
An Automated and Distributed Machine Learning Framework for
Telecommunications Risk Management

Luı́s Ferreira12 a, André Pilastri1 b, Carlos Martins3 c, Pedro Santos3 d and Paulo Cortez2 e

1EPMQ - IT Engineering Maturity and Quality Lab, CCG ZGDV Institute, Guimarães, Portugal
2ALGORITMI Centre, Dep. Information Systems, University of Minho, Guimarães, Portugal

3WeDo Technologies, Braga, Portugal
{luis.ferreira, andre.pilastri}@ccg.pt, {pedro.santos, carlos.martins}@wedotechnologies.com, pcortez@dsi.uminho.pt

Keywords: Automated Machine Learning, Distributed Machine Learning, Supervised Learning, Risk Management

Abstract: Automation and scalability are currently two of the main challenges of Machine Learning (ML). This paper
proposes an automated and distributed ML framework that automatically trains a supervised learning model
and produces predictions independently of the dataset and with minimum human input. The framework was
designed for the domain of telecommunications risk management, which often requires supervised learning
models that need to be quickly updated by non-ML-experts and trained on vast amounts of data. Thus, the
architecture assumes a distributed environment, in order to deal with big data, and Automated Machine Learn-
ing (AutoML), to select and tune the ML models. The framework includes several modules: task detection (to
detect if classification or regression), data preprocessing, feature selection, model training and deployment. In
this paper, we detail the model training module. In order to select the computational technologies to be used in
this module, we first analyzed the capabilities of an initial set of five modern AutoML tools: Auto-Keras, Auto-
Sklearn, Auto-Weka, H2O AutoML, and TransmogrifAI. Then, we performed a benchmarking of the only two
tools that address a distributed ML (H2O AutoML and TransmogrifAI). Several comparison experiments were
held using three real-world datasets from the telecommunications domain (churn, event forecasting, and fraud
detection), allowing to measure the computational effort and predictive capability of the AutoML tools.

1 INTRODUCTION

The rise of data, processing power and sophisti-
cated learning algorithms opened the way for Ma-
chine Learning (ML) applications to deal with large
amounts of data and produce useful predictions (Dar-
wiche, 2018). When adopting ML in real-word ap-
plications, two particularly useful capabilities are dis-
tributed learning and AutoML. Distributed learning is
a natural solution to large scale ML problems when
there are memory and processing limitations. By us-
ing multiple computers or multi-core processors in
parallel, each processor can process a different ML
algorithm or portion of the data. This allows to over-
come memory and time constraints to growing data
just by adding new machines or processors (Peteiro-

a https://orcid.org/0000-0002-4790-5128
b https://orcid.org/0000-0002-4380-3220
c https://orcid.org/0000-0002-0678-4868
d https://orcid.org/0000-0002-4269-5838
e https://orcid.org/0000-0002-7991-2090

Barral and Guijarro-Berdiñas, 2013). Also, with the
increasing number of non-specialists working with
ML (Thornton et al., 2013), it is essential to allow
people with limited knowledge in the field to easily
select and apply the best ML model. AutoML aims to
help solve this issue and it is particular relevant when
constant model updates are required.

This paper proposes a technological architecture
that addressed these two ML challenges and that is
adjusted to the telecommunications risk management
domain. This domain often requires supervised learn-
ing tasks (e.g., churn detection) that need to be set and
continuously updated by non-ML-experts and that in-
volve big data. Thus, our architecture defines a set
of steps that automate the usual workflow of a super-
vised ML application, including modules for: task de-
tection, data preprocessing, feature selection, model
training and deployment. This work particularly fo-
cuses on the model training module, which assumes a
distributed AutoML tool. In order to select the com-
putational ML tool, we first analyzed the capabili-
ties of five AutoML tools (Auto-Keras, Auto-Sklearn,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/344902275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Auto-Weka, H2O AutoML and TransmogrifAI). The
two tools with distributed ML capabilities (H2O Au-
toML and TransmogrifAI) were then compared ex-
perimentally. The comparison used three telecom-
munications real-world datasets, related with churn
(regression), event forecasting (time series) and fraud
detection (classification).

