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ABSTRACT 

To improve the performance of a production line of a 

company of the Bosch Group, an optimization model 

was developed, which produces the optimum allocation 

of tasks to workstations and workers, according to a set 

of constraints. These results can thereafter be used in 

the simulation model, to estimate performance 

indicators, which would be difficult to estimate with 

other approaches, namely: waiting times, times spent 

with displacements and utilization rates. Thus, the 

purpose of this paper is twofold. First, it describes the 

combined use of the optimization and the simulation 

models. Thereafter, it presents the results obtained for 2 

scenarios: one without displacements and another with 

displacements. The former was used to compare the 

simulation and the optimization models, whilst the later 

was used to assess the impact of displacements in the 

production line. By analyzing the results, it was 

possible to verify that the displacements increased the 

total time required to produce the devices in more than 

10%. Furthermore, it was shown that the displacements 

caused considerable changes in the remaining 

performance indicators, indicating the relevance of 

considering them. This work also brings insights to the 

Industry 4.0 by proposing an approach to virtualize a 

production line system, providing the benefits of the 3D 

visualization of the simulation tool used in this research. 

 

Keywords: Simulation, Optimization, Simio, Production 

line, Case Study, Industry 4.0. 

 

1. INTRODUCTION 

In production contexts, production lines are used to 

produce several types of devices. For this purpose, 

several workstations are used, on which workers 

perform different operations. In this regard, the 

optimization of the logistic movements is crucial for 

these kinds of problems. For instance, it is important to 

minimize the occurrence of interception between the 

trajectories performed by each worker, as they change 

from one workstation to another. 

Assembly line production systems are present in 

different industrial environments and are used to 

manufacture a large variety of products. Assembly lines 

were developed for a cost efficient mass-production of 

standardized products to exploit a high specialization of 

labor and the associated learning effects (Boysen, 

Fliedner, and Scholl 2006). The assembly lines can be 

as follows: 

 

• Modular Assembly (Leisner and Ost 1996) – 

This is an advanced assembly line method that 

is designed to improve throughput by 

increasing the efficiency of parallel 

subassembly lines feeding into the final 

assembly line. Modular assembly would 

involve assembling separate modules on their 

own assembly lines, then joining them together 

on a final assembly line. 

• Cell Manufacturing (Isa and Tsuru 2002) – 

This method evolved of the increased ability of 

machines to perform multiple tasks. Cell 

operators handle three or four tasks, and robots 

are used for operations like materials handling 

and welding. Cells of machines can be run by 

one operator or a multi-person work cell. In 

these machine cells it is possible to link older 

machines with newer ones, thus reducing the 

investment required for new machinery. 

• Team Production (Bukchin, Darel, and 

Rubinovitz 1997) – Team-oriented production 

is another development in assembly line 

methods. Workers used to work at one or two-

person work stations and perform repetitive 

tasks. Now teams of workers can follow a job 

down the assembly line through its final 

quality checks. This approach has been hailed 

by supporters as one that creates greater 

worker involvement in the manufacturing 

process and knowledge of the system. 

• U-Shaped (Aase, Olson, and Schniederjans 

2004) – A line may not be the most efficient 

shape in which to organize an assembly line. 

On a U-shaped line, or curve, workers are 

located on the inside of the curve and 

communication is easier than in a straight line. 

Assemblers can see each process; what is 

coming and how fast; and one person can 



perform multiple tasks. Also, workstations 

along the "line" are able to produce multiple 

product designs simultaneously, making the 

facility more flexible. Changeovers are easier 

in a U-shaped line as well and, with better 

communication between workers, cross-

training is also simplified. The benefits of the 

U-shaped line have served to increase their use 

widely. 

 

In the assembly line is also important to know the pace 

of the work parts moving in it and they can be of three 

main types (Merengo, Nava, and Pozzetti 1999): 

 

• Moving line –  a transport system moves, at a 

constant speed, the units evenly distributed 

along the line. 

• Paced line – the transport system is 

periodically moving. When a unit arrives at a 

station, it remains there for a period of time 

called cycle time and then it is moved to the 

following station. 

