-
normalized distance is optimal in the sense that DTW aligns the two time
series according to their peaks and valleys. The following de�nition of DTW
is based on [52] and [29].

Suppose sequences X = (xi)
n
i=1 and Y = (yj)

m
j=1 are time series of equal

or unequal length. Let d(i,j) = d(xi, yj) be some distance measure between the
observations xi and yj. Let a sequence W = (wk)

K
k=1 be a warping path. Its

elements are the pairs wk = (i, j) with some i = 1, . . . , n and j = 1, . . . ,m.
A valid warping path W ful�ls three constraints: monotonic, continuity and
boundary conditions. Monotonicity means that for any successive warping
path element wk = (i, j) and wk−1 = (i′, j′), indices increase monotonically
meaning that i′ ≤ i and j′ ≤ j. In addition, the path must advance on every
path element such that wk 6= wk−1. The continuity condition prevents data
from disappearing. Continuity of the warping path is de�ned as i−i′ ≤ 1 and
j − j′ ≤ 1. Finally, both time series are evaluated from the start to the end
with the boundary condition, which is w1 = (1, 1) and wK = (n,m). Now,
dynamic time warping distance is de�ned over all valid warping paths with
the distances d(i,j) as

DTW(X,Y ) := min
W

√∑
w∈W

dw
2. (2.10)

From the monotonic and continuity conditions, it is easy to see that every
element wk in a valid warping path has one of the three possible relations
to its predecessor wk−1 = (i′, j′): either wk = (i′ + 1, j′), wk = (i′, j′ + 1) or
wk = (i′ + 1, j′ + 1).

The count of the valid warping paths increases exponentially with respect
to the lengths of the time series. The minimization in DTW measure is pos-
sible to solve in feasible time using dynamic programming. The cumulative
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squared distance is de�ned recursively as

c2(i, j) = d(i,j)
2 + min{c2(i− 1, j), c2(i, j − 1), c2(i− 1, j − 1)} (2.11)

with c2(1, 1) = d(1,1)
2. The unde�ned cumulative squared distances are han-

dled as if c2(0, j) = c2(i, 0) =∞. Then the DTW measure is

DTW(X,Y ) =
√
c2(n,m) (2.12)

as de�ned with the cumulative squared distance. It will be proven that this
is an optimal solution to the minimization problem in Equation (2.10) in the
following section in Theorem 2.9.

Multiple distance measures can be used between observations xi and yj
for multivariate time series. A common measure is Euclidean distance [66]
but other lp-norm based distances can also be used [25].

It is useful to apply a global constraint, such as Sakoe-Chiba band [52], to
the optimal warping path computation in Equation (2.12) [48]. The Sakoe-
Chiba band constrains the distance of indices that may be compared. The
index pair (i, j) is inside of the Sakoe-Chiba band if |i− j| ≤ r with r being
a positive integer. The cumulative squared distance is unde�ned outside of
the Sakoe-Chiba band. These values are handled as if c2(i, j) =∞ for indices
|i−j| > r. This way, the parameter r de�nes a window that prevents excessive
warping for the time series.

The Sakoe-Chiba band generally improves both speed of the DTW and
classi�cation accuracy as showed in [48]. An old rule-of-thumb for Sakoe-
Chiba band window size r is 10% of the length of the time series, but the
optimal size depends on the data and is usually less than that [48]. The
window size of r = 0 reverts back to the Euclidean distance. This is easy to see
since |i− j| = 0 implies that i = j. For equal length time series using window
size r = 0, the cumulative distance is c2(i, j) = d(i,j)

2 + min{c2(i− 1, j− 1)}.
The two other options for cumulative squared distance are unde�ned for
r = 0 since |i − 1 − j| = |i − j − 1| = 1. Then, for r = 0, the distance

is DTW(X,Y ) =
√
c2(n, n) =

√
d(n,n)

2 + · · ·+ d(1,1)
2 = ED(X,Y ). This

means that Euclidean distance upper bounds DTW. The di�erence between
Euclidean distance and DTW is illustrated in Figure 3.

It is possible to measure the distance of two time series of di�erent length
using DTW. However, if the time series are not of equal length, the DTW
measure must be normalized based on the lengths of the time series. The
normalization is executed as DTW(X,Y ) =

√
c2(n,m)/N with some scalar

N . The choice of the normalization factor N , however, is not straightforward.
Possible choices for the normalization factor are, for example, the length of
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Figure 3: The di�erence between Euclidean distance and DTW. DTW aligns
the peaks and the valleys of the time series that are out of phase. Euclidean
distance does not align the time series.

the shorter time series, the length of the longer time series and the length
of the optimal path. Thus, even if it is possible to measure distances of
time series of di�erent lengths, it is recommended to �rst resample the time
series to some �xed length. Both normalization and resampling yield similar
classi�cation results. [48]

One major drawback for DTW is that it is not a metric. DTW does not
satisfy the triangle inequality in De�nition 2.6. It is easy prove that DTW is
not a metric with a counter example. LetX = (1, 0, 0, 0), Y = (0, 1, 0, 0) and
Z = (0, 0, 1, 0). The distances between the time series are DTW(X,Y ) = 1,
DTW(Y ,Z) = 0 and DTW(X,Z) =

√
2. The calculations of these distances

is presented in Table 1. The triangle inequality does not hold between the
time series X, Y and Z since DTW(X,Y ) + DTW(Y ,Z) = 1 <

√
2 =

DTW(X,Z). This counter example proves that DTW does not satisfy the
triangle inequality.

It is also noted here that DTW is not an actual distance either by De�-
nition 2.5. Clearly, Y 6= Z but DTW(Y ,Z) = 0. However, DTW satis�es a
condition DTW(X,X) = 0 so DTW is a pseudodistance.

2.3.3 Dynamic Time Warping as Dynamic Programming problem

There is a strong mathematical background in dynamic programming behind
the DTW algorithm. The DTW algorithm was derived from this background
by Sakoe and Chiba [52]. In this section I will derive the algorithm from
the theory of dynamic programming presented in Section 1.2 using similar
reasoning.

Many domains produce time series that are locally out of phase. Matching
these time series time stamp by time stamp may yield low similarities for the
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d(X i,Y j)
2

X4 0 1 0 0
X3 0 1 0 0
X2 0 1 0 0
X1 1 0 1 1

Y1 Y2 Y3 Y4

d(Y i,Zj)
2

Y4 0 0 1 0
Y3 0 0 1 0
Y2 1 1 0 1
Y1 0 0 1 0

Z1 Z2 Z3 Z4

d(X i,Zj)
2

X4 0 0 1 0
X3 0 0 1 0
X2 0 0 1 0
X1 1 1 0 1

Z1 Z2 Z3 Z4

Table 1: The DTW calculations between the time series X, Y and Z ac-
cording the de�nition in Equation (2.10). The matrices represent the squared
distances between the observations in the time series. The optimal warping
paths are marked with bold numbers. DTW is the square root of the sum of
the elements in the optimal warping path. This means that DTW(X,Y ) = 1,
DTW(Y ,Z) = 0 and DTW(X,Z) =

√
2.

time series even if they are produced by similar events. In these cases, for a
more meaningful measure of dissimilarity, the measure must be local scaling
invariant [4]. Local scaling invariance can be achieved by many-to-one and
one-to-many time stamp matching.

Let the state s(k) = (i, j) be an index pairing where i = 1, . . . , n is
an index of time series X and j = 1, . . . ,m is an index of time series Y .
Given a sequence of states (s(1), . . . , s(K)), a possibly asymmetric dissimilarity
measure can be de�ned as

da(X,Y ) =

√√√√g(s(K)) +
K−1∑
k=1

g(s(k)). (2.13)

The function g is the squared distance between the observations at the time
stamps i and j, and its value is g(s(k)) = g(i, j) = d(X i,Y j)

2.
Considering the time series X and Y , there are three possibilities to

match the time stamps of the time series X to the time stamps of the time
series Y : one-to-one, one-to-many and many-to-one. These options produce
sequence prototypes {(i, j), (i + 1, j + 1)}, {(i, j), (i, j + 1)} and {(i, j), (i +
1, j)}, respectively, assuming that the time cannot �ow backwards. Each
sequence of states must be composed of these prototypes. To ensure that
every time stamp in both time series are matched, let us require that s(1) =
(1, 1) and s(K) = (n,m).

A deterministic discrete time dynamic system can be de�ned using the
sequence prototypes so that

s(k+1) = s(k) + u(k) (2.14)
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where the action is u(k) ∈ {(0, 1), (1, 1), (1, 0)}. To ensure that the dissim-
ilarity measure is well-de�ned, the action u(k) must result in an admissible
state sk+1 = (i, j) where i = 1, . . . , n and j = 1, . . . ,m. Let u(k) ∈ U(s(k))
and

U(i, j) =


{(0, 1)} , if i = n

{(1, 0)} , if j = m

{(0, 1), (1, 1), (1, 0)} , otherwise

(2.15)

for all k = 1, . . . , K − 1.
Let us now de�ne DTW similarly to Equation (2.10). DTW is a dis-

similarity measure, or a distance function, so Equation (2.13) will be used
to de�ne it. Let the cost function be the squared dissimilarity measure in
Equation (2.13), so Jπ(s(1)) = da(X,Y )2 = g(s(K)) +

∑K−1
k=1 g(s(k)). DTW

is constrained by the system in Equation (2.14) and by the endpoint con-
straints s(1) = (1, 1) and s(K) = (n,m). The cost function and the constraints
constitute in the following dynamic program as de�ned in De�nition 1.25:

minimize
π ∈ Π

Jπ(s(1)) = g(s(K)) +
K−1∑
k=1

g(s(k))

subject to s(k+1) = s(k) + µk(s
(k)), k = 1, . . . , K − 1,

s(1) = (1, 1),

s(K) = (n,m).

(2.16)

Using the program in Equation (2.16), DTW is de�ned as

DTW(X,Y ) =
√
Jπ∗(1, 1). (2.17)

The value Jπ∗(1, 1) is the optimal solution to a minimization problem in
Equation (2.16).

The minimization problem in Equation (2.16) is equivalent to a shortest
path problem

minimize
(s(1), . . . , s(K))

Jπ(s(1)) = as(0)→s(1) +
K−1∑
k=1

as(k)→s(k+1)

subject to s(0) = (0, 0),

s(K) = (n,m),

(2.18)

with s(k) = (i, j), i = 0, 1, . . . , n, j = 0, 1, . . . ,m. The transition costs
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Figure 4: DTW algorithm as a shortest path problem. The shorter notation
gij means in this �gure the cost functional gij := g(i, j). The states with legal
transitions form a weighted directed acyclic graph.

as(k)→s(k+1) in Equation (1.48) are de�ned as

a(i,j)→(i′,j′) =


0 , if (i′, j′) = (i, j)

g(i′, j′) , if (i′, j′) ∈ {(i, j + 1), (i+ 1, j + 1), (i+ 1, j)}
and i′ = 1, . . . , n and j′ = 1, . . . ,m

∞ , otherwise

(2.19)
for all k = 0, 1, . . . , K − 1. The state s(0) = (0, 0) is a �ctitious state, whose
only purpose is to provide the initial cost g(1, 1) to the cost function J(s(K))
in Equation (2.18). The shortest path problem in Equation (2.18) is illus-
trated in Figure 4 as a weighted directed acyclic graph.

The length of the planning horizon can be �xed to K such that K =
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n + m − 1. That is the length of the longest admissible path that does not
contain self-transitions. Such a policy exists because of the monotonicity
constraint. The monotonicity constraint requires both indices i and j to be
increasing and either index i or index j to be strictly increasing at any point.
Clearly, the longest admissible path does not contain diagonal transitions
(i, j) → (i + 1, j + 1) where not forced. This follows from the fact that the
diagonal transition (i, j)→ (i+1, j+1) may be replaced with two successive
transitions (i, j) → (i + 1, j) → (i + 1, j + 1). One example of the longest
admissible path is the path

π =
(
a(0,0)→(1,1), a(1,1)→(1,2),

. . . , a(1,m−1)→(1,m), a(1,m)→(2,m), . . . , a(n−1,m)→(n,m)

)
.