The paper is organized as follows. In Section 2,
we present the related work. Next, Section 3 details
the proposed ML architecture. Section 4 describes
the analyzed AutoML technologies and the datasets
used during the experimental tests. Then, Section 5
discusses the experimental results. Finally, Section 6
presents the main conclusions and future work direc-
tions.

2 RELATED WORK

Typically, ML applications operate in-memory. Thus,
when the computational complexity of the ML algo-
rithm exceeds the machine memory, it does not scale
properly. In this age of big data, there is a need
to develop scalable and efficient algorithms that can
deal with as many training data as possible under the
constraints of memory and time (Peteiro-Barral and
Guijarro-Berdiñas, 2013). In this work, we partic-
ularly address classical distributed ML, which dis-
tributes the computation among distinct processors,
each performing a ML task using a static dataset.

Another relevant ML issue is related with the
proper selection of the right algorithm to be used and
the optimization of its hyperparameters. This model
selection and tuning is often performed by using ML
expert knowledge, heuristics and several trial-and-
error experiments, often performed using ad-hoc se-
tups (Feurer et al., 2015). For non-ML-experts, this is
not a trivial task (Gibert et al., 2018). AutoML was
specifically developed to solve this issue (He et al.,
2019). It can be defined as the automatic (without
user input) search for the best algorithm for a given
dataset and producing predictions on the test set. This
search can be controlled by some user-defined con-
straints, such as memory usage or execution time
(Feurer et al., 2015).

Due to its relevance, several AutoML tools were
proposed. Examples of currently available open-
source tools include: Auto-Keras (Jin et al., 2018),
Auto-Sklearn (Feurer et al., 2015), Auto-Weka (Kot-
thoff et al., 2017), H2O AutoML (H2O.ai, 2019)
and TransmogrifAI (Salesforce, 2019). Within our
knowledge, there are scarce studies that compare
AutoML technologies. Most research works com-
pare a specific AutoML tool with a set of state-of-

the-art ML algorithms, such as presented in (Feurer
et al., 2015). Other studies compare the performance
of AutoML applications that were submitted to ML
automation challenges, such as executed in (Guyon
et al., 2019). Recently, a direct AutoML tool compar-
ison was performed using a classification task (Gijs-
bers et al., 2019). Also in 2019, several AutoML tools
were compared by using different types of datasets,
grouped by task, number of rows, number of columns,
types of columns or balance between classes (Truong
et al., 2019). However, none of these recent Au-
toML comparison studies considered specifically the
distributed ML dimension. For instance, as shown in
Table 1, TransmogrifAI is one of the few AutoML
tools that contains a distributed ML capability, yet this
tool was not considered in the experimental compar-
isons. Moreover, the recent comparison studies did
not adopted specific telecommunications risk man-
agement domain datasets, such as churn or fraud de-
tection.

3 PROPOSED ARCHITECTURE

This paper is part of the R&D project “Intelligent Risk
Management for the Digital Age” (IRMDA), which
is being developed by leading software and analytics
Portuguese company. The main outcome of IRMDA
is the development of a scalable and automated ML
system to empower the software company Telecom-
munications clients, allowing them to easily deploy
and maintain supervised ML risk management appli-
cations. The scalable and automated are fundamental
ML requirements of the system, since the company
has a large number of clients that work with different
amounts of data (small or vast). Also, typically these
clients are non-ML-experts.

We propose an automated ML technological ar-
chitecture that tries to combine the full automation of
the ML workflow with the ability to be executed in a
distributed environment. With the developed pipeline,
it is possible to automatically deal with all steps of a
typical supervised ML workflow just by identifying a
dataset and its target column. Since the architecture
is prepared to be executed on a computational clus-
ter, with several processing nodes, this allows users to
deal with bigger datasets just by adding new machines
to the cluster, if needed. The architecture is illustrated
in Fig. 1. The main components of the pipeline are:

• Machine Learning task detection - currently set to
detect if the ML pipeline should be considered a
classification (binary or multiclass) or a regres-
sion (pure regression or time series) task, based
on the user selected dataset and the datatype of



Figure 1: The proposed automated and scalable ML architecture.

the target column. The type of supervised tasks
handled will be expanded according to feedback
provided by software company clients and the Au-
toML tool capabilities. Interesting future possibil-
ities of tasks to be addressed are ordinal classifi-
cation or multi-target regression. This component
also automatically infers the dataset schema.

