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A B S T R A C T   

Electric fields (EF) technologies have been establishing a solid position in emergent food processing and have 
seen as serious alternatives to traditional thermal processing. During the last decades, research has been devoted 
to elucidation of technological and safety issues but also fundamental aspects related with interaction of electric 
fields (EF) with important macromolecules, such as proteins. Proteins are building blocks for the development of 
functional networks that can encompass health benefits (i.e. nutritional and bioactive properties) but may be also 
linked with adverse effects such as neurodegenerative diseases (amyloid fibrils) and immunological responses. 
The biological function of a protein depends on its tridimensional structure/conformation, and latest research 
evidences that EF can promote disturbances on protein conformation, change their unfolding mechanisms, ag-
gregation and interaction patterns. This review aims at bringing together these recent findings as well as 
providing novel perspectives about how EF can shape the behavior of proteins towards the development of 
innovative foods, aiming at consumers’ health and wellbeing.   

1. Introduction 

Proteins play a critical role in food and nutrition, primarily as source 
of amino acids and secondly by providing many different functional and 
technological characteristics, thus contributing in quality, stability and 
organoleptic properties of foods. Proteins are polymers composed by 
chains of amino acids that may vary in composition, length and number. 
Furthermore, proteins’ native 3-dimensional structure is associated with 
a specific fold resulting from numerous interactions between the amino 
acids within the protein and the physicochemical environment 
(Creighton, 1993). Due to the large number of stabilizing and destabi-
lizing interactions within the protein fold that have found at least a local 
minimum, a protein conformation is inherently unstable (Onuchic, 
Luthey-Schulten, & Wolynes, 1997). All of this results in a large variety 
of structures, biological properties and functionalities with intrinsic 
structural dynamics and high responsiveness to environmental factors. 

The structure/function relationship in proteins is a well-documented 
and prevalent topic in biotechnology. It is generally accepted that the 
specific conformation of a protein will impact its biological activities, 
such as catalytic, ligand binding, regulatory, but also allergenicity and 
techno-functional properties – e.g. transport and release of bioactives, 
stabilization of foams and emulsions or interactions with each other to 

aggregate or create networks (Bryant & McClements, 1998; Mirmoght-
adaie, Shojaee Aliabadi, & Hosseini, 2016). Food proteins undergo a 
series of processing steps, either on the production process, extraction 
and cooking, or during more intricate processes of food biotechnology, 
involving transformation and functionalization. These processing steps 
have as main objectives to stabilize foods and food ingredients, biolog-
ical inactivation (such as reduction or elimination of microbial and 
enzymatic activity) and/or to change or promote certain organoleptic 
and nutritional/nutraceutical properties in foods (Aryee, Agyei, & 
Udenigwe, 2018; Vanga, Singh, & Raghavan, 2017). In order to fulfil 
these specific objectives, several unit operations are established, often 
involving high levels of physical stress – i.e. mechanical, pressure, 
thermal or electrically-induced stress - which may cause changes in 
protein structure and conformation, resulting in changes on their 
properties and functionality. 

During the last decades, major attention has been given to the pro-
cessing impact in food quality, resulting in improved processing stra-
tegies and development of new technologies (Jia, Liu, & Ma, 2019). 
Aiming at replacing the costly and highly aggressive thermal processes, 
emerging technologies such as high hydrostatic pressure processing, 
sonication, or electric fields (EF) processing are gaining attention due to 
their potential to improve foodstuff quality and functionality (De Vries 
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et al., 2018; Priyadarshini, Rajauria, O’Donnell, & Tiwari, 2018; Roo-
hinejad, Koubaa, Greiner, & Mallikarjunan, 2019). Furthermore, these 
technologies have demonstrated the capacity to modify proteins’ 
structure and positively impact their functionality (Han, Cai, Cheng, & 
Sun, 2018; Queirós, Saraiva, & da Silva, 2018; Rocha et al., 2018). 
Particularly, this review will focus on the impact of EF processing in 
proteins and its potential to control fundamental aspects related to 
nutrition, functionality and health. 

This topic comes on a particularly critical time, where the world 
population increase and the consumers’ perception about sustainability, 
environmental, health and ethical issues involving production and 

consumption of conventional proteins sources are pushing the search for 
sustainable and alternative proteins (Boire et al., 2018; Fasolin et al., 
2019). Consequently, new protein sources such as vegetable, microbial 
and non-conventional animal protein have been studied and used in 
food science and technology. Despite their recognized potential to 
replace conventional protein sources, these new proteins usually fall 
short into delivering the functional and nutritional characteristics 
required by the industry (Loveday, 2019; Queirós et al., 2018). In order 
to become an effective alternative, the functionality limitations of these 
emerging proteins must be overcome. Therefore, along with the 
exploitation of new protein sources, also the effects of alternative pro-
cessing strategies (such as the case of EF) must be assessed in two 
different aspects: i) if beneficial intrinsic characteristics and biological 
value can be preserved; and ii) if processing can be used to improve 
functionality, digestibility or reduce allergenicity of some proteins. 
Along with this new paradigm, the awareness of food-health relation-
ship is increasing and the concept of nutraceuticals and functional foods 
is turning mainstream (Bagchi & Nair, 2017). New foods must provide 
health benefits, assuring prevention, treatment of disease and promoting 
the general wellbeing. Hence, focus is now being given to the benefits 
associated with the alternative protein sources. Beyond the content of 
essential amino acids and their relevance for nutrition and health, the 
biological value related with the function of certain dietary proteins has 
been investigated in greater detail (see Table 1). A number of emerging 
proteins have been reported to present health benefits towards chronic 
diseases such as high cholesterol levels, hypertension, diabetes, and 
important biological functions, which include anti-inflammatory or anti- 
carcinogenic activities. Nonetheless, it is necessary to assess the safety 
and general behavior of these fractions throughout the gastrointestinal 
tract, including their bioavailability and the evaluation of possible 
cytotoxic effects or allergic reactions. A fundamental understanding 
about the interaction between EFs and protein structure may contribute 
to establish processing protocols with ability to change and control 
protein functionality aiming at improving their health benefits. 

The main objectives of this review are: (i) to address the most 
promising EF processing technologies; (ii) summarize its recent reported 
effects on protein molecules; and (iii) provide novel perspectives about 
EF based processing strategies of protein-rich foods that can bring im-
plications on health and wellbeing. 

2. Electric fields processing 

EF processing is based on the direct use of electric fields to process 
food, achieving microbial and enzymatic inactivation and/or changes in 
physicochemical and organoleptic properties. The introduction of EF in 
the food industry as an alternative to conventional thermal processing 
occurred in the 1920’s when milk pasteurization was performed by the 
direct use of electricity through a process designated as “electro-pure 
process”, later known as ohmic heating (OH) (Anderson & Finkelstein, 
1919). Over the last years, electro-technologies based on the application 
of moderate electric fields (MEF) and pulsed electric fields (PEF) have 
been gaining interest for being efficient, cost-effective and by attaining 
diverse biological effects (Geada et al., 2018). These technologies can 
now be found applied with several purposes in numerous fields of 
research and development, such as food industry (e.g. pasteurization, 
cooking, blanching), biorefinery (e.g. biomass stabilization, extraction) 
and medicine (e.g. permeation for drug delivery, tumoral cells elimi-
nation). Despites sharing the fundamental working principle (i.e. 
application of an EF), PEF and MEF rely on different operational spec-
ifications and often fulfill distinctive processing objectives (see Table 2). 

PEF processing is considered a non-thermal technology that applies 
high-intensity EF, in the order of kV.cm− 1, through short duration pulses 
(from ns to ms), with the objective of causing electroporation on cellular 
structures (Geada et al., 2018; Golberg et al., 2016; Rocha et al., 2018). 
By this reason, PEF has been attracting attention in food industry as a 
non-thermal pasteurization method, capable of inactivating some 

Table 1 
Examples of emerging protein sources and associated health benefits.  

