
applied
sciences

Article

Recommendation System Using Autoencoders

Diana Ferreira 1,† , Sofia Silva 2,† , António Abelha 1 and José Machado 1,*
1 Algoritmi Research Center, University of Minho, Campus of Gualtar, 4710 Braga, Portugal;

diana.ferreira@algoritmi.uminho.pt (D.F.); abelha@di.uminho.pt (A.A.)
2 Department of Informatics, University of Minho, Campus of Gualtar, 4710 Braga, Portugal;

pg38426@alunos.uminho.pt
* Correspondence: jmac@di.uminho.pt; Tel.: +351-253604430; Fax: +351-253604471
† These authors contributed equally to this work.

Received: 6 July 2020; Accepted: 4 August 2020; Published: 10 August 2020
����������
�������

Abstract: The magnitude of the daily explosion of high volumes of data has led to the emergence of
the Big Data paradigm. The ever-increasing amount of information available on the Internet makes it
increasingly difficult for individuals to find what they need quickly and easily. Recommendation
systems have appeared as a solution to overcome this problem. Collaborative filtering is widely used
in this type of systems, but high dimensions and data sparsity are always a main problem. With the
idea of deep learning gaining more importance, several works have emerged to improve this type of
filtering. In this article, a product recommendation system is proposed where an autoencoder based
on a collaborative filtering method is employed. A comparison of this model with the Singular Value
Decomposition is made and presented in the results section. Our experiment shows a very low Root
Mean Squared Error (RMSE) value, considering that the recommendations presented to the users are
in line with their interests and are not affected by the data sparsity problem as the datasets are very
sparse, 0.996. The results are quite promising achieving an RMSE value of 0.029 in the first dataset
and 0.010 in the second one.

Keywords: Big Data; recommendation systems; collaborative filtering; autoencoders

1. Introduction

The past few years have been decisive for the foundation of a new global era, being especially
notorious the impact of a diverse set of forces and trends associated with the acceleration of scientific
and technological discoveries in the field of information. The flourishing of the Information Age
promotes the momentum of the Internet of Things (IoT), which entails an environment pervaded by
vast amounts of intelligent devices capable of sensing, capturing, computing and operating the real
world [1]. Everyday, these devices generate continuous streams of real-time data. The magnitude of
the daily explosion of data has led to the emergence of the Big Data paradigm.

There is therefore a large amount of data being produced and disseminated throughout the world
on a daily basis. Although this vast amount of data may appear to be meaningful in decision-making
processes, in reality, people are overwhelmed by this continuous flow of data [2,3]. With the evolution
of technology and the exponential growth of information available, the population is starting to
struggle to find what they need or prefer.

The value of data is not immediate, and it must travel a long way before it reaches its highest
purpose, gaining incremental value as it goes. The data flow is characterized by a variety of steps
required to transform low-value inputs, the raw data, into high-value outputs, actionable information
and useful insights. Manually processing existing data is tedious, inefficient, and often leads to errors.
In addition, it is difficult to classify, filter and then recommend from such a huge set of data. A more
efficient approach is to automatically process user’s opinions, features, and other related data in order

Appl. Sci. 2020, 10, 5510; doi:10.3390/app10165510 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-2326-2153
https://orcid.org/0000-0001-7276-952X
https://orcid.org/0000-0001-6457-0756
https://orcid.org/0000-0003-4121-6169
http://www.mdpi.com/2076-3417/10/16/5510?type=check_update&version=1
http://dx.doi.org/10.3390/app10165510
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 5510 2 of 17

to predict a new set of related products. Recommendation systems have appeared as a solution to this
problem and have been receiving a great deal of attention and use from the scientific community in
recent years.

Recommender systems are information search and filtering tools that help users to discover
relevant items and to make better choices while searching for products or services such as movies,
books, vacations, or electronic products. The fundamental goal of a recommender system is to reduce
the information overload and to provide personalized suggestions that can assist the users in the
decision-making process [4,5]. Figure 1 shows the generic operation behind the recommendation
systems in a simplified way. However, these systems usually face certain limitations and challenges
due to the increasing demand of high-quality personalization and recommendation [4,6].

Figure 1. Illustration of the logical process of a recommendation system.

Recommendation systems have become a valuable asset regardless of the application domain.
Nowadays, Internet users turn to the WorldWideWeb for help in the planning and selection of many
everyday tasks, whether it is what music to listen to (Spotify), what consumer products to purchase
(Amazon, AliExpress), what movies to watch (Netflix) and so on. Furthermore, social networks such as
LinkedIn, YouTube and Facebook have also included recommendation technologies to suggest groups
to join, people to follow, videos to watch or posts to like [7].

Although the origins of recommender systems can be traced back to the extensive work in
cognitive science [8], approximation theory [9], information retrieval [10], forecasting theories [11],
and also have bonds to management science [12] and to consumer choice modeling in marketing [13],
recommender systems emerged as an independent research area in the mid-1990s when investigators
started focusing on recommendation problems that explicitly rely on the rating structure. In its most
basic formulation, the recommendation problem is reduced to the difficulty of determining ratings for
items that have not been seen by the user. Generally, this estimation is based on the ratings given by
the user to other items and on some other knowledge. Once it becomes possible to estimate the ratings
for the items that have not yet been rated, it will be feasible to recommend the items with the highest
estimated ratings to the user [4].

Being part of intelligent systems, recommender systems use several kinds of knowledge.
The knowledge needed to produce recommendations have four sources: from the user itself, from other
peer users of the system, from data regarding the items being recommended, and lastly from the
recommendation field itself, knowledge about how recommended items are applied and what needs
they satisfy [14].