• Data Preprocessing - deals with missing data (e.g.,
average imputation), the encoding of categori-
cal features (one-hot transform), transformation
of univariate time series into a dataset with time
lagged inputs and the standardization of numeri-
cal features.

• Feature Selection - removes irrelevant features
from the dataset that can reduce the performance
of the ML models. Currently, this component
is implemented by using filtering methods (e.g.,
correlation values, information gain). In future,
more sophisticated automatic feature selection ap-
proaches, such as provided by the TransmogrifAI
tool (Salesforce, 2019) or Apache Spark (which
can be used with the H2O Sparkling Water tool
(H2O, 2019)), will be addressed.

• Model training using AutoML - automatically
trains and tunes a set of ML models using a set
of constraints (e.g., time limit). This component
also identifies the best model to be used on the test
set.

• Pipeline Deployment - saves the pipeline that will
be used on a test set. The pipeline ensures that the
test data goes through the same transformations
as the training data and that it uses the best model
obtained during the training to make predictions.

The proposed architecture assumes two main
phases (Fig. 1): a training phase and a test phase. The
training phase includes the creation of the pipeline

and the definition of the pipeline stages. In order
to process the pipeline, the user needs to select the
dataset that will serve as training data and identify
the target column. Then, the dataset is loaded and its
schema is inferred. The task detection module ana-
lyzes the output target type, assuming a classification
goal (binary or multiclass, depending on the number
of target labels) or a regression task (pure or univari-
ate time series, depending if the dataset contains sev-
eral variables or just the output target). The next steps
consist on the definition of the pipeline stages based
on the selected ML task. Each stage either transforms
the data (e.g., dealing with missing data, categorical
one-hot encoding) or creates a model based on the
training data which will be used on the test phase to
transform the data.

This paper focuses on the AutoML component
of the architecture, which assumes a distributed ML
and that is tested using real-world datasets from the
telecommunications domain. In particular, we ana-
lyze and benchmark open-source AutoML tools, in
order to technologically instantiate this component.
The AutoML goal is to select the best ML algorithm
for a given supervised learning task, tuning its hy-
perparameters and fitting the model to the training
data. After this phase, the best model is added to the
pipeline and this object is ready to be exported. When
necessary, the pipeline may be imported and executed
on test data. The new data will pass through every
stage and produce predictions.

We highlight that current version of the over-
all architecture, which received a positive feedback
from the Portuguese software company of the IR-
MDA project, is expected to be incrementally im-
proved in future research. In particular, we intend to
evolve and test the non AutoML components by us-
ing more real-world datasets and feedback from the
software company clients.



4 MATERIALS AND METHODS

4.1 AutoML Tools

We first analyzed an initial a set of five modern open-
source AutoML tools, to check if they could fulfil the
desired IRMDA project requirements.

4.1.1 Auto-Keras

Auto-Keras is an AutoML Python library. The focus
of Auto-Keras is Deep Learning and the automatic
search for architectures and hyperparameters of Deep
Learning models. The goal of Auto-Keras is to allow
domain experts with limited ML background to eas-
ily build and tune Deep Learning models (Jin et al.,
2018). Auto-Keras allows the user to specify a time
limit for the executions and the possibility of perform
data augmentation.

4.1.2 Auto-Sklearn

Auto-Sklearn uses the the ML scikit-learn library (Pe-
dregosa et al., 2011) to perform algorithm selection
and hyperparameter tuning. It is a Python module that
makes use of recent advances in Bayesian optimiza-
tion, metalearning and ensemble learning to increase
the efficiency (Feurer et al., 2015). Auto-Sklearn in-
cludes 15 ML algorithms, 14 feature preprocessing
methods and 4 data preprocessing methods.

