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13 Abstract

14 Cancer nanotechnology is a prolific field of research, where nanotools are employed to diagnose 

15 and treat cancer with unprecedented precision. Targeted drug delivery is fundamental for more 

16 efficient cancer treatments. For this, nanoparticles have been extensively used during the last 

17 years in order to improve the specificity, selectivity and controlled release of drug delivery. It 

18 holds potential in minimizing systemic toxicity through the development of functionalized 

19 particles for targeted treatment. Among all the type of nanoparticles, dendrimers display several 

20 advantages, which make them ideal candidates for improved and targeted drug delivery in 

21 cancer research. Dendrimers can transport large amount of drug into specific areas. In addition, 

22 they can be employed for monitoring the progress of the treatment process, with an 

23 unprecedented theranostic capability. Special emphasis is given in colorectal cancer, as well as 

24 the preferred employed strategies for producing drug-loaded/functionalized NP’s for cancer 

25 therapy in the last years.
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46 Routes of dendrimer synthesis and the stages of possible applicability of dendrimer 
47 nanoparticles in the case of colorectal cancer.

48

49 1. Introduction

50

51 Nanotechnology is an emerging field of research that is expected to play a definitive role in 

52 biomedicine in the near future, particularly for the targeted delivery of drugs at pathological 

53 sites inside the human body [1]. Nanoparticles (NPs) can be defined as particulate matter 

54 ranging between 1 and 100 nm in diameter, with a high surface area-to-volume ratio, and 

55 specialized surface characteristics [2-4]. The use of NPs as drug carriers in oncology started in 

56 1986, when it was reported that NPs showed a tendency to accumulate in tumoral tissues [5]. 

57 This passive accumulation, also known as passive or primary targeting, is known as “Enhanced 

58 Permeability and Retention” (EPR) effect, and is one of the milestones of cancer treatment using 

59 NPs. Therefore, the use of NPs for cancer therapeutics holds very promising due to their high 

60 specificity and accumulation in tumor sites, as well as their long blood circulation time (Figure - 

61 1).

62 However, one of the major problems related to cancer treatment is its intrinsic anti-cancer 

63 drug resistance, which can appear prior to chemotherapy as well as acquired resistance due to 

64 drug treatment [6]. The selectivity improvement yielded by NPs resulted in a great enhancement 

65 in the efficacy of the transported drug, while the occurrence of side effects in the patient was 
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66 reduced. Hence, targeted nanomedicine offers innovative therapeutic strategies to overcome 

67 the various limitations of conventional chemotherapy, such as drug resistance, enabling 

68 enhanced selectivity, and early and more precise cancer diagnosis [7]. Moreover, it is possible 

69 to incorporate targeting moieties selective for cancer cell biomarkers, which improves even 

70 more the selectivity and specificity of the treatment [8]. The main types of targeting moieties 

71 that are used for decorating and targeting NPs are: i) Antibodies [9]; ii) Peptide-based targeting 

72 [10]; iii) Small molecule-based targeting [11]; and iv) Aptamer-based targeting [12, 13].

73

74 Figure 1 - Rationale for nanomedicine approach in cancer-therapy. Reprinted with permission 
75 from [1]. 

76 The discovery of non-biodegradable nanoparticles including micelles, nanogels, 

77 liposomes, nanoemulsions, polymeric NPs, gold NPs and magnetic NPs, as agents in nano-drug 

78 delivery and imaging at pathological sites has enhanced delivery at lower doses and increased 

79 aqueous solubility and bioavailability of the drug with reduced side effects [14]. Nevertheless, 

80 the clinical application of these NPs to CRC therapy remains limited, as can be seen in Table 1.

81 Table 1 - Current nanotechnology applications in colorectal cancer clinical trials and status.

Study Title Identifier Intervention Status

Targeted polymeric 
nanoparticles loaded with 

cetuximab and decorated with 
somatostatin analogue to colon 

cancer

NCT03774680
Cetuximab NPs/ 
Oral approved 

anticancer drug.
Recruiting

Targeted silica nanoparticles for 
real time image-guided 

intraoperative mapping of nodal 
metastasis

NCT02106598
Fluorescent 

cRGDY-PEG-Cy5.5-
C dots

Recruiting
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TKM 080,301 (Lipid 
nanoparticles containing siRNA 
against the PLK1 gene product) 