(2.20)

The path in Equation (2.20) has the length K = n+m−1. Adding anything
except self-transitions in the longest admissible path would render the path
inadmissible.

Let us solve the shortest path problem in Equation (2.18) using the for-
ward dynamic programming algorithm in Algorithm 2. The recursive solution
is then{

J̃K(s(1)) = a(0,0)→s(1)

J̃k(s
(K−k+1)) = mins(K−k) [as(K−k)→s(K−k+1) + J̃k+1(s(K−k))]

(2.21)

with an optimal solution Jπ∗(1, 1) = J̃0(n,m).
Let us de�ne the set of possible states as

S := {1, . . . , n} × {1, . . . ,m}. (2.22)

Now each state s(k) ∈ S for all k = 1, . . . , K. The only state outside the set
of the possible states is the �ctitious initial state s(0). Let us �x the current
state s(K−k+1) = (i, j). If the current is (i, j) = (1, 1), then the value in Step 3

in Algorithm 2 is J̃k(1, 1) = mins(K−k) [as(K−k)→(1,1) + J̃k+1(s(K−k))]. Now, the
only transition with �nite transition cost is the self-transition (1, 1)→ (1, 1),

so J̃k(1, 1) = min{0 + J̃k+1(1, 1)} = J̃k+1(1, 1) for all k = 0, 1, . . . , K − 1.
This follows from the de�nition of the transition cost in Equation (2.19):
the state (1, 1) can only be reached from the states (0, 0) and (1, 1), while
s(K−k) 6= (0, 0) for all k = 0, 1, . . . , K − 1. This means that, by recursion,

J̃k(1, 1) = J̃K(1, 1) = g(1, 1) (2.23)

for all k = 0, 1, . . . , K.
I will now prove a lemma that lets us implicitly calculate the transition

costs simplifying the notation.
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Lemma 2.7. Let J̃k(i, j) be a sub-result as stated in the solution in Equation

(2.21). Then J̃k(i, j) = g(i, j)+min J̃k+1({(i, j−1), (i−1, j−1), (i−1, j)}∩S)
for any (i, j) ∈ S \ {(1, 1)}.
Proof. Let us �rst simplify Step 3 in Algorithm 2 for the shortest path prob-
lem in Equation (2.18). Let us �x the current state s(K−k+1) = (i, j), and let
(i, j) ∈ S \{(1, 1)}. Now, by Equation (2.19), the transition cost is �nite only
if the previous state s(K−k) is in the set

s(K−k) ∈ {(i, j), (i, j − 1), (i− 1, j − 1), (i− 1, j)} ∩ S. (2.24)

In this case, since the self-transition has the cost 0, the value in Step 3 in
Algorithm 2 is

J̃k(i, j) = min
s(K−k)∈S

[as(K−k)→(i,j) + J̃k+1(s(K−k))]

= min
[
{0 + J̃k+1(i, j)}

∪ g(i, j) + J̃k+1({(i, j − 1), (i− 1, j − 1), (i− 1, j)} ∩ S)
] (2.25)

for all k = 0, 1, . . . , K − 1 by Equation (2.19).
Let us take a closer look at the notation used in Equation (2.25). With

the sum of a term and a set I mean the image of a subset such as

g(i, j) + J̃k+1({(i, j − 1), (i− 1, j − 1), (i− 1, j)} ∩ S)

:=
{
g(i, j) + J̃k+1(i′, j′) | (i′, j′) ∈ {(i, j − 1), (i− 1, j − 1), (i− 1, j)} ∩ S

}
.

(2.26)

The union in Equation (2.25) means a union of the set {J̃k+1(i, j)} of single
element and the image in Equation (2.26). Note that the set {(i, j − 1), (i−
1, j − 1), (i− 1, j)} ∩ S is non-empty when (i, j) ∈ S \ {(1, 1)}.

The Equation (2.25) is already almost the same as the one in Lemma 2.7.

The value 0 + J̃k+1(i, j) in Equation (2.25) is the cumulative cost for self-
transition. This means that all that is left to prove is that, for any (i, j) ∈
S \ {(1, 1)}, the self-transition is not the only optimal decision (if optimal at
all). I will prove this using induction.

If k = K − 1, then J̃K(i, j) = ∞ for all (i, j) ∈ S \ {(1, 1)}. This can
be seen from Equations (2.19) and (2.21): the only legal transition from the
state (0, 0) is the transition (0, 0)→ (1, 1). Now, by Equation (2.25), equation

J̃K−1(i, j) = g(i, j) + min J̃K({(i, j − 1), (i − 1, j − 1), (i − 1, j)} ∩ S) holds

since J̃K(i, j) = ∞. This means that the proposition in Lemma (2.7) holds
for k = K − 1.
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Let us now assume that the proposition

J̃k(i, j) = g(i, j) + min J̃k+1({(i, j − 1), (i− 1, j − 1), (i− 1, j)} ∩ S) (2.27)

holds for some index k and for all (i, j) ∈ S \ {(1, 1)}. I will show that then
it holds for the index k− 1, too. By Equation (2.25), the index k− 1 satis�es
equation

J̃k−1(i, j) = min
[
{J̃k(i, j)}

∪ g(i, j) + J̃k({(i, j − 1), (i− 1, j − 1), (i− 1, j)} ∩ S)
]
.
(2.28)

The induction assumption in Equation (2.27) can be used to the value J̃k(i, j).
Then Equation (2.28) can be written as

J̃k−1(i, j) = min
[

{g(i, j) + min J̃k+1({(i, j − 1), (i− 1, j − 1), (i− 1, j)} ∩ S)}
∪ g(i, j) + J̃k({(i, j − 1), (i− 1, j − 1), (i− 1, j)} ∩ S)

]
= g(i, j) + min

[
J̃k+1({(i, j − 1), (i− 1, j − 1), (i− 1, j)} ∩ S)

∪ J̃k({(i, j − 1), (i− 1, j − 1), (i− 1, j)} ∩ S)
]
.

(2.29)

In the second equality in Equation (2.29), an observation regarding the real
numbers is used such as min{a,min{b, c}} = min{a, b, c} where a, b, c ∈
R ∪ {∞}.

It is easy to see that J̃k+1(i′, j′) ≥ J̃k(i
′, j′) when (i′, j′) ∈ S. This follows

from the fact that J̃k(i
′, j′) = min{J̃k+1(i′, j′)}∪g(i′, j′)+J̃k+1({(i′, j′−1), (i′−

1, j′−1), (i′−1, j′)}∩S) when (i′, j′) ∈ S \{(1, 1)}, and J̃k(1, 1) = J̃k+1(1, 1)

when (i′, j′) = (1, 1). In other words, the value J̃k(i
′, j′) is the minimum of

a set that includes the value J̃k+1(i′, j′). Thus, the induction assumption in
Equation (2.27) holds for the index k − 1, and, by induction,

J̃k(i, j) = g(i, j) + min J̃k+1({(i, j − 1), (i− 1, j − 1), (i− 1, j)} ∩ S) (2.30)

for all k = 0, 1, . . . , K − 1 and (i, j) ∈ S \ {(1, 1)}.

By the result in Lemma 2.7 the recursive solution in Equation (2.21) can
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be rewritten as
J̃K(1, 1) = J̃k(1, 1) = g(1, 1)

J̃K(i, j) =∞
J̃k(i, j) = g(i, j) + min J̃k+1({(i, j − 1), (i− 1, j − 1), (i− 1, j)} ∩ S)

(2.31)

for all (i, j) ∈ S \ {(1, 1)}. The optimal solution is Jπ∗(1, 1) = J̃0(n,m). The
following lemma and its proof will further simplify the solution in Equation
(2.31). In addition, the following lemma will give us the algorithm that is
identical to the DTW algorithm presented in Equation (2.12).

Lemma 2.8. The index k in the solution in Equation (2.31) is not necessary.

Proof. I will prove this lemma with the de�nition of sub-problems in De�-
nition 1.26. Let us consider the following sub-problem to the shortest path
problem in Equation (2.18):

minimize
(s(1), . . . , s(L))

JπL(s(1)) = a′s(0)→s(1) +
L−1∑
l=1

a′s(l)→s(l+1)

subject to s(0) = (0, 0),

s(L) = (n′,m′),

(2.32)

where L = m′ + n′ − 1 < K and n′ ≤ n, m′ ≤ m. The transition costs in
Equation (2.32) are de�ned as

a′(i,j)→(i′,j′) =


0 , if (i′, j′) = (i, j)

g(i′, j′) , if (i′, j′) ∈ {(i, j + 1), (i+ 1, j + 1), (i+ 1, j)}
and i′ = 1, . . . , n′ and j′ = 1, . . . ,m′

∞ , otherwise.

(2.33)
Let S ′ = {1, . . . , n′} × {1, . . . ,m′}. Now the minimization problem in Equa-
tion (2.32) is a shortest path problem, and it is similar to the one in Equation
(2.18). As a shortest path problem, it has a solution similar to the one in
Equation (2.31):

J̃L(1, 1) = J̃l(1, 1) = g(1, 1)

J̃L(i, j) =∞
J̃l(i, j) = g(i, j) + min J̃l+1({(i, j − 1), (i− 1, j − 1), (i− 1, j)} ∩ S ′).

(2.34)
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The optimal solution is Jπ∗L(1, 1) = J̃0(n′,m′). Note, however, that this sub-
problem is useful according to Bellman's principle of optimality in Theorem
1.27 only if the state (n′,m′) is present in the optimal path π∗ for the original
problem in Equation 2.18. For the purpose of this proof, this can be assume
without the loss of generality.

Let us synchronize the indices with the original problem in Equation
(2.18) by adding a �xed integer K − L to the index. This does not change
the solution in Equation (2.34) in any way. Then the solution, whose indices
are synchronized with the problem in Equation (2.18), is
J̃K(1, 1) = J̃K−L+l(1, 1) = g(1, 1)

J̃K(i, j) =∞
J̃K−L+l(i, j) = g(i, j)

+ min J̃K−L+l+1({(i, j − 1), (i− 1, j − 1), (i− 1, j)} ∩ S ′)
(2.35)

Now, the optimal solution is Jπ∗L(1, 1) = J̃K−L(n′,m′), and it is equivalent
to the solution in Equation (2.34). Every admissible path for the problem
in Equation (2.32) has length L including the optimal solution. To keep
the admissible paths admissible, only self-transitions may be added. Since
the self-transitions have no e�ect on the cost function value, the equations
J̃K−L(n′,m′) = J̃K−L−1(n′,m′) = · · · = J̃0(n′,m′) hold. Note that L = n′ +
m′−1 by de�nition in Equation (2.32). In addition, the state (n′,m′) ∈ S ′ ⊂
S, so it is a possible state in the shortest path problem in Equation (2.18).
This means that, by using the sub-problems in Equation (2.32) and Bellman's
principle of optimality in Theorem 1.27, the following rule has been derived:

if k ≤ K − i− j + 1, then J̃k(i, j) = J̃0(i, j). (2.36)

The rule in Equation 2.36 applies for all k = 0, 1, . . . , K and (i, j) ∈ S. Note
that it is already shown that J̃k(1, 1) = J̃0(1, 1) in Equation (2.23).

DTW has been de�ned as DTW(X,Y ) =
√
Jπ∗(1, 1) in Equation (2.17).

Due to the endpoint constraints, the only interesting cost function value
is the value at the state (n,m) with the index k = 0. It has an optimal

value J̃0(n,m) by Equation (2.31). For J̃0(n,m) the rule applies because

K−m−n+1 = K−K ≥ 0. This implies the trivial result J̃0(n,m) = J̃0(n,m)
by Equation (2.36).

