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Abstract: Atherosclerosis is one of the most serious and common forms of cardiovascular disease
and a major cause of death and disability worldwide. It is a multifactorial and complex disease that
promoted several hemodynamic studies. Although in vivo studies more accurately represent the
physiological conditions, in vitro experiments more reliably control several physiological variables
and most adequately validate numerical flow studies. Here, a hemodynamic study in idealized
stenotic and healthy coronary arteries is presented by applying both numerical and in vitro approaches
through computational fluid dynamics simulations and a high-speed video microscopy technique,
respectively. By means of stereolithography 3D printing technology, biomodels with three different
resolutions were used to perform experimental flow studies. The results showed that the biomodel
printed with a resolution of 50 µm was able to most accurately visualize flow due to its lowest
roughness values (Ra = 1.8 µm). The flow experimental results showed a qualitatively good agreement
with the blood flow numerical data, providing a clear observation of recirculation regions when the
diameter reduction reached 60%.

Keywords: atherosclerosis; in vitro biomodels; CFD; 3D printing; stereolithography; blood flow;
blood analogues; hemodynamics

1. Introduction

Atherosclerosis is considered the pathological basis of several cardiovascular diseases and the
leading cause of death worldwide, with over 20 million deaths every year. It is a silent and progressive
disorder characterized by abnormal lipid deposition within the intima and commonly affects large-
and medium-sized arteries, like coronary arteries [1,2].

Given the clinical importance of this disease worldwide, hemodynamics research has increased
exponentially. In vivo experimental methods provide the most realistic physiological data and remain
essential for establishing an adequate understanding of the basic biophysical phenomena that happen
in vivo. However, even performing these studies in animal models, neither human physiology nor
human disease is fully recapitulated. In these types of experiments, the measurements are often
inaccurate, and the experiments are expensive, have low reproducibility, and have associated ethical
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issues [3–6]. Therefore, engineered in vitro biomodels have gained widespread attention and have
been developed to overcome those limitations. These methods are often used to validate numerical
studies and to complement and confirm results from in vivo experiments [7]. Numerical hemodynamic
studies can act as an auxiliary tool to investigate such arterial diseases, offering advantages over
experimental analysis since they are faster. The construction of more realistic virtual models has
become more flexible and they reduce the lead times and costs of new designs and developments.
Although experimental and numerical methods are important by themselves, these studies should be
compared to verify the accuracy of the results and thus validated [8,9].

The flow dynamics of stenotic arteries have been subjected to extensive studies with early
in vitro [10,11] and in silico studies [12,13]. The interest in understanding the blood flow behavior
in the atherosclerosis condition has been continuously growing due to its serious impact on human
life. An important geometric factor to the local hemodynamics is the shape of the stenosis.
Some experimental and numerical studies applied idealized stenosis shapes [5,14–16]. Other studies
used of patient-specific geometries based on medical images [6,17–19]. Kefayati et al. numerically and
experimentally studied the effect of stenosis severity, plaque eccentricity, ulceration on turbulence
intensity [14] and on shear stresses measured in vitro [20]. In another study, the authors analyzed
the transitional flow [21] using idealized carotid models. Similar studies were conducted by
DiCarlo et al. [22,23]. Costa et al. [6] used a patient-specific geometry of a coronary artery with a shape
similar to the one presented here. By combining stereolithography (SLA) 3D printing and computed
tomography angiography (CTA) data, they obtained a 3D biomodel, and performed both in vitro
and in silico studies of the flow through healthy and stenotic arteries. Recently, Stepniak et al. [24]
studied the lipid-rich plaque in stenotic coronary artery phantoms using three different 3D printing
technologies (fused deposition modelling, SLA, and PolyJet).