in patients with colorectal, 
pancreas, gastric, breast, 

ovarian and esophageal cancer 
with hepatic/ TKM 080,301 for 

primary or secondary liver 
cancer

NCT01437007
Drug: TKM-

080,301
Completed

Pharmacokinetic, safety and 
efficacy study of nanoparticle 

paclitaxel in patients with 
peritoneal cancer/ A Phase I 

study of intraperitoneal 
nanoparticle paclitaxel in 
patients with peritoneal 

malignancies

NCT00666991
Nanoparticulate 

paclitaxel
Completed

Neoadjuvant 
chemoradiotherapy with CRLX-
101 and capecitabine for rectal 

cancer

NCT02010567
CRLX101/ 

Capecitabine/ 
Radiotherapy

Active/ Not 
recruiting

Liposomal irinotecan, 
fluorouracil, leucovorin calcium 

and rucaparib in treating 
patients with metastatic 
pancreatic, colorectal, 

gastroesophageal or biliary 
cancer

NCT03337087

5-FU/ Leucovorin 
calcium/ 
liposomal 
irinotecan, 
rucaparib

Recruiting

82
83 Moreover, as can be seen from Table - 1, none of the ongoing clinical trials using nanotechnology 

84 in colorectal cancer comprises the use of dendrimer nanoparticles. After literature research, it 

85 was found that there is only one clinical trial using dendrimers, with application in inoperable 

86 liver cancers. This dendrimer consists of poly-L-lysine dendrimer as nanovector mixed with 

87 complex of 188-Rhenium-ligand (nitro-imidazole-methyl-1,2,3-triazol-methyl-di-[2-pycolyl] 

88 amine) [15]. Although a very popular type of nanoparticles, inclusively used in clinical trials for 

89 other pathologies such as breast cancer and HIV prevention (VivaGel®), scientific advances are 

90 needed for dendrimer applications in the clinical setting.

91 A variety of dendrimers have been developed and used since the 1980s, but the ones 

92 derived from polyamidoamine (PAMAM) are undeniably the most employed. They are generally, 

93 biocompatible, and non-immunogenic systems, which favors their use in drug delivery. The core 

94 of PAMAM is most commonly ethylenediamine, although more hydrophobic molecules such as 

95 diaminododecane, diaminoexane, and diaminobutane may also be used [16]. 
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96 Recent literature suggests that dendrimers will be a solid bet in the future of cancer 

97 therapeutics [17]. This is because the field of oncology could be transformed by novel diagnostic 

98 and therapeutic strategies based on dendrimer nanoparticles. This advanced nanotheranostics 

99 area may include improved imaging techniques (such as MRI) by using dendrimers as new 

100 contrast agents. Dendrimers will also be applied for targeting a diverse variety of cancers, 

101 advancing on their safety and efficacy. In this regard, one of the most interesting targeting 

102 strategies involves anti-metabolite drugs, vitamins or hormones that tumors need for growing. 

103 Finally, further cancer-related applications of dendrimers in areas such as photodynamic 

104 therapy, boron neutron capture therapy, and gene therapy are being studied [18]. This review 

105 will cover the fundamentals of research utilizing dendrimers for cancer diagnosis and therapy, 

106 with a special focus on colorectal cancer (CRC).

107

108 2. Dendrimer nanoparticles

109 Dendrimers are in the category of polymer nanoparticles. However, they have a very different 

110 structure from classical polymers, which makes them unique. They consist of globular molecules 

111 made out of branched layers (generations). Such a precise synthesis leads to obtaining 

112 monodisperse molecules. On their outer surface, dendrimers can be engineered to have various 

113 functional groups such as COOH, COONa, NH2, or OH [19]. Therefore, after very simple surface 

114 modification, dendrimers render intelligent nanoparticles, transporting drugs into specific areas 

115 and at the same time can be used for monitoring the state of organs attacked by cancer cells, as 

116 well as the progress of the curing process. They can help to limit the anti-cancer drugs delivery 

117 to designed goals only, eliminating many side effects of chemotherapy [20]. Adding to this, to 

118 visualize the effectiveness of targeting, other moieties – such as imaging agents, can be attached 

119 to dendrimers and then assessed by MRI or CT. Because of this chemical multifunctional 

120 therapeutic delivery, dendrimer-based nanoparticles have received considerable attention in 

121 cancer research [21]. 

122 2.1 Properties

123 Among the innumerous types of NPs available, dendrimers offer multiple advantages. They 

124 are highly branched polymers, and therefore specific moieties and drugs can be easily 

125 conjugated and encapsulated. PAMAM dendrimers are the most common class of dendrimers, 
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126 suitable for many tissue engineering and regenerative medicine (TERM), materials science, and 

127 biotechnology applications [22]. They contain an inner alkyl-diamine core and a peripheral shell 

128 made of tertiary amine branches [23, 24]. Therefore, the high level of control over dendritic 

129 architectures makes dendrimers ideal carriers in biomedical applications [25]. In addition, the 

130 toxicity of dendrimers mainly comes from the high cationic charge density in the periphery, 