Recommendation systems can be divided into three main categories [4]—Content-based
Recommendations, Collaborative Recommendations, and Hybrid Recommendations. In the first
approach, the user will be recommended items similar to those he/she enjoyed in the past. In turn,
in the collaborative approach, recommendations are made based on items consumed by users whose

Appl. Sci. 2020, 10, 5510 3 of 17

tastes and preferences are similar to that of the referred user. Finally, combining content-based and
collaborative recommendations leads to hybrid approaches, which are regularly applied, since both
types of recommendations can be complemented by one another [15].

Human beings have always sought opinions or advice on items through conversations with
friends, store staff, and even through the reading of comments on products, to help them in the
decision-making process. This is the basis of Collaborative Filtering, which uses other people’s
opinions to make a recommendation. Collaborative filtering techniques can be divided into two
categories: memory-based (user/item-based) and model-based [16]. Memory-based algorithms act
on the entire user/item matrix. They assume that users/items can be grouped together by similarity.
On the other hand, model-based techniques use a set of user assessments to generate an estimated
model, saving the parameters learned during training. Instead of using similarity measurements,
these algorithms are characterized by the creation of models [17].

Matrix Factorization [18], one of the techniques used in collaborative model-based filtering, is a
well-established algorithm in the recommendation system’s literature. It is a model that achieves a
decent performance in the task of predicting ratings, standing out the Principal Component Analysis
(PCA) and Singular Value Decomposition (SVD) models. But it turns out to be essentially a linear
model, making it impossible to capture complex nonlinear and intricate relationships that can be
predictive of users’ preferences [19].

Today, with the concept of deep learning becoming more important, several researchers have
begun to test its usability in a collaborative filtering approach in order to achieve better results [20].
For example, Van den Oord et al. made use of deep convolutional neural network to give music
recommendations [21]. Deep models can learn high-order features of input data which may be useful
for recommendation as indicated in Reference [22]. Autoencoders are a common building block of
Deep Learning architectures [20,23].

In this article, an autoencoder is used for collaborative filtering tasks with the aim of giving
product recommendations. An autoencoder is a neural network that learns to copy its input to its
output in order to encode the inputs into a hidden (and usually low-dimensional) representation [19].
Neural networks have proven to be capable of approximating any continuous function, making it
suitable for addressing the limitation of matrix factorization and enhancing the expressiveness of
matrix factorization [19]. A comparison of the results will also be made between the SVD and the
autoencoder using the Root Mean Square Error (RMSE) metric.

The organization of the remainder of the paper is as follows—Section 2 will present the related
work on collaborative filtering, autoencoders, and SVD. The methodology used in this study will
be presented in Section 3, where a small overview of the datasets used, the data preparation,
the architecture of the autoencoder as well as some evaluation metrics will be discussed. Section 4 will
present the main findings and their discussion. Finally, Section 5 concludes this article and points out
possible future work.

2. Related Work

In the context of recommendation systems, several solutions have emerged using collaborative
filtering to help users find items that meet their interests and also benefit different organizations and
sectors in order to captivate their customers.

In the literature several approaches can be found to achieve goals similar to this article. As an
example, R. YiBo and G. SongJie have implemented a recommendation system using an algorithm
based on SVD smoothing that predicts item ratings that users have not yet rated by employing SVD
technology, and then uses Pearson’s similarity correlation measurement to find neighbors for the target
users, and finally makes recommendations [24]. S. Badrul et al. propose and experimentally validate
a technique that has the potential to incrementally build SVD-based models and promises to make
the recommender systems highly scalable [25]. B. Qilong et al. propose a new approach combining a
clustering algorithm with an SVD algorithm that is widely used in the domain of image-processing into

Appl. Sci. 2020, 10, 5510 4 of 17

a collaborative filtering algorithm. Then they decompose the rating matrix with the SVD algorithm
and merge them into a new rating matrix to calculate the similarity between each pair of users.
At last, they take advantage of the similarity to find the nearest neighbors in the collaborative filtering
recommendation and predict the ratings of the items to make the recommendation [26].

However, most recommendation systems still face challenges in dealing with the enormous
volume, complexity and dynamics of data [27]. In order to address these issues, a number of researchers
have dedicated themselves to improving recommendation systems by integrating deep learning
techniques. The first attempts to use deep learning for recommendation systems began with the
use of restricted Boltzman machines (RBMs) [22]. However, several recent approaches have been
using autoencoders. For example, H. T. Dai et al. built a flexible Deep Autoencoder (DAE) model,
named FlexEncoder, that uses configurable parameters and unique features to analyze the parameter
influence on the prediction accuracy of recommender systems [28]. S. Suvash et al. propose AutoRec,
a novel autoencoder framework for collaborative filtering (CF). Empirically, AutoRec’s compact and
efficiently trainable model outperforms state-of-the-art CF techniques (biased matrix factorization,
RBM-CF and LLORMA) on the Movielens and Netflix datasets [29]. C. Sanxing et al. propose a
novel CF method that uses a stacked auto-encoder with denoising, an unsupervised deep learning
method, to extract the useful low-dimensional features from the original sparse user-item matrices [30].
O. Yuanxin et al. proposed an autoencoder based on collaborative filtering method, which provides
pre-training and stacking mechanisms. The experimental study on commonly used MovieLens datasets
have shown its potential and efficacy in achieving higher recall [31]. Another work developed, where
autoencoders were used, was that of Li, X., & She, J [32] who proposed a Bayesian generative model
called collaborative variational autoencoder (CVAE) that considers both rating and content for making
recommendations in multimedia scenarios. The model learns deep latent representations from content
data in an unsupervised manner and also learns implicit relationships between items and users from
both content and ratings. These experiments show that CVAE is able to significantly outperform the
state-of-the-art recommendation methods with more robust performance. Other work more similar
to this paper is that of Oleksii Kuchaiev & Boris Ginsburg [33] that proposes a model for the rating
prediction task in recommender systems, which significantly outperforms previous state-of-the art
models in the time-split Netflix dataset. Their model is based on a deep autoencoder with 6 layers and
is trained end-to-end without any layer-wise pre-training. They also propose a new training algorithm
based on iterative output re-feeding to overcome the natural sparseness of collaborate filtering.