Source Fraction Biological Activity References 

Pulse (e.g. pea, 
chickpea, 
lentil, 
lupine, mug 
bean) 

Protein isolates, 
protein fraction 
and 
hydrolysates 

Anti-cholesterol 
Anti- 
hypertriglyceridemic 
Heart disease control 
Anti-hypertensive 
Anti-oxidant 
Anti-inflamatory 
Anti-carcinogenic 
Immunomodulatory 
Anti-microbial 

(Pihlanto, Mattila, 
Mäkinen, & Pajari, 
2017; Duranti, 
Consonni, Magni, 
Sessa, & Scarafoni, 
2008; Arnoldi, 
Boschin, Zanoni, & 
Lammi, 2015; Roy, 
Boye, & Simpson, 
2010; Moreno- 
Valdespino, Luna- 
Vital, Camacho- 
Ruiz, & Mojica, 
2020; Yi-Shen, 
Shuai, & 
FitzGerald, 2018) 

Oilseeds (e.g. 
rapeseed 
hempseed 
soy, 
flaxseed) 

Protein isolates, 
Protein fraction 
and 
hydrolysates 

Anti-cholesterol 
Anti- 
hypertriglyceridemic 
Anti-carcinogenic 
Anti-hypertensive 
Anti-oxidant 
Anti-inflammatory 
Against 
neurodegenerative 
diseases 
Immunomodulatory 
Anti-inflamatory 
Anti-thrombotic 
Anti-coagulation 
Anti-microbial 

(Aider & Barbana, 
2011; Pihlanto 
et al., 2017; Aluko, 
2017; Friedman & 
Brandon, 2001; 
Agyei, 2015; 
Rabetafika, Van 
Remoortel, 
Danthine, Paquot, 
& Blecker, 2011) 

Algae (e.g. 
chlorella, 
spirulina, 
marine 
microalgae) 

Protein isolates, 
Protein fraction 
and 
hydrolysates 

Anti-oxidant 
Anti-inflamatory 
Anti-hypertensive 
Anti-coagulant 
Anti-proliferation 
Anti-microbial 
Anti-tumour 
Imunomodulatory 

(Samarakoon & 
Jeon, 2012; 
Ovando et al., 
2018; Ejike et al., 
2017; Harnedy & 
FitzGerald, 2011; 
Hayes et al., 2018) 

Fungi / 
mushroom 

Protein isolates 
and Protein 
fraction 

Anti-oxidant 
Anti-tumour 
Anti-microbial 
Anti-hypertensive 
Immunomodulatory 

(Xu, Yan, Chen, & 
Zhang, 2011; 
Zhang et al., 2016; 
Hassan, Rouf, 
Tiralongo, May, & 
Tiralongo, 2015; 
Erjavec, Kos, 
Ravnikar, Dreo, & 
Sabotič, 2012) 

Insects Flowers, 
protein isolates 
and 
hydrolysates 

Anti-microbial 
Anti-oxidant 
Anti-hypertensiv 
Anti-inflamatory 
Anti- 
hypertriglyceridemic 
Anti-tumour 

(Neog, Gogoi, 
Bordoloi, & Para, 
2018; Zielińska, 
Karaś, Jakubczyk, 
Zieliński, & 
Baraniak, 2018; 
Chernysh et al., 
2002; Zielińska, 
Baraniak, & Karaś, 
2018; Hall, 
Johnson, & 
Liceaga, 2018)  
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microorganism at sub-lethal temperatures. The process is defined by the 
electric pulse characteristics – i.e. shape, duration and frequency – that 
dictate the total time of the treatment, and the energy input, that is 
critical to process efficiency and economic impacts of PEF processing. 
Despites the variety of possibilities, bipolar square pulses demonstrated 
to be more effective and bring operational advantages such as the 
reduction of electrode erosion. The pulse intensity, length and number 
of pulses dictate the extension and specificity of the permeation ability 
(Gómez et al., 2019; Puértolas & Barba, 2016). 

The inactivation of microorganisms and enzymes associated pro-
moted by PEF with a low thermal load, causes fewer changes in the 
organoleptic profile and preserves nutritional quality (Blahovec, Vor-
obiev, & Lebovka, 2017; Toepfl, Siemer, Saldaña-Navarro, & Heinz, 
2014). However, PEF lethal impact on the cells is always dependent on 
the electric field strength, treatment time and on the type of the 
microorganism to be inactivated (Álvarez, Pagán, Condón, & Raso, 
2003; Gómez et al., 2019). Inactivation of more resistant forms of mi-
croorganisms through PEF protocols is still a challenge. This normally 
requires an increase in the number of pulses or the increase of intensity 
of EF applied, which in turn increases the chance of heat production 
through OH effect during the treatment (Geada et al., 2018; Gómez 
et al., 2019), thus contradicting the non-thermal nature and declared 
advantages of the treatment itself. PEF assisted-processing has also been 
found interesting in operations that involve increased mass extraction of 
bioactive compounds or molecules from cellular matrices. 

OH, also known as Joule heating, is a thermo-electrical processing 
method which involves heat generated by application of MEF through a 
food product which acts as an electrical resistance (Knirsch et al., 2010; 
Yildiz, Bozkurt, & Icier, 2009). OH is distinguished from electromag-
netic heating (e.g. microwave or radiofrequency) by the presence of two 
electrodes contacting the food (a requirement also need for PEF), as-
suring a homogeneous heat dispersion through all the sample and a fast 
heating rate (Pereira & Vicente, 2010; Sarkis, Mercali, Tessaro, & 
Marczak, 2013). OH generally occurs within the range of MEF – i.e. 
reaching EF intensities from 1 to 1000 V.cm− 1 - usually applying 
alternating current during an unrestricted time (stretching from a few 
seconds to several hours) (Rodrigues, Avelar, et al., 2020). The main 
difference between the OH and MEF designations lies in the main effects 
obtained on their application, being OH related with thermal action 
while MEF designation is often employed when the primary objective is 
to exploit EF non-thermal effects, thus minimizing/restricting heat 
production. In a very simple way, it can be said that OH will always be 

one of the main side effects or advantages of MEF application, although 
it may not always occur. When compared to other conventional heating 
methods currently in use, OH appears as an alternative capable of 
reducing thermal damage due to its direct and volumetric way of heating 
(Sarkis et al., 2013). Furthermore, the additional effects resulting from 
the presence of an EF have shown to increase inactivation of certain 
microorganisms and enzymes, allowing processing at lower tempera-
tures in comparison to a conventional thermal treatment while obtain-
ing equivalent inactivation or pasteurization/sterilization efficiencies 
(Castro, Macedo, Teixeira, & Vicente, 2006; Jakób et al., 2010; 
Machado, Pereira, Martins, Teixeira, & Vicente, 2010). OH was found 
advantageous in several thermal unit operations such as thawing, 
blanching, pasteurization, dehydration and fermentation, but also on 
biomass bioprocessing and extraction methodologies (Pereira & Vicente, 
2010; Rocha et al., 2018; Rodrigues, Genisheva, et al., 2019). 

3. Electric fields interaction with proteins 

3.1. Conformation and structure 

The influence of external EF in biological systems and particularly in 
proteins have attracted the interest of research and numerous authors 
have tried to disclose their effects using several approaches. Nonethe-
less, the high responsiveness of proteins to extrinsic factors have been 
posing difficulties to isolate and study these phenomena at the molecular 
scale. In recent years, computational techniques such as the use of 
artificial neural networks or molecular dynamic simulations have 
contributed greatly to the understanding of protein function and folding 
at the molecular level (English & Waldron, 2015; Zhang, Yu, Xia, & 
Wang, 2019). These computational techniques allow overcoming limi-
tations of the laboratorial experiments procedures, increasing expo-
nentially the results and analysis, as well as reducing experimental time 
and costs. Molecular dynamic simulations (MDS) have demonstrated to 
be particularly useful on the study of the changes of proteins induced by 
EF (Beebe, 2015; Köhler, Friedrich, & Fidy, 1998; Xu, Phillips, & 
Schulten, 1996). When studying small peptides under EF, structural 
transitions were observed, such as secondary structural shifts in a 
β-amyloid peptide from helical to β-sheet conformation (Toschi, Lugli, 
Biscarini, & Zerbetto, 2009) or a V3-loop shifted to a helix-like confor-
mation (Ojeda-May & Garcia, 2010). These changes were triggered by a 
global rearrangement of the dipole moments at the amide planes under 
EF, which in turn may impair hydrogen bond stability causing 

Table 2 
Operational parameters of Electrical Field processing technologies, MEF and PEF.   