131 where charges interact with biological cell membrane, resulting in membrane disruption, hurdle 

132 that can be easily overcome by surface modification. Dendrimers have the advantages of being 

133 biocompatible upon modification and easily eliminated from the body [26] through the kidneys 

134 along the same metabolic pathways taken by folate, peptides and antibodies [27-30]. It is well 

135 known the impact of size on the in vivo behavior of dendrimers. In general, low generation 

136 dendrimers (e.g., G5 or smaller, with hydrodynamic radii of <3.5 nm) display relatively rapid 

137 clearance from blood and facile elimination into urine. On the other hand, PEGylated dendrimers 

138 or higher generation dendrimers (G6 and above) tend to circulate longer and evenly distribute 

139 within major peripheral organs. In addition, only trace amounts were reported to be transported 

140 across an intact blood–brain barrier [31]. In addition to urinary excretion, there is also some 

141 evidence to suggest that excretion via the feces may play a significant part in dendrimer 

142 elimination and that in some cases this is dependent upon dendrimer generation [30]. Limited 

143 mechanistic studies for renal retention of PAMAM dendrimers report the localization of these 

144 polymers in the lysosomes of proximal tubule cells [32].

145 In a deeper study, the biodistribution of PAMAM labeled D-Cy5 was studied by 

146 injection in healthy rabbits on day 5 of life with the highest accumulation in the bladder 

147 and kidneys, confirming its fast renal clearance, even at an earlier age [31]. The present 

148 study suggest that more than 90% of the injected dose of the G4 dendrimer is cleared 

149 out from the newborn rabbits over 24h, with less than 5% in blood circulation [31]

150 Since dendrimers possess high density of surface functional molecules, they are easily 

151 conjugated with several targeting agents for selective delivery of chemotherapeutics to the 

152 tumor tissue. Furthermore, they contain internal cavities for macromolecule encapsulation, 

153 being able to transport highly hydrophobic drugs (Figure 2) [33].
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154

155 Figure 2 - Dendrimer branched architecture, representing the increasing generations (G). 
156 Adapted from [24].

157 2.2 Synthesis and types of Dendrimers

158 Dendrimers have been traditionally synthesized by two major routes: the divergent 

159 method, introduced by Tomalia et al. [24], and the convergent one, developed by Hawker and 

160 Fréechet [34]. In the first method (divergent), the final molecule grows radially from a core by 

161 the sequential addition of layers of monomers, each layer constituting a new generation (G). 

162 The number of surface groups multiplies according to the functionalities in each monomer 

163 ramification [35]. It is important that every step of the reaction is fully completed before the 

164 addition of a new generation to avoid defects in the branches. One of the main advantages of 

165 this approach is that in the final step of the reaction, the surface of the dendrimer can be easily 

166 modified with desired functional groups. Moreover, it is a fast synthesis which allows the 

167 preparation of large dendrimers. The main drawbacks of this approach is the extensive 

168 purification it is required, since the final product and the intermediate reactants have similar 

169 molecular weights, charge, and polarity [36]. The main methods of purification used in this type 

170 of synthesis are dialysis and precipitation of dendrimers [37]. Also, the higher the generation, 

171 the greater the chances are of having branching defects, since the presence of bulky branches 

172 creates difficulties in the coupling of new ones. Despite these obstacles, the advantages of this 

173 strategy have made it the main route for dendrimer production.

174 In a reverse way from the divergent synthesis, dendrimers can also be synthesized starting from 

175 the surface towards de inner core. The growth of the molecule starts from the ends of the chain, 

176 beginning by integrating the various branching points with other monomers that will constitute 

177 the dendrimers. Finally, these branches are attached to a central core when they reach the 
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178 desired generation size [38]. In contrast to the divergent growth, this method permits easier 

179 purification due to bigger differences between the final products and the initial reagents. The 

180 number of reaction steps required for dendrimer synthesis and purification in the convergent 

181 method can be reduced, making the preparation of higher generation dendrimers more efficient 

182 compared to the divergent method [30, 39]. Also, impurities generated during convergent 

183 synthesis can be easily separated as these impurities are usually very different from the 

184 synthesized dendrimers in size, structure, and physical properties.

185  Other advantages include higher monodispersity for low generations and fewer branch 

186 defects. The main downsides are low yield and difficulties in obtaining higher generations due 

187 to steric interferences when the branches are connected to the core [40]. 

188 Regarding the available types of dendrimers, Poly(propylene imine) (PPI) dendrimers were 

189 the first ones to be reported by in the 70’s. Together with PAMAM, they represent the most 

190 widely studied type. PPI dendrimers can be based on a 1,4-diaminobutane (DAB) core, but also 

191 be synthesized from an ethylenediamine nucleus and other core molecules by a double Michael 

192 addition reaction. Hence their interior contains various tertiary tris-propylene amines, and they 

193 form full generations with primary amines as surface ends [41].