4.1.3 Auto-Weka

Auto-Weka is a module of the WEKA ML tool (Wit-
ten et al., 2016). The Auto-Weka module is the
WEKA solution to the Combined Algorithm Selec-
tion and Hyperparameter Optimization (CASH) prob-
lem on classification tasks (Thornton et al., 2013). In
its most recent version, Auto-Weka also supports re-
gression tasks (Kotthoff et al., 2017). Auto-Weka uses
27 WEKA learners, 10 metalearners and 2 ensemble
methods.

4.1.4 H2O AutoML

H2O is a ML and predictive analytics platform. It
works with in-memory data, using a distributed and
scalable architecture that allows the users to build ML
models on big data environments. H2O was built to
facilitate the production of ML models when work-
ing in an enterprise environment (Cook, 2016). The
H2O goal is to help non-ML-expert users to produce
models with high performance (H2O.ai, 2019).

The result of an AutoML execution is an object
that includes the leaderboard of all the models trained

and validated during the ML model search process.
The number of searched models is dependant of the
optional parameters selected by the user (e.g., time
limit, exclusion of algorithms). The models on the
leaderboard are sorted by an evaluation metric, which
by default is the Area Under Curve (AUC) for bi-
nary classification, Mean Per Class Error for multi-
class classification and Deviance for regression. H2O
AutoML applies most of H2O families of algorithms,
such as Gradient Boosting Machine (GBM), Gen-
eralized Linear Model (GLM), XGBoost, Random
Forest and Deep Learning algorithms. It also al-
lows very personalized executions for more advanced
users. The user optional parameters include the spec-
ification of a time limit, evaluation metric, stopping
metric, the possibility of excluding algorithms and au-
tomatic balancing of the training example classes.

4.1.5 TransmogrifAI

TransmogrifAI is a tool written in Scala that runs on
Apache Spark. It focuses on the automation of ML
applications, allowing the users to rapidly obtain ML
models with few manual settings. The automation ad-
dresses the ML model selection and also feature se-
lection and engineering phases (Salesforce, 2019).

The user only has to specify the dataset, the
schema and the target column. TransmogrifAI uses
these parameters to infer more precise attribute types
(e.g., phone numbers, zip codes) and automatically
discards input features that do not present a predictive
value. Depending on the type of problem that is being
modeled (classification or regression), TransmogrifAI
trains a set of algorithms and a predefined set of hy-
perparameters. The list of trained algorithms includes
Random Forest, Logistic Regression, Linear Regres-
sion and Naive Bayes, among others.

4.1.6 AutoML Tool Comparison

Table 1 presents the main characteristics of each Au-
toML tool in terms of: interface language, associated
platforms, current version and if it contains a Graphi-
cal User Interface and distributed ML mode.

For the experimental comparison study, two tools
were selected, H2O AutoML and TransmogrifAI,
since these are the only tools from Table 1 that include
a distributed ML capability. The list of ML algorithms
provided by the two computational tools are presented
in Table 2. The last two H2O algorithms are related
with stacking ensembles that reuse the searched in-
dividual ML models: all, which combines all model
predictions; and best, which considers only best pre-
dictive results per ML algorithm.



Table 1: Summary of the characteristics of the AutoML technologies.

Auto-Keras Auto-Sklean Auto-Weka H2O AutoML TransmogrifAI

Interface language Python Python Python
R

Python
R

Scala
Scala

Associated platforms - - WEKA

AWS
Azure

Google Cloud
Spark

Spark

Current version pre-release 0.6.0 2.6.1 3.26.0.6 0.6.1
Graphical User Interface - - X X -

Distributed mode - - - X X

Table 2: List of algorithms implemented by H2O AutoML
and TransmogrifAI.

Algorithm H2O AutoML TransmogrifAI

Decision Trees - X
Deep Learning X -

Extremely
Randomized

Forest
X -

Gradient-
Boosted Trees (GBT) - X

Gradient Boosting
Machine (GBM) X -

Generalized Linear
Model (GLM) X -

Linear
Regression - X

Linear Support
Vector Machine - X

Logistic
Regression - X

Naive Bayes - X
Random Forest (RF) X X

XGBoost X -
Stacking All (SA) X -
Stacking Best (SB) X -

4.2 Data

For the benchmark comparison study, we consider
three real-world datasets related with the telecommu-
nications domain. The datasets were provided by the
IRMDA project software company, which selected
them as representative of common risk management
ML tasks executed by the company. The datasets are
related with customer churn (binary classification),
event forecasting (univariate time series) and telecom-
munications fraud detection (regression).