Electric field strength Wave/Pulse Time Frequencies 
used 

Typical maximum 
temperatures 

Main Effects 

Moderate Electric 
Fields (MEF) 

<1000 V.cm− 1 Square or sine No upper 
limit 

0.06–25 kHz Sublethal temperatures 
(<60 ◦C) for MEF 
No upper limit for OH  

– Thermal effects associated: 
Ohmic Heating (OH)  

– Non-thermal inactivation of 
some microorganisms  

– Extraction of thermolabile 
compounds  

– Controlling activity of some 
enzymes and bacteria  

– Change protein structure and 
conformation  

– Effects of functional 
properties of globular 
proteins 

Pulsed Electric 
Fields (PEF) 

− 20 to 100 kV.cm− 1 (for 
microbial inactivation) 
− 0.5 to 10 kV.cm− 1 (for 
tissue softening) 

Square or exponential 
decay (unipolar or bipolar) 

0.01–2400 
µs 

1–2000 Hz 10–60 ◦C  – Electroporation  
– Non-thermal inactivation of 

microbial cells  
– Extraction of thermolabile 

compounds  
– Change protein structure and 

conformation  
– Disintegration and softening 

cellular tissues  
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geometrical arrangement of the structure. Furthermore, it was found 
that the interactions between the dipole moment and an oscillatory EF 
determine the orientation of the structure and cause oscillatory motions 
along the EF alignment (Astrakas, Gousias, & Tzaphlidou, 2012). These 
events result in the destabilization of the structure, causing its disruption 
above a critical EF value; however, even below that value, the EF 
oscillation induces mobility restriction which can compromise protein 
functionality. 

MDS involving EF effects in complex and functional proteins, such as 
myoglobin, revealed a fast transition on their folding, driven by changes 
on the secondary structure when in presence of a strong EF (Amadei & 
Marracino, 2015; Marracino, Apollonio, Liberti, D’Inzeo, & Amadei, 
2013). Several other studies conducted on allergen proteins suggested 
that EF can change their conformation and activity, thus supposedly 
changing the immune response that they provoke. The structural mod-
ifications described involve shifting hydrogen bonds between the amino 
acids and structural changes due to changes of the alignment of polar 
groups towards the direction of the field (Singh et al., 2016; Vanga et al., 
2016; Vanga, Singh, & Raghavan, 2015). Despite their significant 
contribution to the understanding of effects at molecular scale, MDS 
present limitations and discrepancies when compared to the obtained 
results in practical studies about application of EF. These limitations are 
mostly the consequence of three main reasons: i) the quality of the 
models available; computational boundaries that limit timescale treat-
ment from nano to microseconds; and iii) due to the fact that the field 
intensity needed to observe tangible effects within timescales and/or 
free-energy barriers compatible with the simulation is of several orders 
of magnitude above that applicable in experimental studies. However, 
MDS results allow elucidating molecular mechanisms and actually help 
corroborating some experimental studies. When simulating lysozyme 
under EF, tangible effects on the proteins secondary structure were re-
ported, being consistent with hydrogen bond breakage and resulting 
from the alignment of the proteińs dipole moment with the EF (English 
& Mooney, 2007). These data agree with experimental results on the 
influence of PEF in lysozyme (Zhao & Yang, 2010; Zhao, Yang, Lu, Tang, 
& Zhang, 2007). Besides the alignment of the dipole moment with the 
direction of the EF, the protein unfolding was accompanied by the loss of 
α-helix content, cleavage of disulphide bonds and aggregation. When 
compared with thermal inactivation of the same protein, PEF caused 
differentiated structural modifications linked with a structural reorga-
nization, whereas the thermal action caused a more complete unfolding 
(Zhao & Yang, 2010). PEF related effects were documented for several 
proteins and often involve structural and functional changes. Some ex-
amples are related with the PEF action in soy protein isolate, resulting in 
significant changes in the secondary structure, conformation, surface 
hydrophobicity and free sulfhydryl content, which lead to denaturation 
and aggregation (Li, 2012; Li, Chen, & Mo, 2007; Lin, Liang, Li, Xing, & 
Yuan, 2016; Xiang, Ngadi, Simpson, Simpson, & Simpson, 2011). The 
effects of PEF on other proteins were confirmed by several studies 
reporting an array of changes such as structural modifications and 
changes in functional properties which result in an appearance of free 
sulfhydryl groups, aggregation and decrease of protein solubility (Han 
et al., 2018; Liu, Oey, Bremer, Carne, & Silcock, 2017; Wu, Zhao, Yang, 
& Chen, 2014). Interestingly the study of PEF treatments on whey pro-
tein isolate (WPI) not only revealed conformational disturbances of 
protein structure, but also that cumulative effects resulting from a 
conjugation of EF intensity and number of pulses applied are crucial to 
PEF action (Xiang, Ngadi, Ochoa-Martinez, & Simpson, 2011). 

The cumulative effect seems decisive on the effectiveness of EF in 
affecting protein structure and functionality. This was verified when 
determining the effects of the application of low intensity EF (at MEF 
range) on the conformation of bovine serum albumin and lysozyme 
(Bekard & Dunstan, 2014). The application of EF strengths from 0.78 to 
5 V.cm− 1, with electrical frequencies of 10 and 500 Hz (sine wave) and 
long exposure times (i.e. up to 3 h), caused significant effects on pro-
teins’ tertiary and secondary structures. It was found that the EF 

exposure results in frictional forces due to the electrophoretic motion 
associated with the periodically changing of EF. The resulting energy 
dissipation is sufficient to disturb hydrogen bonds that stabilize the 
native fold of the protein, thus resulting in protein unfolding. The low 
intensity EF effects seem to be particularly dependent of the frequencies 
used, as demonstrated by studying the effects of frequency associated 
with MEF on the activity of endogenous enzymes (Samaranayake & 
Sastry, 2016, 2018). Operating under a very low EF (<5 V.cm− 1) and 
frequencies between 0 (i.e., DC) and 1 MHz, it was established that not 
only the effects increased with the EF strength, as they were more 
effective at low electrical frequencies (<60 Hz). By simulating the mo-
lecular motion under an AC field, it was proposed that the frequency 
dependence arises from the amplitude of motion and resulting dis-
placements due to reversal of the AC field. The effects of MEF in synergy 
with thermal stress were studied in β-Lactoglobulin (β-Lg), and were 
found to significantly disturb the protein unfolding pathways. These 
effects had a linear dependence of the EF strength and despite the 
observed tangible effects on a large frequency range, (50 Hz to 1 MHz) 
they had greater influence at lower frequencies. MEF-induced distur-
bances resulted in the decrease of the proteińs melting temperature and 
considerable changes in secondary and tertiary structures, as well as in 
differences in the interaction with ligands (Rodrigues, Avelar, et al., 
2020). Other studies with WPI and β-Lg involving MEF demonstrated 
that the EF effects are pH-dependent (Rodrigues, Vicente, Petersen, & 
Pereira, 2019) and result in changes in free sulfhydryl contents, hy-
drophobic interactions, hydrogen bonds, aggregation patterns and 
gelation (Pereira et al., 2016; Rodrigues et al., 2015; Rodrigues, Fasolin, 
et al., 2020). 