Despite the variety of methods to produce arterial phantoms for flow visualization, 3D printing
technologies have become popular due to its capability to fabricate full 3D structures that closely
mimic the shape of human blood vessels [25,26]. There are different 3D printing methods that have
been used in this field, such as fused deposition modelling [3,24,27–29], Inkjet [30], PolyJet [24,31] and
binder jetting [27]. In addition to these methods, a suitable technique to fabricate vessel models is SLA,
which provides very high printing resolutions and accuracy, well-defined details, slightly visible layer
lines, and an extremely smooth surface finish. These characteristics play an important role aiding the
visualization process during experimental studies. In this technique, the models are manufactured
layer by layer using a photocurable liquid resin that is hardened by applying a low-power ultraviolet
(UV) laser, a process called photopolymerization [6,32–34].

After the fabrication process, in vitro velocity fields of blood flow can be measured using several
techniques [18,30,35–39]. However, in the present study, blood flow measurements and visualizations
were performed using a high-speed video microscopy system.

In past decades, many in vitro studies have been conducted, however, none of them considered
the influence of roughness on the flow visualization. The present paper shows the influence of this
parameter on the visualization of tracer particles and the effect of stenosis severity on hemodynamics.
Using numerical and experimental approaches, the five degrees of stenosis (DOS) seen in human
arteries were evaluated, in addition to a healthy model fabricated by the stereolithography 3D
printing technique.

2. Materials and Methods

2.1. Coronary Artery 3D Biomodels Design and Fabrication

The 3D biomodels were custom-designed using the online platform BIOFABICS TOOLBOX
(www.biofabics-toolbox.com) and custom-manufactured using a rigid material (Biofabics, Porto,
Portugal) at printing resolutions of 50, 100, and 150 µm. The biomodels were designed with tool
number 3 of the BIOFABICS TOOLBOX, employing a 24-well plate layout, a 59 mm total channel

www.biofabics-toolbox.com


Micromachines 2020, 11, 549 3 of 14

length, a 3 mm channel 1 diameter, a 3 mm channel 2 diameter, a 6 mm stenosis length, a 0.5 mm base
thickness, and a total device height of 5.5 mm. The DOS selected for this study were 0%, 50%, 60%,
70%, and 80% to capture the changes in flow behavior when the severity of the stenosis increases.

The shape of the artery was a full cylindrical tube with a circular cross-section and an axisymmetric
blockage (Figure 1). The selected diameter (3 mm) was based on the literature [40,41] and the
length of the stenosis was defined as twice the normal diameter, an assumption applied by several
researchers [42–45]. In addition, the length of the inlet zone (22 mm) was selected to ensure the creation
of a fully developed inlet flow.
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Figure 1. Dimensions of the 70% stenotic model.

The DOS is estimated by comparing the minimum diameter of the vessel at the lesion site (dstenosis)

to the diameter of the straight section (dstraight) without any stenosis, Equation (1). It can be defined as
minimal, moderate, or severe: minimal if the narrowing was less than 50%, moderate if between 50%
and 70%, and severe or significant for a diameter reduction of 70% or more [46].

stenosis (%) =

(
1−

dstenosis
dstraight

)
× 100 (1)

2.2. Blood Analogue Fluid and Flow Rate

Recently, the use of blood analogues has been increasing due to the difficulties associated with the
manipulation of real blood in vitro because of ethical, economical, or hazardous issues [47–49].

In this study, the fluid selected as the blood analogue was a dimethyl sulfoxide (DMSO)/water
mixture (52%/48% w/w) with properties similar to bloodµ = 0.003153426 Pa·s andρ = 1072.033 kg·m−3),
where µ is the viscosity and ρ is the density of the fluid. The density of the biofluid was measured
using a density meter (DMA 5000M, Anton Paar®, Graz, Austria) [50]. The refractive index of this
mixture matches the refractive index of the biomodels, eliminating the visual distortion produced
by the curvature of the walls. By using a syringe pump, the infusion flow rate was kept constant at
5 mL/min. The same flow rate was used to perform numerical simulations.