194 Another common type of dendrimers are the Poly-l-lysine (PLL) dendrimers, mostly used as 

195 gene carriers due to their excellent condensation with oligonucleotides. Among their favorable 

196 characteristics are good biocompatibility, water solubility, biodegradability, and flexibility, 

197 similar to other dendrimers. With peptide bonds in their structures, both their core and 

198 branching units are commonly based on the amino acid lysine PLL dendrimers differ from the 

199 general concept of PAMAM and PPI dendrimers since they are mostly asymmetrical [42]. 

200 However, they are still precise molecules, with a controlled number of lysines branching out 

201 from the core, and terminal amine residues. The lysine in the terminal group of PLL contains two 

202 primary amines that are frequently modified for better biological performance [21, 43]. 

203 There are many more types of dendrimer nanoparticles, although less used. They can be 

204 classified according to their shape, structure, branching, solubility, chirality and attachment, 

205 which can be seen in Figure 3.
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206

207 Figure 3- Different types of dendrimers. Reprinted with permission from [44].

208 When compared to other dendritic NPs, PAMAM surpasses them due to the ease of its 

209 preparation, desirable chemical and physical properties, surface functional groups, and 

210 comparatively lower toxicity to other dendrimers [45, 46].

211 The physical and chemical features of dendrimers, which include their high monodispersity, 

212 water solubility, encapsulation ability, and large number of functionalizable peripheral groups 

213 make these macromolecules suitable contenders as drug delivery vehicles for cancer 

214 therapeutics [39]. Moreover, dendrimers are prepared with a level of control unattainable with 

215 most linear polymers, leading to nearly monodisperse, globular macromolecules with a large 

216 number of peripheral groups [47]. 

217  PAMAM dendrimers can be easily prepared using the iterative reaction sequence 

218 developed by Tomalia et al. [48] and are easily conjugated with various functionalities. The 

219 novelty was obtaining these macromolecules by repeating a chemical procedure, as follows: the 

220 most applied divergent synthesis of PAMAM dendrimers begins with an amine functional core 

221 unit that is reacted with methylacrylate by Michael addition chemical reaction. This results in 

222 the synthesis of two new branches per amine group with ester-terminated dendrimer, which is 

223 known as a “half-generation” dendrimer [49]. Further amidation of the methyl ester with 
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224 ethylene diamine results in a “full-generation” amine-terminated dendrimers. Reoccurrences of 

225 Michael addition and amidation steps yields the next-higher generation dendrimer with 

226 additions to its molecular weight, number of terminal functional groups, and size [46].

227 Functionalization is an integral part of dendrimer multiple uses. Functionalization is the 

228 process of incorporating multiple active sites in dendrimers in order to generate 

229 macromolecules with multifunctional architecture [50, 51]. Functionalized dendrimers can have 

230 six distinct features known as “Critical Nanoscale Design Parameters” (CNDPs). These 

231 parameters consist of size, shape, surface chemistry, flexibility, rigidity, architecture and 

232 elemental composition [34]. Depending on the clinical application of the dendrimer 

233 nanoparticles, these features can be changed and studied, changing the intrinsic properties, 

234 function and performance of the nanoparticles. Surface functionalization of dendrimer 

235 nanoparticles usually render increased specificity of dendrimer to improve efficiency of cancer 

236 therapy and also an increase in its circulation time [52]. For instance, dendrimer nanoparticles 

237 find useful functionalization in the following areas: i) increase biocompatibility (by PEGylating 

238 [53] or acetylation [54]); ii) enhance transfection efficiency (usually by aminoacid [55] or lipid 

239 functionalization [18]); iii) induce site specific delivery (e.g. aptamer [56], antibody [57], vitamin 

240 [58], peptides [59, 60]); or iv) to render stimuli responsive dendrimer nanoparticles (e.g. pH [61], 

241 thermo [62], photo [63], redox-responsive [64]).