Earlier this year, Zhang et al. performed a comparative analysis of the different autoencoder-based
recommender systems and came to the conclusion that the application of autoencoders to
recommendation systems is still at a preliminary stage, encouraging other researchers to pursue
this branch of research [27]. In this paper, we will develop a recommendation system based on an
autoencoder with a drop-out layer.

Studies using matrix factorization technique, such as SVD, present problems when dealing with
very sparse data or in large quantities. In an attempt to tackle these issues, as well as to produce a
system that can deliver better results, from those presented in the works related to autoencoders, this
paper proposes the use of an autoencoder with a drop-out layer.

3. Methodology

Machine learning and Data Mining (DM) are becoming increasingly important areas of
engineering and computer science and have been successfully applied to a wide range of problems in
science and engineering [34,35]. Machine Learning is the scientific field dealing with the construction of
computer systems that have the ability to adapt, learn and improve their performance in a given domain
through experience. On the other hand, DM is a multidisciplinary area that incorporates mathematical
functions, Machine Learning techniques, and statistical analysis to uncover hidden patterns or
rules and extract previously unknown and potentially meaningful knowledge [36]. DM techniques
include descriptive algorithms, for finding interesting patterns in the data, like associations, clusters,

Appl. Sci. 2020, 10, 5510 5 of 17

and subgroups [37], and predictive algorithms, that perform induction to make predictions of a
specific attribute, which results in models that can be used for regression and classification [36,38].

There are three main categories of DM strategies reported in the literature: supervised,
unsupervised, and semi-supervised learning. In supervised learning, a set of input variables named
training set is used to learn model parameters and predict a target or dependent variable. In
unsupervised learning, the target variable does not exist and no training set is used. In turn, DM
techniques are used to discover patterns, clusters, or relationships in the dataset. In semi-supervised
learning, the target variable exists but the value is only provided for a small amount of examples and
DM techniques are used to predict the values of missing target values or extract patterns, clusters,
or relationships in the dataset [39,40]. In this study we will use a neural network named autoencoder,
an unsupervised learning technique, based on a collaborative filtering method to create a product
recommendation system.

TensorFlow 2.0.0 [41] was used for the creation and training of the model. TensorFlow supports
both large-scale training and inference. In addition, it is flexible enough to support experimentation
and research into new Machine Learning models and system-level optimizations [42].

The DM process will follow the CRISP-DM Methodology (Cross Industry Standard Process for
Data Mining), one of the most popular methodologies used in DM projects worldwide. CRISP-DM is a
cyclic process, which is divided into six phases, namely, Business Understanding, Data Understanding,
Data Preparation, Modeling, Evaluation and Deployment. Figure 2 depicts the main stages of the
CRISP-DM lifecycle.

Figure 2. Stages of the CRISP-DM methodology for Data Mining (DM) processes.

The following subsections contain a detailed description of each stage of the CRISP-DM lifecycle.

3.1. Business Understanding

In recent years, consumers have begun to demand differentiated content from brands,
and today they are thrilled by technology, looking for high standards of innovation, sophistication,
and customisation. One of the strategies that companies can adopt to face this reality is the
implementation of recommendation systems. By combining user profile information with information
filtering and Machine Learning algorithms, recommendation systems have proven to be effective in
providing users with a more intelligent and proactive information service.

In online shopping, a better recommendation system can have a direct effect on the revenue of
the company, since the recommendations can have a significant impact on the purchase decisions of

Appl. Sci. 2020, 10, 5510 6 of 17

users [43]. Thus, this study aims to improve many aspects related to recommendation systems and the
way in which they affect human life.

At this stage of the project it is also important to analyze the main concerns and challenges
regarding the understanding of the application domain. Ethical aspects are one of the main concerns
surrounding recommendation systems. Research concerning the ethical issues related to these
systems is divided into different scientific areas, since it usually focuses on particular aspects of
the recommendation systems in a wide range of scenarios. At the same time, consumers are becoming
increasingly aware of their rights and privacy concerns are beginning to emerge. In this way,
most organizations exhibit some secrecy in disclosing the operational details of their recommendation
systems due to the concerns about violating the rights of their costumers. This makes it difficult
for researchers to acquire and discover more knowledge related to the functioning of these systems,
thus hindering the progress of recommendation systems.

Having a clear understanding of the business objectives is an important effort in order to ensure
that the DM process is carried out rigorously and that an efficient recommendation system is therefore
achieved. Hence, the objectives that guided this study, are the following:

• Increase the number of sales;
• Improve company’s revenue;
• Encourage engagement and activity on products and services;
• Gain competitive advantage;
• Calibrate user preferences;
• Make personalized recommendations;
• Find the recommendation algorithm and parameterization that leads to the highest overall

performance of the product recommendation system.

The first five objectives are related to the recommendation business goals. The improvement
of the quality of product recommendation systems is one of the most crucial aspects in the industry.
This translates into an increment of customer’s satisfaction as well as in the improvement of the
company’s profitability. The rest of the objectives set out are related to the objectives inherent to
the DM process. These objectives will provide substantial insight into the product recommendation
systems through the application and refinement of the DM techniques.

Hence, a project plan was designed to make an initial assessment of the techniques to be used in
the further stages of the project. Figure 3 details the steps to be executed in order to achieve the DM
and business goals.

Figure 3. Project plan of the study.