2.3. Experimental Setup for Roughness Measurements and Flow Characterization

To understand the influence of the print resolution in flow visualization, roughness measurements
were performed using a surface profiler (Dektak® 150, Veeco, Plainview, NY, USA) (Figure 2).
Considering the difficulty and inaccuracy of the roughness measurements on circular surfaces,
cubes printed with the respective resolutions were used to make the comparison.
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In Figure 3, the experimental setup used to perform the flow visualization is represented. This was
composed of an inverted microscope (IX71, OLYMPUS, Tokyo, Japan) combined with a high-speed
video camera (Fastcam SA3, Photron, San Diego, CA, USA) and the objective lens used in this study
had a magnification of 2.5×. To control and impose steady flow rates through the channels of the
biomodel, a syringe pump (LEGATO® 100, Holliston, MA, USA) was used. All images were captured
and recorded by a high-speed video camera (Fastcam SA3, Photron, USA). The microparticles used
in suspension of the blood analogue fluid were 40 µm monosized spherical tracer particles (CA 40,
Spheromers®) at a concentration of 0.2%.
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2.4. Numerical Approach

Numerical simulations were performed in the CFD package ANSYS Fluent (version R2), which uses
the finite volume methodology.

For each model, a hybrid mesh was generated with tetrahedral cells with inflation layers in the
stenosis zone and hexagonal cells with a bias factor in the remaining geometry. The inflation and bias
factor were applied to improve the accuracy of the computed wall shear stresses (WSS). Several mesh
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tests were performed to guarantee a grid-independent solution. The mesh that combines accuracy and
lower computation time for the 70% stenosis case has 498,974 elements (Figure 4). For the remaining
models, similar meshes were performed.
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Although in small arteries and capillaries the blood exhibits non-Newtonian behavior in vessels
with a diameter superior to 1 mm, in the coronary arteries, non-Newtonian behavior can be neglected
due to the predominant high-shear rates [51–54]. In this study, the blood was considered as an
incompressible, homogeneous, and Newtonian fluid. The no-slip boundary condition was applied at
the artery walls, which were assumed as rigid and motionless. The outlet gauge pressure was set to
zero and there was no backflow. Although the blood flow in the coronary arteries is time-dependent,
the current investigation first simplifies it to a steady flow condition, with constant inputs, assuming a
laminar regime. This allows for validation with the experimental data.

Under these assumptions, three-dimensional blood flow through an artery with stenosis can be
described by the steady continuity and Navier–Stokes equations, Equations (2) and (3):

∇·
→
u = 0 (2)

ρ

∂→u∂t
+
→
u ·∇

 = −∇p + µ∇2→u (3)

where
→
u is the velocity vector, p is the static pressure, ρ is the fluid density, and µ is the dynamic viscosity.

These governing equations were solved by the semi-implicit method for pressure linked equations
(SIMPLE) scheme [8].

2.5. Image Processing

The images were obtained essentially in the post stenotic section of the biomodel by using a frame
rate of 1000 frames/second. All sets of frames were analyzed using the Z Project method in ImageJ
software (Bethesda, MD, USA) [55]. The number of analyzed frames was about 800 for each movie and
the recorded sequence of images was replaced by an image that represents the minimum or maximum
intensity in each pixel. By using this methodology, it is possible to observe clearly the flow behavior.

To perform the particles’ velocity measurements, the manual MtrackJ plugin was used. This is an
ImageJ plugin that allows the tracking of moving particles and to calculate their velocities automatically.

To estimate the difference between the experimental results and the numerical values, Equation (4)
was used:

% error =

∣∣∣Experimental value−Numerical value
∣∣∣

Numerical value
× 100 (4)
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3. Results and Discussion

3.1. Printing Resolution Effect

To understand the influence of the print resolution in flow visualization, three different cases
were tested (50, 100, and 150 µm). Initially, it was analyzed in a qualitatively, observing the flow
through a microscope. As can be seen in Figure 4, there was a significant improvement when the print
resolution was reduced to 50 µm (Figure 5c). In Figure 5a,b, there are accentuated lines that affect the
flow visualization as well as particle tracking.
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To better understand the impact of the printing resolution in the assessment of the experimental
results, additional images from ImageJ were obtained (Figure 5d–f). Those images were recorded
before the application of the Z Project tool.

