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Abstract: Earthen heritage represents an important legacy regarding construction history and 16 

technological development, with a significant cultural value that must be preserved. According to 17 

UNESCO, around 10% of the World Heritage is built using earth, and 57% of these heritage structures 18 

are in danger. Although the interest regarding earthen heritage has grown in the last few years, there is 19 

still a significant lack of knowledge in terms of material characterization, especially from conservation 20 

science point-of-view. In particular, tests regarding water absorption are always difficult to perform with 21 

a material that changes completely when in contact with water. Indeed, due to the presence of clay 22 

particles, a normal capillarity test is almost impossible to perform. Moreover, water is responsible for a 23 

significant number of degradation phenomena often found in earthen heritage. As a result, there is an 24 

urgent need to develop suitable water repellent treatments and to evaluate their efficiency. For this reason, 25 

this study focuses on the contact sponge method to assess water absorption rates for adobe and for 26 

rammed earth specimens treated with three different water repellents – siloxane, linseed oil, and beeswax. 27 

Two sets of specimens were prepared and tested, showing that this method can represent an effective way 28 

to measure initial water absorption in earthen materials, and promising results from the tested water 29 

repellent treatments were found.  30 

 31 
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1. Introduction 34 

Using earth as a construction material is a millenary practice. Vernacular architecture, as well as 35 

archaeological sites found in North Africa, Middle East or South America show how ancient 36 

civilizations used earth to build houses and monuments [1]. Many different types of earthen 37 

construction technologies (e.g. adobe and rammed earth) have been developed based on locally 38 

available materials (e.g. soil, sand, lime, natural fibers) and traditional know-how [2]. Adobe, 39 

also known as mudbrick, consists in molding a mixture of soil and water (workable enough to be 40 

molded) within a brick shape and is left to dry under the sun. In turn, rammed earth involves 41 

compacting soil into wooden formworks (Figure 1) [3]. So, different earthen building techniques 42 

can be found all around the world according to the geographical location, type of soils and local 43 

weather conditions [4].  44 

 45 

 46 

1.1. Earthen construction overview 47 

References to earthen architecture can be found in Vitruvius’ De Architectura, where the adobe 48 

technique is described, as a mixture of soil and straw, and it is considered as the most suitable 49 

raw material for construction. It also suggests the best period for the preparation of the bricks 50 

and advice for rain protection [1]. In Greece, references to adobe masonry were made by 51 

Pausania, who described the rebuilding of different structures after their destruction by the 52 

Spartans, and by Plinius who explained two types of earthen constructions: adobe and rammed 53 

earth [1]. One of the most remarkable examples of earthen construction is Chan Chan city – the 54 

largest adobe urban complex in the world, located on the northern coast of Peru (Figure 1) [5].   55 

  56 
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ADOBE RAMMED EARTH 

  
(a) (c) 

  
(b) (d) 

Figure 1: Earthen construction: (a) Adobe technique; (b) Chan Chan archaeological site, Peru (construction made 58 
with adobe blocks); (c) Rammed earth technique; (d) Paderne Castle, Portugal (construction made with rammed 59 

earth). 60 
 61 

In Portugal, earthen architecture has an important expression, being identified through a relevant 62 

heritage across the country. The origin of this type of construction in Portugal is Pre-historic, 63 

likely from the Middle Palaeolithic Age when the first modern humans began to settle down [6], 64 

[7]. 65 

Moreover, the Muslim occupation in the Iberian Peninsula for 500 years has left an important 66 

legacy in terms of architectural techniques. The etymological origin of the term rammed earth, 67 

which in Portuguese is taipa, comes from the Arab word tabíya. Also, the origin of the word 68 

adobe is from the Arab words tûb or atôb, which means brick [6]–[8]. Looking at the Portuguese 69 

territory, it is possible to identify different regions with different earthen construction techniques, 70 

see Figure 2. Adobe and rammed earth are more common on the coast and on the south. 71 
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 72 