242 When it comes to dendrimer targeting, aptamers are comparable to monoclonal 

243 antibodies, being well-established therapeutic molecules in terms of specificity and affinity to 

244 the target. Aptamers are small enough to enter deep into tumors, showing limited immunogenic 

245 effects. Because of these advantages, the use of aptamers is a promising strategy to overcome 

246 existing problems of common anticancer therapies. But the advantage of aptamers over 

247 antibodies includes their high stability, ease of synthesis, less batch-to-batch variation and facile 

248 chemical modifications that allow different conjugation chemistries [56, 65]. Regarding peptide 

249 strategies, there are numerous tumor-specific targets, and the peptides that bind them are 

250 usually divided into three categories: a) peptides that bind to cell surface receptors; b) peptides 

251 that target intracellular receptors; and c) peptides that specifically interact with the extracellular 

252 matrix. When comparing peptides to antibodies, the latter presents inherent deficits that may 

253 limit their in vivo applications. Their large molecular weight result in slow delivery and diffusion 

254 into tumor tissues. Another drawback includes the limited stability of antibodies; their activities 

255 depend on their intact spatial conformation, which is problematic for in vivo drug delivery 

256 systems and causes storage and transportation problems [60].”
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257 Efforts can be mane also namely to reduce cytotoxicity and enhance transepithelial 

258 transport [37], for interaction with coupling molecules such as natural-based polymers [37], 

259 fluorescent probes [37], and an inner hydrophobic core where other molecules can be trapped 

260 [66, 67]. Among the myriad possibilities, dendrimers can  also find applications as imaging agents 

261 [66, 68, 69], and scaffolds for TERM [70].

262

263 3. Dendrimer applications in cancer research

264 A strong body of evidence now suggests that NPs in the form of dendrimers may be of 

265 added value in the future of oncology-related theranostics [71-73]. Other than the flexibility for 

266 functionalization using diverse ligands and its low-nanometer size, the introduction of stimuli 

267 responsive functionality on dendrimers allows the release of payloads in response to specific 

268 triggers, as discussed before. These triggers could be endogenous in nature (acid, enzyme, and 

269 redox potentials) or it could be applied externally (light and temperature) [74-76]. One of these 

270 examples is the recent work developed by Nigam et al. [77] on cervical cancer, where iron oxide 

271 NPs were modified with Generation 2 (G2) PAMAM dendrimers and loaded with doxorubicin 

272 (DOX), therefore combining magnetic chemotherapy and hyperthermia on HeLa cancer cells 

273 [77]. When exposed to alternating current magnetic field, results show enhanced cell death as 

274 result of fatal synergistic contribution of DOX and high temperatures. Interestingly, the 

275 combinatorial treatment reduced cancer cell viability from 100 % to 3.6 % [77].

276 For targeting purposes, folic acid was conjugated to PAMAM dendrimer NPs [78]. Results 

277 showed negligible toxicity towards non-cancerous MRC9 lung fibroblast cells, as well as the 

278 ability of dendrimer nanoparticles for targeted co-delivery of siRNA and chemotherapy agents 

279 together in lung cancer cells [78].

280 For breast cancer, one good example of dendrimer application is the work of Chittasupho 

281 et al. [79]. Having in mind that breast tumors preferentially metastasize to the lung, bone and 

282 distant lymph nodes (that secret high levels of CXCL12), the team hypothesized that targeted 

283 inhibition of CXCR4 in breast cancer cells should suppress CXCR4-positive tumor cells toward 

284 secondary metastatic sites. Results showed enhanced in vitro cellular toxicity as compared with 

285 non-targeted dendrimers. The modified dendrimers exhibited remarkable reduced migration of 

286 BT-549-Luc breast cancer cells towards the used chemoattractant. This report demonstrated the 

287 potential utility of LFC131-dendrimer conjugates for breast cancer therapy and metastasis.
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288 In the case of liver cancer, due to lack of cell surface biomarkers and highly metastatic 

289 nature, early detection and targeted therapy of hepatocellular cellular carcinoma (HCC) is an 

290 unmet clinical need [80]. Galactosamine (Gal) is among the few selective ligands used for 

291 targeting HCCs due to its high binding affinity to asialoglycoprotein receptors (ASGPRs) 

292 overexpressed in HCC. In a recent work, Yousef et al. [80] engineered a nanoscale G4 PAMAM 

293 dendrimer NP anchored to Gal and loaded with the potent anticancer curcumin derivative (CDF) 

294 as a platform for targeted drug delivery to HCC. Surprisingly, in an in vivo xenograft model, 

295 cytotoxicity assays in HCC cell lines showed that CDF was more potent as a chemotherapeutic 

296 anticancer than the currently in use Doxorubicin, Sorafenib and Cisplatin chemotherapeutic 

297 agents [80]. 

298 Glioblastoma is the most common type of malignant brain tumor and one of the deadliest 

299 cancers [81]. It has been described that dendrimers have affinity to cross blood–brain barrier 

300 after systemic administration [82]. Liu et al. [83] utilized a combined chemo- and gene-therapy 

301 approach for effective glioma treatment and developed DOX-loaded dendrigraft poly-l-lysine 

302 (DGL) dendrimer surface modified with TNF (tumor necrosis factor) related apoptosis-inducing 

303 ligand (TRAIL) for the tumor targeting specifically of T7 peptide, a TfR-specific peptide. This 

304 approach was based on the knowledge that DOX increased the anticancer effect of TRAIL by 

305 regulating the expression of death receptors, as well as stimulation of apoptotic pathways [83, 

306 84].