Through the analysis of the results, it was possible to observe the difficulty to track the tracer
particles near the walls for the printing resolutions of 100 and 150 µm (Figure 5d,e). Between these
two biomodels, there was almost no difference. However, in comparison to the 50 µm biomodel,
the differences were quite significant. For instance, by using images obtained with the 50 µm biomodel
(Figure 5f), the tracer particles could be tracked without almost any influence of the channel wall.
In the remaining cases, the images were too noisy near the walls, which promoted the generation of
large errors when tracking those particles. These results were extremely relevant in flow experiments
as it was essential to obtain high-quality flow images near the walls to obtain accurate in vitro results,
namely in WSS and velocity measurements.
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Following the previous results, the effect of the printing resolution in the experimental
measurements near the wall was quantitatively evaluated, where the results were most affected
by this parameter. For this purpose, the mean particles’ velocity was measured experimentally and
numerically near the wall in the post stenotic section of the 50% stenotic model. The experimental
measurements were performed at an approximate distance of 100, 105, and 145 µm from the wall.
Those distances corresponded to the 50, 100, and 150µm models, respectively. Numerically, the velocity
measurements were obtained from a plane located and with an area close to which the experimental
measurements were made. When analyzing the results depicted in Figure 6, the model with values
closest to the numerical results is the 50 µm model. The 150 µm model presented the worst results;
the velocities measured experimentally were much lower than those predicted numerically. The 100 µm
model presented results between the two models mentioned above, but it was significatively better
than the 150 µm model.
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The error associated with the measurements was also calculated and, as expected,
the measurements in the 50 µm model presented the lowest error of about 10%. The measurements
in the 100 and 150 µm models presented higher errors, approximately 28% and 50%, respectively.
Considering these results, we concluded that the 50 and 100 µm models are the most adequate to
perform the experimental studies with more reliability and the 50 µm model produced the most
accurate results.

Through the analysis of these results, we verified the direct influence of printing resolution on the
quality and reliability of particles’ velocity measurements near the wall.

Additionally, roughness measurements were recorded to verify the previous observations.
The main roughness parameter was the average roughness (Ra). This parameter evaluates the
average standard deviation of the heights (peaks and valleys) in a scanned profile to compute the
degree of roughness [56,57].

To perform the roughness tests, different cubes were printed with the three different resolutions
(three measurements for each case). Figure 7 shows the average Ra values obtained per each resolution
proving that this parameter influences the models’ roughness. The higher value was measured in
the 150 µm model with an average Ra of approximately 19.53 µm. In turn, the 100 µm model had a
significantly lower roughness (7.35 µm). However, the best model was the one printed with the lowest
resolution (50 µm), presenting the lowest roughness values with an average Ra of 1.78 µm.
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From the results presented in this section, we concluded that with a printing resolution of 50 µm,
the experimental results are more accurate and the lowest surface roughness can be achieved. Therefore,
the remaining tests were performed in those models.

3.2. Velocity Profiles and Wall Shear Stress Evaluation

The numerical prediction of the effect of stenosis severity on blood velocity profiles at different
sites in the artery for different DOS is depicted in Figure 8. Figure 8a shows that the velocity profile was
fully developed at the beginning of the channel and was not significantly affected by the DOS. It was
seen only as a slight difference in the maximum velocity between the healthy model and the stenotic
cases. Figure 8b shows that at the stenosis throat for all DOS, the velocity increased, reaching its
maximum. As the throat diameter reduced, the velocity increased and the highest speed was achieved
with a DOS of 80% (0.50 m/s). Figure 8c,d show the corresponding velocity profiles at two different
locations in the downstream region of stenosis. In Figure 8c, the velocity profiles are a little disturbed
and fluctuating due to the presence of secondary recirculating flows for some models. The remaining
velocity profiles did not display that behavior, showing absence or reduced recirculation. In Figure 8d,
the flow was stabilized again, although in the DOS of 80%, the velocity was slightly higher.