There are now compelling evidences of the EF effects in proteins and 
protein-based foods. Despite the diversity of studies, the fundamental 
mechanisms involved in these modifications are yet to be fully under-
stood. This lack of knowledge arises from the fact that EF based tech-
nologies bring together a great versatility of application protocols. The 
way how EF is delivered to given matrix can vary greatly depending on 
parameters such as: intensity of the EF applied; time scale of application; 
occurrence of ohmic heating and inherent thermal effects; EF and pu-
tative occurrence of electrolysis; current density; electrical wave applied 
(pulsed, non-pulsed, bipolar-pulsed among others). In addition, all these 
parameters need also to be adjusted to the type of target product or 
molecule. The way how electricity interacts with molecules will always 
be dependent on media composition regarding ionic strength, pH or co- 
solutes which ultimately changes electrical conductivity of the systems 
and electric charges distribution of molecules. Many of the highlighted 
experimental studies report EF effects at macroscale level but now is 
crucial to gather more knowledge at a more fundamental level in an 
attempt to identify the mechanisms of interaction of these technologies 
with important molecules such as proteins, aiming proper control and 
tailor-made/customized solutions. Based on available state-of-art some 
of the described EF effects seem to be related with the change of amino 
acid and peptide interactions, mobility disturbances of specific groups 
and disruption/reorientation of secondary and tertiary structures. This 
capacity of changing protein structure is drawing the attention of re-
searchers that wish to harness their potential as a biotechnology tool to 
change and control protein functionality and protein-protein 
interactions. 

3.2. Protein interactions 

Protein interactions can be covalent – such as disulphide bonding - 
and non-covalent which include hydrophobic, van der Waals, hydrogen 
bonds and electrostatic or ionic interactions. These non-covalent in-
teractions are reversible and weak, and mostly dependent of intrinsic 
and extrinsic factors such as ionic strength, protein concentration, pH 
and temperature. Non-covalent interactions when amplified become 
strong and rule many of the events related with the extent of protein 
aggregation (Ramos et al., 2014). 
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Fundamental knowledge about how to control food protein in-
teractions is of great interest for development of protein networks with 
high functionality for food but also biomedical applications. Food pro-
teins either from animal or vegetable source are now considered as 
promising “building blocks” for development of smart biomaterials with 
ability to interact with bioactive molecules (Fasolin et al., 2019). A 
controlled denaturation and aggregation of proteins can drastically 
change biological outcomes (i.e. immunological properties) as well 
functional properties such as the ones related with emulsifying, gelation 
and foaming abilities. It is clear that the biological function of a protein 
depends largely on its three-dimensional structure and conformation, 
and several encouraging perspectives of research can be highlighted 
regarding effects of OH and its EF in protein functionalization and 
interaction potential. During the last decade, it has been proven that 
electrical stimuli can interact with dynamic behavior of globular pro-
teins, affecting their unfolding, denaturation and aggregation pathways, 
as well as change enzyme activity by affecting their interactions with 
substrates. As reviewed in previous Section 3.1 evidences are pointing 
out that EF can promote alterations in a protein’s conformational 
structure thus changing the natural balance of these interactions, which 
in turn can greatly influence both the functionality and ability to form 
protein gels and hydrogels from molecular to macroscale (Abaee, 
Mohammadian, & Jafari, 2017). But information about the way how 
these events can be proper controlled is not yet systematized which 
limits further research at more applied level. For example the influence 
that these structural outcomes may have on interaction between protein 
molecules with other macromolecules such as polysaccharides and 
bioactive compounds (e.g. vitamins, minerals and nutraceuticals) is still 
undisclosed. 

An example of current research concerns the development of protein 
fibrillar systems. Protein from different sources (such as from whey and 
soy) can be in vitro designed into 3D supporting architectures, origi-
nating biomaterials with discrete morphologies and multi- 
functionalities – i.e. carrier of bioactive compounds in food formula-
tions, drug delivery systems and network systems for cell communica-
tion. One example of these fibrillar systems are the amyloid fibrils, 
currently defined as a “self-assembled and highly ordered peptide/pro-
tein aggregates associated with both disease and function” (Das, Jacob, 
Patel, Singh, & Maji, 2018). These systems can be used for the estab-
lishment of protein models that can help the design of therapeutic 
compounds to treat presently incurable protein diseases such as Alz-
heimer’s, Parkinson’s and transmissible spongiform encephalopathies, 
all related with changes in the protein conformation (Wei et al., 2017). 
These fibrillar systems establish a thin intertwined frontier between food 
and health encompassing great potential of applications. Mezzenga and 
co-workers highlight that the final function of these fibrillar systems 
depends on decisive events: i) the mechanism of protein unfolding and 
aggregation; ii) the hierarchical structure and size of the produced 
protein and peptide fibrils (from the atomistic to mesoscopic length 
scales); (iii) the interaction between proteins and surrounding biological 
or artificial environments (Cao & Mezzenga, 2019). Given the body of 
knowledge already established, it is then obvious that EF may unveil 
new insights on the development of these systems aiming at tailoring 
improved functions. One of the major bottlenecks for development of 
these systems is the need of a controlled aggregation during fibrillation 
and better understanding about how to favor an organized formation 
over an amorphous state (Lambrecht et al., 2019). Surface hydropho-
bicity of globular proteins, such as β-Lg, is significantly increased when 
EF of moderate intensity is applied under acidic protein solutions 
(Rodrigues, Vicente, et al., 2019), which is the preferential environment 
for fibril formation. In addition, internal heating together with EF of 
moderate intensity can enhance protein hydrolysis, which is often 
associated with yield of fibril formation (Loveday, Anema, & Singh, 
2017). Pereira and co-workers also concluded that thermal aggregation 
supported by EF application ranging from 6 to 12 V.cm− 1 resulted in the 
production of worm-like structures resembling amyloid fibrils (Pereira 

et al., 2016). In reason of these new evidences, a fundamental under-
standing of EF effects on interaction between fibril-fibril and fibril- 
bioactive compounds should be pushed forward in the near future. 

Another field of promising research is linked with protein networks 
and their ability to entrap or establishing molecular interaction with 
bioactive compounds or other macromolecules. At physiological pH it 
has been shown that EF treatment, depending on the frequency and 
temperature applied, can enhance surface hydrophobicity thus 
increasing binding affinity or molecular interaction with small hydro-
phobic compounds. EF show potential to maintain retinol binding 
within forms of β-lg exposed to temperatures equal or higher than 70 ◦C 
(Rodrigues, Avelar, et al., 2020). OH have shown also interesting results 
regarding cold or salt-induced gelation. This gelation strategy consists in 
unfolding of the protein structure (normally achieved by temperature) 
followed by shifting the pH or addition of salts which favor the screening 
of the electrostatic repulsion between charged molecules. Depending on 
the processing condition, from conventional control (without the pres-
ence of an EF) up to 12 Vcm− 1, it was possible to incorporate 33 
mmol∙L− 1 of Fe2+ in the produced protein network, which means that 
an iron intake of 9 mg/day would be obtained with a daily dose of 5 mL 
(teaspoon) of the protein gel (Pereira et al., 2017) In addition, this 
approach allowed modulating viscosity of the produced system bringing 
opportunities to develop innovative food thickeners. 