Let the rule in Equation (2.36) now apply for some index k with some
index pair (i, j) ∈ S. This means that k ≤ K − i − j + 1, implying that

J̃k(i, j) = J̃0(i, j). By adding 1 to the inequality, the following inequalities
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hold:

k + 1 ≤ K − i− j + 2

= K − i− (j − 1) + 1 = K − (i− 1)− j + 1

≤ K − (i− 1)− (j − 1) + 1.

(2.37)

The inequality in Equation (2.37) implies that

J̃k+1({(i, j − 1), (i− 1, j − 1), (i− 1, j)} ∩ S)

= J̃0({(i, j − 1), (i− 1, j − 1), (i− 1, j)} ∩ S).
(2.38)

To summarize, the rule in Equation (2.36) applies to the index k = 0 with
the state (n,m). By the inequality in Equation (2.37), the rule then applies
to the index k = 1 with the previous states (n,m − 1), (n − 1,m − 1) and
(n − 1,m). By recursive use of the inequality in Equation (2.37), the value

Jπ∗(1, 1) = J̃0(n,m) can be solved using the following algorithm:{
J̃0(1, 1) = g(1, 1)

J̃0(i, j) = g(i, j) + min J̃0({(i, j − 1), (i− 1, j − 1), (i− 1, j)} ∩ S).

(2.39)
By de�nition in Equation (2.17), DTW distance between the time series X
and Y is DTW(X,Y ) =

√
Jπ∗(1, 1). This value is equal to the value in

Equation (2.12).

By Lemma 2.8, the de�nition of the cost function is not necessary for
solving the DTW distance. To highlight this, the cost function notations J̃0

in Equation (2.39) can be replaced with some arbitrary function notation c2

for equivalent results. Of course, then the function g in Equation (2.39) must
be de�ned such that

g(i, j) =

{
d(X i,Y j)

2 , if (i, j) ∈ S
∞ , otherwise.

(2.40)

This result is summarized in the following theorem.

Theorem 2.9. The DTW measure between time series X and Y de�ned in
Equations (2.16) and (2.17) may be solved recursively as

c2(1, 1) = d(X1,Y 1)2

c2(i, j) = d(X i,Y j)
2 + min{c2(i, j − 1), c2(i− 1, j − 1), c2(i− 1, j)}

c2(i, 0) = c2(0, j) =∞
(2.41)
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with
DTW(X,Y ) =

√
c2(n,m), (2.42)

where i = 1, . . . , n and j = 1, . . . ,m.

Proof. Solving the dynamic program in Equation (2.16) is equivalent to solv-
ing the shortest path problem in Equation (2.18). By Lemmas 2.7 and 2.8, the
shortest path problem in Equation (2.18) has a recursive solution presented
in Equation (2.39). By de�ning c2(i, 0) = c2(0, j) = ∞, the minimization in
Equation (2.39) is equivalent to

min c2({(i, j − 1), (i− 1, j − 1), (i− 1, j)} ∩ S)

= min{c2(i, j − 1), c2(i− 1, j − 1), c2(i− 1, j)}. (2.43)

Since the function g is de�ned as g(i, j) = d(X i,Y j)
2, the optimal cost

function value to the dynamic program in Equation (2.16) is c2(n,m) as
obtained from Equation (2.41). By the de�nition of DTW in Equation (2.17),
DTW measure can be calculated using Equation (2.42).

Here I have derived the recursive algorithm for DTW. I omitted the Sakoe-
Chiba window from the proofs for simplicity. In practice, it is easy to add
the Sakoe-Chiba window constraint to the solution. Let the window length
be r ≥ 1. The window constraint is added to the transition cost in Equation
(2.19) such that

a(i,j)→(i′,j′) =



0 , if (i′, j′) = (i, j)

g(i′, j′) , if (i′, j′) ∈ {(i, j + 1), (i+ 1, j + 1), (i+ 1, j)}
and i′ = 1, . . . , n and j′ = 1, . . . ,m

and |i′ − j′| ≤ r

∞ , otherwise.

(2.44)
The set of possible states inside the Sakoe-Chiba window is the set SS−C =
{(i, j) ∈ S | |i − j| ≤ r}. This set is in line with the transition costs in
Equation (2.44).

2.3.4 Principal Component Analysis Similarity Factor

Principal Component Analysis Similarity Factor (PCA-SF) di�ers from Eu-
clidean distance and DTW since it is a similarity measure. In addition, PCA-
SF was not originally proposed to measure the similarity of MTSs but the
similarity of datasets [33]. It was later proposed for MTSs by [56] since MTSs
are a type of dataset.
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Krzanowski [33] proposed principal component analysis similarity factor
as a measure of similarity between datasets. Similarity is calculated from the
angles between the principal components. The number of principal compo-
nents is set so that they explain at least 95% of variance in each data set.
The modi�ed version of PCA-SF takes into account the amount of variance
explained by the principal components. This modi�ed PCA-SF, which will
simply be called PCA-SF, is de�ned as [26, 55]

SλPCA :=

∑k
i=1

∑k
j=1(λ

(1)
i λ

(2)
j ) cos2 θij∑k

i=1 λ
(1)
i λ

(2)
i

. (2.45)

In Equation (2.45), the parameter k is the number of principal components,

and parameters λ
(1)
i and λ

(2)
i are the ith eigenvalues of the datasets one and

two, respectively. In addition, in Equation (2.45), the parameter θij is the
angle between ith principal component of the dataset one and jth principal
component of the dataset two, respectively. This similarity factor is suitable
for measuring the similarity between multivariate time series of equal or
unequal length [56].

3 Semi-Supervised Learning

Learning paradigms are usually classi�ed into supervised, semi-supervised
and unsupervised learning based on the availability of feedback or labels. In
supervised learning, each observation has a label. In unsupervised learning,
there are no labels at all. In semi-supervised learning (SSL) there are some
observations with labels and a lot of data without labels.

This section reviews some selected one-class classi�cation (OCC) and
positive-unlabelled (PU) learning methods. OCC is learning from positive
data only with no known negative examples, while PU is learning from un-
labelled data from both classes with only a few known positive examples.
Technically, OCC methods are not semi-supervised learning. OCC methods
are so unique that they are a category on their own. They are, however dis-
cussed in this section since they are not supervised or unsupervised methods
either. In this section, both OCC and PU methods will be applied to novelty
detection. The novelty detection is de�ned in the following section.

3.1 Novelty Detection and One-Class Classi�cation

Novelty detection is a branch of pattern recognition. It refers to �nding novel
patterns from the data. Ntalampiras, Potamitis and Fakotakis [42] de�ne a

51



novelty as data that di�er from the training examples signi�cantly. Nov-
elty detection is closely related to anomaly detection, which aims at �nding
unexpected or anomalous behavior of patterns in data [9]. In some cases,
anomalies are thought to be synonymous to novelties [45]. In this thesis, an
anomaly is an abnormal event in the training data, such as an artefact or
a malfunction of a recording device, whereas novelty is an event that is not
present in the training data, such as a forged signature.

One-class classi�cation is a binary classi�cation task in which the positive
class is well represented in training data, but the negative class is sampled
poorly or not at all. Khan and Madden [31] list three settings in OCC ac-
cording the availability of training data:

• Data from the positive class only

• Data from the positive class and few examples from the negative class

• Data from the positive class and data without class labels.

This thesis assumes the third data availability assumption. The goal is to
�nd all the positive time series based on just one annotated example while
rejecting negative time series.

Before de�ning OCC, let us de�ne a binary classi�er. A binary classi�er
is a function g : Rm → C, where C = {−1,+1}. Score function f : Rm → R
assigns a classi�er score to a data point. Decision rule is a function b : R→
{−1,+1} that links the classi�er score to the classi�er such that b ◦ f = g.
For example, for a Bayesian classi�er the score function could be f(x) =
p(C = +1|x), and the decision rule could be

b(z) =

{
+1 , if z ≥ 1

2

−1 , otherwise.
(3.1)

Tax [59] de�nes a one-class classi�er in a similar way. A score function
is either a distance d(x) or a resemblance p(x) of the query point x to the
positive class +1. The one-class classi�er is a function g(x) = I(d(x) < θd) or
g(x) = I(p(x) > θp), where I(·) is an indicator function. In this de�nition,
the decision rule is b(z) = I(f(x) > θ) with a threshold θ. Usually the
threshold θ is optimized after the optimization of the score function to get
the best trade-o� between the two types of errors. [59] The two type of errors
are false positives and false negatives. The concept of the two type of errors
is de�ned more precisely in Section 4.

OCC falls between supervised and unsupervised learning tasks [64]. It is
not semi-supervised learning in the sense that it does not make use of the
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unlabelled data. It is not supervised learning either since there is no data
from the negative class. OCC is close to unsupervised learning, and many
assumptions and methods of unsupervised learning apply to OCC as such.

3.1.1 Support Vector Data Description

Tax and Duin [60] proposed a support vector data description (SVDD) to
solve the task of one-class classi�cation. The method is inspired by the suc-
cess of the support vector machine. This method �nds the minimum volume
sphere that encloses most of the data points of the positive class. Support
vector data description does not make assumptions of the underlying distri-
bution of the positive class This is helpful since it is di�cult or even im-
possible to sample the whole domain of the positive class [13]. The following
mathematical formulation of support vector data description is based on [60].

Let a ∈ Rm be the center of a hypersphere and R be its radius. The
volume of a hypersphere in an m-dimensional space depends only on the
radius of the hypersphere. Given dataset X = (x1, . . . ,xn)T ⊂ Rm, it is
possible to �nd the minimum volume hypersphere that bounds the dataset
by solving the following minimization problem:

minimize
R ∈ R,a ∈ Rm

R2

subject to ‖xi − a‖2 ≤ R2, i = 1, . . . , n.
(3.2)

The goal of SVDD is to describe the data. If the dataset X includes
outliers, the description found by using Equation (3.2) may not be good. The
outliers "stretch" the hypersphere to include the low density region between
the normal data and outliers. To take the outliers in the training data into
account, Tax and Duin [60] propose to relax the constraints in Equation
(3.2). This can be done by introducing non-negative variables ξ similarly to
soft margin support vector machine in [15].

Let ξi ≥ 0 for all i = 1, . . . , n. The soft constraints for the program in
Equation (3.2) may be written as

‖xi − a‖2 ≤ R2 + ξi (3.3)

for all i = 1, . . . , n. The soft constraints mean here that the solutions outside
of the feasible region of the program in Equation (3.2) are not rejected but
penalized. The penalty is proportional to the error made by using the soft
constraints. This error is measured by a sum

∑n
i=1 ξi. The penalized objective

function is then

R2 + C
n∑
i=1

ξi. (3.4)
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The parameter C > 0 in Equation (3.5) is a control parameter that is used
to control the balance between the volume of the hypersphere and the clas-
si�cation error.

Note that the program in Equation (3.2) and its soft margin counterpart
in Equations (3.3) and (3.4) are non-convex. The inequality constraint func-
tion gi(R,a, ξ) = xTi xi + aTa− 2xTi a−R2 − ξi in Equation (3.3) is convex
with respect to a and linear with respect to ξi but concave with respect to R
[11]. Chang, Lee and Lin [11] proposed to replace the squared radius R2 in
Equations (3.6) and (3.5) with R̄ = R2. With this replacement, the objective
function is

f(R̄,a, ξ) = R̄ + C
n∑
i=1

ξi (3.5)

with constraints
‖xi − a‖2 ≤ R̄ + ξi. (3.6)

Of course, then a condition R̄ ≥ 0 is required since the radius of a hypersphere
must be non-negative.

Chang et al. [11] further argued that the dual problem would be infeasible
with selection C < 1/n. In addition, a selection of C > 1 will always lead
hard constraint program in Equation (3.2) [11]. For this reason, the penalty
parameter is required to satisfy the limits 1/n < C ≤ 1 through out this the-
sis. This requirement for the parameter C has another pleasant consequence:
Chang et al. [11] proved that the constraint R̄ ≥ 0 is not necessary when
1/n < C ≤ 1. The following remark will discuss the case where R̄ < 0.

