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Abstract

Recently, in the literature, it was shown that the logarithmic renormalization of the Fermi velocity in a 
plane graphene sheet (which, in turn, is related to the Coulombian static potential associated to electrons 
in the sheet) is inhibited by the presence of a single parallel conducting plate. In the present paper, we 
investigate the situation of a suspended graphene sheet in a cavity formed by two conducting plates parallel 
to the sheet. The effect of a cavity on the interaction between electrons in the graphene is not merely 
the addition of the effects of each plate individually. From this, one can expect that the inhibition of the 
renormalization of the Fermi velocity generated by a cavity is not a mere addition of the inhibition induced 
by each single plate. In other words, the simple addition of the result for the inhibition of the renormalization 
of the Fermi velocity found in the literature for a single plate could not be used to predict the exact behavior 
of the inhibition for the graphene between two plates. Here, we show that, in fact, this is what happens 
and calculate how the presence of a cavity formed by two conducting plates parallel to the suspended 
graphene sheet amplifies, in a non-additive manner, the inhibition of the logarithmic renormalization of 
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the Fermi velocity. In the limits of a single plate and no plates, our formulas recover those found in the 
literature.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In 1993, Marino [1] proposed an effective and complete description in 2 + 1 dimensions for 
electronic systems moving on a plane, but interacting as particles in 3 + 1 dimensions,

LPQED = 1

2

FμνF
μν

(−�)1/2 +LD + jμAμ − ξ

2
Aμ

∂μ∂ν

(−�)1/2 Aν, (1)

where � is the d’Alembertian operator, LD stands for the Dirac’s Lagrangian while the last term 
corresponds to the gauge fixing term. The model given by Eq. (1), denominated pseudo-quantum 
electrodynamics (PQED), was recently used in the description of several graphene properties 
[2–7].

From Eq. (1), one obtains the free photon propagator in Euclidean space,

�(0)
μν (k) = 1

2
√

k2

[
δμν −

(
1 − 1

ξ

)
kμkν

k2

]
, (2)

where kμ = (k0, k) and k = (k1, k2). In the nonretarded regime, considering the Feynman gauge 
(ξ = 1), it becomes

�(0)
μν (k0 = 0, |k|) = 1

2|k|δ0μδ0ν, (3)

which leads to the Coulombian potential for static charges (instead of the peculiar logarithmic 
one from QED in 2 + 1 dimensions),

V (|r|) = e

4π

1

|r| . (4)

In this regime, the electron self-energy in a graphene sheet was calculated in Ref. [8] (see also 
Refs. [9–12]), and the result in one-loop order is

�0(p) = −e2(p · γ )

16π
ln

	

|p| , (5)

where e is the nonrenormalized coupling constant, γ μ = (γ 0, γ ) stands for the Dirac matrices, 
and 	 is an ultraviolet cutoff introduced in the momentum integrals. From Eq. (5), the renormal-
ized Fermi velocity vR

F (|p|) with external momentum p reads [8]

vR
F (|p|) = vF

(
1 + αF

4
ln

	

|p|
)

, (6)

where αF = e2/(4πvF ) is the graphene fine structure constant. Experimental results [13] are in 
good agreement with the theoretical prediction shown in Eq. (6).

The understanding of interaction effects between electrons in graphene is important from 
theoretical and experimental points of view, since the Fermi velocity is renormalized by these 
interactions, and it is connected with some transport properties of graphene. For instance, the 
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optical conductivity in graphene depends on the renormalized Fermi velocity [14]. In addition, 
the critical coupling constant, which controls the gap opening between the valence and conduc-
tion bands and produces a semimetal-insulator transition phase, depends on the renormalization 
of the Fermi velocity [15]. In this way, the Fermi velocity renormalization can lead to a consid-
erable increase of the critical coupling for dynamical gap generation and charge-density wave 
formation in the semimetal-insulator transition. This opening of a gap in graphene is another 
effect in which the renormalization of the Fermi velocity seems to be important [15].