Appl. Sci. 2020, 10, 5510 7 of 17

3.2. Data Understanding

The data used in the present study corresponds to two MovieLens (ML) datasets. The first dataset,
MovieLens1M, contains 1 million ratings made by 6040 users to 3706 movies, while the second one,
MovieLens10M, contains 10 million ratings made by 69,878 users to 10,677 products. Each rating is an
integer that varies on a scale from 1 to 5, where 1 is bad and 5 is excellent. For the purpose of this article,
it is considered that the IDs of the movies are product IDs, since it is the goal of the recommendation
system (recommend products). Figure 4 shows the distribution of the quantity of products by a certain
number of ratings (A) and the total number of ratings for each scale value [1–5] (B). The sparsity of
the datatsets is 0.996. In addition, a dataset with 180249 products is also used, and its content consists
in the combination of 4 different datasets found on the Kaggle platform called Amazon, Macys and
Shop_norstrom (https://www.kaggle.com/PromptCloudHQ/innerwear-data-from-victorias-secret-
and-others), and Thrift Store (https://www.kaggle.com/mateuspgomes/brazil-thrift-stores-data).
As MovieLens datasets are the ones that have the product ratings, only those will be used for model
training. The dataset of the products will be used in the end in order to retrieve the information related
to the product and later pass it on to the user, as the final matrix produced by the model only contains
the product id. Hence, when the time comes to give recommendations to the user, this ID will be
located in the product dataset and its information will be returned.

Figure 4. Distribution ratings of the ML-1M dataset: (A) Distribution of the quantity of products by a
certain number of evaluations; (B) Total number of ratings for each scale value [1–5].

3.3. Data Preparation

The importance of the data preparation stage can not be overlooked as the value of DM relies
on it. This stage covers all the steps performed to construct and prepare the raw data into the final
dataset in order to be fed into the data modeling stage. These tasks include data transformation and
data cleaning. The first task carried out in relation to the two MovieLens datasets was a data treatment
in which items with no more than 20 reviews and users who had not carried out more than 20 reviews
were eliminated. The purpose of this selection was to improve the results, since collaborative filtering
needs data to avoid problems. Then, all the duplicated instances were identified and removed to avoid
ambiguity. In addition, all ratings were normalized, that is, the values were transformed into float
and restructured so that they were between the range of [−1, 1]. After this step, the scale is no longer
between [1–5] but between [0.20–1]. Finally, both MovieLens datasets were divided 80% for training
and 20% for testing. Table 1 shows the total number of users and items that remain after undergoing
the data preparation stage.

https://www.kaggle.com/PromptCloudHQ/innerwear-data-from-victorias-secret-and-others
https://www.kaggle.com/PromptCloudHQ/innerwear-data-from-victorias-secret-and-others
https://www.kaggle.com/mateuspgomes/brazil-thrift-stores-data

Appl. Sci. 2020, 10, 5510 8 of 17

Table 1. Final number of items and users of datasets MovieLens.

ML-1M ML-10M

Items 3043 8940

Users 6022 69,838

3.4. Modelling

Ultimately, it is imperative to apply modeling techniques and provide their parameters to the
learning dataset in order to determine which model performs best in the evaluation stage.

As mentioned earlier, this study will make use of an autoencoder. In this section, the autoencoder
architecture used for the product recommendation system will be introduced. In addition, a brief
explanation of autocoders and how they work will be presented as well as the parameters used to
achieve the results featured in Section 4.

3.4.1. Autoencoder Overview

An autoencoder is an unsupervised deep learning method that learns how to effectively compress
and encode data, and then reconstructs data from a reduced encoded representation to a representation
that is identical to the original input. In another words, an autoencoder is a neural network that applies
back-propagation, setting the target values (outputs) to be equal to the inputs [30,44].

Hence, an autoencoder is typically a neural network of three layers, as demonstrated in Figure 5.

Figure 5. Typical structure of an autoencoder.

The layers that constitute a basic autoencoder are: input layer, hidden layer, and output layer.
The input layer and the hidden layer construct an encoder. The hidden layer and the output layer
construct a decoder. Between these two, there is a code. Their description is the following the following:

• Encoder has the function of compressing input information into a different latent space;
• Code is a part of the network that represents the compressed input which is fed to the decoder;
• Decoder does the reverse work and reconstructs the original information, moving from the latent

space to the original information space.

The encoder encodes the high-dimensional input data x = {x1, x2, ..., xn} into a low dimensional
hidden representation h = {h1, h2, ..., hm} by a function f :

h = f (x) = S f (Wx + b), (1)

Appl. Sci. 2020, 10, 5510 9 of 17

where S f is an activation function, n is the number of neurons in the input layer, and m is the number
of neurons in the hidden layer. The encoder is parameterized by a m× n weight matrix W and a bias
vector b ∈ Rm [27,44].

Then, the decoder maps the hidden representation h back to a reconstruction x′ = {x′1, x′2, ..., x′n}
by a function g:

x′ = g(h) = Sg(W ′h + b′), (2)

where Sg represents the decoder’s activation function. The decoder’s parameters are comprised of a
bias vector b′ ∈ Rn and a n×m weight matrix W ′ [27,44].

The purpose of an autoencoder is to obtain d dimensional representation of data such that an
error measure between x and u(x) = decode(encode(x)) is minimized [45].

Autoencoders have been widely used for its outstanding performance in data dimensionality
reduction, noise cleaning, feature extraction, and data reconstruction [46].

Over the years, recommendation systems have been extensively used to deliver personalized
suggestions on products and/or services to users. Nonetheless, most recommendation systems still
face challenges in dealing with the enormous volume and complexity of the data. In order to address
this challenge, as discussed in Section 2, several researchers have dedicated their investigation to
improving recommendation systems by integrating deep learning techniques. The scientific literature
contains recent studies that demonstrate a high efficiency of autoencoders in information retrieval
and recommendation tasks. Hence, constructing a recommendation system based on an autoencoder
would improve the accuracy of the recommendations due to a clearer understanding of the needs and
characteristics of the users given its ability to learn the non-linear user-item relationship efficiently and
to encode complex abstractions into data representations [27].