Interaction between proteins and polysaccharides through the 
Maillard reaction (MR), also known by non-enzymatic browning or 
glycation, is considered a promising way to improve protein techno-
logical functional, biological and nutritional properties of food in-
gredients. MR occurs between amino groups from proteins and the 
reactive carbonyl group of reducing sugars and is mainly affected by 
thermal processing (time and temperature) and chemical environment 
(pH and water activity for example). MR has a strong impact on food 
properties once their reaction products can dictate organoleptic prop-
erties but also, antioxidative, antimicrobial, antihypertensive, muta-
genic or carcinogenic properties (Jaeger, Janositz, & Knorr, 2010; 
Perusko, Al-Hanish, Cirkovic Velickovic, & Stanic-Vucinic, 2015; 
Rufián-Henares & Morales, 2007). MR is rather complex and may alter 
(positively or negatively) immunological and allergenic outcomes of 
several proteins, and the resulting advanced glycation end products may 
trigger differentiated behavior of gut microbiome, thus presenting 
another example of a thin borderline between a health benefit or disease 
(Toda, Hellwig, Henle, & Vieths, 2019). To our best knowledge, the 
impact of EF on MR is still poorly understood. The behavior of food 
proteins processed under the influence of direct heating and presence of 
electrical variables should not be assumed identical to that observed for 
conventional thermal processing (Pereira et al., 2018). OH brings ad-
vantages of reducing heating kinetics and over processing, once it is not 
conditioned to heat transfer mechanisms relying on conduction and/or 
convection. Surprisingly, scarce literature can be found about effects of 
OH on MR and development of advanced glycated end products, and the 
existent one is inconclusive and reports the need of more systematic and 
fundamental assessment (Roux, Courel, Ait-Ameur, Birlouez-Aragon, & 
Pain, 2009). In contrast, more studies have been devoted to the bene-
ficial effects of PEF technology on the appearance of 5-hydroxymethyl-
furfural (HMF), an important intermediate product formed during MR 
(Jaeger et al., 2010). This outcome is not surprising, given the reduced 
thermal load associated with PEF processing, and the high temperature 
dependence for the formation of HMF and thus the occurrence of MR. 

4. Processing of protein-rich food 

4.1. Quality and safety aspects 

OH and PEF have been studied over the past few years due to their 
potential to replace conventional processing techniques. Regarding the 
maintenance of food quality attributes, these non-conventional tech-
nologies are considered superior once they proved to avoid or 
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significantly reduce the negative changes in sensorial and nutritional 
properties of foods associated with processing (Kumar, Agarwal, & 
Raghav, 2016; Pereira & Vicente, 2010). 

OH has been largely applied to dairy and egg products pasteurization 
in which protein denaturation is one of the major problems because of 
the occurrence of fouling and product deterioration (Bozkurt & Icier, 
2012; Cappato et al., 2017). OH technology dissipates energy directly 
within the food material, generating volumetric heating at exceptionally 
rapid heating rates and it is not dependent on diffusion such as con-
ventional heats exchangers. This results in operational advantages such 
as reduction of coagulation or excessive denaturation of the constituent 
proteins (either by faster heating rates and shorter processing time, or by 
the absence of hot surfaces) resulting in improved nutritional quality 
and shelf life of food products (Pereira, Martins, & Vicente, 2008; Per-
eira & Vicente, 2010) On the processing of egg products OH demon-
strated to preserve (or even improve) their technological properties, 
namely colour, rheological behavior, foaming and gelling properties 
(Alamprese, Cigarini, & Brutti, 2019). When comparing the effect of OH 
and conventional processing on milk pasteurization under the same 
specific processing conditions, OH resulted in lower microbial counts, 
lower D-value and no significant differences in protein denaturation 
(Sun et al., 2008). For other sensitive foods such as baby food and infant 
formulae, OH can also bring processing advantages. A study conducted 
on vegetable baby purees has shown that OH allowed to preserve protein 
quality, when compared to the conventional method (Mesías, Wagner, 
George, & Morales, 2016). During ultra-high temperature (UHT) treat-
ment of liquid infant formula by OH and steam injection, no changes in 
protein quality were found, however promising results were observed in 
other chemical markers of OH treated samples - i.e. vitamin C preser-
vation and colour retention (Roux et al., 2016). 

OH has been also widely applied in the processing of other protein- 
rich foods as meat and fish derivatives and soy products. The reported 
cases on the application of this technology unveiled the potential effect 
of OH in inducing macromolecular changes (e.g. microstructure, water 
retention and texture) on these products. For instance, the use of OH 
technology to cook meat balls resulted in brighter colours, lower mois-
ture contents, significantly firmer and even more uniform in micro-
structure when compared with the conventionally cooked (Engchuan, 
Jittanit, & Garnjanagoonchorn, 2014). Tian and co-workers compared 
the impact of OH processing and conventional water bath cooking on 
beef muscle. Due to its fast and homogeneous heating, OH provides a 
limited time for the denaturation and aggregation of muscle fibres and 
connective tissues, thus resulting in a beef product with a significantly 
lower shear force value, which was reflected in higher tenderness (Tian 
et al., 2016). Furthermore, in highly processed fish products as surimi, 
OH leads to a maximization of the gel functionality due to its associated 
fast heating rates (Yongsawatdigul, Park, Kolbe, Dagga, & Morrissey, 
1995). When compared to conventional heating methods, OH proved to 
be a more adequate processing technique for preserving or even 
improving the microstructural and mechanical attributes of surimi gels 
(Tadpitchayangkoon, Park, & Yongsawatdigul, 2012). Research on the 
OH processing of soymilk to induce its coagulation for the production of 
tofu, has revealed a positive impact on the productś textural properties 
(Shimoyamada et al., 2015; Wang et al., 2007). In a more fundamental 
study, Shimoyamada and co-workers explored the effects of OH on the 
structure and functional properties of protein in soybean milk. They 
verified that the structure and functional properties of protein in soy-
bean milk significantly changed when compared to traditional heating 
treatment (Shimoyamada et al., 2015). 

PEF processing presents a good alternative to conventional 
pasteurization, since protein-based foods appear to be less affected by 
this novel processing treatment (once it avoids thermal load), while 
achieving similar microbial inactivation results (Marco-Molés et al., 
2011; Monfort, Saldaña, Condón, Raso, & Álvarez, 2012). PEF have been 
successfully applied to pasteurize protein-based foods such as milk and 
dairy, soymilk and liquid egg. However, the reported studies on this non- 

conventional technology have been mainly focused in food preservation 
(i.e. microbial inactivation and associated mechanisms), therefore 
regarding the impact of PEF in the quality parameters of such treated 
products further research is still needed (Syed, Ishaq, Rahman, Aslam, & 
Shukat, 2017; Zhao, Yang, & Zhang, 2012). The application of PEF on 
milk resulted in the modification of its functional properties (Sharma, 
Oey, & Everett, 2014, 2016). For instance, PEF-treated milk presented a 
better rennetability when compared with milk treated by conventional 
pasteurization. Furthermore, cheddar cheese derived from milk treated 
by PEF also displayed improved texture and sensory attributes (Sepúl-
veda-Ahumada, Ortega-Rivas, & Barbosa-Cánovas, 2000; Yu, Ngadi, & 
Raghavan, 2009). Different physical and structural attributes of egg gels, 
such as microstructure, lipoprotein matrix, water-soluble protein con-
tent and mechanical properties seemed to be less affected by PEF 
treatment when compared to conventional pasteurization (Marco-Molés 
et al., 2011). In a study conducted by Li and co-workers regarding the 
quality parameters of soy milk, a successful microbial inactivation was 
achieved without inducing changes in the productś quality character-
istics (Y.-Q. Li, Tian, Mo, Zhang, & Zhao, 2013). Other promising ap-
plications of PEF technology is the preservation, aging and tenderization 
of meat and meat products (Arroyo et al., 2015; Bekhit, van de Ven, 
Suwandy, Fahri, & Hopkins, 2014; Faridnia et al., 2015; Gómez et al., 
2019). 

Independently of the type of protein and media composition many of 
reported outcomes regarding EF thermal processing are intrinsically 
linked with the nature of OH and its ability to generate internal heat thus 
reducing thermal load and overprocessing, and consequently excessive 
thermal denaturation of proteins. Once these proteins work as important 
structural elements, imposed changes at this level have a strong impact 
in properties such as viscosity, gelation and texture. The direct way of 
heating and its fast heating kinetics are probably the main reason behind 
the effects of OH regarding protein-rich foods, but the presence of 
electrical variables (i.e. electric field, frequency and current density) 
and its effects at a molecular level should be systematically assessed in a 
case-by-case analysis. As mentioned earlier, the presence of EF alone or 
in combination with heat can promote conformational disorders of the 
protein, depending on its intensity and manner of application. PEF is a 
good example supporting this idea, since its mode of action is mostly 
electric (often considered non-thermal technology), and despite this, 
significant effects have been reported in the processing of protein-based 
food products as aformentioned. Due to their unique operational pa-
rameters and promising results in preserving and even improving the 
quality attributes of protein-based products while maintaining their 
safety to consumers, electrical-based technologies such as OH and PEF 
have demonstrated their potential to be used in development of estab-
lished and innovative food products. 