307 For example, Langereis et al. [85] reported the synthesis of 5–6-nm gadolinium-diethylene 

308 triamine penta-acetic acid (Gd-DTPA)-terminated poly(propylene imine) (PPI) dendrimers as 

309 MRI agent. Talanov et al. [86] reported a PAMAM dendrimer-based nanoprobe with dual MR 

310 and fluorescence (Fl) modalities. Gd (III) was covalently attached to a dendrimer to create a fresh 

311 macromolecular contrast MRI agent. The authors used 2-(4-isothiocyanatobenzyl)-6-methyl 

312 diethylenetriaminepentaacetic acid (1B4M-DTPA) and Cy5.5 as a bifunctional chelating agent. 

313 The PAMAM dendrimers covalently attached to the Gd (III)-DTPA chelates and units of the near-

314 infrared (NIR) fluorescent dye, Cy5.5, to form a dual-modality MRI-FI agent [86].

315 They can be easily functionalized with a diverse variety of ligands to reach the tumor 

316 through the different body barriers in the body with minimal loss of activity. This results in the 

317 selectively targeting and killing of tumor cells without affecting the normal cells and most 

318 importantly, with an actively controlled release mechanism.

319

320
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321 3.1 Dendrimer Nanoparticles in CRC

322 CRC is the third most diagnosed cancer in the world. It manifests as a malignant neoplasm 

323 in the mucosa of the colon or the rectum [87]. Despite notable progress in treatment still leads 

324 to significant morbidity and mortality [88]. Colorectal cancer is a heterogeneous group of 

325 diseases. These have individual genetic and epigenetic backgrounds. In order to improve clinical 

326 management and better predict patient outcome, classification of colorectal cancers based on 

327 location, histology, etiologic factors, and molecular mechanisms of tumorigenesis have been 

328 made [89]. Their effectiveness of chemotherapy remains limited due to the intrinsic build-up of 

329 resistance of cancer cells to chemotherapy drugs, dose-limiting toxicities and other major side 

330 effects. New strategies to overcome these issues are being developed, one of which is cancer 

331 nanomedicine, a rapidly developing interdisciplinary research field [90].

332 The chemotherapeutic approach alone has not been found to be very efficient in CRC as 

333 the drug molecules may not reach the target site with an effective concentration and suffer a 

334 non-specific distribution, with only a small fraction of the drug reaching the tumor [91, 92].

335 These unique "polymeric compounds" can form intelligent species after modification, 

336 transporting drugs into specific areas and at the same time can be used for monitoring the state 

337 of organs attacked by cancer cells, as well as the progress of the curing process [14]. Recent 

338 advances in nanotechnology have rendered it an attractive approach for designing novel clinical 

339 solutions for CRC [14]. 

340 When tumor cells are shed from primary tumors or metastatic sites of early-stage cancer 

341 patients and enter the bloodstream, they are called circulating tumor cells (CTCs) [93]. CTCs-

342 driven cancer relapse and metastasis are the leading causes of cancer-related death worldwide. 

343 Owing to the importance of CTCs as an indicator of poor prognosis, various approaches were 

344 exploited to efficiently isolate and capture CTCs from large populations of interfering cells. 

345 Although several technologies (such as microfluidics-based, size-based filtration, etc) have been 

346 developed, they were not truly successful. So, a team developed a nanotechnology-based cell 

347 detection and capture method [93]: Purified anti-Slex (aSlex) antibody and FITC labeled-second 

348 antibody (IgG/IgM-FITC) were used for the following synthesis of aSlex-coated dendrimer 

349 conjugates. By doing this, dendrimers would capture (attach to) saliva acidifying Louis 

350 oligosaccharides X (Sialyl Lewis X, Slex, a type II carbohydrate antigen for mediating the 

351 colorectal cancer metastatic process. The colorectal CTCs were not only captured in artificial 

352 blood samples but restrained in cell activity by the conjugates, which means, according the to 

353 the referred paper, that there was a specific interaction between antigen (present in CTCs) and 
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354 antibody (present in dendrimers). Xie et al. [93] reported an effective approach to specifically 

355 bind and capture colon cancer HT29 cells by using multiple Sialyl Lewis X antibodies (aSlex)-

356 conjugated with PAMAM dendrimers (Figure - 4A). Results indicated that the conjugate showed 

357 the enhanced capture of HT29 cells in a concentration-dependent manner and the maximum 

358 capture efficiency of 77.88 % was obtained within 1 hour exposure [93]. This work provided a 

359 novel conceptual guidance for the effective prevention of cancer metastasis.