Remark 3.1. Let R̄ = 0. Equation (3.6) implies that then ξi ≥ ‖xi − a‖2 for
all i = 1, . . . , n. Since Euclidean norm is always non-negative, the variables
can be selected such as ξ∗i = ‖xi − a‖2 ≥ 0. The selection R̄ = 0 and
ξ = ξ∗ := (ξ∗1 , . . . , ξ

∗
n) satis�es the soft constraints in Equation (3.6). With

this selection, the cost function in Equation (3.5) has a value

f(0,a, ξ∗) = C

n∑
i=1

‖xi − a‖2 (3.7)

for any a ∈ Rm.
Let C > 1/n. This inequality is equivalent to the selection C = 1/n+ ε/n

with any ε > 0. Now, because of the soft constraints in Equation (3.6), each
variable ξi has a lower bound ξi ≥ −R̄ + ‖xi − a‖2 for all i = 1, . . . , n and
any R̄ ∈ R. From this, a lower bound to the weighted error term in Equation
(3.5) can be derived such that:

C
n∑
i=1

ξi ≥
1 + ε

n

n∑
i=1

−R̄+‖xi−a‖2 = −(1+ε)R̄+
1 + ε

n

n∑
i=1

‖xi−a‖2. (3.8)

54



The lower bound in Equation (3.8) can be used to derive a lower bound to
the cost function in Equation (3.5):

f(R̄,a, ξ) = R̄ + C
n∑
i=1

ξi ≥ −εR̄ + C

n∑
i=1

‖xi − a‖2. (3.9)

The lower bound in Equation (3.9) holds for any (R̄,a, ξ) ∈ R1+m+n that
satis�es the inequalities in Equation (3.6). If R̄ < 0 then Equation (3.7) and
the lower bound in Equation (3.9) imply that f(R̄,a, ξ) > f(0,a, ξ∗). This
is true for any (R̄,a, ξ) ∈ R1+m+n that satis�es the inequalities in Equation
(3.6). This means that the constraint R̄ ≥ 0 is not necessary when C > 1/n.

Using this modi�cation and the error variable ξ, the minimum volume
problem is equivalent to the following minimization problem:

minimize
R̄ ∈ R,a ∈ Rm, ξ � 0

R̄ + C
n∑
i=1

ξi

subject to ‖xi − a‖2 ≤ R̄ + ξi, i = 1, . . . , n

(3.10)

with 1/n < C ≤ 1.

Remark 3.2. In the program in Equation (3.10), there is an abstract con-
straint (R̄,a, ξ) ∈ R×Rm ×Rn

+ = X. The notation R+ means non-negative
real numbers. This abstract constraint must be taken into account through-
out the analysis of the program in Equation (3.10).

Remark 3.3. With the abstract constraint (R̄,a, ξ) ∈ X, the domain D of
the program in Equation (3.10) is now D = X. However, the a�ne hull
of the domain is a�(D) = R1+m+n. Then, the set in Equation (1.22) is
B((R̄,a, ξ), ε)∩R1+m+n = B((R̄,a, ξ), ε). This means that the relative inte-
rior in De�nition 1.15 is relint(D) = int(D). Now Theorem 1.21 can be used
to analyse the program in Equation (3.10).

Let us consider the program in Equation (3.10) with 1/n < C ≤ 1.
The objective function is linear since it is a sum of two linear functions
fR̄(R̄) = R̄ and fξ(ξ) = C

∑n
i=1 ξi. The functions in the inequality constraints

gi(R̄,a, ξ) = xTi xi + aTa − 2xTi a − R̄ − ξi ≤ 0 are convex functions for all
i = 1, . . . , n. This is true since functions gR̄(R̄) = −R̄ and gξ,i(ξ) = −ξi
are linear, functions ga,i(a) = aTa−2xTi a are quadratic and terms xTi xi are
constants for all i = 1, . . . , n. In addition, the set X in the abstract constraint
is convex. Thus, by Corollary 1.10, the program in Equation (3.10) is a convex
program.
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Clearly, the feasible region of the programming task in Equation (3.10)
is non-empty. Since the radius R̄ is not bounded from above, there is always
a hypersphere that encloses the data with any center a. For example, let
R̄ =

∑n
j=1 ‖xj‖2, a = 0 ∈ Rm and ξ = ε = (ε, . . . , ε)T ∈ Rn with ε > 0. The

point (
∑n

j=1 ‖xj‖2,0, ε) is in the interior of the domain D with any dataset

X = (xj)
n
j=1. In addition, the inequalities gi(R̄,a, ξ) = ‖xi‖2−∑n

j=1 ‖xj‖2−
ε < 0 hold for all i = 1, . . . , n. Thus, the point (

∑n
j=1 ‖xj‖2,0, ε) ∈ D is

an interior point to the feasible region, too. This means that the program
in Equation (3.10) satis�es Slater's condition in De�nition 1.18. Since the
program in Equation (3.10) is also convex, the KKT conditions in Theorem
1.13 are necessary and su�cient for the global optimum.

Let us derive the Lagrangian for the program in Equation (3.10) with
1/n < C ≤ 1 as in De�nition 1.11. Here, the abstract constraints ξ � 0
must be taken into account. The constraint ξ � 0 may be ensured in the
Lagrangian with an additional term

∑n
i=1 γi(−ξi), where γ � 0, as if it were

any ordinary inequality constraint. Now, the Lagrangian of the program in
Equation (3.10) is

L(R̄,a, ξ,λ,γ) = R̄ + C
n∑
i=1

ξi +
n∑
i=1

λi(x
T
i xi + aTa− 2xTi a− R̄− ξi)

+
n∑
i=1

γi(−ξi).

(3.11)

Let the point (R∗,a∗, ξ∗) be the optimal solution for the program in
Equation (3.10). Since the point (R∗,a∗, ξ∗) is optimal, it satis�es KKT
conditions in Theorem 1.13 together with some point (λ∗,γ∗). The point
(λ∗,γ∗) is the optimal solution to the dual problem of the primal problem in
Equation (3.10) where 1/n < C ≤ 1. The point (λ∗,γ∗) � 0 exists because
the program in Equation (3.10) is convex and it satis�es Slater's condition in
De�nition 1.18. The partial derivatives of the Lagrangian in Equation (3.11)
with respect to R̄, a and ξ are

∂

∂R̄
L(R̄,a, ξ,λ,γ) = 1−

n∑
i=1

λi (3.12)

∂

∂a
L(R̄,a, ξ,λ,γ) = 2

n∑
i=1

λia− 2
n∑
i=1

λixi (3.13)

∂

∂ξi
L(R̄,a, ξ,λ,γ) = C − λi − γi for all i = 1, . . . , n. (3.14)
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By the stationary condition in Equation (1.16), all the partial derivatives
in Equations (3.12), (3.13) and (3.14) equal to zero at the optimal point
(R∗,a∗, ξ∗,λ∗,γ∗). Equation (3.12) implies that

∑n
i=1 λ

∗
i = 1. This is ap-

plied to the optimal center. Now, by Equation (3.13), the optimal center is
the point a∗ =

∑n
i=1 λ

∗
ixi/

∑n
i=1 λ

∗
i =

∑n
i=1 λ

∗
ixi. This means that the opti-

mal center for the hypersphere is a convex combination of the data points.
To summarize, the stationary condition in Equation (1.16) states for the
Lagrangian in Equation (3.14) that

a∗ =
n∑
i=1

λ∗ixi with
n∑
i=1

λ∗i = 1 and (3.15a)

C − λ∗i − γ∗i = 0 for all i = 1, . . . , n. (3.15b)

In addition, the dual feasibility in Equation (1.18) ensures that λ∗i , γ
∗
i ≥ 0 for

all i = 1, . . . , n. The stationary condition in Equation (3.15b) implies that
C − λ∗i ≥ 0 since γ∗i is non-negative. Finally, this means that the inequality
0 ≤ λ∗i ≤ C holds. This inequality together with Equation (3.15a) will be
the constraints for the dual problem as in Equation (1.9).

The value of the Lagrangian function in Equation (3.11) at the optimum
is

L(R∗,a∗, ξ∗,λ∗,γ∗) = R∗ + C
n∑
i=1

ξ∗i +
n∑
i=1

λ∗ix
T
i xi + a∗Ta∗

n∑
i=1

λ∗i

− 2
n∑
i=1

λ∗ix
T
i a
∗ −R∗

n∑
i=1

λ∗i −
n∑
i=1

λ∗i ξ
∗
i −

n∑
i=1

γ∗i ξ
∗
i

= R∗ −R∗
n∑
i=1

λ∗i +
n∑
i=1

(C − λ∗i − γ∗i )ξ∗i

+
n∑
i=1

λ∗ix
T
i xi + a∗Ta∗

n∑
i=1

λ∗i − 2
n∑
i=1

λ∗ix
T
i a
∗.

(3.16)

By Equation (3.15a), the equation
∑n

i=1 λ
∗
i = 1 holds. Further, by Equation

(3.15b), also the equations C − λ∗i − γ∗i = 0 hold for all i = 1, . . . , n. This
simpli�es the Lagrangian in Equation (3.16) into

L(R∗,a∗, ξ∗,λ∗,γ∗) =
n∑
i=1

λ∗ix
T
i xi + a∗Ta∗ − 2

n∑
i=1

λ∗ix
T
i a
∗. (3.17)

Again, by Equation (3.15a), the optimal center a∗ is known to be a convex
combination of the data points with weights λi. This form of the optimal
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center lets us simplify the Lagrangian in Equation (3.17) further, such that

L(R∗,a∗, ξ∗,λ∗,γ∗) =
n∑
i=1

λ∗ix
T
i xi +

(
n∑
i=1

λ∗ixi

)T ( n∑
j=1

λ∗jxj

)

− 2
n∑
i=1

λ∗ix
T
i

(
n∑
j=1

λ∗jxj

)

=
n∑
i=1

λ∗ix
T
i xi +

n∑
i=1

n∑
j=1

(λ∗ixi)
T (λ∗jxj)

− 2
n∑
i=1

n∑
j=1

λ∗ix
T
i (λ∗jxj)

=
n∑
i=1

λ∗ix
T
i xi −

n∑
i=1

n∑
j=1

λ∗iλ
∗
jx

T
i xj.

(3.18)

This is the objective function for the dual problem of the primal problem in
Equation (3.10).

To �nd the optimal value λ∗, the dual problem in Equation (1.9) may be
solved. The dual problem for the primal in Equation (3.10) is

maximize
λ ∈ Rn

n∑
i=1

λix
T
i xi −

n∑
i,j=1

λiλjx
T
i xj

subject to
n∑
i=1

λi = 1,

0 ≤ λi ≤ C, i = 1, . . . , n.

(3.19)

This problem may be solved e�ciently by, for example, using sequential
minimal optimization (SMO) algorithm [46]. The high level idea in SMO
is to �nd two Lagrange multipliers λi and λj that violate the KKT con-
ditions in Theorem 1.13. The two multipliers are then optimized as a one-
dimensional constrained quadratic optimization using the dual constraints
λj = 1− λi −

∑
k 6=i,j λk and 0 ≤ λi, λj ≤ C.