4.2. Functional systems 

The potential of PEF and OH (including MEF) is now well established 
to replace conventional thermal processing by improving shelf life 
(through microbial inactivation) and food quality. However, further 
research has shown the potential effects of EF application in changing 
the inherent structure of such food ingredients, giving rise to the for-
mation of novel food ingredients such as gels and films in which their 
functionality can be tailored for different food applications. 

Whey proteins have been comprehensively studied over the last few 
years, due to their recognized biological value and interesting techno-
logical properties (Pereira et al., 2018). The application of OH/MEF on 
these bio-macromolecules has shown promising results in changing the 
denaturation and aggregation pathways and possibly allow the design of 
innovative protein systems such as gels, films and nano/micro structures 
with tailored functionality (Pereira, Teixeira, & Vicente, 2011; Rodri-
gues et al., 2015). It was possible to modify the denaturation levels of 
WPI solutions in the presence of an electric field, as well as to decrease 
the percentage of free sulfhydryl groups, reduce the protein aggregates 
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size and change their morphology to a fibrillar shape to form gels that 
can be used in numerous food applications (Pereira et al., 2016). The use 
of OH can also be extended to the pre-treatment of globular whey pro-
teins aiming at the development of hydrogels or emulsions that could be 
used not only as food thickeners, but also as delivery systems of func-
tional biomolecules or bioactives – e.g. heat-sensitive ingredients (Per-
eira et al., 2018). The application of OH and MEF on the production of 
WPI cold-set gels mediated by iron addition contributed to the formation 
of hydrogels with distinctive properties at micro and macro levels such 
as a more uniform and compact fine-stranded microstructure (Pereira 
et al., 2017). The formation of cold gel-like emulsions by using OH- 
treated lactoferrin revealed to produce a more flexible structure when 
compared to conventional heating (de Figueiredo Furtado, Pereira, 
Vicente, & Cunha, 2018). The impact of MEF effects on WPI from mo-
lecular to macroscopic levels was recently established. The control of 
MEF variables – i.e. voltage and frequency – during OH treatment of WPI 
solutions not only affects the protein denaturation and aggregation 
pathways but also allows controlling the gelation process, inducing 
molecular interactions, influencing the protein network formation and 
thus establishing the final gel properties. Moreover, it was also 
demonstrated that the conjugation of high EF strength and low fre-
quency resulted in the production of weaker gels, with more elastic 
behaviour and possessing higher water retention and swelling capacity 
(Rodrigues, Fasolin, et al., 2020). OH treatment also impacts the for-
mation of WPI-based films. Pereira and co-workers reported the 
attaining of thinner films, with lower permeability to water vapour but 
similar mechanical properties to the conventional ones. It was suggested 
that conformational changes on proteins and rearrangements of their 
secondary structures occurred during the application of OH could lead to 
lower protein aggregation and thus the resulting in films with the pre-
viously mentioned properties (Pereira, Souza, Cerqueira, Teixeira, & 
Vicente, 2010). 

Besides the reported studies on whey proteins, OH has also been 
applied to other dairy proteins such as casein. The application of OH on 
sodium caseinate solutions promoted structural changes (i.e. at sec-
ondary and tertiary structures’ level) as well the formation of gels with 
lower values of water holding capacity (Moreira, Pereira, Vicente, & da 
Cunha, 2019). The influence of OH pre-treatment of milk prior to pro-
moting the formation of acid milk gels was assessed and compared with 
conventional heating. In OH treated samples, the gel firmness was 
improved due to more compact and denser protein matrices with smaller 
pore size (Caruggi, Lucisano, Feyissa, Rahimi Yazdi, & Mohammadifar, 
2019). The use of OH to promote the formation of protein-lipid films by 
heating soybean milk was also studied. Lei and co-workers have 
demonstrated the successful production of films with better yield, film 
formation rate, protein incorporation efficiency and rehydration ca-
pacity (Lei, Zhi, Xiujin, Takasuke, & Zaigui, 2007). 

PEF processing has also shown its potential in modifying the inherent 
structure of proteins. Despite the growing number of reports on induced 
changes in proteins, particularly in enzymes (Zhao & Yang, 2009, 2010; 
Zhao et al., 2007), the way how this processing technology can be 
applied to functionalize proteins towards innovative ingredients re-
mains unexplored. In fact, little research has been conducted to explore 
the modification of molecular structure, or the induced changes in 
denaturation/aggregation pathways and, thus, in the functional prop-
erties of PEF- modified protein-based systems (Giteru, Oey, & Ali, 2018). 

Perez and Pilosof conducted a study to assess the improvement in egg 
white proteins and β-Lg gelation after the application of high intensity 
PEF with long length pulses. The existence of a heating phase seemed to 
have a synergetic effect with PEF on improving the protein gelation. 
Moreover, the gelation behavior of both proteins demonstrated to be 
influenced by PEF treatment. The gelation rate of β-Lg was enhanced, 
while oppositely egg white proteins suffered a partial decrease in the 
rate of gelation (Perez & Pilosof, 2004). Over the last few years, other 
studies were conducted on the aggregation behavior of egg white pro-
teins caused by PEF treatment, however the exact mechanisms remain 

unclear and thus require further studies (Wu et al., 2014; Wu, Zhao, 
Yang, Yan, & Sun, 2016). 

PEF treatment also affects the structure and physicochemical attri-
butes of soy protein isolate (SPI) (Li, 2012; Li et al., 2007). Changes in 
solubility of SPI were observed after PEF treatment and it was evident that 
an increase in PEF intensity and processing time was responsible for a 
decline in solubility, due to protein denaturation and aggregation. Also, 
some studies evidence the structural modification in whey proteins and 
their fractions by PEF action. Howeverthe information concerning the 
mechanisms of action on physicochemical properties is limited and thus 
the impact on functionalization of such proteins is far from being under-
stood (Sui, Roginski, Williams, Versteeg, & Wan, 2011; Xiang et al., 2011). 

As previously mentioned, there are now strong evidence in the 
literature regarding the effects of EF on proteins and protein-based 
foods. However due to the lack of detailed information about their 
mechanics of action, future research focused on more fundamental 
studies at molecular scale is needed which may allow establishing EF’s 
potential to fine-tune proteins’ functionality. 

Global nutritional trends are shifting towards the consumption of 
novel and sustainable food proteins, already recognized as possessing 
distinctive nutritional, functional and health attributes. In this context, 
it would be interesting to gather the information on the electric field- 
based processing of conventional proteins - i.e. dairy, egg and soy pro-
teins - and transfer that knowledge to its application on emergent food 
proteins, such as vegetable, insect and microbial proteins, aiming at the 
development of innovative protein-based structures (see Fig. 1). 

4.3. Gastrointestinal digestion 

Information regarding the digestibility and the behavior of food 
products during gastro intestinal (GI) digestion is fundamental to build a 
base of knowledge on their interactions and bioavailability within the GI 
tract. Food proteins are mostly susceptible to hydrolysis from GI en-
zymes, leading to cleavages in their native structure which allows the 
release of peptides and amino acids (Hernández-ledesma, Contreras, & 
Recio, 2011; Vermeirssen, Camp, & Verstraete, 2004). In the gastric 
phase, due to the stomach acidic pH, proteins start to lose their 
conformation becoming susceptible to hydrolysis, which leads to a 
release of a small amount of amino acids; further during the intestinal 
phase a more extended hydrolysis takes place (Hinsberger & Sandhu, 
2004). However, in some cases the GI tract cannot hydrolyze certain 
resistant proteins. For example, β-Lg and β-conglycinin from whey and 
soy, respectively, are known to be resistant to pepsin during the gastric 
phase, which may contribute to some allergenicity of these proteins in 
humans (De Angelis, Pilolli, Bavaro, & Monaci, 2017; Macierzanka et al., 
2012; Moreno, 2007; Nguyen, Bhandari, Cichero, & Prakash, 2015). 
These facts highlight the importance of the assessment of GI digestion of 
proteins, once it will allow determining their bioavailability-related 
functional aspects such as the release of bioactive peptides and their 
effects on human health (Orsini Delgado, Tironi, & Añón, 2011). 