360 Capecitabine is one of the most used anticancer drugs in CRC, and is converted into 5-FU 

361 by various metabolic enzymes involved in DNA damage and tumor growth inhibition [94]. 

362 However, capecitabine has multiple adverse side effects affecting the blood, hair cells, bone 

363 marrow, and liver. In this context, Nabavizadeh et al. [92] induced colon adenocarcinoma in 

364 mouse models with azoxymethane, a carcinogen agent, and then investigated the potentiality 

365 of non-modified G4 PAMAM dendrimers to improve capecitabine therapeutic index and 

366 decrease its adverse side effects on liver and bone marrow [92]. Although no targeting was 

367 performed, the team compared the effects of free and conjugated capecitabine form on tumor 

368 size and blood cell lines abnormalities. Results showed reduced side effects in the liver and blood 

369 along with decreased tumor size when compared with the free form [92]. 

370 In a recent work, Aliboland et al. [12] encapsulated gold (Au) NPs inside PAMAM dendrimer 

371 NPs. The aim of this study was to investigate the theranostic capability of curcumin-loaded 

372 dendrimer-gold hybrid structures (Figure - 4B). 

373  The obtained results confirmed higher cellular uptake, internalization and cytotoxicity of 

374 Apt-PEG-AuPAMAM-CUR in comparison with PEG-AuPAMAM-CUR in C26 and HT29 colorectal 

375 cancer cell lines. Moreover, the system worked as an effective anti-tumor therapy and accurate 

376 computed tomography imaging of C26 tumor-bearing mice due to gold accumulation [12].

377 Similarly, Alibolandi et al. [95] developed camptothecin-loaded pegylated PAMAM 

378 dendrimer (Figure - 4C). For targeting purposes, the team functionalized the system with AS1411 

379 anti-nucleolin aptamers for site-specific targeting against CRC cells, which overexpresses 

380 nucleolin receptors [95]. Remarkably, aptamer AS1411 has now entered clinical trials (phase 

381 II/III trials) for acute leukaemia therapy [96]. Comparative in vitro cytotoxicity experiments 

382 demonstrated that the targeted camptothecin loaded-pegylated dendrimers had higher anti-

383 proliferation activity towards nucleolin-positive HT29 and C26 colorectal cancer cells than 

384 nucleolin-negative CHO cell line. The same system was tested in vivo on C26 tumor-bearing mice 

385 with promising results.
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386 Another anti-cancer drug currently used in the clinics is irinotecan [97]. However, its utility 

387 is limited by its narrow therapeutic index. Theoretically, a possibility to improve therapeutic 

388 index consists on increasing drug exposure in the diseased tissue, without accumulation in the 

389 healthy tissues. Dendrimer nanotechnology offers this possibility, as shown by England et al. 

390 [97]. They modified generation 5 L-lysine dendrimer with a polyoxazoline as a drug delivery 

391 vehicle for improving the therapeutic index of SN-38, the active metabolite of irinotecan (Figure 

392 - 4D). This extensive study comprised different linker technologies to obtain diverse 

393 pharmacokinetic profiles of drug release. Three conjugates with plasma release half-lives of 2.5 

394 h, 21 h, and 72 h were tested for efficacy and toxicity using a mouse SW620 xenograft model. 

395 The linker with a plasma release half-life of 21 h achieved sustained SN-38 exposure in blood, 

396 above the target concentration. Overall, these extensive studies allowed to identify a linker, a 

397 dose and dosing regimen for SN-38 conjugated to polyoxazoline-modified dendrimer that 

398 maximized efficacy and minimized adverse side effects [97].

399 Narmani et al. [98] studied the anti-cancer efficacy of oxaliplatin (OX) using a nanocarrier 

400 system with enhanced targeting efficacy towards folic acid receptors (FAR) expressing CRC cells 

401 in vitro [98]. This system consisted of PAMAM dendrimers G4 imprinted with polyethyleneglycol 

402 (PEG) and folic acid. Polyethelen glycation of polymeric NPs is frequently applied to increase 

403 stability, and thus the half-life, as well as the non-immunogenic and non-antigenic properties 

404 [99, 100]. The PEG-PAMAM nano-complex containing OX was shown to have a superior cellular 

405 uptake in SW480 cell line. The cell viability tests clearly demonstrated the cancer cell growth 

406 inhibition effects of PEG-PAMAM-FA-OX. These fundamental scientific advances (see Table 2), 

407 coupled with practical methods to covalently conjugate a wide range of bioactive molecules to 

408 the surface of a dendrimer or encapsulate them as guest molecules within void spaces, provide 

409 a highly versatile and potentially extremely powerful technological platform to fight colorectal 

410 cancer.