3.4.2. Initialization of Parameters

By analyzing several articles related to autoencoders in the literature, it was possible to identify
that each one uses a different set of parameters. Almost every author claims that, in a certain respect,
a particular algorithm or parameterisation is better than another, which makes it difficult to choose
between them. At the moment, it is difficult to find a detailed and objective comparison of the different
approaches and the available results are sometimes paradoxical. Hence, the choice was made by “trial
and error,” that is, by making an exhaustive experimenting with different criteria until the solution
that best suits each person’s scenario was found. Table 2 depicts the parameters chosen for the model.

The considerations and decisions that led to the parameters selected were the following:

• For the loss function, because we are not dealing with a classification problem where binary
cross-entropy can be used, the loss function used had to be the Mean Square Error (MSE);

• The selection of the optimizer had to do with the fact that ADAM presents itself as one of the best,
as it is very fast, requires little memory and is ideal for handling large amounts of data;

• The dropout is only used during training, and is then automatically disabled during execution;
• Finally, the choice of the activation function was based on the range to which the network values

went, as well as the results of the experiments performed while running the autoencoder with
other functions that were tested, but the loss and RMSE results were worse than the ones obtained
with Tanh for the encoder layer, latent space and Linear for the output layer.

Table 2. Parameters of the autoencoder model.

Activation Function Tanh for encoder layer, latent space and Linear for output layer

Optimizer Adam with a learning rate of 0.0001

Loss Function Mean Square Error (MSE)

Dropout 0.1

Appl. Sci. 2020, 10, 5510 10 of 17

3.4.3. Architecture

Figure 6 shows the final architecture used to obtain the results presented in Section 4.
The architecture is similar to the one shown in Figure 5, differentiating itself by the addition of another
layer—the dropout layer. This layer prevents model overfitting and provides a way to efficiently
combine several different neural network architectures exponentially. The term dropout refers to the
removal of units, both hidden and visible, from the neural network [47]. By dropping a unit, we mean
temporarily removing it from the network, along with all its incoming and outgoing connections,
as shown in Figure 7.

Figure 6. Architecture of the proposed model.

Figure 7. Dropout neural network model.

3.5. Evaluation

The recommenders for online retailing shops can be evaluated through classification accuracy
metrics. Further aspects that extend beyond the accuracy that recommendation systems typically
need to be optimized are related to the technical performance and life-cycle of the system, such as
responsiveness, scalability, reliability, maintenance, among others [48,49]. Coverage, confidence, trust,
and security are other aspects that should be considered [49,50]. Measuring the different aspects of a
recommendation system is a broad and demanding task beyond the scope of the study presented in
this article. The metrics used to measure the accuracy of the recommendation system are divided into
metrics of statistical precision and precision of decision support. The former evaluates the accuracy of
a filtering technique by comparing the expected evaluations with the actual user evaluation, the others
see the prediction procedure as a binary operation that distinguishes good items from those that are
not good [51]. That is, if we have a rating scale of 1 to 5, items that have a rating greater than 4 can be
considered as relevant and the rest as irrelevant [41].

Appl. Sci. 2020, 10, 5510 11 of 17

In this model, the statistical accuracy metric used was the RMSE. This attaches greater importance
to larger absolute errors:

RMSE =

√
1
n ∑

u,i
(pu,i − ru,i)2, (3)

where p(u, i) is the expected evaluation for user u in item i, r(u, i) is the actual evaluation of the user,
and n is the total number of evaluations in the set of items. The lower the RMSE, the more accurate the
recommendation mechanism will be when predicting user reviews. The decision support accuracy
metrics used were precision and recall. Precision is obtained from the fraction of recommended items
that are relevant to the user [41]. The calculation of this is presented in the following equation:

Precision =
TP

TP + FP
=

TP
REC

. (4)

This represents the number of recommended items that are of interest to the user in relation to the
set of all items recommended to them. The recall can be defined as the fraction of relevant items that
are also part of the recommended item set [41]. That is, it indicates the number of items of interest to
the user that are recommended, as can be seen from the following equation:

Recall =
TP

TP + FN
=

TP
REL

. (5)

4. Results and Discussion

Figure 8 shows the performance of the model using the ML-1M dataset. In terms of loss and
val_loss, they are decreasing over each epoch reaching a point where they begin to stabilize. There is
no intersection of the loss curve with that of val_loss because when the dropout layer is added, it only
acts on the training dataset, leading to the difference that can be observed between them. If this layer
had not been added, the result would be an overfitted model as shown in Figure 9.

Figure 10 shows the loss model of the ML-10M dataset. When analyzing the figure, we can
observe a behavior similar to that of Figure 8, but the loss and val_loss present a lower value.

Figure 11 demonstrates the growth of precision and recall values throughout each epoch.
The accuracy/recall graph of the ML-10M dataset has a structure similar to that shown in figure
below. It was considered a threshold of 0.6 for both metrics. With these values and those of RMSE
presented in Table 3, it can be deduced that the model is having a good behavior towards the data,
thus being able to provide recommendations, more accurate, that go against the interest of the user.

Figure 8. Model loss autoencoder ML-1M.

Appl. Sci. 2020, 10, 5510 12 of 17

Figure 9. Overfit of the model.

Figure 10. Model loss autoencoder ML-10M.

Figure 11. Precision and Recall of ML-1M.

More layers were added to the autoencoder to check if the results could be better. In the
experiment, only one layer was added and then, in a second phase, two layers were tested. The number
of epochs and batch size remained the same and, with the exception of the number of neurons,

Appl. Sci. 2020, 10, 5510 13 of 17

all parameters maintained the same values. For each new layer, 1000 neurons were removed.
Table 3 shows the results obtained.

Table 3. Comparison of Root Mean Square Error (RMSE) with a different layer number in
the autoencoder

RMSE

ML-1M ML-10M

1Layer + 1Latent_Space 0.029 0.010

2layers + 1Latent_Space 0.038 0.012

3Layers + 1Latent_Space 0.050 0.015

As we can analyze, with a greater number of layers in the autoencoder, for both datasets,
the RMSE value tends to increase. Thus, it is not justified to consume more memory in order to
use a greater number of layers if in the end we get a bigger error. Therefore, the choice of architecture
presented in Figure 6.