To simplify the notation, from now on, let (R̄,a, ξ,λ,γ) be the point
that satis�es KKT conditions in Theorem 1.13. The classi�cation of a point
z ∈ Rm depends on its distance to the center a. Let da(z)2 := ‖z − a‖2 be
the distance between z and the center. This distance can be computed using
the following equation:

da(z)2 = zTz − 2
n∑
i=1

λiz
Txi +

n∑
i,j=1

λiλjx
T
i xj. (3.20)
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Equation (3.20) follows from De�nition 1.16 where ‖z−a‖2 = (z−a)T (z−a)
and the property that the optimal center is a convex combination of data
points a =

∑n
i=1 λixi. The point z is in the positive class, if da(z)2 ≤ R̄ and

in the negative class otherwise. The squared radius R̄ can be solved with the
following equation:

R̄ = xTkxk − 2
n∑
i=1

λix
T
kxi +

n∑
i,j=1

λiλjxi
Txj (3.21)

where xk is any point at the boundary. A boundary point xk is any point
corresponding to the index that satis�es the inequality 0 < λk < C. This
follows from the complementary slackness in Equation (1.19) that states that
λi(‖xi − a‖2 − R̄ − ξi) = 0 and γi(−ξi) = 0. Conditions λi > 0 and γi > 0
hold for such an index i that C − λi − γi = 0. That is the index i with
0 < λi < C. Then ‖xi − a‖2 − R̄ − ξi = 0 and ξi = 0, which means that
‖xi − a‖2 = da(xi)

2 = R̄.
Tax and Duin [59] proposed that the support vector data description can

be made more �exible with kernels.

De�nition 3.4. Kernel is a function K : Rm×Rm → R. Its value is de�ned
as K(x,x′) = φ(x)Tφ(x′) with some φ : Rm → RM .

The function φ : Rm → RM in De�nition 3.4 is a feature mapping. It
maps the data points from the input space into a higher dimensional feature
space where m < M . Using the feature mapping φ to the data in the primal
problem in Equation (3.10) transforms the primal problem into a new primal
problem

minimize
R̄ ∈ R,a ∈ RM , ξ � 0

R̄ + C

n∑
i=1

ξi

subject to ‖φ(xi)− a‖2 ≤ R̄ + ξi, i = 1, . . . , n,

ξi ≥ 0, i = 1, . . . , n

(3.22)

with 1/n < C ≤ 1. The dual is derived in a similar fashion as in Equation
(3.19). Then the dual is

maximize
λ ∈ Rn

n∑
i=1

λiK(xi,xi)−
n∑

i,j=1

λiλjK(xi,xj)

subject to
n∑
i=1

λi = 1,

0 ≤ λi ≤ C, i = 1, . . . , n.

(3.23)
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The distance to the center is computed similarly to Equation (3.20), such
that

dKa (z)2 = K(z, z)− 2
n∑
i=1

λiK(z,xi) +
n∑

i,j=1

λiλjK(xi,xj). (3.24)

A typical choice for a kernel in Equation (3.23) is the radial basis function
(RBF) kernelK(x,x′) = exp(−‖x−x′‖2/σ2) [59, 60]. In the RBF kernel, the
parameter σ > 0 is a bandwidth parameter that must be selected optimally.
The dot product in the program in Equation (3.19) can also be thought as a
kernel with a feature mapping φ(x) = x. In fact, the dot product in Equation
(3.19) is called a linear kernel in the Support Vector Machine literature.

There has been much research on the unsupervised selection of the band-
width parameter for the RBF kernel. Aggarwal [1] suggested a selection of
bandwidth σ to be of the same magnitude as the pairwise distances in the
dataset. One possible choice for the bandwidth is σ = σA := mediani<j(‖xi−
xj‖) for large datasets of n > 1000 and σ ∈ [2, 3] ∗ σA for smaller datasets
with n ≤ 1000 [1]. This division to large and small is due the fact that
smaller dataset are more prone to induce over�tting. The subscript A refers
to Aggarwal's method of choosing the bandwidth parameter. This method
works well when the distribution of distances between data points is uni-
modal. That means that the domain of the positive class does not have a
clear cluster structure. If the domain is clustered, there are better options
for the unsupervised selection of the bandwidth parameter [13].

3.1.2 Local Outlier Factor

The Local Outlier Factor (LOF) is another one-class classifer. It is a density
based outlier detection algorithm. It classi�es data points into inliers and
outliers based on the point's local density relative to the neighboring points'
local densities. To estimate the local densities, it uses the distances from the
point to its nearest neighbors. LOF was �rst de�ned in [8].

Before de�ning LOF, a few other de�nitions are needed. Let X ⊂ D be a
dataset in some domain D. Let k be any positive integer. Let us now de�ne
k-distance:

De�nition 3.5. The k-distance of an object p ∈ D related to the dataset
X is

dkNN(p) := d(p,x(k)). (3.25)

The object x(k) is any object in the datasetX that satis�es both inequalities

#{xi ∈X \ {p} | d(p,xi) ≤ d(p,x(k))} ≥ k (3.26)
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and
#{xi ∈X \ {p} | d(p,xi) < d(p,x(k))} < k. (3.27)

Remark 3.6. The cardinality of the set in Equation (3.26) may indeed be
larger than k. This happens almost never if the data follows any continuous
distribution. It is, however, possible on an ordinal scale.

In other words, k-distance is the distance to any object that is the kth clos-
est to the query object in the dataset. With De�nition 3.5, a k-neighborhood
can be de�ned. The k-distance neighborhood or the k-neighborhood is the
set of k closest objects in the dataset to the query object p. Formally, the
de�nition is:

De�nition 3.7. The k-neighborhood of the object p in the dataset X is

kNN(p) := {xi ∈X \ {p} | d(p,xi) ≤ dkNN(p)}. (3.28)

From De�nition 3.7, a rather unintuitive result can be seen that the size of
the k-neighborhood is not necessary k. Indeed, the size of the k-neighborhood
may be larger than k as shown in Remark 3.6. This situation occurs when
there are multiple points in the dataset that are exactly k-distance away from
the query.

Intuitively, local density is a measure of how tightly packed the objects
are in some locality. This intuition leads to an idea that density is inversely
proportional to the distances to the nearest neighbors. To reduce the �uctu-
ation, reachability distance is used instead of the actual distance.

De�nition 3.8. The reachability distance is

dreach(x,xi) := max{dkNN(xi), d(x,xi)} (3.29)

with x ∈ D and xi ∈X.

Reachability distance is called a distance in the literature even though it
is not symmetric. The local density can be estimated by using reachability
distance. Local reachability density is the inverse of the average reachability
distance from the object to its nearest neighbors, formally de�ned as

lrd(x) := 1/

∑
xi∈kNN(x) dreach(x,xi)

#kNN(x)
. (3.30)

LOF-score of an object x is the average of ratios of local reachability density
of x to local reachability density of its nearest neighbors.
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De�nition 3.9. The LOF-score of a point x relative to a dataset X is

LOF (x) :=
1

#kNN(x)

∑
xi∈kNN(x)

lrd(xi)

lrd(x)
(3.31)

where each xi ∈X.

LOF scores each object based on its local density. The object is classi�ed
as an outlier if its score exceeds some threshold value, such that LOF (x) > θ.
Unlike with SVDD, the threshold for LOF-scores is not determined through
the optimization procedure. One possible way of selecting the parameter θ is
to �rst estimate the number of outliers nout in the data setX and then set the
threshold θ to the LOF-score of the noutth highest scoring object. The fraction
of estimated outliers in the data, namely nout/n, is called contamination. This
approach, of course, requires some prior knowledge of the data. The other
parameter in LOF algorithm is the number of neighbors k.

3.2 The Use of One-Class Classi�cation in the Semi-

Supervised Classi�cation of Time Series

One-class classi�ers are able to construct a normal operating domain. They
are binary classi�ers that classify the objects in the normal operating domain
into the positive class and the objects outside it into the negative class.
Provided that there is data from the normal operation, a one-class classi�er
can be trained to �nd the normal operating domain. In this thesis, one dataset
at a time is selected to represent the normal operation. In Section 4.3.1, the
normal operation is signing a speci�c sign language sign, and in Section
4.3.2, it is a signature from a legitimate person. The hypothesis in this thesis
is that the processes that result in multiple observations outside the normal
operating domain can be classi�ed as abnormal. Zhao, Wang and Xiao [70]
used SVDD in a similar way to detect faults in chillers.

Another way to use OCC involves using the datasets as time series. Each
time series is viewed as an instance. The normal operating domain can be
de�ned inside the collection of time series based on the distances between
the time series. The abnormal processes are then the time series that are far
away from the example time series. This approach, however, requires multiple
examples of normal processes, which, by the assumption, are not available.

A second problem with this case rises from the fact that DTW is not a
metric as de�ned in De�nition 2.6. Kernel methods, such as SVDD, assume
that the kernel is positive semi de�nite. Lei and Sun [35] proved that DTW
creates kernels that are not positive semi de�nite. This is likely due to DTW

62



not being a metric. Thus, using DTW to construct a kernel may weaken
the performance of SVDD. Lei and Sun proved this worsened performance
experimentally in [35].

This thesis uses the �rst approach: one dataset is used to compute the
normal operation domain, and the unlabelled datasets are then compared
against this learned domain. Let the dataset X be the example time series.
Let us train the selected one-class model using X as the positive dataset.
Then, for every other time series Y , each time instant yi is tested against the
trained model. The discriminating factor is how many of those time instants
are inside the normal operating domain learned by the selected OCC model.
It is assumed that the time series are more likely normal processes when most
of the time instants are within this normal operating domain. For each time
series Y , a score x is recorded that is the fraction of time instants within the
normal operating domain.

The scores x are separated into normal and abnormal using a mixture
model of two normal distributions. Let us assume that the score x follows
a normal distribution both for normal operation and defected operation.
Let x ∼ N(µ1, σ1) for normal operation and x ∼ N(µ2, σ2) for abnormal
operation. Then the distribution of scores x is the mixture distribution

f(x) = P(C = +1)f(x|C = +1) + P(C = −1)f(x|C = −1)

=
τ√

2πσ1

exp

(
− 1

2σ2
1

(x− µ1)2

)
+

1− τ√
2πσ2

exp

(
− 1

2σ2
2

(x− µ2)2

)
= τf1(x) + (1− τ)f2(x).

(3.32)

In Equation (3.32), the parameter τ is the prior probability of time series
Y being a normal process. In other words, τ = P(C = +1). The parame-
ters τ , µ1, µ2, σ1 and σ2 may be estimated using Expectation-Maximization
(EM) algorithm [16]. Using Bayes' theorem, an estimate for the posterior
probability can be de�ned as

P̂(C = +1|x) =
τ̂ f̂1(x)

f̂(x)
(3.33)

with f̂i = (
√

2πσi)
−1 exp[−(x− µ̂i)2/(2σ̂2

i )] for i = 1, 2 and f̂(x) = τ̂ f̂1(x) +
(1− τ̂)f̂2(x). Now the time series Y is classi�ed as normal operation if P̂(C =
+1|x) > 1/2 and abnormal otherwise.
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3.3 Positive-Unlabelled Learning

Without negative class examples or perfectly representable data from the
entire positive class domain, novelty detection methods' capabilities limit to
�nding novel patterns. The model cannot separate the desirable behavior
from the undesirable but rather the normal behavior from the previously
unseen [61]. The model in the setting of this thesis needs a method for telling
whether the previously unseen behavior is normal or abnormal. There are
two approaches to this. The �rst one is active learning. In active learning,
the model chooses its most uncertain predictions. The model then proceeds
to ask for labels on those uncertain predictions from an oracle, which usually
is a human expert [53]. The other method is PU learning. PU learning is a
special case of SSL. In PU learning, the training set consists of some positive
examples and a set of unlabelled examples from both positive and negative
classes. In this thesis, PU learning approach is chosen since active learning
requires occasionally guidance from the user, and that is against the idea of
automation.

PU learning has drawn attention since in many domains it is hard to
acquire labelled data [20, 43, 51]. Chapelle, Schölkopf and Zien [12] note that
the SSL can improve classi�cation if the data satisfy a low density separation
assumption. This assumption holds if the boundary between the classes lies
within the low density region. The PU models presented in this thesis rely
on this assumption.

Wei and Keogh [67] argue that unlabelled data can aid in the classi�ca-
tion problem. This encourages us to consider PU-learning as an alternative
to OCC. With PU-learning, it is possible to classify the data with only one
positive example [14], while one-class classi�cation still needs a representa-
tive sample of positive data [45]. This is illustrated in Figure 5. One PU
framework, self-training, has proved to be especially useful in SSL of time
series. Self-training will be studied in the following section.