4.2.1 Customer Churn

The customer churn dataset contains records from the
software company clients. Each row includes the fea-
tures that characterize each client and the associated
probability for canceling the company analytics ser-
vice (churn), as defined by the software company. The
dataset is rather small, with 189 rows and 21 attributes
(Table 3). In this work, the dataset is modeled as a
pure regression task, where the ML models attempt to
predict the numeric churn probability.

4.2.2 Event Forecasting

The event forecasting dataset contains the number
of telecommunication events of a certain type (e.g.,
phone calls, short messages) that occurred from
February to April of the year 2019. The total number
of events was aggregated on an hourly basis, resulting
in 1,418 records related with 59 days of hourly data.
Each record contains the respective timestamp and the
number of events in that interval, as described in Ta-
ble 4. The number of hourly events range from 3,747
to 56,320. Considering the dataset temporal charac-
teristics, it is modeled as a univariate time series task.

4.2.3 Fraud Detection

The fraud detection dataset includes data records
about phone calls performed between a sender (A)
and a receiver (B). Each row includes also the labeled
classification of the call (“fraud” or “normal”), as
identified by the software company using their expert
fraud knowledge and analytic tools. The dataset much
larger than the previously described datasets, it con-
sists of more than 1 million data examples, which cor-
responds to a day of phone calls that were performed
using the same client telecommunications company.



Table 3: Summary of the attributes of the churn dataset.

Attribute Description

tenure Time since the beginning
of the contract

streaming quality Resolution of the contract

prime video If prime video is
contractualized or not

contract Duration of the contract

payment method Specification of
the method of payment

product name Identification of the product
platform The type of connectivity

financial status If the payment is late
or regularized

service latency Latency of the service
dropped frames Number of dropped frames
volume Information about volume
duration Information about duration

account number Account identification
number

service latency
category

Category of the
service latency attribute

dropped frames
category

Category of the
dropped frames attribute

volume
category

Category of
the volume attribute

duration
category

Category of the
duration attribute

tenure
category

Category of
the tenure attribute

account segment Age segment of the client

equipment Equipement used
by the client

churn probability Probability of canceling
the service (∈ [0,1])

Table 4: Summary of the attributes of the event forecasting
dataset.

Attribute Description

Time Timestamp (yyyy-mm-dd hh:mm)
datapoints Number of events in that interval

The data attributes are described in Table 5. This
dataset is modeled as a binary classification task.

Table 5: Summary of the attributes of the fraud dataset.

Attribute Description

A Number of the sender of the call
B Number of the receiver of the call

Result Classification of the call
(“fraud” or “normal”)

5 RESULTS

5.1 Experimental Setup

To benchmark the AutoML tools, we executed several
computational experiments using the three real-word
datasets. The tools were compared under the same ex-
perimental setup, which was run on a machine with an
i7-8700 Intel processor with 6 cores. A holdout split
was used to divide the datasets into training (with 3/4
of the data) and test (1/4) sets. For churn and fraud
dataset, the split was randomly selected, while for the
event forecasting data a time order division was used
(since the data is ordered in time). Using the train-
ing data, each AutoML tool optimizes a single perfor-
mance measure, which was set as the Mean Absolute
Error (MAE) for the regression tasks (churn and event
forecasting) and the AUC for the classification data
(fraud detection). An internal 10-fold cross-validation
was used by both AutoML tools in order get a valida-
tion set where the seleciton performance measure is
computed. For comparison purposes, for the test data
we also computed the Normalized MAE (NMAE, in
%, which is equal to the MAE divided by the target
range) and Root Mean Squared Error (RMSE) val-
ues for regression tasks, and the Precision and Recall
measures for the binary classification.

We tested all ML algorithms from Table 2, except
for the Deep Learning, which was disabled from the
H2O due to two main reasons. First, it required a huge
computational effort, particularly for the large fraud
detection dataset. Second, to achieve a more fair com-
parison, since TransmogrifAI AutoML tool does not
include a Deep Learning algorithm. In order to allow
the execution of all ML algorithms, no computational
time execution limitation was used.