Table 4 shows the comparison of RMSE results between the created autoencoder model and the
SVD. The SVD results were obtained using Surprise [52] and the same data treatment was performed.

Table 4. RMSE comparison of autoencoder and Singular Value Decomposition (SVD) model

RMSE

ML-1M ML-10M

SVD 0.184 0.176

Autoencoder 0.029 0.010

When analyzing these results, we can confirm that with the autoencoder we obtain better results
compared to the SVD. Since the datasets are very sparse and we are using a collaborative filtering
approach, we would expect problems to arise, but as we can see from the results, the autoencoder
model has managed to overcome them. The fact that the RMSE decreases further in the ML-10 M
suggests that the autoencoder had no difficulty in acting against a large set of data.

To conclude this evaluation of the results, in Figure 12, 10 products are presented which the user
has already evaluated with a high rating. These are displayed in order to have a short comparison
with the 10 products suggested by the model, shown in Figure 13.

Figure 12. Ten reviews of products given by the user.

Appl. Sci. 2020, 10, 5510 14 of 17

Figure 13. Ten suggestions for products provided by the model.

5. Conclusions and Future Work

Retail organisations are under constant pressure to find new ways to respond to the progressive
changes in the marketplace while at the same time meeting the increasingly challenging needs of
their customers. Over the years, consumers have become more and more demanding, and today they
are fascinated by all kinds of technology, seeking new ways of innovation, sophistication and a high
degree of personalisation. Faced with this reality, organizations need to be prompt and effective in
pursuing and creating new ways of attracting consumers through innovation in the way that they meet
consumers’ needs and act before the market in order to increase sales and loyalty of their customers,
thereby achieving competitive advantages.

One of the strategies that companies can adopt is the implementation of recommendation systems.
The suggestion of products that meet the tastes and preferences of users makes recommendation
systems an effective means of increasing revenues, offering companies a higher source of income and
competitive advantage over their competitors.

Although recommendation systems have been around for quite some time and several companies
and researchers have been working on the subject, as the vast majority of today ’s customers belong to
a young group known as Generation Y or Millennials, which is characterized by an increased use of
internet and technology, recommendation systems require constant innovation and improvement.

Hence, this study focus on finding effective ways to develop successful product recommendations.
We found that the use of autoencoders for recommendation systems has shown great potential.
In this paper, we present and implement an autoencoder model in order to obtain efficient product
recommendations. In addition, we made a comparison of this approach with one of the techniques
widely used for the purposes of recommendation systems, the Singular Value Decomposition (SVD).
Although the SVD was faster in execution time, it was found that the autoencoder presented lower
RMSE values. It was also possible to identify that the autoencoder performed better with a larger
dataset, proving, once again, that collaborative filtering is more effective when faced with more data.
The importance of using a dropout on the neural network was also presented, thus avoiding overfitting.

Collaborative filtering presents its limitations and ends up not working well if it is not faced
with a reasonable amount of data, or if there are users with very different preferences from the others
because this filtering is based on the similarity of users. In addition to these problems, this type of
filtering is very closely linked to an external factor, the interaction of users with the platform that
makes use of the product recommendation system, because it depends on the explicit feedback, that is,
the user’s reviews of the products. As the method presented in this paper is based on this type of
filtering, it also presents the same problems. In order to solve some of these vulnerabilities, in future
work, it would be a good idea to use hybrid filtering to make greater use of different algorithms
and to inspect if the results of the autoencoder would be better. Another idea would be to check
how the model behaves in the face of new datasets. Finally, it would be interesting not only to make
recommendations about products or services, but also to make recommendations for discount coupons,
taking into account the products to which the users have expressed interest, thereby increasing the
number of sales, the customer’s satisfaction, and the confidence bond with the company, while also
offering competitive advantage.

Appl. Sci. 2020, 10, 5510 15 of 17

Author Contributions: Conceptualization, D.F., S.S., A.A., and J.M.; methodology, D.F., S.S., A.A., and J.M.;
software, S.S.; validation, A.A., and J.M.; formal analysis, D.F.; investigation, D.F., S.S., A.A., and J.M.; resources,
A.A., and J.M.; data curation, D.F., S.S., A.A., and J.M.; writing—original draft preparation, D.F., and S.S.;
writing—review and editing, D.F.; visualization, D.F., and S.S.; supervision, A.A., and J.M.; project administration,
J.M.; funding acquisition, J.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research has been supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units
Project Scope: UIDB/00319/2020.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CF Collaborative Filtering
CRISP-DM Cross Industry Standard Process for Data Mining
CVAE Collaborative Variational Autoencoder
DAE Deep Autoencoder
DM Data Mining
ML MovieLens
MSE Mean Square Error
PCA Principal Component Analysis
RBM Restricted Boltzman Machines
RMSE Root Mean Square Error
SVD Singular Value Decomposition

References

1. Zaslavsky, A.; Perera, C.; Georgakopoulos, D. Sensing as a service and big data. arXiv 2013, arXiv:1301.0159.
2. Brandão, A.; Pereira, E.; Esteves, M.; Portela, F.; Santos, M.F.; Abelha, A.; Machado, J. A benchmarking

analysis of open-source business intelligence tools in healthcare environments. Information 2016, 7, 57.
[CrossRef]

3. Cardoso, L.; Marins, F.; Portela, F.; Santos, M.; Abelha, A.; Machado, J. The next generation of interoperability
agents in healthcare. Int. J. Environ. Res. Public Health 2014, 11, 5349–5371. [CrossRef] [PubMed]

4. Adomavicius, G.; Tuzhilin, A. Toward the next generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 2005, 17, 734–749. [CrossRef]

5. Said, A.; Bellogín, A. You are What You Eat! Tracking Health Through Recipe Interactions. In Proceedings
of the 6th Workshop on Recommender Systems and the Social Web (RSWeb 2014), Foster City, CA, USA,
6 October 2014.