3.4 Self-training

One method that is capable of learning from under sampled positive and
unlabelled data is self-training [49]. This means that self-learning is a form of
PU learning. The self-training methods add observations from the unlabelled
data into the positive class one by one until a stopping criterion is met. The
model is retrained between each addition with the current labels. Wei and
Keogh [67] proposed this kind of method for SSL of time series data. They
proposed that the stopping criterion can be based on the minimum distance
between classi�ed instances. The original method proposed byWei and Keogh
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Figure 5: An example of the PU-learning. Left: The distance from the �rst
positive example. The classes cannot be separated linearly based on the dis-
tance to the positive example. Right: The y-axis shows the distance from the
next closest example. This data is acquired from the �rst step of self-training.
This data is linearly separable.

works as an early stopping criterion, when the negative class much denser
than the positive class [40]. However, if the assumption of denser negative
class does not apply or if early stopping is not desirable, better stopping
criteria are needed.

Self-training is an iterative method in which the model is retrained in
each iteration with its most con�dent predictions [63]. In this thesis, a 1NN-
DTW classi�er will be used in the iterative training. With 1NN-DTW, the
most con�dent prediction will be the time series that is the closest or the
most similar to any time series in the positive class. This intuition is used in
[40, 49, 14, 21]. This idea is illustrated in Figure 6.

To my knowledge, there are four stopping criteria for time series self-
training in the literature:

• WK: Wei-Keogh criterion [67]

• RW: Ratanamahatana-Wanichsan criterion [49],

• CBD-GA: Class Boundary Detection using Graphical Analysis [21],

• LCLC: Learning from Common Local Clusters [40, 41].

This thesis will propose a new stopping criterion called Peak Evaluation using
Perceptually Important Points (PIP) in Section 3.4.3. All of these criteria
are based on MinDist-series. The MinDist-series are de�ned later in this

65



−2 −1 0 1

−1

0

1 MinDist(i)

Positive

Negative

X∗

Figure 6: An example of Algorithm 5. The algorithm advances over the class
boundary at the step i. This results in the longest distance in the MinDist
tree.

section. LCLC di�ers from the others as it �rst clusters the time series.
LCLC has been constructed only to use Euclidean distance on UTSs. This
is too restrictive for the use cases in this thesis, so LCLC will no longer be
considered. In addition, WK is considered to be rather inaccurate [49, 21]
and likely to result in early stopping [40]. WK will not be considered further
in this thesis because of this reported low performance.

Ratanamahatana andWanichsan [49] de�ne the algorithm for self-training
that uses 1NN-DTW. This algorithm is presented in Algorithm 5. Gonzáles
et al. [21] call this algorithm 1NN propagation. The Algorithm 5 assumes a
1NN-DTW-classi�er. For a more general algorithm, Steps 2 and 8 must be
replaced. In Step 2 the time series X∗ is selected as the most con�dent can-
didate to the positive class from the unlabelled set for the chosen classi�er.

In [49, 21, 40, 41], the information recorded in Step 3 is the MinDist-
series. TheMinDist-series is de�ned for the i:th time seriesX∗(i) moved from
U to P asMinDist(i) = minY ∈P DTW(X∗(i), Y ). An example of aMinDist-
series is presented in Figure 7. In other words, the MinDist-series records
the minimum distance between a time series in the positive set and a time
series in the unlabelled set. This distance can be interpreted as the minimum
distance between the positive set and the unlabelled set [40]. This hints that
theMinDist-series might hold information on the optimal stopping criterion.

66



Algorithm 5 1NN-DTW self-training
Require: Positive set P , unlabelled set U , stopping criterion
Ensure: Binary 1NN-DTW-classi�er
1: while U 6= ∅ do
2: Select X∗ = arg minX∈U{DTW(X,Y )|Y ∈ P}
3: Record the information the stopping criterion uses
4: P ← P ∪ {X∗}
5: U ← U \ {X∗}
6: end while

7: Divide P into positive set P and negative set N based on information
from Step 3 using stopping criterion

8: Train a 1NN-classi�er with labelled sets P and N

3.4.1 RW-criterion

The RW-criterion was �rst introduced in [49]. It is based on �nding the
maximum of stopping criterion con�dence (SCC). Let MinDist be de�ned
as in Section 3.4 and let NU = #U be the number of time series initially in
the unlabelled set. Ratanamahatana and Wanichsan [49] de�ne the SCC as

SCC(i) =
|MinDist(i)−MinDist(i− 1)|

Std(MinDist(1), . . . ,MinDist(i))
∗ NU − (i− 1)

NU

. (3.34)

In other words, SSC is the detrended MinDist-series scaled by the standard
deviation so far. In addition, SSC is penalized linearly as the number of time
series added to the set P increases. The optimal stopping criterion is the
iteration that results in the maximum SCC. The positive labels are then
assigned to the time series up to the index i− 2.

3.4.2 CBD-GA-criterion

The CBD-GA-criterion, introduced in [21], is a self-training method based
on the graphical analysis of the MinDist-series. Graphical analysis is used
to segment the MinDist-series into intervals. Each interval starts with an
ascending curve, continues with a descending curve and ends in a stable
curve. These intervals hold information about the behavior of the data in the
low-density region that Algorithm 5 is modelling. The following de�nition is
based on the work in [21].

The rules to segment theMinDist-series are presented here. The ascend-
ing curve is a segment in whichMinDist(i) ≤MinDist(i+1). Similarly, the
descending curve is a segment in which MinDist(i) ≥MinDist(i+ 1). The
stable curve is de�ned based on the preceding descending curve. The stable
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Figure 7: An example of the MinDist series. On x-axis is the order number
of a move of a time series from the unlabelled set to the positive set. On
y-axis is the distance from the moved time series to the nearest time series
in the positive set. There is a clear local maximum in the MinDist series at
the class boundary at the index 44. There are four peaks that are marked
with diamonds. The four peaks suggest four clusters in the structure of the
data. There are some outlying examples from the target class at the indices
around 90 and 200.

curve is a segment in which MinDist(e) − β ∗ hd(s, e) ≤ MinDist(i) ≤
MinDist(e) + β ∗ hd(s, e). In this de�nition of the stable curve, the index s
marks the starting index of the preceding descending curve, and the index
e marks the ending index of the preceding descending curve. The function
hd(s, e) = MinDist(s)−MinDist(e) is the height of the preceding descend-
ing curve and β ∈ (0, 1] is a parameter that controls the de�nition of stability.
Gonzáles et al. [21] proposed a parameter value β = 0.3. They rationalize
this selection with empirical experiments.

The CBD-GA algorithm segments theMinDist-series into intervals I us-
ing these de�nitions of curves. The �rst interval starts with the �rst ascending
curve. When the ascending curve ends, the algorithm starts to explore the
descending curve beginning from the index the ascending curve ends. When
the descending curve ends, the algorithm explores, how many of the succes-
sive indices �t the de�nition of the stable curve. The �rst interval ends to
the �nal index of this stable curve. Then the algorithm proceeds to �nd the
following intervals in a similar manner.

Gonzáles et al. [21] provide interpretation for each curve and a connection
to the class boundary. When in the ascending curve, the self-training algo-
rithm searches time series in sparse region near the class boundary. When in
the descending curve, the self-training algorithm has passed the class bound-
ary and moves towards a denser region. When in the stable curve, the self-
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training algorithm learns the new class in its densest region. This means that
the optimal stopping criterion is found at the index that marks the end of
the ascending curve and the start of the descending curve.

To �nd the optimal interval, the intervals are scored. Gonzáles et al.
[21] de�ne �ve scoring functions for the intervals. Let ha(I) be the height
of the ascending curve of the interval, hd(I) the height of the descending
curve of the interval, and ws(I) the length of the stable curve of the inter-
val. In addition, let us de�ne the following normalized measures: hdn(I) :=
hd(I)/maxMinDist(i) and wsn(I) := ws(I)/(NU−1). Let Is be the index of
the end of the ascending curve and start of the descending curve on the inter-
val. The linear weight for the index i is de�ned as LW (i) := (NU− i+1)/NU .
Now, the �ve scoring functions are de�ned in the following de�nition:

De�nition 3.10. The scoring functions for CBD-GA are

• SC1(I) = hd(I) ∗ LW (Is),

• SC2(I) = ha(I) ∗ LW (Is),

• SC3(I) = ws(I) ∗ LW (Is),

• SC4(I) = max{hd(I), ha(I)} ∗ LW (Is),

• SC5(I) = max{hdn(I), wsn(I)} ∗ LW (Is).

The positive labels are given to indices up to the index Is − 1 of the
highest scoring interval.

3.4.3 Peak Evaluation Using Perceptually Important Points

This section presents a novel stopping criterion for 1NN-DTW in Algorithm
5. The algorithm is called Peak evaluation using perceptually important
points. It was inspired by the perceptual skeleton presented in [39].

Extracting important points is a dimensionality reduction technique that
puts an emphasis on preserving the local minima and maxima of the time
series [47]. The goal is to extract the �rst signi�cant local maximum from
the MinDist-series. This �rst signi�cant local maximum is the most likely
index in theMinDist-series at which the 1NN-DTW Algorithm 5 moves over
the class boundary. This intuition follows from the assumption that the class
boundary lies within the low-density region, where the distances between
observations are greater compared to the high-density regions. These greater
distances cause peaks in the MinDist-series.
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Mojsilovi¢ [39] de�ned perceptually important points (PIP) for MTSs.
The de�nition is inspired by the way how human mind perceives the se-
ries. The human mind constructs a simpli�ed representation of the series
by perceiving and remembering the most important turning points. First,
the time series X ∈ Rn∗m is appended by the time stamps. The appended
time series is the series Z := (i,xi)

n
i=1 ∈ Rn∗(1+m) where xi is an observa-

tion in the time series X at the time stamp or the index i. The �rst two
PIPs are the �rst and the last appended observations (1,x1) and (n,xn).
These two PIPs de�ne a line L in the appended space R1+m such that
L = {z ∈ R1+m | z = t(1,x1) + (1 − t)(n,xn), t ∈ R}. Each appended
observation is then projected to the line L. The appended observation (i,xi)
with the maximal distance from itself to its projection is selected as the next
PIP. The algorithm continues by de�ning lines between each successive PIP.
Each following PIP is selected as the appended observation that has the
maximal distance to the its projection on the closest line L. [39]

The de�nition of PIPs used in this thesis is based on the de�nition in
[39]. In this de�nition, linear interpolation is used instead of the lines L that
are used in [39]. The linear interpolation works just like the cubic spline
interpolation in Equation 2.1, but the cubic functions Ci are replaced by
linear functions Li(x) = bix + ai. Also, linear interpolation only uses the
constraints in Equation 2.2. This is because there are only 2(n−1) coe�cient
bi and ai to solve in the linear interpolation.

First, the �rst and the last observations x1 and xn, respectively, are
selected as �rst two PIPs. Then the set of PIPs are interpolated into time
series of length n using linear interpolation. This interpolation is done one
feature at the time for MTSs. The next PIP is the time instant with the
greatest distance to its interpolated counterpart. The interpolation and the
PIP selection steps are repeated until the interpolation is a good enough of an
approximation to the original time series. This process is presented formally
in Algorithm 6.