Figure 2: Distribution of different earthen construction techniques in Portugal [7]. 73 
 74 

The soil used for constructions is constituted by mineral components, in which clay particles act 75 

as a binder once the soil is mixed with water [9]. In this phase, it acquires plasticity and 76 

cohesion. After being in contact with air, it dries and develops stiffness because of which it can 77 

be used as a construction material. Moreover, the dried state can be reversible: once it is mixed 78 

with water, it transforms back into a deformable and workable material [10]. This reversibility 79 

has advantages in terms of maintenance and the ability to reuse the material, but it represents a 80 

challenge in terms of conservation and durability. Earthen buildings with low maintenance, when 81 

exposed to environmental agents show more severe damage due to regular contact with water. 82 

Cracks, vegetation, detachment, material loss, efflorescence, and rising damp are some of the 83 

main degradation phenomena associated with water action (Figure 3) [11]. On earthen walls, the 84 

damages caused by water can affect the whole structure, since the base is susceptible to water 85 

infiltration, while the top and the faces are more vulnerable to rainwater impact [12]. 86 

  87 
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(a) 

 

(b) 

 

(c) 

Figure 3: Examples of degradation phenomena in earthen constructions: (a) Biological growth in a vernacular house 88 
in Quito, Ecuador; (b) Material loss in Fahraj Castle, Yazd, Iran: (c) Cracking in earthen plaster, Huaca de la Luna, 89 

Peru. 90 
 91 

In the last 30 years, the attention towards earthen heritage and its preservation has grown 92 

considerably. A significant number of publications, conferences, seminars, and round tables have 93 

been organized [13]. However, there is still a lack of knowledge regarding degradation 94 

phenomena and, consequently, on choosing the right treatment to be used [14], [15]. Following 95 

conservation theory and charters (essential as a background for any intervention in heritage) 96 

concepts as compatibility, reversibility and minimum intervention must be present as 97 

fundamental tools in the definition of any decision-making process [16], [17]. This means that 98 

most of the time, the selection of experimental tests to assess degradation phenomena and their 99 

causes, as well as the type of treatment to perform, is restricted to non-invasive techniques.  100 

Under laboratory conditions, multiple tests can be performed to understand the mechanical, 101 

chemical and physical properties that allow the characterization of materials and structural 102 

components. Nevertheless, most of these tests are either destructive or semi-destructive. Hence it 103 

is crucial to perform non-destructive tests, not only to select the products but also to select the 104 

right approach to determine the degradation phenomena in earthen heritage.  105 

 106 

1.2. Water absorption assessment in earthen materials 107 

Any porous material can absorb water in the liquid state by capillarity action due to surface 108 

tension and the adsorption forces of the pore wall. Pore size and matrix of the pore system 109 

influences the mechanism of capillary water absorption [18]. This is valid for materials such as 110 

stone, brick, cement and lime mortars, where pore size and distribution are the main factors for 111 

capillarity parameters. However, for earthen materials, the presence of clay affects the way water 112 
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uptake can be measured. The complexity of clay minerals and their interaction with water can be 113 

explained by its crystallography and ionic bonding. Looking at the basic formation of a clay 114 

mineral, it is usually constituted by layers of crystalline units of silicon-oxygen tetrahedron 115 

and/or aluminum or magnesium octahedron. Water is attracted by the negative charge in the clay 116 

surface, also by cations that connect layers, and by forming hydrogen bonding between the 117 

oxygen atoms of water and clay particles [19]. Due to this attraction, water encloses the clay 118 

particles in a phenomenon called double-layer; and as a result of this, clay acquires its plastic 119 

properties [19]. Furthermore, a critical aspect of clay behavior is related to its activity. The 120 

activity of clays was studied in 1948 by Skempton, who showed that it is possible to measure 121 

activity by calculating the ratio between the plasticity index and clay fraction content [20]. This 122 

author divided clay into three groups regarding their activity values as: (a) inactive clays (activity 123 

lower than 0.75); (b) normal clays (activity between 0.75 and 1.25); (c) active clays (activity 124 