6. Miranda, R.; Ferreira, D.; Abelha, A.; Machado, J. Intelligent nutrition in healthcare and continuous care.
In Proceedings of the 2019 International Conference in Engineering Applications (ICEA), Azores Island, Portugal,
8–11 July 2019; pp. 1–6.

7. Ge, M.; Elahi, M.; Fernaández-Tobías, I.; Ricci, F.; Massimo, D. Using tags and latent factors in a
food recommender system. In Proceedings of the 5th International Conference on Digital Health 2015,
Florence, Italy, 18–20 May 2015; pp. 105–112.

8. Rich, E. User modeling via stereotypes. Cogn. Sci. 1979, 3, 329–354. [CrossRef]
9. Powell, M.J.D. Approximation Theory and Methods; Cambridge University Press: Cambridge, UK, 1981.
10. Salton, G. Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer;

Addison-Wesley: Upper Saddle River, NJ, USA, 1989; Volume 169.
11. Armstrong, J.S. Principles of Forecasting: A Handbook for Researchers And Practitioners; Springer Science &

Business Media: Berlin/Heidelberg, Germany, 2001; Volume 30.
12. Murthi, B.; Sarkar, S. The role of the management sciences in research on personalization. Manag. Sci. 2003,

49, 1344–1362. [CrossRef]
13. Lilien, G.L.; Kotler, P.; Moorthy, K.S. Marketing Models; Prentice Hall: Upper Saddle River, NJ, USA, 1992.

http://dx.doi.org/10.3390/info7040057
http://dx.doi.org/10.3390/ijerph110505349
http://www.ncbi.nlm.nih.gov/pubmed/24840351
http://dx.doi.org/10.1109/TKDE.2005.99
http://dx.doi.org/10.1207/s15516709cog0304_3
http://dx.doi.org/10.1287/mnsc.49.10.1344.17313

Appl. Sci. 2020, 10, 5510 16 of 17

14. Felfernig, A.; Burke, R. Constraint-based recommender systems: Technologies and research issues.
In Proceedings of the 10th International Conference on Electronic Commerce, Innsbruck, Austria,
19–22 August 2008; pp. 1–10.

15. Costa, A.; Guizzardi, R.; Guizzardi, G.; Pereira Filho, J. COReS: Context-aware, Ontology-based
Recommender system for Service recommendation. In Proceedings of the 19th International Conference on
Advanced Information Systems Engineering (CAISE), Trondheim, Norway, 11–15 June 2007.

16. Bobadilla, J.; Ortega, F.; Hernando, A.; Gutiérrez, A. Recommender systems survey. Knowl.-Based Syst. 2013,
46, 109–132. [CrossRef]

17. Breese, J.S.; Heckerman, D.; Kadie, C. Empirical analysis of predictive algorithms for collaborative filtering.
arXiv 2013, arXiv:1301.7363.

18. Koren, Y.; Bell, R.; Volinsky, C. Matrix factorization techniques for recommender systems. Computer 2009,
42, 30–37. [CrossRef]

19. Zhang, A.; Lipton, Z.C.; Li, M.; Smola, A.J. Dive into Deep Learning. 2020. Available online: https://d2l.ai
(accessed on 10 May 2020).

20. Bobadilla, J.; Alonso, S.; Hernando, A. Deep Learning Architecture for Collaborative Filtering Recommender
Systems. Appl. Sci. 2020, 10, 2441. [CrossRef]

21. Van den Oord, A.; Dieleman, S.; Schrauwen, B. Deep content-based music recommendation. In Advances in
Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2013; pp. 2643–2651.

22. Salakhutdinov, R.; Mnih, A.; Hinton, G. Restricted Boltzmann machines for collaborative filtering.
In Proceedings of the 24th International Conference on Machine Learning, Corvalis, OR, USA,
20–24 June 2007; pp. 791–798.

23. Haghighi, P.S.; Seton, O.; Nasraoui, O. An Explainable Autoencoder For Collaborative Filtering
Recommendation. arXiv 2019, arXiv:2001.04344.

24. Ren, Y.; Gong, S. A collaborative filtering recommendation algorithm based on SVD smoothing. In
Proceedings of the 2009 Third International Symposium on Intelligent Information Technology Application,
Nanchang, China, 21–22 November 2009; Volume 2, pp. 530–532.

25. Sarwar, B.; Karypis, G.; Konstan, J.; Riedl, J. Incremental singular value decomposition algorithms for highly
scalable recommender systems. In Proceedings of the Fifth International Conference on Computer and
Information Science, Research Triangle Park, NC, USA, 8–13 March 2002; Volume 1, pp. 27–28.

26. Ba, Q.; Li, X.; Bai, Z. Clustering collaborative filtering recommendation system based on SVD algorithm.
In Proceedings of the 2013 IEEE 4th International Conference on Software Engineering and Service Science,
Beijing, China, 23–25 May 2013; pp. 963–967.

27. Zhang, G.; Liu, Y.; Jin, X. A survey of autoencoder-based recommender systems. Front. Comput. Sci. 2020,
14, 430–450. [CrossRef]

28. Dai Tran, H.; Hussain, Z.; Zhang, W.E.; Dang Khoa, N.L.; Tran, N.H.; Sheng, Q.Z. Deep Autoencoder for
Recommender Systems: Parameter Influence Analysis. arXiv 2018, arXiv:1901.00415.

29. Sedhain, S.; Menon, A.K.; Sanner, S.; Xie, L. Autorec: Autoencoders meet collaborative filtering. In
Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015.

30. Cao, S.; Yang, N.; Liu, Z. Online news recommender based on stacked auto-encoder. In Proceedings of the
2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS), Wuhan, China,
24–26 May 2017; pp. 721–726.