When the environment imposes boundary conditions to the electromagnetic field in 3 + 1
dimensions, the dimensional reduction from the usual QED in 3 + 1 dimensions to the model 
given by Eq. (1) (2 +1 dimensions) incorporates the effects of these boundary conditions, so that 
the influence of such external conditions is carried into PQED, generating models denominated 
cavity pseudo-quantum electrodynamics (Cavity PQED) [16]. In the situation where the envi-
ronment is a single grounded conducting plate, distant ρ0 and parallel to the graphene sheet, an 
electron with charge e in the graphene sheet interacts not only with another electron in the same 
sheet, but also with a certain amount of positive charge −e on the surface of the conducting plate 
induced by the other electron or, in the context of the method of images, with an image point 
charge −e associated to the other electron. Therefore, the electrostatic potential V (|r|) in Eq. (4)
is replaced by

V (|r|) = e

4π

(
1

|r| − 1√|r|2 + (2ρ0)2

)
. (7)

Taking into account Eq. (7), the free photon propagator in Euclidean space in the nonretarded 
regime is given by

�
(0)
00 (ρ0, |k|) = 1

2|k|
[
1 − exp(−2ρ0|k|)] , (8)

and the corresponding electron self-energy in the presence of the plate is given by

�(ρ0,p) = −e2(p · γ )

16π

[
ln

	

|p| − F(ρ0|p|)
]

, (9)

where F(ρ0|p|) > 0 is made explicit in Ref. [16]. Therefore, the renormalized Fermi velocity in 
the presence of a grounded conducting plate is

vR
F (ρ0, |p|) = vF

(
1 + αF

4
ln

	

|p|
)

− vF

αF

4
F(ρ0|p|), (10)

where the first term in the right-hand side of Eq. (10) is the renormalization of the Fermi velocity 
shown in Eq. (6) and calculated in Ref. [8], whereas the second term is responsible for the inhibi-
tion of the renormalization given by the first term. Comparing the nonretarded electron–electron 
interaction in a graphene sheet provided by Eq. (4) with that provided by Eq. (7), one sees that 
the latter is weaker in intensity, which, in turn, is related to the inhibition of the Fermi velocity 
given by Eq. (10) and calculated in Ref. [16].

In the present paper, we investigate an extension of the model discussed in Ref. [16], by 
considering a plane graphene sheet inside a cavity formed by two conducting plates parallel to 
the sheet. We take as basis the PQED [Eq. (1)] to describe the Coulombian interaction between 
the electrons, but we take into account the modifications induced by the cavity. As discussed in 
next section, when one considers a cavity, an electron in the graphene sheet interacts not only 
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Fig. 1. Illustration of a graphene sheet parallel to two grounded conducting plates, being ρ1 and ρ2 the distances between 
the graphene sheet and the plates.

with another electron in the sheet, but also with certain amounts of charges on the surfaces of 
both conducting plates. The distribution of surface charges for the case of a single conducting 
plate (namely, −e) is now affected by the distribution of positive charges on the second plate and 
vice versa. In the context of the method of images, one can say that, in a cavity, an electron in 
the graphene sheet interacts not only with another electron in the same sheet, but also with two 
positive images of this latter and, moreover, with the images of these images, thus interacting 
with an infinite set of images instead of with a single positive image as it occurs in the case of 
just one plate. This means that the effect of the presence of a second conducting plate on the 
interaction between electrons in the graphene sheet is not merely the addition of effects of two 
single plates. In turn, a priori, the effect of the inhibition of the renormalization of the Fermi 
velocity produced by the presence of a single plate should be affected by the presence of an 
other plate and vice versa. Since the mere addition of effects is not expected to be valid, here we 
calculate how the presence of a cavity amplifies the inhibition of the logarithmic renormalization 
of the Fermi velocity, if compared to the case of a single plate found in the literature.

The paper is organized as follows. In Sec. 2, we obtain an expression for the photon propagator 
modified due to the presence of a cavity formed by two grounded perfectly conducting plates. 
In Sec. 3 we calculate the electron self-energy in one-loop order, and this result is then used to 
obtain an expression for the renormalized Fermi velocity in a graphene sheet in a cavity. We 
also discuss the non-additive effects on the renormalized Fermi velocity. In Sec. 4, we present a 
summary of the results and our final remarks.