411 In another innovative approach, an in vivo pretargeting using radionuclides (that are usually 

412 incompatible with antibody-based vectors (e.g., 18F, 68Ga, 11C, and 64Cu)), thus helping imaging 

413 after the administration of the radiotracer and intensely decreasing the dose of radiation doses 

414 to healthy tissues compared to traditional protocol [101]. For this, athymic nude mice bearing 

415 subcutaneous SW1222 human colorectal cancer xenografts were. Indeed, pretargeted PET and 

416 biodistribution experiments in a murine model of colorectal carcinoma revealed that sshuA33-

417 DEN-TCO (TCO-bearing dendrimers to huA33) produced dramatically improved tumoral activity 

418 concentrations compared to an analogous, dendrimer-lacking immunoconjugate (sshuA33-

419 PEG12-TCO- nondendrimeric control immunoconjugate ). Surprisingly, the attachment of the G 
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420 0.5 dendrimeric structures didn’t hinder the in vivo performance of the immunoconjugate, 

421 suggesting that this bifunctional scaffold may have applications past pretargeting [101].

422 Table 2 - Summary of different strategies using dendrimer NP for CRC therapy.

Type of Dendrimer Target Anti-cancer drug Reference
PAMAM G4 N/A Capecitabine [92]

Gold NPs inside 
PAMAM 

MUC-1 
aptamer

Curcumin [12]

Pegylated PAMAM AS1411 anti-
nucleolin 
aptamers

Camptothecin [95]

L-lysine dendrimer 
G5 modified with 

polyoxazoline

N/A SN-38 (active metabolite of 
Irinotecan)

[97]

 PAMAM G4 Folic acid Oxaliplatin [98]
PAMAM G5 8 trans-

cyclooctene
N/A [101]

423

424 Figure 3 - Different strategies for employing dendrimer NPs in CRC research. A) Two synthetic 
425 procedures of aSlex-conjugated dendrimers with FITC labeling. Reprinted with 
426 permission from [93]. Copyright © 2015 Nature. B) Dendrimer-gold hybrid 
427 structure synthesized by complexing AuCl4− ions with PEGylated amine-terminated 
428 generation 5 PAMAM dendrimer. The resultant hybrid system was loaded with 
429 curcumin. The curcumin-loaded PEGylated Au dendrimer was further conjugated 
430 and tested, in vitro and in vivo, to MUC-1 aptamer for targeting colorectal 
431 adenocarcinoma. Reprinted with permission from [12]. Copyright © 2018 Elsevier. 
432 C) Schematic representation of (A) synthesis of pegylated PAMAM dendrimer (PEG-
433 PAMAM); (B) camptothecin (CPT) loading in the cavities of PEG-PAMAM; (C) 
434 conjugation of thiolated AS1411 aptamers to the maleimide groups of MAL-PEG-
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435 PAMAMCPT and preparation of Apt-PEG-PAMAM-CPT. Reprinted with permission 
436 from [95]. Copyright © 2017 Elsevier. D) Synthesis of polyoxazoline-modified 
437 dendrimers. Reprinted with permission from [97]. Copyright © 2017 Elsevier.

438

439 4. Conclusions 

440 The inefficacy of conventional chemotherapeutic methods has led to the development of 

441 new strategies, which can be used to improve the efficiency of anti-cancer drug delivery into 

442 tumors while minimizing distribution and toxicity in healthy tissues as well as novel imaging 

443 tools. These novel strategies based on the use of NPs loaded with drugs offer unprecedented 

444 opportunities both at the preclinical and clinical levels. However, some challenges still remain, 

445 such as improving the localization, biodistribution, biocompatibility, and efficacy of these nano-

446 drug systems in vivo, to meet the requirements of precision cancer diagnosis and therapy. In the 

447 current scenario, among the new nanotechnology platforms, dendrimer-based 

448 chemotherapeutics have emerged as one of the most promising nanotools over the available 

449 conventional chemotherapies for the treatment of a variety of tumors. However, their 

450 application in colorectal cancer is still in its infancy.

451 An ideal therapeutic must have the ability to target cancer cells, image the extent of the 

452 tumor and sense its signatures, deliver a therapeutic, and monitor cells for their response. 

453 Although we are not there yet, this is the goal for our nanotherapeutics.

454 Nanotechnology, and specially dendrimer nanoparticles with all of the above unique 

455 features, will support medical products to develop beyond a single mode of action into 

456 multifunctional platforms performing several functions such as nanotheranostics. Researchers 

457 around the world are enthusiastically incorporating nanotechnology in CRC treatment.

458

459
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Graphical Abstract

Routes of dendrimer synthesis and the stages of possible applicability of dendrimer 
nanoparticles in the case of colorectal cancer.
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