higher than 1.25).  125 

The most common clay minerals found in earthen constructions are kaolinite, with an activity 126 

value of approximately 0.33 (in the inactive range); illite, with 0.90 activity (normal clay), and 127 

montmorillonite, with 1.5 activity index (considered as active clay) [20]. Knowing the type of 128 

clay and its activity can give crucial answers concerning clay interaction with water. Sampling 129 

for clay identification in an earthen material is essential not only for an extended comprehension 130 

of its constitution, but also to draw an accurate intervention plan. Besides mineralogical and 131 

chemical characterization, water absorption parameters can also provide useful insights into an 132 

earthen surface behavior. 133 

Conventional tests to evaluate water absorption by earthen materials that require a considerable 134 

amount of water to be performed become unviable. The literature concerning water absorption 135 

analysis in earthen-based specimens under laboratory conditions shows the use of capillarity tests 136 

[21], [22] in stabilized specimens. For example, if an adobe or rammed earth sample is prepared 137 

using a percentage of cement, lime or other stabilizers, it is possible to measure the capillarity 138 

coefficient [23], [24]. However, when dealing with non-stabilized earthen specimens, capillarity 139 

tests can produce irreversible damage and wrong results, since material loss index plays an 140 

important role (see section 4.1.). Even though changes in the test conditions can be done to 141 

improve the accuracy of measures, as using a paper filter and weighing the apparatus [25], the 142 
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damage of the specimens can be avoided using a less invasive test, particularly when dealing 143 

with earthen heritage samples. 144 

Other methods have been used in literature, such as placing specimens on top of a wet sand layer 145 

and registering the variation of weight [26]; or using a “wick” as an absorbent material in contact 146 

with the sample [27]. Although these methods seemed to work for the type of specimens studied, 147 

they have never been standardized and are complicated to replicate. Also, the Karsten tube 148 

method has been used [28]–[30] in laboratory and in situ conditions, showing that it can work, 149 

especially for evaluation of plasters. However, the amount of water required may represent a risk 150 

for more deteriorated samples. 151 

Since a correlation between laboratory tests and conservation practice is essential, in situ tests 152 

are necessary to establish a validated set of results. In terms of non-destructive methods to access 153 

the water absorption coefficient in porous materials, only two tests can be performed: Karsten 154 

tube and contact sponge method [31]. As mentioned before, Karsten tube may have some 155 

limitations in terms of the amount of water necessary, as well as degradation of the material 156 

under study. 157 

 158 

1.3. Surface protection of earthen materials 159 

Water being one of the main causes of earthen buildings degradation phenomena, societies have 160 

developed preventive methods since ancient times, namely the use of natural products as 161 

coatings to protect the constructions [32]. Several of these methods are still used in some 162 

countries and they constitute a critical source of knowledge that should not be neglected. Table 1 163 

presents a few examples of products used as a protective treatment. 164 

 165 

Table 1: Examples of natural coatings or natural mixed products applied as a water repellent treatment in earthen 166 
buildings. 167 

Country Water repellent Application method Reference 

Peru San Pedro Cactus Mixed with earthen mortar [33] 

Guinea Karite butter Mixed with earthen plaster [34] 

Ghana Locust bean fruit Applied on decorative earthen plaster [34] 

Cameroon Fish oil Mixed with earthen plaster [34] 

France Linseed oil Applied on top of earthen materials [35] 

Mali Arabic gum Mixed with earthen plaster [36] 

 168 
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A series of recent interventions in earthen heritage have used cement plasters as a solution for 169 

water protection resulting in disastrous consequences. Cracking, detachment, and efflorescences 170 

are some of the main degradation phenomena induced in earthen structures when covered by this 171 

type of plaster [37]. Cementitious coatings are incompatible with earthen materials, since it 172 

blocks the normal humidity cycles and promotes more damage in the original layers [36]. 173 