2. The modified photon propagator

Let us consider an electric charge e in the valence shell of a graphene sheet at distances ρ1
and ρ2 from two grounded and perfectly conducting plates (see Fig. 1). The electrostatic potential 
vanishes on the plates. Using the method of images, the parallel plates create an infinite set of 
images symmetrically distributed with respect to the plates, where the first four images are shown 
in Fig. 2. Let us consider a point P at a distance |r| from a real charge e, both belonging to a line 
parallel to the plates, as we depict in Fig. 2. The potential V , associated with the real charge e
and the infinite set of images originated by it, is given by

V (|r|) = e

4π

1

|r| + e

4π

∞∑
n=1

[
2√|r|2 + 4n2(ρ1 + ρ2)2

− 1√|r|2 + 4[nρ1 + (n − 1)ρ2]2

− 1√|r|2 + 4[(n − 1)ρ + nρ ]2

]
, (11)
1 2
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Fig. 2. The first four images of the electron generated by the two grounded plates.

which presents azimuthal symmetry. In this case, when ρ1 = ρ2 the formula given in Eq. (11)
recovers that found in the literature [17] and, in the limit ρ1 → ∞ (or ρ2 → ∞), one recovers 
the potential for just one plate [16]. Let us to write this potential in a more expanded form,

V (|r|) = e

4π

1

|r| − e

4π

1√|r|2 + (2ρ1)2
− e

4π

1√|r|2 + (2ρ2)2
+ e

4π

2√|r|2 + 4(ρ1 + ρ2)2

+ e

4π

∞∑
n=2

[
2√|r|2 + 4n2(ρ1 + ρ2)2

− 1√|r|2 + 4[nρ1 + (n − 1)ρ2]2

− 1√|r|2 + 4[(n − 1)ρ1 + nρ2]2

]
, (12)

where one can visualize, on the right-hand side: the first term corresponds to the usual static 
Coulombian interaction; the second and third terms correspond to the addition of contributions 
from, respectively, the plates distant ρ1 and ρ2 individually; and the remaining terms reflect 
the interaction of each plate with the other, breaking the mere addition of effects of single 
plates.

Using the static potential given by Eq. (11), we can get the “00” component of the pho-
ton propagator for electrons constrained to the graphene plane, by means of the inverse Fourier 
transform, namely (see, for instance, Ref. [18])

�
(0)
00 (k0 = 0, |k|) = 1

e2

∫
d2r e−ik·reV (|r|), (13)

with k and r being restricted to the graphene plane, so that d2r = |r| d|r| dϕ, k · r = |k| |r| cosϕ, 
where ϕ is integrated from 0 to 2π and |r| from 0 to infinity. Therefore we get, in a similar way 
as done in Ref. [16],

�
(0)
00 (ρ1, ρ2, |k|) = 1

2|k|

[
1 +

(
2 − e2|k|ρ1 − e2|k|ρ2

) ∞∑
e−2|k|n(ρ1+ρ2)

]
. (14)
n=1
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Fig. 3. One-loop electron self-energy diagram.

The sum in (14) is a simple geometric sequence. Solving this we have

�
(0)
00 (ρ1, ρ2, |k|) = 1

2|k|

(
1 + 2e−2|k|(ρ1+ρ2) − e−2|k|ρ1 − e−2|k|ρ2

1 − e−2|k|(ρ1+ρ2)

)
. (15)

The first term in the right-hand side of Eq. (15) is the free propagator and the second one arises 
due to the presence of the plates. Next, we shall use the modified propagator (15) to obtain a new 
expression for the electron self-energy, from which we will get the renormalized Fermi velocity 
in the presence of the cavity.

3. Electron self-energy, renormalized Fermi velocity and non-additive effects

The Dirac’s Lagrangian that describes the massless electrons moving with a Fermi velocity in 
the graphene valence shell is given by

LD = ψ̄a

(
iγ 0∂0 + ivF γ · ∇

)
ψa, (16)

where ψ̄a = ψ
†
a γ 0, a is a flavor index representing a sum over valleys K and K ′, γ μ are rank-4 

Dirac matrices and ψ†
a = (

ψ�
A↑ ψ�

A↓ ψ�
B↑ ψ�

B↓
)
a

a four-component Dirac spinor representing 
electrons in sublattices A and B in graphene, with different spin orientations.