5.2 Churn

Two scenarios were designed to test the performance
of the AutoML tools. The first scenario (1) assumes
all the attributes of the dataset as input features of
the ML models. The second scenario (2) uses an ini-
tial feature selection phase before training the models.
The goal was to test the automatic feature selection



option provided by TransmogrifAI. Under this sce-
nario, and for H2O, we used the features that were
considered more relevant by the best H2O performing
ML model for the first scenario. The obtained results
are presented in Table 6, where the computational ex-
ecution time is presented in the minutes:seconds no-
tation.

5.3 Event Forecasting

Since both H2O AutoML and TransmogrifAI do not
have native univariate time series forecasting algo-
rithms (e.g., ARIMA, Holt-Winters), we performed
a transformation on the dataset by using a set of time
lags to create the regression inputs. These lags were
created using the CaseSeries function of the rminer
R package (Cortez, 2010), under three input lagged
scenarios: 1 – with time lags t−1, t−24 and t−25,
where t is the current time (corresponding to the pre-
vious hour, day and hour before that day); 2 – with all
time lags from the last 24 hours (from t−1 to t−24);
and 3 – with the time lags t − 12, t − 24, t − 36 and
t−48. The results for each scenario are presented in
Table 7.

5.4 Fraud Detection

The dataset is highly unbalanced, with only around
0.01% of the calls being illegitimate. In order to test
the effect of balancing methods, three scenarios were
analyzed during the training phase. The first scenario
(1) used a simple oversampling which used “fraud”
records and a random selection (with replacement) of
“normal” cases. The second (2) and third (3) scenar-
ios use the Synthetic Minority Oversampling Tech-
nique (SMOTE), which is a more sophisticated bal-
ancing method that generates synthetic examples for
the minority class, such that the training data gets
more balanced (Chawla et al., 2002). The SMOTE
was used to generate 100% of new fraud cases in the
second scenario and 200% of extra fraud examples
in the third scenario. The test phase also considers
three scenarios of unseen data, with different normal
to fraud ratios: A – 50%/50%, thus balanced; B –
75%/24%; and C – 80%/20%. Table 8 shows the ob-
tained results.

5.5 Discussion

In terms of computational processing time, the results
show that in general a small effort is needed by the
AutoML tools. The highest execution time is related
with the fraud detection data for the H2O tool and it
corresponds to just around 9 minutes.

This small computational effort is explained by
several factors, including: usage of a distributed
ML and multi-core machine; usage of benchmark
telecommunications datasets that are either have a
small number of examples (churn, event forecasting)
or inputs (fraud detection); and the disabling of the
Deep Learning algorithm in the H2O tool. Never-
theless, the execution time results confirm that the
AutoML can perform an automatic ML selection in
reasonable time. And if larger datasets were ana-
lyzed, the computational effort could be reduced by
adding more processing elements to the computa-
tional cluster. As for the tool comparison, H2O Au-
toML required less time to process the regression
tasks (churn and event forecasting), while Transmo-
grifAI was faster for the classification task.

In terms of the predictive performance, H2O Au-
toML obtained better results for three regression com-
parisons (for both MAE and RMSE: scenario 1 for
churn and scenarios 1 and 3 for event forecasting),
and seven classification comparisons (when using the
AUC measure). TransmogrifAI obtained the best re-
sults in two regression scenarios and two classifica-
tion ones. Overall, the AutoML predictive results are
of high quality and the tools do not present substantial
predictive differences. For example, all H2O AUC
test results are equal or higher than 95%, which cor-
responds to an excellent discrimination level. And
the largest AUC classification difference when com-
pared with TransmogrifAI is just 3 percentage points.
Similarly, the best churn prediction models present a
NMAE value that corresponds to an interesting value
of around 10%. The tool NMAE differences are small
for scenario 2 (1.7 percentage points) but larger for
scenario 1 (9.8 percentage points). As for the event
forecasting, the predictions are of high quality, with
NMAE values ranging from 4.0% to 6.6%. The tool
NMAE differences are very small for scenarios 1 and
2, with percentage point differences of 0.10 and 0.07,
while the difference is larger for scenario 3 (1.68 per-
centage points).