• Unpaced line – is equipped with buffers 

located between stations. In each station the 

operator takes a unit from the buffer upstream, 

performs all the required assembly tasks and 

then moves the unit to the buffer downstream. 

 

In case of a paced assembly line, the station time of 

every station is limited to the cycle time as a maximum 

value for each work piece. Since tasks are indivisible 

work elements, the cycle time can be no smaller. That 

situation would be ideal, since it presents no idle time 

between workstations. What usually happens in real 

problems is the absence of a common cycle time and it 

is called an unpaced assembly line, i.e., all stations 

operate at an individual speed, work pieces may have to 

wait before they can enter the next station and/or 

stations may get idle when they have to wait for the 

next work piece. That situation most of the time cannot 

be completely solved, instead, the optimization method 

will try to minimize that idle time. 

The standard work is a method that defines how 

operations should be performed at workstations, 

preventing operators from performing operations 

randomly. By describing the operations to be 

performed, operators can become polyvalent because 

they have access to all the information and can learn to 

perform new tasks, which guarantees more flexibility of 

the production system. Basically, standard work 

consists of three elements (Lopes 2012): 

 

• Takt-Time – is the rate at which products must 

be made in a process to meet customer 

demand.  

• Work Sequence – is the precise sequence in 

which an operator performs tasks within takt-

time. 

• Standard Inventory – is the parts between 

operations, including units in machines, 

required to keep the process operating 

smoothly. 

 

If applied correctly, the standard work can bring several 

benefits (Emiliani 2008), such as: the creation of 

reference points from which is possible to improve 

continuously, process control, variability reduction, 

quality and flexibility improvement, stability (i.e. 

predictable results) and abnormalities predictability. 

In light of this problem, a project is being developed at 

Bosch Car Multimedia Portugal, which consists in 

optimizing the allocation of an operation to a worker 

and to a workstation, given a set of requirements and 

input data, e.g., the duration of each task and number of 

devices to be produced. Yet, there are other relevant 

performance metrics, which are difficult to take into 

consideration by the developed optimization model. 

Therefore, a simulation model of this problem was also 

developed, to complement the optimization model with 

these relevant metrics, i.e., waiting time of devices to 

produce, per workstation and utilization rates of 

workers and workstations. 

Considering the above exposed, the purpose of this 

paper is twofold. First, it documents the work 

conducted to develop both the optimization and the 

simulation models. The mixed integer linear 

programming (MILP) model was implemented with 

AMPL (A Mathematical Programming Language) code, 

whilst the simulation model was developed in Simio 

(Dias et al. 2016). Thereafter, it discusses the obtained 

results emphasizing on the improvement of the 

production line of the case study. Such work brings 

insights into the Industry 4.0 agenda (A. A. Vieira et al. 

2018; Wang et al. 2016; Uhlemann, Lehmann, and 

Steinhilper 2017; Longo 2013), namely in the company 

hosting this research, due to the benefits of the 

developed solution: virtualization of production line 

operations in 3D (Turner et al. 2016), testing alternative 

scenarios, among others. In fact, one of the main 

contributes of this research is the use of such tool to 

communicate with customers of the company, while 

using the tool to illustrate how a given production line 

will operate. Despite its interest, this topic in out of the 

scope of this paper. 

This paper is organized as follows. Next section 

presents the MILP optimization model used to improve 

the performance of the production line, whilst section 3 

achieves a similar purpose, for the developed discrete-

event simulation model. The results are displayed and 

analyzed in section 4. Finally, section 5 discusses the 

main conclusions and some future research directions. 

 

2. THE MILP MODEL 

The work sequence optimization can be modelled as a 

Generalized Assignment Problem (GAP). The GAP 

under study has the following characteristics: 

 

• Mass-production of one homogeneous product 

given the production process; 

• Paced line with fixed Cycle Time (TCT); 



• Deterministic operations time; 

• Each task is assigned to only one workstation 

and only one worker; 

• Each workstation has a limited number of 

workers assigned; 

• The workers working time is limited by the 

assembly line CT; 

• The tasks are already assigned to the 

workstations and the objective is to balance the 

workers working time; 

 