Table 1 shows the Reynolds number (Re) (ρUD/µ) in the stenotic region for each degree of stenosis,
where ρ is the fluid density, U is the maximum velocity in the stenosis throat, D is the stenotic diameter,
and µ is the fluid viscosity. As the stenosis severity increased, the Re also increased, which was
explained by the velocity increase in that region. Additionally, the maximum Re was approximately
102. Therefore, the laminar flow assumption was adequate in the present simulation.

WSS plays an important role in the development of various vascular disorders, including
atherosclerosis [58]. This was a key parameter in the hemodynamic analysis due to its direct relationship
to the development of cardiovascular disease and atherosclerosis in general. High WSS was indicated
as a contributor to the rupture of the atherosclerotic plaque in human coronary arteries [59] and
low WSS was associated with plaque progression in diseased human coronary arteries [60]. For a
Newtonian fluid, the applied shear stress (τw) is proportional to the resulting deformation rate (

.
γ) and

the viscosity is constant:

τw = µ
∂u
∂y

= µ
.
γ (5)

The effect of stenosis on WSS is depicted in Figure 9. The maximum WSS was observed at the
throat stenosis and its value increased with the degree of stenosis. This happened because the artery
diameter reduction caused higher velocities in the stenosis throat and, consequently, the WSS also
increased. Similarly to the previous results, it could be verified that the maximum WSS was reached
for a DOS of 80%, being approximately 14.64 Pa. For the healthy model, WSS was almost constant
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at the value of 0.10 Pa. For the 50%, 60%, and 70% of stenosis, WSS values of 0.86, 1.73, and 4.19 Pa
were observed at the throat, respectively. In addition, we noticed that a sudden increase in the WSS
from DOS 70% to 80%, showing that the second case was already extreme, possibly leading to acute
myocardial infarction.

Table 1. Reynolds number at the stenotic section for the different degrees of stenosis.

Stenosis Degree Reynolds

0% 23
50% 45
60% 55
70% 71
80% 102
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3.3. Velocity Fields and Flow Visualizations

To evaluate the flow behavior, the streamlines and velocity magnitudes were obtained by CFD
simulations and the respective Z Project experimental images were compared and they are depicted in
Figure 10.
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In general, the numerical data showed qualitatively good agreement with the experimental
results. In Figure 10a, the numerical data accurately describe the experimental results, showing that
with a 50% degree of stenosis, the fluid flows in a laminar and regular way. Looking at
Figure 10b, small recirculation regions appeared and both results were in close agreement. However,
for this geometry and also in the remaining stenotic cases, the numerical model always predicted
smaller recirculation areas. For the 70% stenosis case (Figure 10c), the results were also similar.
Additionally, the numerical and experimental recirculation behavior were different when the diameter
reduced to 80% (Figure 10d). Although the recirculation length was in good agreement, experimentally
the recirculation tended to be formed closer to the stenotic section and around the center of the
biomodel, which did not happen numerically.

These qualitative results showed the importance of in vitro studies to complement and validate
numerical studies.

4. Conclusions

The effect of the printing resolution on the flow visualization of tracer particles was qualitatively
studied. The results indicated that there is a direct effect of this parameter on the experimental flow
measurements and the biomodel, with the printing resolution of 50 µm producing the most reliable
results. This model produced experimental measurements closest to the numerical results and a lower
roughness. Additionally, the effect of coronary stenosis on hemodynamic changes was numerically and
experimentally studied and both results were in good agreement. For both cases, when the diameter
reduced to 60%, the formation of small recirculations near the walls of the post stenotic section was
observed. The velocity profiles and wall shear stress were evaluated, indicating a significant increase
of these parameters in the stenosis throat.

These results provide new insights and additional information about the importance of printing
parameters, namely, the resolution on in vitro biomodels.
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