31. Ouyang, Y.; Liu, W.; Rong, W.; Xiong, Z. Autoencoder-based collaborative filtering. In Proceedings of
the International Conference on Neural Information Processing, Kuching, Malaysia, 3–6 November 2014;
pp. 284–291.

32. Li, X.; She, J. Collaborative variational autoencoder for recommender systems. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada,
13–17 August 2017; pp. 305–314.

33. Kuchaiev, O.; Ginsburg, B. Training deep autoencoders for collaborative filtering. arXiv 2017,
arXiv:1708.01715.

34. Aqra, I.; Abdul Ghani, N.; Maple, C.; Machado, J.; Sohrabi Safa, N. Incremental Algorithm for Association
Rule Mining under Dynamic Threshold. Appl. Sci. 2019, 9, 5398. [CrossRef]

http://dx.doi.org/10.1016/j.knosys.2013.03.012
http://dx.doi.org/10.1109/MC.2009.263
https://d2l.ai
http://dx.doi.org/10.3390/app10072441
http://dx.doi.org/10.1007/s11704-018-8052-6
http://dx.doi.org/10.3390/app9245398

Appl. Sci. 2020, 10, 5510 17 of 17

35. Neto, C.; Brito, M.; Lopes, V.; Peixoto, H.; Abelha, A.; Machado, J. Application of data mining for the
prediction of mortality and occurrence of complications for gastric cancer patients. Entropy 2019, 21, 1163.
[CrossRef]

36. Ferreira, D.; Peixoto, H.; Machado, J.; Abelha, A. Predictive Data Mining in Nutrition Therapy. In Proceedings
of the 2018 13th APCA International Conference on Automatic Control and Soft Computing (CONTROLO),
Azores, Portugal, 4–6 June 2018; pp. 137–142.

37. Singh, H.; Kaswan, K.S. Clinical decision support systems for heart disease using data mining approach.
Int. J. Comput. Sci. Softw. Eng. 2016, 5, 19.

38. Ribeiro, A.; Portela, F.; Santos, M.; Abelha, A.; Machado, J.; Rua, F. Patients’ Admissions in Intensive Care
Units: A Clustering Overview. Information 2017, 8, 23. [CrossRef]

39. Krishnaiah, V.; Narsimha, G.; Chandra, N.S. A study on clinical prediction using Data Mining techniques.
Int. J. Comput. Sci. Eng. Inf. Technol. Res. 2013, 1, 239–248.

40. Iavindrasana, J.; Cohen, G.; Depeursinge, A.; Müller, H.; Meyer, R.; Geissbuhler, A. Clinical data mining:
A review. Yearb. Med. Inform. 2009, 18, 121–133.

41. TensorFlow. About TensorFlow. Available online: https://www.tensorflow.org/ (accessed on 24 May 2020).
42. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.

Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX symposium
on operating systems design and implementation (OSDI 16), Savannah, GA, USA, 1–4 November 2016;
pp. 265–283.

43. Zanker, M.; Bricman, M.; Gordea, S.; Jannach, D.; Jessenitschnig, M. Persuasive online-selling in quality
and taste domains. In Proceedings of the International Conference on Electronic Commerce and Web
Technologies, Kraków, Poland, 5–7 September 2006; pp. 51–60.

44. Nurmaini, S.; Darmawahyuni, A.; Sakti Mukti, A.N.; Rachmatullah, M.N.; Firdaus, F.; Tutuko, B.
Deep Learning-Based Stacked Denoising and Autoencoder for ECG Heartbeat Classification. Electronics
2020, 9, 135. [CrossRef]

45. Hinton, G.E.; Zemel, R.S. Autoencoders, minimum description length and Helmholtz free energy. In Advances
in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 1994; pp. 3–10.

46. Santana, M. Deep Learning para Sistemas de Recomendação (Parte 1)-Introdução. 2018. Available
online: https://medium.com/data-hackers/deep-learning-para-sistemas-de-recomenda%C3%A7%C3%
A3o-parte-1-introdu%C3%A7%C3%A3o-b19a896c471e (accessed on 12 May 2020).

47. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

48. Jannach, D.; Zanker, M.; Felfernig, A.; Friedrich, G. Recommender Systems: An Introduction; Cambridge
University Press: Cambridge, UK, 2010.

49. Schröder, G.; Thiele, M.; Lehner, W. Setting goals and choosing metrics for recommender system evaluations.
In Proceedings of the UCERSTI2 Workshop at the 5th ACM Conference on Recommender Systems, Chicago,
IL, USA 23–27 October 2011; Volume 23, p. 53.

50. Herlocker, J.L.; Konstan, J.A.; Terveen, L.G.; Riedl, J.T. Evaluating collaborative filtering recommender
systems. ACM Trans. Inf. Syst. (TOIS) 2004, 22, 5–53. [CrossRef]

51. Isinkaye, F.; Folajimi, Y.; Ojokoh, B. Recommendation systems: Principles, methods and evaluation.
Egypt. Inform. J. 2015, 16, 261–273. [CrossRef]

52. Hug, N. Available online: http://surpriselib.com/ (accessed on 15 June 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/e21121163
http://dx.doi.org/10.3390/info8010023
https://www.tensorflow.org/
http://dx.doi.org/10.3390/electronics9010135
https://medium.com/data-hackers/deep-learning-para-sistemas-de-recomenda%C3%A7%C3%A3o-parte-1-introdu%C3%A7%C3%A3o-b19a896c471e
https://medium.com/data-hackers/deep-learning-para-sistemas-de-recomenda%C3%A7%C3%A3o-parte-1-introdu%C3%A7%C3%A3o-b19a896c471e
http://dx.doi.org/10.1145/963770.963772
http://dx.doi.org/10.1016/j.eij.2015.06.005
http://surpriselib.com/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Methodology
	Business Understanding
	Data Understanding
	Data Preparation
	Modelling
	Autoencoder Overview
	Initialization of Parameters
	Architecture

	Evaluation

	Results and Discussion
	Conclusions and Future Work
	References