This GAP problem can be defined by a bipartite graph 

G=(T,W,A) where T is a set of tasks with size NT, W a 

set of workers with size NW and A is a set of arcs 

between tasks and workers. Each task has a processing 

time and the objective is to balance the work between 

the workers. The mathematical model for this problem 

has the following variables, decision variables and 

constraints: 

 

  

 

  

 

  
 

Objective function: 

  

 

Subject to: 

   (1) 

 

  (2) 

 

      (3) 

 

 (4) 

 

The objective function minimizes the number of change 

of workers between tasks aiming to balance the 

workload for workers. The constraint (1) ensures that 

each task is assigned to only one worker. The worker 

working time is calculated in the constraint (2). The 

constraint (3) ensures that the workers working time is 

not greater than the cycle time. Finally, the constraint 

(4) calculates the number of changes. The MILP model 

was implemented in AMPL and our compact 

formulation was used to solve the instances using the 

NEOS Server. The GAP mathematical model was 

developed in AMPL. 

 

3. SIMULATION MODELLING 

To develop the simulation model of this problem, the 

data provided to the MILP had to be considered. these 

data are provided by the Neos server and can thereafter 

be used by regular Excel formulas to obtain data 

according to what is required by the simulation model, 

regardless of the output of the MILP model. Thereafter, 

the tool allows these files to be bound to the simulation 

model, meaning that whenever a new MILP model is 

run, the new results can be immediately considered by 

the simulation model. 

This section presents the main steps conducted to 

develop the simulation model used for this problem. 

This development was divided in two steps: Data 

preparation and the development of the main simulation 

model, covered in the second subsection, which uses the 

data modelling, described in the first subsection. 

 

3.1. Data Preparation 

The data were divided in 3 Excel files, each one 

concerning the following domains: data of workstations, 

data of the operations to execute and data of resources 

involved. After incorporating these data, relationships 

between them need to be modelled in Simio (A. A. C. 

Vieira et al. 2017; A. Vieira et al. 2016; A. A. C. Vieira 

et al. 2018). This allows, for instance, to know which 

operations are performed by which workers on which 

workstation. To accomplish this, these relationships 

were modelled as provided by Figure 1. 

 

 
Figure 1: Relationships of data tables. 

 

As the figure suggests, in the problem at hand, at one 

workstation, there can only be 1 operation at a given 

time and this operation can only be performed by a 

single worker. Thus, situation in which, for instance, 2 

workers perform the same operation on a given piece, in 

the same workstation, cannot occur. On the other hand, 

the same workstation can perform multiple different 

operations, at different times, therefore there is a one-to-

many relationship between the “Workstation” and the 

“Operation” tables. In this case, the primary key field 

that identifies a workstation must be incorporated in the 

“Operation” table, as a foreign key. Lastly, it should be 

noted that the one-to-one relationship between the 

“Operation” and the “Resource” tables could be 

avoided, by merging the content of the two tables in a 

single one. Yet, this was not adopted, because 

separating them into 2 tables eased the incorporation of 

these data into the simulation model. The final of result 

of incorporating these relationships in Simio is provided 

in Figure 2, Figure 3 and Figure 4. 

 



 
Figure 2: Data table of workstations. 

 

 
Figure 3: Data table of operations. 

 

 
Figure 4: Data table of resource allocation settings. 

 

As can be seen, Figure 2 allows to see what operation 

(from Figure 3) can be performed in which workstation; 

the server (e.g., Server1 and Server1_1) object of Simio 

was used to model workstations. Furthermore, it also 

allows to see other parameters, such as if the piece is to 

be transported to the next workstation, the processing 

time, and others. Lastly, Figure 4 shows the resource 

parameters required to model other behaviors, such as 

to tell the worker if he needs to keep working on the 

same piece, or if he can proceed to another one – 

“Reserve” column. 

 

3.2. Simulation Model Development 

After preparing the data, it was necessary to develop the 

remaining simulation model. The system in question is 

comprised by 17 workstations and 8 workers. To 

develop such a system, 17 Simio Server objects were 

used and their properties were set as described in Figure 

5 and Figure 6. In its turn, to consider 8 workers, it was 

necessary to place a Worker Simio object and edit a 

specific property which sets the number of workers. 