Algorithm 6 will eventually end. After n picks of PIPs, the interpolated
time series Z will be the same as the original time series X = Z. Then the
approximation error is d(Z,X) = 0. However, the stopping condition at Step
8 is not well de�ned. This thesis proposes to record the approximation error
for each interpolation loop such that

el = d(Z l,X). (3.35)

In Equation (3.35), the series Z l is the interpolation at the loop l as de�ned
in Step 7 in Algorithm 6. This procedure will generate error series e =
(e1, . . . , en−2) that is usually mostly descending. The error series decreases
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Algorithm 6 Find perceptually important points
Require: Time series X ∈ Rn∗m

Ensure: Perceptually important points P , indices I
1: P ← {x1,xn}
2: I ← {1, n}
3: l ← 1
4: for all j = 1, . . . ,m do

5: Z
(j)
l ← linear interpolation f(D) for f : [1, n]→ R using pairs (i, f(i))

with i ∈ I and f(i) = x
(j)
i and set D = {1, . . . , n}

6: end for

7: Z l ← (Z
(1)
l , . . . ,Z

(m)
l ) ∈ Rn∗m

8: if Z l is not a good enough of an approximation to X then

9: for all i = 1, . . . , n do di ← d(xi, zi)
10: end for

11: i∗ ← arg max{di}ni=1

12: Append P with xi∗
13: Append I with i∗

14: l ← l + 1
15: Go to Step 4
16: end if

rapidly at the beginning and slower towards the end. This is because the
�rst approximations are coarse while the later approximations are �ner due
to the maximization Step 11 in Algorithm 6. The approximation Z l will be
good enough at the index l where the "elbow" [30] of the error series can be
found. The elbow is a major turning point in the error series. It is the point,
where the previous errors decline quickly and the following errors decline
slower. This elbow-method has been traditionally used to �nd the number of
clusters in a dataset [30].

In this thesis, the elbow is de�ned as the point that deviates the most
from the straight line. First, the error series is scaled to the range [0, 1] so
that it may compared to the line between the points (1, 1) and (n − 2, 0).
The value of this line at the index l is (n−2− l)/(n−3). This line represents
an error series without any elbow.

The errors in the scaled error series will be compared to the values on
that line. Since the scaled error series decrease more rapidly at the beginning,
the elbow will reside below this line. Comparing of the error series to the
straight line can be seen as a linear penalty. With this in mind, comparing
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is equivalent to adding a negative, linear penalty

− n− 2− l
n− 3

= −1 +
l − 1

n− 3
(3.36)

to each scaled element of the error series with an index l = 1, . . . , n − 2.
Mathematically, �nding the elbow in the error series is now equivalent to
minimization

l∗ = arg min
l=1,...,n−2

(
el
emax

+
l − 1

n− 3

)
. (3.37)

In Equation (3.37), the element el is the error de�ned in Equation (3.35),
and the element emax := max{e1, . . . en−2} is the largest error in the error
series. The optimal approximation is the approximation Z l∗ . In other words,
the optimal approximation has l∗ + 2 PIPs.

The high-level idea in �nding the PIPs is to simplify the MinDist-series
just the right amount. The goal is to get rid of minor �uctuations but, at
the same time, preserve the signi�cant changes. This is also the motivation
for the novel stopping condition presented in this thesis for Algorithm 6: if
the following PIPs will reduce the approximation error a lot, all the signif-
icant changes has not yet been found. Also, if the following PIPs do not
improve the approximations enough, the PIPs are starting to capture the
minor �uctuations.

When approximating the MinDist-series using PIPs, the �rst local max-
imum in the interpolated series Z l∗ is the point of interest. Of course, if the
�rst local maximum is the �rst element z1 = x1, the second local maximum
will be considered. This local maximum in the interpolation represents the
�rst signi�cant peak in the MinDist-series. The following local maxima are
the following signi�cant peaks. Each peak suggests that Algorithm 5 travels
through a low density region from a cluster to another. I will argue that
the �rst signi�cant peak found this way is the optimal stopping criterion for
1NN-DTW Algorithm 5. Therefore, the �rst cluster is classi�ed as positive
and all the following clusters negative. This stopping criterion, along with
RW- and CBD-GA-criteria, are presented graphically in Figure 8.
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Figure 8: The three stopping criteria used in this thesis on the MinDits-
series presented in Figure 7. The optimal stopping point of each criterion
is marked with a cross. Top: RW-criterion. The data are the stopping con-
�dence criteria de�ned in Equation (3.34). Middle: CBD-GA-criterion. The
�gure shows the segments formed by the CBD-GA-algorithm. Bottom: Peak
evaluation using perceptually important points. On the foreground in black
is the approximation Z de�ned in Algorithm 6 in Step 7. On the background
in gray is the original MinDist-series of Figure 7 for reference.
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4 Experiments

In this section, the methods presented in this thesis are compared using three
di�erent datasets.

4.1 Unsupervised Model Evaluation

Evaluation of one-class classi�er is not straightforward. The distribution esti-
mation of the negative class is very hard if not impossible in many cases. This
is a direct e�ect of the lack of negative examples. Without the distribution
estimate of the negative class, performance evaluation is based on assump-
tions [64]. One such assumption is that the distribution of the negative class
is uniform over some domain D ⊂ Rm. In higher dimensions, however, this
assumption becomes highly ine�cient [59]. The evaluation in the PU set-
ting is not any easier. Without annotated data there is no ground truth to
compare the results against.

For these reasons, the models will be evaluated in a supervised setting.
This way it is possible to get accurate indicators of the performance of the
selected models. The models, however, do not bene�t from the use of the
annotated data, so this approach may still be called semi-supervised.

The datasets will not be divided into training and testing datasets like in
[49, 14]. The reason is that there are not many instances in each class. Besides,
the performance of the self-training Step 7 in Algorithm 5 is considered more
crucial in this thesis. This evaluation setting was also used in [21].

4.2 Design of the Testing Software

The experiments were executed on computer with a custom made testing
software. The software was designed to implement the data processing and
the models presented in this thesis. The implementation handles the testing
pipeline that consists of data reading, preprocessing, feature subset selection,
distance calculations and classi�cation. The testing pipeline for one-class
methods SVDD and LOF di�er from the one presented here such that they
handle the distance calculations implicitly.

The implementation of the testing software is based on a modular, layered
architecture. The advantage of using layers is that each layer may be changed
without a�ecting the other layers. There are three layers: data reading, pre-
processing and analysing. Each module completes one task inside one layer.
The user may add existing modules and write new modules depending on
the need. I implemented a module for reading from �le in data reading layer.
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Figure 9: The deployment of the testing software.

In preprocessing layer, I implemented Z-normalization in Equation (2.7), cu-
bic spline resampling in Equation(2.6) and CLeVer-Hybrid in Section 2.2.2.
In analysing layer, I implemented SVDD in Equation (3.23) and LOF in
Equation (3.31) using a one-class interface, ED in Equation (2.9), DTW in
Equation (2.10) and PCA-SF in Equation (2.45) using a distance measure
interface and RW in Equation (3.34), CBD-GA in De�nition 3.10 and PIP
in Equation (3.37) using a self-training interface.

Now I will explain the deployment of the testing software. A data reader
is always needed. The preprocessing and feature subset selection modules are
optional but they can always be linked together. This follows from a property
of preprocessing and feature subset selection modules: both input and output
a time series database. One-class methods operate directly on a time series
database. Distance calculators calculate the distance matrix using the time
series database and self-learners analyse those distance matrices. This means
that a self-learner must always be paired with some distance calculator. The
deployment process is presented in Figure 9.
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The testing software was coded using Python 3.5. Python was chosen
because of its ease of prototyping and its extensive machine learning libraries.
For SVDD I used implementation in LIBSVM-3.22 with LIBSVM Tools [10],
for LOF Scikit-Learn-0.19 [44] and for DTW TSLearn-0.1.18 [58].

The data reader reads the time series from the disk and loads them into
memory as a 3-dimensional NumPy-array. The �rst dimension is the number
of time series, the second is the length of the time series and the third is
the number of features per time series. Preprocessors process the NumPy-
array in place. One-class methods process the time series as such and output
predicted labels for each time series. The self-learners use distance matrices
D = [d(X i,Xj)]

N
i,j=1 provided by the distance calculators. The self-learners

also output the predicted labels.

4.3 Evaluation

In binary classi�cation, there are two types of errors. Type 1 error or false
positive (FP) is an instance from the negative class falsely classi�ed as pos-
itive. Type 2 error or false negative (FN) is the opposite: an instance from
the positive class falsely classi�ed as negative. These two errors may be com-
pactly presented in a confusion matrix in Table 2.

Table 2: Confusion matrix
Observed
Positive Negative

Predicted Positive #TP #FP
Negative #FN #TN

This thesis uses evaluation metrics precision and recall and their harmonic
mean also known as F1-score.

Precision =
#TP

#TP + #FP
(4.1a)

Recall =
#TP

#TP + #FN
(4.1b)

F1-score =
2

(Precision)−1 + (Recall)−1
(4.1c)

In the tables of this section, the following abbreviations will be used: RW
for Ratanama-Wanichsan-criterion, GA-l for class boundary detection using
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graphical analysis criteria and PIP for peak evaluation using perceptually
important points. The number l in abbreviation GA-l refers to the scoring
function in De�nition 3.10. Likewise, the abbreviation DTW-k% refers to
dynamic time warping with a window length of k percent of the length of
the time series. Also, CLeVer means CLeVer-hybrid.

4.3.1 Australian Sign Language

The �rst dataset is the Australian sign language (Auslan) sign data [27]. The
data are hand movements of nine native Auslan signers. All signers signed
95 di�erent Auslan signs, and three takes were recorded from each signer.
The hand movements were recorded using positional sensors on both hands.
Both hands were recorded on six degrees of freedom. In addition, every �nger
was tracked on how bent they are. In summary, Auslan data set consists of
2565 time series of varying length from 95 classes with 22 features. The 22
features come from the 22 sensors.

In each class, one example is taken as the initial positive example. The
positive example is the sign signed by the ninth signer on the �rst take. This
example was chosen because its nearest neighbor is most frequently in the
same class across all classes and every distance used.

Z-normalization is used on each time series. The Z-normalization was
used, because the absolute positions are irrelevant. The absolute position is
a�ected for example by the size di�erence between the signers.

One class at a time will represent the positive class. All the rest 94 classes
construct the negative class. This setting is highly unbalanced. As a result the
simulated expected F1-score for this setting is 2.1% with a random classi�er.

To experiment the performance of feature selection, 12 features were se-
lected based on prior knowledge of the data. It is typical for the Auslan that
many signs are signed using only the dominant hand. It is also known from
the description of the data set that the readings from the �ngers may be
inaccurate [27]. Using these bits of information I picked 12 features: x-, y-
and z-positions with pitch, yaw and roll recordings on the dominant hand,
thumb, index and middle �nger recordings on the dominant hand, and x-,
y- and z-positions on non-dominant hand. CLeVer-Hybrid was used twice
to �rst select 4 features and then again to select 12 features. First time
CleVer-hybrid picked the y- and z-positions of the non-dominant hand, and
the thumb and the index �nger readings also from the non-dominant hand.
Second time CleVer-hybrid picked all the features from the non-dominant
hand, and the x-position of the dominant hand.

The movements that de�ne the meaning of the sign can be quite complex.
To model these complex movements, appropriate values for the hyperparam-
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eters must be used in the models. This means a low value for σ in SVDD
and a small neighborhood size in LOF. Let us also make the assumption that
the datasets do not include outliers. This is a decent assumption, since one
dataset represent one sign. The maximum penalty will be used for SVDD,
and the minimum contamination for LOF. The average performance of the
OCC approaches are presented in Table 3.

Table 3: Auslan as one-class classi�cation average F1-scores
SVDD LOF SVDD* LOF*

CLeVer-4 2.9 2.7 9.6 7.9
CLeVer-12 3.1 3.8 15.2 11.3
Hand-picked 12 4.2 5.6 20.4 17.6
No FS 4.3 5.7 16.9 17.3

For SVDD, I used parameters σ = σA and C = 1. For LOF, I used a
contamination of 0% and the neighborhood size 3. The neighborhood size 3
was selected because it is the lowest neighborhood size that allows us to use
reachability distance [8].

Both approaches, SVDD and LOF, used normal distribution assumption
on the scores. The scores were classi�ed based on the EM-algorithm using
Equation (3.33). The results for SVDD and LOF in Table 3 are rather disap-
pointing since both classi�ers are hardly beating the random classi�er. This
may be because of the normal distribution assumption. For this reason I tried
a linear classi�er on LOF and SVDD scores that maximize the F1-scores us-
ing the annotated data. This is of course cheating because using annotated
data changes this approach from semi-supervised to supervised. These results
are presented in Table 3 as LOF* and SVDD*.