Using the Lagrangian (16), we obtain the following bare fermion propagator

S
(0)
F (kμ) = k0γ

0 + vF k · γ
k2

0 + v2
F |k|2 . (17)

If we consider only the static case (vF /c 
 1), which means that the vertex interaction is eγ 0, 
the one-loop electron self-energy (see Fig. 3) reads (since this calculation does not involve a 
fermion loop, it is sufficient to consider only one species of fermions)

�(ρ1, ρ2,p) = e2
∫

d2k
(2π)2

dk0

2π
γ 0S

(0)
F (kμ + pμ)γ 0�

(0)
00 (ρ1, ρ2, |k|), (18)

which can be rewritten as

�(ρ1, ρ2,p) = �0(p) + �̃(ρ1, ρ2,p), (19)

where �0 is the self-energy in the absence of the plate (recovered when ρ1 → ∞ and ρ2 → ∞), 
and �̃ is the contribution due to the presence of the cavity, namely

�0(p) = −e2

2

∫
d2k

(2π)2

(k + p) · γ
|k + p|

1

2|k| , (20)

�̃(ρ1, ρ2,p) = −e2

2

∫
d2k

(2π)2

(k + p) · γ
|k + p|

1

2|k|

(
2e−2|k|(ρ1+ρ2) − e−2|k|ρ1 − e−2|k|ρ2

1 − e−2|k|(ρ1+ρ2)

)
.

(21)
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With the same procedure shown in [9,16], where it is used elliptical coordinates and regular-
ization by cutoff, Eq. (21) can be written as

�̃(ρ1, ρ2, |p|) = − (p · γ )e2

16π2

[
L1(ρ1|p|, ρ2|p|) + L2(ρ1|p|, ρ2|p|)] , (22)

where

L1(ρ1|p|, ρ2|p|) =
2π∫

0

dν

μ	∫
0

dμ f (ρ1|p|, ρ2|p|;μ,ν), μ	 = cosh−1(2	/|p| + cosν),

(23)

L2(ρ1|p|, ρ2|p|) =
2π∫

0

dν cosν

μ	∫
0

dμ coshμ f (ρ1|p|, ρ2|p|;μ,ν), (24)

and

f (ρ1|p|, ρ2|p|;μ,ν)

= 1

2π

[
2e−|p|(ρ1+ρ2)(cosh μ−cos ν) − e−ρ1|p|(cosh μ−cos ν) − e−ρ2|p|(cosh μ−cos ν)

1 − e−|p|(ρ1+ρ2)(cosh μ−cos ν)

]
. (25)

Therefore, using (22) and the free electron self-energy that arises from (20), the complete 
electron self-energy in the cavity (19) can be written as

�(ρ1, ρ2, |p|) = −e2(p · γ )

16π

[
ln

	

|p| + L1(ρ1|p|, ρ2|p|) + L2(ρ1|p|, ρ2|p|)
]

. (26)

Since the complete fermion propagator is given by

S−1
F (pμ) = −pμγ μ + �(pμ) = −p0γ

0 − vF (p · γ ) + �(pμ), (27)

from (26), we identify the renormalized Fermi velocity inside a grounded conducting cavity as

vR
F (ρ1, ρ2, |p|)

vF

= 1 + αF

4

[
ln

	

|p| + L1(ρ1|p|, ρ2|p|) + L2(ρ1|p|, ρ2|p|)
]

, (28)

where L1 and L2 are given by (23) and (24) respectively. The dependence of (28) in terms of ρ1, 
ρ2 and |p| can be analyzed numerically.