Furthermore, it should be noted that the model is 

prepared to run the simulations without any type of 

connection between Servers, by using the Free Space 

concept of Simio. This was accomplished by modelling 

a sequence table, which specifies the destination 

sequence that each entity needs to follow. The last 

modelling step consisted on setting the properties of the 

Servers. In this regard, the properties of all Servers were 

set as indicated in Figure 5. 



In most of simulation tools, a process is represented as a 

random distribution specifying the duration of the 

process. Yet, in this case, each operation has a 

processing time associated and several can be 

performed at a single workstation. Therefore, it was 

necessary to set the “Process Type” property of the 

Servers to “Task Sequence”. Thus, it was necessary to 

specify the operations’ properties, which are specified 

in two different data tables. Thus, each one was inserted 

in its corresponding property, i.e., either “Processing 

Tasks” or “Task Resources”. As Figure 6 suggests, each 

property is assigned to a different field of the already 

presented data tables. 

It should be noted that it is only necessary to indicate 

the name of the column and the data table, because each 

row of “Operation_TABLE” is associated to a single 

operation and the “Process Type” property of all 

Servers (see Figure 5) is set to “Task Sequence”, i.e., 

one task per row. The final result of the model while 

running is illustrated in Figure 7, in 3D. As can be seen, 

the triangles are the entities of the model, which in their 

turn represent the pieces of the system which are being 

produced. 

 

 
Figure 5: Properties of one workstation of the problem. 

 

 
Figure 6: Properties that define the task resource settings. 

 

 
Figure 7: Simulation model running in 3D 

 



4. RESULTS ANALYSIS 

This section presents the results of the experiments that 

were conducted with the purpose of complementing the 

optimization model with new relevant insights, which 

are consequence of new Key Performance Indicators 

(KPI) that the simulation model could obtain, and the 

optimization model could not. In this regard, 2 

experiments were conducted: one which did not 

consider displacements of workers and materials and a 

second one which considered them. Whilst the former 

can be used to compare the performance of both the 

simulation and the MILP models, the latter is used to 

obtain the impact of such displacements. The obtained 

results are displayed in  

Table 2, which considered the following KPI: 

 

• KPI1 - Average utilization rates of 

workstations; 

• KPI2 - Average waiting time of devices on 

each workstation; 

• KPI3 - Total simulation time to produce the 

intended number of devices; 

• KPI4 - Average utilization rates of workers; 

• KPI5 - Average idle time of workers; 

 

The results of the conducted experiments can be 

consulted in Table 1 and  

Table 2. The former displays the results obtained for 

KPI1, KPI2 and KPI3. In its turn, the later shows the 

obtained results for KPI4 and KPI5. 

Table 1: Simulation experiments’ results for KPI1, KPI2 and KPI3. 

 
Scenario I 

(does not consider displacements) 

Scenario II 

(considers displacements) 

Workstation 

Utilization 

Rates 

(%) 

Waiting times 

(minutes) 

Utilization 

Rates 

(%) 

Waiting times 

(minutes) 

1 92,7 154,6 88,4 174,7 

2 31,1 0 26,7 0 

3 50,4 0 44,1 0 

4 92,2 1,4 87,8 1,6 

5 90,8 3,7 88 9,3 

6 67,8 0,1 91,8 3,5 

7 60,8 0 52,7 0 

8 92,4 0,3 85,3 0 

9 49,4 0 41,4 0 

10 45,1 0 90,7 1,3 

11 55,8 0 50,3 0 

12 52,8 0 47,5 0 

13 77,6 0 71,1 0 

14 66,3 0 56 0 

15 38,6 0 48,8 0 

16 51,9 0 88,2 0 

17 90,6 2,1 73 0 

Total simulation time 

(hours) 
6,62 7,71 

 

The first thing to notice from the analysis of both 

scenarios is the simulation time required to run them, 

i.e., the time required to produce the specified number 

of devise (200 in both cases). As expected, this time 

was higher in the scenario with the displacements – 

more than 1 hour of difference, indicating its 

considerable impact on the overall performance of the 

production line. 