The performance of the OCC models is low. This may be because the
number of observations in the dataset is quite low. With only 58 observations
on average in each datasets, it is really unlikely to get a good representation
of the normal operating domain.

Before applying the time series distance measures, the time series are
resampled into the average length of 58 time points. The average length is
used so that the lengths of the time series change as little as possible on
average. For distance measures, ED, DTW and PCA-SF will be used. The
window parameter for DTW is selected as 10% by the rule of thumb [49].
Without prior knowledge, the rule of thumb is the only usable criterion. To
get a better understanding of the e�ect of the window parameter, let us also
use two other values 3% and 6%. The average performances of the time series

78



distance measures combined with the PU methods is presented in Table 4.
The results with feature selection methods are presented in Table 5.

Table 4: Auslan average F1-scores without feature selection
RW GA-1 GA-2 GA-3 GA-4 GA-5 PIP

ED 24.7 22.3 17.4 10.7 22.3 22.3 28.7
DTW-3% 28.8 17.8 18.8 12.2 18.7 17.8 41.0
DTW-6% 27.5 17.2 12.1 13.1 17.2 17.2 41.6
DTW-10% 27.9 17.0 11.8 12.6 17.0 17.0 41.5
PCA-SF 4.1 6.0 4.2 5.2 6.0 6.0 6.9

Table 5: Auslan average F1-scores with DTW-6%
RW GA-1 GA-2 GA-3 GA-4 GA-5 PIP

CLeVer-4 8.4 5.4 5.3 4.2 5.4 5.4 7.3
CLeVer-12 17.0 11.5 8.4 11.0 12.2 11.5 23.2
Hand-picked 12 32.9 28.3 22.7 14.4 29.5 28.3 39.7

The CLeVer-hybrid did not perform very well with this data set. It picked
features from the non-dominant hand, and that decreased the signal to noise
ratio. The feature subset selection with hand-picked features improved the
classi�cation with all methods except for the PIP. This indicates that feature
selection may be useful but CLeVer may not be the best method.

4.3.2 Signature veri�cation contest

The second data set is the First International Signature Veri�cation Contest
(SVC2004) [68]. There were 40 users that gave 20 samples of their signatures
on-line on a pen-based input device. In addition, there are 20 skilled forgeries
of each users signature. The device recorded the x- and y-positions of the
pen and whether the pen was pressed against the device or lifted. For each
user, there are 40 time series with three features. In addition, there are two
classes, legitimate and forged, both having 20 time series for each user. Here,
the theoretical expected F1-score for random classi�er is 50%.

The pen down feature was dropped since it is binary: either down or lifted.
No other feature selection was used as there were only two features left. In
addition, Z-normalization was used to get the relative positions of the pen.
Otherwise the size of handwriting and starting position on the device would
a�ect the classi�cation.
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Figure 10: A carefully drawn letter 'A' and its normal operating domain
learned by SVDD using RBF-kernel with σ = 0.5 and C = 1.

The parameter for OCC methods are selected similarly to Section 4.3.1.
For SVDD a bandwidth parameter σ = σA was used without a multiplier for
small dataset. This is because of the nature of signatures as they are usually
rather complex. A small value of bandwidth parameter usually results in
over-�tting but here it is used it to capture the complex shape of a signature.
An example of the letter 'A' analysed with SVDD is presented in Figure
10. For LOF a contamination of 0% and neighborhood size 3 are used. The
average F1-score for SVDD is 62.0% and the average F1-score for LOF is
57.5%.

The cubic spline resampling was used to resample the time series into
average lengths. The parameters for distance ED, DTW and PCA-SF and
PU methods RW, CBD-GA and peak evaluation are selected exactly as in
Section 4.3.1. The average results for time series distances and PU methods
are presented in Table 6. The best combination is PIP with DTW-6% achiev-

Table 6: Signature veri�cation average F1-scores
RW GA-1 GA-2 GA-3 GA-4 GA-5 PIP

ED 26.3 53.4 53.7 50.6 52.2 53.4 65.0
DTW-3% 17.7 75.6 69.9 67.4 73.6 76.0 75.7
DTW-6% 19.0 71.3 73.3 66.4 71.3 71.9 84.4
DTW-10% 16.4 69.9 75.9 66.9 71.7 70.6 83.4
PCA-SF 12.8 47.6 47.6 47.6 47.6 47.6 64.9

ing the average F1-score of 84.4%. The RW method performed very badly.
This might be, because the classes 'legitimate' and 'forged' are balanced and
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there are only twenty examples in each class. The SCC in Equation (3.34),
which the RW method uses, applies linear weight to the stopping criterion
stressing the earliest observations. However, it is known that there must be
many examples to estimate standard deviation accurately. These properties
together weaken the classi�cation greatly. With this dataset, even the one-
class approaches LOF and SVDD clearly beat the RW method.

4.3.3 Rocks

In the Rocks dataset, minerals are explored using active hyperspectral detec-
tion. In the detection scheme, the target is illuminated using near infrared
laser, and the spectrum of the re�ection is measured. Each spectrum is then
analysed as a UTS. [37]

The data are a stream of measured spectra. The data consist of mea-
surements from six di�erent minerals and some background when switching
from a mineral to the other. Averaging is used to reduce noise. The stream
is segmented into two second intervals. The spectra in each segment is then
averaged into one spectrum. Some segments had measurements from both
mineral and background. These segments are included in the data to enforce
the unsupervised setting and they are labelled as background. The time series
are also normalized so the background lighting would not a�ect the classi�-
cation.

On average, there are 33 examples in each of the six classes. The back-
ground class is the seventh class, but it will not be analysed. Its purpose
is to always be in the negative class. In total, there are 299 data points,
some of which are background. In this setting, each measurement is the pos-
itive example in turn, and the performances are averaged over the classes.
Z-normalization is used with this dataset too since, for example, background
lighting, distance to the material and humidity may a�ect the measurements.

By a visual examination of the data, di�erent classes behave a little di�er-
ently. Classes 2 and 6 form quite clear clusters separated from other classes.
All rocks except for the rock 3 forms rather dense classes. The background
class is really noisy occasionally generating instances similar to the examples
in the rock classes.

The results for Euclidean distance are presented in Table 7. The easiest
classes to recognise are the classes 2 and 6. They satisfy the assumption of
low density separation. Also, all the methods except CBD-GA-3 bene�t from
the larger variance of the class 3.

The PIP method does not work very well. This is because of the really
noisy background class. The PIP points try to model the noise in the back-
ground too accurately and the method does not notice the subtle change
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Table 7: Rocks ED average F1-scores
RW GA-1 GA-2 GA-3 GA-4 GA-5 PIP

1 12.2 31.7 30.6 11.7 30.2 31.7 31.0
2 73.0 27.7 30.0 98.5 30.0 27.7 31.0
3 58.5 75.1 75.0 25.8 75.0 75.1 61.9
4 27.4 27.9 28.7 45.5 28.3 27.9 29.9
5 11.3 23.4 26.5 15.4 24.9 23.4 27.5
6 94.6 29.9 32.3 79.6 32.3 29.9 33.3

between the rock classes. The RW method works well. It is the only method
that can really adapt to that background noise because of the running stan-
dard deviation in the stopping criterion con�dence terms. The MinDist-
series has the tendency to push the outlying observations, in this case the
background measurements, to the end of the MinDist-series. This means
that RW method penalizes the background twice: �rst by linear weight, then
by compensating for larger variance.

The performance of the DTW-3% setting is presented in Table 8. The

Table 8: Rocks DTW-3% average F1-scores
RW GA-1 GA-2 GA-3 GA-4 GA-5 PIP

1 11.4 33.6 30.5 25.3 33.6 33.6 33.6
2 55.2 29.5 25.3 60.0 29.5 29.5 29.5
3 58.8 74.8 76.5 74.9 74.8 74.8 68.4
4 23.2 27.5 26.0 47.2 27.5 27.5 41.9
5 8.7 26.6 24.6 19.1 26.6 26.6 24.9
6 75.7 31.7 27.3 63.7 31.7 31.7 32.2

DTW lets the wavelengths mix. This clearly lowers the performance in the
classes 2 and 6 that were easy to recognise with Euclidean distance. However,
mixing of the wavelengths improves the F1-scores in the cases that had low
scores when using Euclidean distance. This indicates that the use of DTW
only adds noise to the rocks dataset. Similar results can be seen with the
other window lengths of the Sakoe-Chiba band. Those results are presented
in Tables 9 and 10.
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Table 9: Rocks DTW-6% average F1-scores
RW GA-1 GA-2 GA-3 GA-4 GA-5 PIP

1 23.7 37.1 30.3 40.8 27.8 37.1 38.6
2 55.2 30.6 25.1 60.0 25.1 30.6 46.6
3 65.1 75.1 76.5 30.4 75.7 75.1 68.1
4 31.0 50.1 25.8 51.4 25.2 50.1 44.6
5 13.3 22.1 24.4 22.9 23.0 22.1 25.5
6 73.8 32.9 28.1 63.7 28.1 32.9 47.4

Table 10: Rocks DTW-10% average F1-scores
RW GA-1 GA-2 GA-3 GA-4 GA-5 PIP

1 15.6 37.2 30.7 39.6 37.2 37.2 35.3
2 55.2 27.5 60.0 60.0 27.5 27.5 35.4
3 72.9 74.8 76.5 29.8 74.8 74.8 68.4
4 23.2 48.3 24.8 51.1 48.3 48.3 41.1
5 10.6 23.8 22.2 24.5 23.8 23.8 25.7
6 72.9 29.6 45.6 63.7 30.6 29.6 34.4

5 Conclusion

In this thesis, I studied mathematical optimization in machine learning with
two major applications: support vector data description and dynamic time
warping. The support vector data description is inspired by the success of
support vector machines. It is an anomaly detection method that has been
successfully applied to digit recognition and pattern denoising among other
domains [11]. The dynamic time warping is a distance measure for time se-
ries that can overlook the local invariance in the time series. This property
is invaluable when comparing data in domains such as spoken word or hand-
written documents since the speech rate and handwriting di�er from person
to person.

Both of these methods rest on well-researched mathematical foundation.
In this thesis, I derived these two algorithms showing their mathematical
basis and proving the underlying theorems. This work proves that the algo-
rithms are correct and the results they give are accurate. In addition, this
thesis presented a novel self-training method for time series called peak eval-
uation using perceptually important points.

I applied both of these models, among some other models, to the positive-
unlabelled scenario. The positive-unlabelled learning is designed to enhance
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the classi�cation in the cases where the annotated data is hard to come by.
In many real life situations, labelling the data may be expensive, prone to
errors or downright impossible.

In Section 4, it was shown that temporal models using time series distance
measures and PU-learning have an upper hand compared to non-temporal
OCC models in semi-supervised time series classi�cation. The peak evalua-
tion method showed great performance compared to other self-training meth-
ods in the literature on two datasets. The lower performance on the third
dataset was explained. I showed that multivariate time series feature sub-
set selection can improve classi�cation accuracy in semi-supervise learning
setting even though the unsupervised method CLeVer did not excel.

6 Future Work

There seems to be no reliable unsupervised method for multivariate time
series feature subset selection in the literature. The results in Table 5 show
that feature subset selection could improve classi�cation accuracy.

The �eld of time series distance measures have not seen major improve-
ments since the dynamic time warping was discovered in the 1970. The time
warp edit distance [38] sounds promising since it allows elasticity, similarly
to dynamic time warping, but is also metric, similarly to Euclidean distance.

Self-training of time series is heavily dependent on theMinDist-series. As
is evident from Figure 7, dividing MinDist-series into positive and negative
classes depends on how well the MinDist-series and the metric used can
represent these classes. Some other methods such as amending self-learners
[63] could possibly increase the accuracy.
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