Regarding the behavior of proteins during the GI digestion, is also 
relevant to understand how novel processing treatments, such as EF 
processing, can change protein digestibility pathways (Bhat, Morton, 
Mason, & Bekhit, 2019). The changes in protein digestibility are asso-
ciated to modifications on their molecular structure; for example, pro-
tein unfolding is described to increase proteins’ susceptibility to the 
action of proteases during the GI digestion. Thermal processing is 
capable of changing β-Lg’s native structure and increase its suscepti-
bility to GI digestion during the gastric phase (Barbé et al., 2013; Pinto 
et al., 2014). It is also known that protein aggregation during thermal 
processing can have impact on satiety and digestibility (Promeyrat et al., 
2010; Semedo Tavares, Dong, Yang, Zeng, & Zhao, 2018). Improve-
ments in the digestibility of proteins when treated with PEF have been 
reported, such as the treatment induced changes on proteins molecular 
structure, improving digestibly to levels similar to that of conventional 
cooking (Bhat et al., 2019; Liang, Cheng, & Wang, 2018; Semedo 
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Tavares et al., 2018). PEF processing also demonstrated to increase 
susceptibility to enzymatic hydrolysis of egg white protein (Liu, Oey, 
Bremer, Silcock, & Carne, 2018). 

The action of high intensity EF also demonstrated to change the 
secondary structure of peanut and wheat gluten proteins, affecting their 
digestibility profiles (Vanga et al., 2016). This shows some potential in 
using EF technologies on food proteins to change their molecular 
structure, aiming at improving digestibility by exposing specific proteins 
areas where the GI enzymes can act more efficiently. In fact, any of the 
structural modifications discussed above, induced by PEF or MEF/OH 
processing, have the potential to affect the digestibility of the products 
and affect their nutritional profile. For example, as previously 
mentioned, β-Lg resists GI digestion due to the high preservation of its 
hydrophobic regions, as they are the main target to gastric pepsins (Sun, 
Zhou, Zhao, Yang, & Cui, 2011). The EF action on this protein is 
particularly well documented, and recently it was shown that MEF 
treatments significantly disturb its structure and lead to higher exposure 
of the hydrophobic pocket (Rodrigues, Avelar, et al., 2020; Rodrigues, 
Vicente, et al., 2019). This may lead to an increased accessibility of these 
regions to pepsins and hence higher digestibility, but this need to be 
further assessed. All the aforementioned EF processing technologies may 
bring the opportunity to improve the digestibility of some proteins. 
However, few studies address this topic and more research is needed to 
fully understand its implications. In addition, the potential negative 
impacts EF processing on protein function should not be overlooked. The 
occurrence of irreversible protein aggregates less prone to GI digestion, 
together with the development of structures or networks with any 
increased levels of cytotoxicity and immunoreactivity should thor-
oughly investigated regarding the production of tailored protein-based 
functional systems for example. 

5. Health implications of EF processing 

5.1. Allergenicity 

Food allergy is a major problem for the world population, with in-
cidences of around 4% in adults and 6% in children (Boye, 2012; Mor-
eno, 2007; Verhoeckx et al., 2015). Food allergy is commonly described 
as an adverse immune response to certain foods (Sicherer & Sampson, 
2010), and common food products such as milk, soybean, eggs, tree nuts 
and peanuts, wheat and mustard are considered to trigger immunolog-
ical responses on humans (Verhoeckx et al., 2015). 

Food processing methods can cause biochemical alterations to food 
components and influence their allergenic properties (Maleki, 2004; 
Verhoeckx et al., 2015). Particularly proteins may suffer unfolding and 

aggregation, thus changing their immunoreactivity profile (Bu, Luo, 
Zheng, & Zheng, 2009; Mills & Mackie, 2008). The structure/allerge-
nicity relationship is complex and processing was demonstrated to 
reduce the allergenicity effects in some cases, but there are exceptions 
that can display the opposite effect (Fiocchi et al., 1995; Paschke, 2009). 
Certain allergens are thermostable (such as Ara h 1 from peanuts) and 
there are some food products which become more allergenic after 
cooking - e.g. fish and eggs (Maleki, 2004; Paschke, 2009). In the case of 
globular proteins, such as β-Lg and α-lactalbumin, the heating process 
will unfold them and change the disposition of IgE epitopes, which are 
responsible by the binding to IgE antibodies (Mills & Mackie, 2008). 

EF processing, as previously discussed, can not only change protein 
structure and aggregation patterns, but also induce differentiated 
conformation (compared with e.g. thermal action). This implies that 
their effect on the allergenic profile of proteins may be distinctive. β-Lg 
treated by PEF suffered a partial unfolding of the structure contributing 
to increase the binding to immunoglobulins; however when the PEF 
treatment was conjugated with glycation of the protein, binding suffered 
a drastic reduction (Yang, Tu, Wang, Zhang, Kaltashov, et al., 2018). 
Low intensity PEF treatments of ovalbumin also resulted in the partial 
unfolding of the protein and the increased binding to antibodies. But 
when high intensity treatments were applied, the protein became 
aggregated, causing the reduction of the binding affinity against specific 
antibodies (Yang, Tu, Wang, Zhang, Gao, et al., 2018). 

Pereira and co-workers have recently studied the effects of different 
pasteurization time/temperature binomials on β-Lǵs immunoreactivity, 
by using conventional heating and OH (Pereira et al., 2020). In their 
work, the protein’s immunoreactivity was correlated with structural 
data and aggregation patterns. It was suggested that the thermal and 
electrical variables of OH changed the balance between monomeric and 
aggregated forms of the protein, affecting their ability to bind specific 
antibodies. They also claim that OH contributed to expose hydrophobic 
regions of β-Lg (as mentioned before), which are usually protected inside 
the protein structure, and play an important role on the immune cell 
activation (Moyano et al., 2012; Pereira et al., 2020). 

Some studies have been done regarding different processing methods 
on the different food allergens and they allow establishing a solid base of 
knowledge. It is now evident that processing methods can have different 
effects on the three-dimensional structure of food proteins (see Fig. 2) 
and consequently their interaction with the human organism, which 
makes this type of studies of major importance. However, allergenicity 
issues are rather complex and individual-dependent, which justifies 
multidisciplinary approaches that should integrate outcomes from GI 
digestion, different methods of analysis (i.e. in vitro and in vivo) and 
specialized fields of science. 