In Fig. 4, we show the renormalized Fermi velocity for some values of ρ1 and ρ2. The solid 
(blue) line is the renormalization without plates, as found in Ref. [8]. When we bring a single 
conducting plate near the graphene sheet, we have an inhibition of the renormalization, as shown 
by the dashed (red) and dot-dashed (orange) lines, for ρ1 = 100/	 and ρ1 = 10/	, respectively, 
as found in Ref. [16]. If a second conducting plate is put together, for instance at the same 
distance of the first one (ρ1 = ρ2), we have an amplification of the inhibition, as shown by 
the dotted (green) and long-dashed (purple) lines, for ρ1 = ρ2 = 100/	 and ρ1 = ρ2 = 10/	, 
respectively. As |p| grows, the amplification caused by the second plate diminishes, so that two 
plates tend to act as a single plate [for instance, the dotted (green) line converges to the dashed 
(red) line]. Moreover, as |p| grows, the inhibition caused by plates tends to disappear, so that one 
recovers the renormalization without plates [for example, the dashed (red) and dotted (green) 
lines converge to the solid (blue) line].
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Fig. 4. (Color online) Renormalized Fermi velocity as a function of the external momentum |p|, for several values of ρ1
and ρ2 (considering 	 = αF = 1).

The non-additivity in the amplification of the inhibition of the renormalization of the Fermi 
velocity can be investigated as follows. Let us consider the expansion

[
1 − e−|p|(ρ1+ρ2)(cosh μ−cos ν)

]−1 =
∞∑

n=0

e−n|p|(ρ1+ρ2)(cosh μ−cos ν), (29)

from which we rewrite the Eq. (25) as

f (ρ1|p|, ρ2|p|;μ,ν) = f (ρ1|p|,∞;μ,ν)+f (∞, ρ2|p|;μ,ν)+fcross(ρ1|p|, ρ2|p|;μ,ν),

(30)

where f (ρ1|p|, ∞; μ, ν) and f (∞, ρ2|p|; μ, ν) directly come from the Eq. (25), and

fcross(ρ1|p|, ρ2|p|;μ,ν)

= 1

2π

[
2e−|p|(ρ1+ρ2)(cosh μ−cos ν) − e−ρ1|p|(cosh μ−cos ν) − e−ρ2|p|(cosh μ−cos ν)

]

×
∞∑

n=1

e−n|p|(ρ1+ρ2)(cosh μ−cos ν) + 1

π
e−|p|(ρ1+ρ2)(cosh μ−cos ν). (31)

In Eq. (30) one can visualize, on the right-hand side, the first and second terms corresponding to 
the contributions from, respectively, the plates distant ρ1 and ρ2 separately, whereas the remain-
ing term, fcross, depends on ρ1 and ρ2 simultaneously, reflecting the effect of the interaction of 
each plate with the other. Using Eqs. (30) and (31) in (23) and (24), we can rewrite Eq. (28) as

vR
F (ρ1, ρ2, |p|)

vF

= 1 + αF

4
ln

	

|p| + αF

4
Lplates(ρ1|p|, ρ2|p|)+ αF

4
Lcross(ρ1|p|, ρ2|p|), (32)

with

Lplates(ρ1|p|, ρ2|p|) = L1(ρ1|p|,∞)+L2(ρ1|p|,∞)+L1(∞, ρ2|p|)+L2(∞, ρ2|p|) (33)

and

Lcross(ρ1|p|, ρ2|p|) = L1cross(ρ1|p|, ρ2|p|) + L2cross(ρ1|p|, ρ2|p|), (34)
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Fig. 5. (Color online) Comparison between (αF /4)Lplates [dashed (blue) line] and (αF /4)Lcross [solid (red) line], for 
ρ1 = ρ2 = 10, and considering 	 = αF = 1.

where L1cross(ρ1|p|, ρ2|p|) and L2cross(ρ1|p|, ρ2|p|) are obtained by replacement of f by fcross
in Eqs. (23) and (24). On the right-hand side of Eq. (32), the first and second terms corre-
spond to the renormalization of the Fermi velocity found in Ref. [8]. The third term, involving 
Lplates(ρ1|p|, ρ2|p|), is the addition of the contribution of each plate individually. The fourth 
term, involving Lcross(ρ1|p|, ρ2|p|), depends on ρ1 and ρ2 simultaneously and is responsible for 
the non-additive effects.