The predictive results confirm the potential of the
distributed AutoML technologies, which are capable
of achieving high quality predictive results in a rea-
sonable amount of time and with a minimum hu-
man intervention. The obtained results were shown to
the risk management software and analytics company,
which opted to select the H2O AutoML tool for sev-
eral reasons. First, it provided better predictive results
for the majority of the tested scenarios. In particular,
when the AutoML tools presented the largest metric
differences, the best results were achieved by H2O.
Second, the company classified the tool as “more ma-
ture” software, since as shown in Table 1, it is avail-



Table 6: Results for the churn data (best values in bold).

Tool Scenario Execution
time

Best
algorithm

Test data
MAE NMAE RMSE

H2O AutoML 1 00:28 SA 0.112 11.2% 0.189
2 00:26 GLM 0.126 12.6% 0.186

TransmogrifAI 1 03:44 RF 0.210 21.0% 0.283
2 03:36 GBT 0.109 10.9% 0.136

Table 7: Results for the event forecasting data (best values in bold).

Tool Scenario Execution
time

Best
algorithm

Test data
MAE NMAE RMSE

H2O AutoML
1 02:32 GBM 2673 5.08% 4032
2 02:53 GBM 2138 4.07% 3535
3 01:50 GBM 2589 4.92% 4079

TransmogrifAI
1 05:16 GBT 2725 5.18% 4332
2 05:00 RF 2101 4.00% 3441
3 03:47 RF 3468 6.60% 5212

Table 8: Results for the fraud detection data (best values in bold).

Tool Train
Scenario

Execution
time

Best
algorithm

Test
Scenario AUC Precision Recall

H2O
AutoML

1 05:20 GBM
A 0.97 0.99 0.98
B 0.95 0.99 0.97
C 0.95 0.98 0.99

2 07:18 GBM
A 0.99 1 0.99
B 0.97 0.99 0.98
C 0.97 0.99 0.96

3 08:54 GBM
A 0.99 1 0.99
B 0.99 0.99 0.98
C 0.98 0.99 0.98

TransmogrifAI

1 01:19 RF
A 0.98 0.99 0.96
B 0.93 0.98 0.97
C 0.92 0.98 0.93

2 01:45 RF
A 0.98 1 0.99
B 0.96 0.99 0.98
C 0.96 0.97 0.94

3 02:13 GBT
A 0.99 1 0.99
B 0.98 1 0.98
C 0.97 0.99 0.96

able in different programming languages and it can
be integrated with more platforms (other than Spark).
Also, the H2O provided an easy to use Graphical User
Interface.

6 CONCLUSIONS

In this paper, we proposed a ML framework that
can handle the full ML workflow, including sev-

eral modules to identify the ML goal, preprocess the
data, select features, train models and deploy testing
pipelines with a minimum human input. The frame-
work was specifically designed within a R&D project
that includes a major Portuguese software and analyt-
ics company that provides risk management services
for the telecommunications domain. The telecommu-
nications clients are typically non-ML-experts. More-
over, they work with varying sized datasets (small or
large). Thus, the proposed ML framework works on a



cluster that uses distributed ML to ensure scalability
and makes use of AutoML capabilities to facilitate the
development and maintenance of the ML models.

This work particularly focus on one of the core
components of the architecture: the model training
module. To instantiate technologically such model,
we first analyzed the characteristics of five open-
source AutoML tools (Auto-Keras, Auto-Sklearn,
Auto-Weka, H2O AutoML and TransmogrifAI).
Then, we performed a benchmark experimental study
with the two tools that presented a distributed ML
capability: H2O AutoML and TransmogrifAI. The
experiments were conducted using three real-world
datasets provided by the software company (churn,
event forecasting and fraud detection). The obtained
results allowed us to evaluate the potential of both Au-
toML technologies for the model training module of
the proposed architecture.