Fig. 1. Future perspectives on the application of EF towards the development of innovative protein-based structures.  
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5.2. Bioactivity 

Food proteins and bioactive peptides are described to have a positive 
impact on human health and body functions (Hernández-ledesma et al., 
2011; Korhonen & Pihlanto, 2006; Orsini Delgado et al., 2011). Among 
the described properties are antidiabetic, cholesterol-lowering, antihy-
pertensive, anti-cancer, antimicrobial, anti-inflammatory, immuno-
modulatory, ability to bind vitamins and minerals among others (Daliri, 
Oh, & Lee, 2017; Udenigwe & Aluko, 2012). Among the best described 
systems are the whey proteins and particularly lactoferrin (Giansanti, 
Panella, Leboffe, & Antonini, 2016; McIntosh et al., 1998). Also, some 
proteins can originate their bioactivity during processing, e.g. through 
the release of bioactive peptides contained within their polypeptide 
backbone (Hernández-ledesma et al., 2011; Udenigwe & Aluko, 2012). 
The production of these bioactive peptides can be achieved with enzy-
matic hydrolysis, fermentation, thermal processing, high hydrostatic 
pressure (HHP) and during food digestion (H. Korhonen & Pihlanto, 
2003). Several protein sources, such as milk and other dairy products, 
eggs, soy and some fish species, have been reported as a source of 
bioactive proteins and peptides (Korhonen & Pihlanto, 2006; Möller, 
Scholz-Ahrens, Roos, & Schrezenmeir, 2008). The structure/function 
relationship and the ability of EF technologies to preserve quality in 
foods due to a less aggressive processing, or to intentionally change 
protein structure and conformation by controlling electric parameters, 
has already been discussed. This of course is equally applicable to the 
functional profile of proteins, either by preserving intrinsic character-
istics or by promoting structural changes that can alter functionality, 
cause partial hydrolysis of the protein structure, or modulate digestion 
profiles (e.g. affecting the release of bioactive peptides). 

PEF processing can have some effects on the bioactive compounds of 
several food systems (Soliva-Fortuny, Balasa, Knorr, & Martín-Belloso, 
2009). This technique has been applied to improve antioxidant prop-
erties of peptides obtained from egg white protein hydrolysis (Lin et al., 
2013). The antioxidant properties of peptide fractions suffered an in-
crease of the reducing power from 0.646 to 0.764 after being treated 
with PEF (10 kV.cm-1; 3000 Hz). The ability of PEF to improve peptides’ 

antioxidant activity was also observed in pine nut peptides, by signifi-
cantly improving the DPPH radical scavenging (Lin et al., 2017). These 
results are explained by the ability of PEF processing to induce polari-
zation of peptide molecules and to destroy some bonds and other in-
teractions, changing the peptide basic structure. Other studies with 
different proteins sources (e.g. corn peptides) have found similar results 
regarding the effects of PEF on peptides’ antioxidant properties (Wang 
et al., 2015). Besides improvement of the antioxidant properties, PEF 
have also been described to improve the anti-inflammatory properties of 
ovomucin-depleted egg white derived peptides (Liu, Oey, Bremer, 
Carne, & Silcock, 2019). All these results show preliminary evidences of 
the advantages of using PEF to improve some functionalities and quality 
of food products. EF processing methods clearly have the potential to 
preserve certain products quality, and contribute to the improvement of 
their nutritional and functional properties. The potentialities of using 
efficient heating kinetics and high-temperature protocols combined with 
the electrical effects of high intensity electric fields can enhance protein 
hydrolysis, thus contributing to the production of bioactive peptides. 

5.3. Future perspectives on the fabrication of biomaterials 

Proteins are the main “building blocks” used for the formation of 
biomaterials in aqueous environments, as in the case of hydrogels (Choi, 
Chaudhry, Zo, & Han, 2018). Hydrogels can retain large amounts of 
biological fluids within their 3D network, being currently considered as 
one of the most attractive materials for the development of carriers 
aiming at controlled release of bioactive compounds or drugs, phar-
maceuticals, and production of structured systems for cell communica-
tion. Food proteins from underrated sources offer a great potential for 
the development of these materials, given the easiness of their fabrica-
tion process, low cost of raw materials, proven bioactive character, 
structural flexibility and biocompatibility. Major bottlenecks associated 
to the use of these proteins are mainly linked with the need of a better 
understanding about how to control the process of protein aggregation 
towards envisioning biological and mechanical performances (Choi 
et al., 2018; Lambrecht et al., 2019). EF may find here an interesting 
niche of application that needs to be pushed forward. As previously 
discussed, EF can help to modulated the aggregation process and in-
fluence aggregates size, morphology and interactions, requirements 
needed to design micro or nano drug carriers (Jao, Xue, Medina, & Hu, 
2017). Proteins also have been gaining interest in regenerative medicine 
and tissue engineering, where they are used for the production of bio-
materials such as scaffolds to support cellular growth (Gomes, Leonor, 
Mano, Reis, & Kaplan, 2012; O’Brien, 2011; Ribeiro et al., 2016). The 
proved ability of EF to control protein network formation, from the 
molecular interactions established to the final network functionality, 
may present an interesting alternative to modulate and improve the 
functionality of such networks. On the basis of the aforementioned 
recent findings, the accurate combination of treatment variables, which 
include thermal and electrical effects (i.e. electric field, frequency and 
waveform), can offer an opportunity to tailor protein superstructures 
with various applications in pharmaceutical and biomedicine fields. 

6. Conclusions 

EF processing is at the frontline of food processing technologies for 
future use, covering thermal and non-thermal processing, mostly due to 
their ability to ensure quality and safety to the processed products, while 
also yielding excellent results in terms of energy efficiency and sus-
tainability regarding the process itself (e.g. use of electrical energy, 
direct heating process, reduction of the use of water, among others). The 
possibility of reducing the thermal load is by itself an important benefit 
for the preservation of the biological value of food proteins. But the ways 
how thermal and electrical effects physically and chemically affect 
protein structure and conformation, changing their potential of inter-
action with other macro and micronutrients, need to be fully addressed. 

Fig. 2. Schematic representation of the proposed influence of electric fields on 
protein digestibility and into the lgE-mediated allergenic responses. 
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These interactions may bring different outcomes regarding the produc-
tion of protein aggregates with differentiated profile regarding gastro-
intestinal digestion and immunological responses, while also paving the 
way to novel applications in other areas of science e.g. those related with 
health (i.e. biomedicine, regenerative medicine or tissue engineering). 
The advent of a dietary shift towards alternative proteins from vegetable 
and microorganism sources bring new challenges about the effects that 
EF at an industrial level may have on the biological value, safety issues 
(i.e. allergenicity and citotoxicity) and important technological prop-
erties such as solubility, gelation, emulsifying and flavor, that need to be 
assessed. To a great extent, all fundamental knowledge about EF effects 
on proteins has been evaluated using β-Lg as model; this calls for the 
need to understand how other emergent food proteins would behave 
under the influence of EF processing protocols. It can be anticipated that 
commercial technologies such as OH and PEF will continue to consoli-
date their industrial position towards minimally processed and shelf-life 
stable food, but the gathering of fundamental knowledge for develop-
ment of novel biotechnological applications regarding functionaliza-
tion/transformation of biomolecules is on its way to expansion, too. 
Towards this novel positioning, more research efforts should be dedi-
cated to the development of modelling and on-line monitoring tools. 
Molecular dynamic simulations and artificial neural networks can offer 
interesting predictions about EF mechanisms of action on proteins. In 
situ approaches such as the use of spectroscopic methodologies bring an 
opportunity to understand complex structural dynamics and molecular 
transitions of proteins in a non-invasive way during processing. These 
tools can contribute to take intelligent process decision and a compre-
hensive elucidation of molecular events that often are nonlinear and 
highly dependent of the surrounding chemical environment and type of 
protein. Majority of the research studies are still focused on evaluating 
certain phenomena, rather than a fundamental understanding of how to 
control them. This results in a wide range of protocols and diversity of 
approaches that can mask a more general understanding of the electrical 
effects on macromolecules. From the applied point of view it is also 
important to note that many potential benefits and singular events 
occurring under EF influence were prepared/induced to be expo-
nentiated under laboratory conditions, which normally involve 
complexity reduction, control of external factors and small-scale ex-
periments. Is now important to understand the processing impact of 
these electric based technologies on real food processing scenarios that 
bring complex media composition and specific objectives regarding 
particular unit food operations. A greater involvement of small scale 
industries in conjunction with the development of research projects that 
can bring high TRL (level of technological readiness) will be crucial in 
the future to support the most important results that fundamental 
research has been providing along these years. 
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… Vicente, A. A. (2017). Development of iron-rich whey protein hydrogels following 
application of ohmic heating – Effects of moderate electric fields. Food Research 
International, 99, 435–443. https://doi.org/10.1016/j.foodres.2017.05.023 
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