In Fig. 5, we compare the contribution from the term involving Lplates with that coming from 
the term involving Lcross. We can see that the contribution from the Lplates term [shown by the 
dashed (blue) line] is negative, which means that this term inhibits the renormalization of the 
Fermi velocity. On the other hand, the contribution from the Lcross term [shown by the solid (red) 
line] is positive, contributing to an enhancement of the renormalization. Once the magnitude of 
the Lplates term is greater than the magnitude of the Lcross term, the net effect is still an inhibition 
of the renormalization of the Fermi velocity, but now amplified if compared to the case of a 
single plate. This result can be understood as follows. The contribution from the Lplates term 
comes from the first two image charges, both with charge −e, shown in Fig. 2. These positive 
image charges generate an electric field at the point P , whose component parallel to the graphene 
sheet has direction opposite to the electric field generated by the real negative charge e, reducing 
the magnitude of the effective static potential associated to e. This, in turn, tends to diminish the 
renormalization of the Fermi velocity. However, the complete impact of the conducting plates 
on the renormalization requires to compute the effect of the other infinity image charges, which 
are, in fact, images of images, reflecting the interaction of each plate with the other, which is 
responsible for the non-additive effect. For instance, let us consider the effect of the other two 
image charges, both with charge e, shown in Fig. 2. The component parallel to the graphene 
sheet of the electric field at the point P , generated by these negative image charges, has the 
same direction of the electric field generated by the real charge e, which tends to enhance the 
magnitude of the effective static potential associated to e and, as a consequence, tends to enhance 
the renormalization of the Fermi velocity. Since the two negative image charges e shown in Fig. 2
are more distant from P than the positive image charges −e, the inhibition effect caused by the 
latter charges predominates. Taking into account all image charges beyond those shown in Fig. 2, 
we get Lcross > 0 and |Lcross| < |Lplates|. Then, the net effect of the infinity image charges or, in 
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other words, of the induced charges on the conducting plates, is a reduction of the magnitude of 
the effective static potential associated to e, which means inhibition of the renormalization of the 
Fermi velocity.

4. Final remarks

We showed how the inhibition of the renormalization of the Fermi velocity behaves when we 
bring two grounded perfectly conducting plates near a suspended graphene sheet [Eq. (32)]. In 
this case, the inhibition is amplified in comparison to the case of a single plate found in the litera-
ture, but it is not a mere addition of the inhibition induced by each single plate separately. In fact, 
the pure additive sector, stored in Lplates [Eq. (33)], is just a part of the complete renormalization 
formula given by Eq. (32). Breaking the pure additivity, we obtained the term Lcross [Eq. (34)], 
which stores the effects of the interaction between the induced charges in a plate with the other 
plate and vice versa. It was shown that Lplates < 0, which means that it contributes to inhibit the
renormalization of the Fermi velocity, whereas Lcross > 0 contributes to an enhancement of the 
renormalization. Since |Lcross| < |Lplates|, the inhibition (now amplified) predominates.

In the limit of no plates, the formula presented here [Eq. (32)] recovers the Eq. (6), which was 
obtained in Ref. [8] and it is in good agreement with experimental results [13]. Our results shown 
in Eq. (32) may have consequences in some transport properties of graphene since, for instance, 
according to Eq. (5) found in Ref. [14], the difference between the optical conductivity and 
the universal conductivity in graphene depends inversely on the renormalized Fermi velocity. 
Therefore the inhibition of the renormalized Fermi velocity leads to an increase of the optical 
conductivity. In this context, an experimental verification of the inhibition of the renormalized 
Fermi velocity by the presence of a single conducting plate, or the inhibition amplified by the 
presence of a second plate (cavity), seems feasible. In addition, if an experimental measurement 
of the inhibition of the Fermi velocity renormalization in the presence of a cavity considers 
a sufficient low density of states (small external momentum) and small distances between the 
plates, then the crossed term [Eq. (34)] is an important part of the total inhibition, as shown in 
Figs. 4 and 5. In this way, although the crossed term is exponentially suppressed with the distance 
between the plates, depending on the experimental set up it could be relevant.

It is appropriate to emphasize that the Eq. (6) [8] is only valid in the regime where vF 
 c. 
In the retarded regime where vF ≈ c, the renormalization of the Fermi velocity is power-law 
instead of logarithmic [8,19]. The effects of conducting plates on the renormalization of the 
Fermi velocity in the retarded regime, as well as more realistic models of Cavity PQED, are 
under investigation.
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