Overall, the proposed framwork received a pos-
itive feedback from the software company, which
opted to select the H2O AutoML tool for its model
training module. In future work, additional telecomu-
nications datasets will be addressed, in order to fur-
ther benchmark the AutoML tools. In particular, we
wish to extend the framework ML capabilities to han-
dle more ML tasks (e.g., ordinal classification, multi-
target regression). Moreover, we intend to focus the
development on the remaining components of the ar-
chitecture, in order to select the best technologies to
be used (e.g., for handling missing data).

ACKNOWLEDGEMENTS

This work was executed under the project IR-
MDA - Intelligent Risk Management for the Dig-
ital Age, Individual Project, NUP: POCI-01-0247-
FEDER-038526, co-funded by the Incentive System
for Research and Technological Development, from
the Thematic Operational Program Competitiveness
of the national framework program - Portugal2020.

REFERENCES

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. (2002). Smote: synthetic minority over-
sampling technique. Journal of artificial intelligence
research, 16:321–357.

Cook, D. (2016). Practical machine learning with H2O:
powerful, scalable techniques for deep learning and
AI. ” O’Reilly Media, Inc.”.

Cortez, P. (2010). Data mining with neural networks and
support vector machines using the r/rminer tool. In In-
dustrial Conference on Data Mining, pages 572–583.
Springer.

Darwiche, A. (2018). Human-level intelligence or animal-
like abilities? Commun. ACM, 61(10):56–67.

Feurer, M., Springenberg, J. T., and Hutter, F. (2015).
Initializing bayesian hyperparameter optimization via
meta-learning. In Twenty-Ninth AAAI Conference on
Artificial Intelligence.

Gibert, K., Izquierdo, J., Sànchez-Marrè, M., Hamilton,
S. H., Rodrı́guez-Roda, I., and Holmes, G. (2018).
Which method to use? an assessment of data mining
methods in environmental data science. Environmen-
tal modelling & software, 110:3–27.

Gijsbers, P., LeDell, E., Thomas, J., Poirier, S., Bischl, B.,
and Vanschoren, J. (2019). An open source automl
benchmark. arXiv preprint arXiv:1907.00909.

Guyon, I., Sun-Hosoya, L., Boullé, M., Escalante, H. J.,
Escalera, S., Liu, Z., Jajetic, D., Ray, B., Saeed, M.,
Sebag, M., et al. (2019). Analysis of the automl
challenge series 2015–2018. In Automated Machine
Learning, pages 177–219. Springer.

H2O (2019). Sparkling water. http://docs.h2o.ai/sparkling-
water/2.4/latest-stable/doc/index.html.

H2O.ai (2019). Automl: Automatic machine learn-
ing. http://docs.h2o.ai/h2o/latest-stable/h2o-
docs/automl.html.

He, X., Zhao, K., and Chu, X. (2019). Automl: A survey of
the state-of-the-art. arXiv preprint arXiv:1908.00709.

Jin, H., Song, Q., and Hu, X. (2018). Auto-keras: Ef-
ficient neural architecture search with network mor-
phism. arXiv preprint arXiv:1806.10282.

Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F., and
Leyton-Brown, K. (2017). Auto-weka 2.0: Automatic
model selection and hyperparameter optimization in
weka. The Journal of Machine Learning Research,
18(1):826–830.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., et al. (2011). Scikit-
learn: Machine learning in python. Journal of ma-
chine learning research, 12(Oct):2825–2830.

Peteiro-Barral, D. and Guijarro-Berdiñas, B. (2013). A
survey of methods for distributed machine learning.
Progress in Artificial Intelligence, 2(1):1–11.

Salesforce (2019). Transmogrifai.
https://docs.transmogrif.ai/en/stable/.

Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown,
K. (2013). Auto-weka: Combined selection and
hyperparameter optimization of classification algo-
rithms. In Proceedings of the 19th ACM SIGKDD in-
ternational conference on Knowledge discovery and
data mining, pages 847–855. ACM.

Truong, A., Walters, A., Goodsitt, J., Hines, K., Bruss, B.,
and Farivar, R. (2019). Towards automated machine
learning: Evaluation and comparison of automl ap-
proaches and tools. arXiv preprint arXiv:1908.05557.

Witten, I. H., Frank, E., Hall, M. A., and Pal, C. J. (2016).
Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann.