Another interesting aspect to notice from this analysis is 

that some utilization rates dropped when the 

displacements were considered (all except workstation 

6, 10 and 15). Yet, despite this, in some cases – namely 

workstation 5, 6 and 10 – the average waiting time for 

these workstations increased. Furthermore, from this 

analysis, it was also possible to obtain the total waiting 

time on all workstations, which could not be obtained 

with the optimization model. In fact, it is possible to 

verify that 162,3 minutes in scenario I and 190,4 

minutes in scenario II, divided by all workstation, are 

spent waiting for a workstation. However, these values 

include the first workstation, in which devices are 

queued in the beginning of the simulation. Thus, if this 

workstation is excluded, the total waiting times drop to 

7,7 and 15,7 minutes for scenarios I and II, respectively. 

Table 2 shows the obtained results from for the KPI 4 

and KPI5. 

 

 



Table 2. Simulation experiments’ results for KPI4 and KPI5. 

 Scenario I 

(does not consider displacements) 

Scenario II 

(considers displacements) 

Worker Utilization Rates 

(%) 

Idle times 

(minutes) 

Utilization 

Rates 

(%) 

Idle times 

(minutes) 

1 93,3 26,7 89 50,9 

2 89,4 42,1 86,8 61,3 

3 78,6 85 75,8 112,1 

4 80,9 75,8 81,5 85,8 

5 91,6 33,5 96,4 16,8 

6 97,2 11,2 95,5 20,8 

7 91,1 35,3 88,2 54,5 

8 92,4 30,1 85,3 67,8 

 

From the analysis of this table, it is possible to verify 

that - similarly to the results on Table 1 - in the scenario 

with the displacements, the utilization rate of some 

workers also decreased, whilst their idle times 

increased, which seems to reinforce the importance of 

including the impact of the displacements on this 

analysis. 

Furthermore, the analysis of both tables also suggests 

that the capacity of some workstations and workers is 

not being completely used. For instance, the utilization 

rates of workstation 2 and worker 5 is 26,7% and 

96,4%, respectively. On the other hand, this analysis 

also showed that the impact of the displacements could 

be of 50% or more. In fact, workstation 10 presents a 

utilization rate of 45,1% in scenario I, whilst in scenario 

II this value increases to 90,7. The same happened with 

workstation 16, which increased its utilization rate from 

51,9% to 88,2%. 

 

5. CONCLUSIONS 

Some of the most relevant Key Performance Indicators 

(KPIs) for the performance of a production line cannot 

be estimated with analytical methods. In this regard, a 

project is being conducted in a company of the Bosch 

Group, which consisted in optimizing the performance 

of production lines. 

In light of this, a MILP model (Generalized Assignment 

Problem) is under development. Thus, to complement 

the MILP model, a simulation model of this problem 

was also developed in Simio, which applies the object-

oriented paradigm and is able to incorporate real 

industrial data. Furthermore, the simulation tool also 

offers native 3D visualization, enhancing the 

communication and involvement of stakeholders, 

during the project execution, which is aligned with the 

Industry 4.0 agenda. 

In a first instance, the MILP is able to determine the 

optimum allocation of tasks to a workstation and a 

worker. The resulting allocation can thereafter be 

inserted in the simulation model, to properly assess the 

performance of the production line. To conduct this 

assessment, in this paper, 2 experiments were 

considered: one without displacements and a second 

one which considered these displacements. 

The obtained results show the importance of the 

optimization model to consider such displacements by 

quantifying the differences between both scenarios. In 

fact, it could be seen that there was more than 1 hour of 

difference between the time required to produce 200 

devices, by the 2 scenarios. Furthermore, the defined 

KPI for workstations and workers could vary from one 

scenario to the other, as much as 50%, demonstrating 

the need to consider displacements, otherwise 

misleading conclusions can be withdrawn. 

Despite the conclusions obtained from this work, the 

MILP model still needs to be improved. By improving 

it, the results obtained from the simulation model will 

change accordingly, since the simulation model receives 

an output from the optimization model. Thus, the MILP 

should be complemented to consider displacements and 

different layouts. Moreover, other KPI can also be 

considered, for instance the takt time on each 

workstation and of each worker. 
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