Another practice is to use lime or gypsum plasters, since both show high compatibility with 174 

earth-based mortars compared with cement-based mortars, although periodic maintenance is 175 

necessary to assure better results [38]. 176 

Regarding natural coatings, most countries that still have the tradition of using earth as a 177 

construction material (houses and monuments) employ local products as a waterproof layer. By 178 

observing nature and passing this important empirical knowledge through generations, a series of 179 

recipes with a description of products and procedures have survived till nowadays [32], [35].  180 

Besides natural products, a common recent practice is to apply synthetic coatings on earthen 181 

heritage interventions, mainly siloxane-based products [12], [39]. Although this procedure is 182 

widely studied for stone conservation, there is still a lack of scientific research for the case of 183 

earthen materials.  184 

 185 

1.4. Contact sponge method 186 

In literature, the contact sponge method is referred to as a valid non-invasive procedure to 187 

measure the initial rate of water absorption, giving important information on the behavior of the 188 

first layers of the analyzed material [40]. This technique was introduced by Tiano and Pardini in 189 

2004, in Italy, as an alternative to measure the initial water uptake by porous materials, using a 190 

quick, non-expensive, non-invasive and friendly method [41]. Although this test gives data 191 

regarding the first layers of a porous material, it is also possible to assess the capillarity 192 

absorption factor. Besides this, understanding the behavior of superficial layers in the 193 

conservation field is a fundamental aspect, since they are more exposed to degradation 194 

phenomena, and can provide key information regarding material characterization, deterioration 195 

patterns, and reaction to environmental conditions [41]. The other advantages of this method are 196 

the possibility of using it both in laboratory and in situ conditions, avoids sampling historical 197 

surfaces, and can be used as a monitoring process for conservation treatments [40]. This is also 198 
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essential for earthen heritage case studies since preventive conservation or maintenance is one of 199 

the most fundamental aspects of its preservation [14]. With such a simple and easy process like 200 

the contact sponge method, one can obtain crucial information about the conservation treatments 201 

and conservation assessment of a given cultural heritage building.  202 

Nevertheless, Vandevoorde [41] states that the contact sponge method for stones can be used as 203 

an additional or complementary test to the Karsten tube method. However, if the amount of 204 

water plays an important role when aiming for a non-destructive test, which can result in material 205 

loss or increment of other degradation phenomena, then the contact sponge method is the most 206 

useful tool. 207 

As mentioned before, besides material characterization, the contact sponge method can also be 208 

important to validate the efficiency of a product applied on a porous material surface [42]. A 209 

good example of this application is to characterize the efficiency and durability of a water 210 

repellent product applied to a surface, as it can provide solutions regarding initial water 211 

absorption of thinner top layers, where the repellent product acts.  212 

 213 

2. Research aim 214 

Water is one of the main causes of earthen material deterioration [43], [44]. As referred above, 215 

the presence and key role of clay in earthen constructions and its deep interaction with water 216 

affect decisively the cohesion among aggregates. Therefore, it is of paramount importance to 217 

understand the behavior and durability of earthen heritage when exposed to water (rain or high 218 

humidity levels), as well as the definition and evaluation of suitable testing techniques to 219 

measure water absorption.  220 

The purpose of this paper is to validate the innovative use of the contact sponge method as a non-221 

destructive technique to measure initial water absorption by earthen material and to further 222 

assess the efficacy of three water repellents (one synthetic and two natural).  223 

 224 

  225 
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3. Materials characterization  226 

In order to understand the possibility and reproducibility of using the contact sponge method in 227 

unstabilized earthen materials, adobe and rammed earth specimens were prepared, see Figure 4a 228 

and Figure 4b, respectively.  229 

 230 

 

(a) 

 

(b) 

Figure 4: Specimens prepared for the experimental part: (a) Adobe; (b) Rammed earth. 231 
 232 

Adobe blocks (3 x 15 x 7 cm3) from Montemor-o-Novo (South of Portugal) were cut into cubes 233 

of approximately 7 cm size. In the case of the rammed earth samples, soil collected in Cercal 234 

(South of Portugal) was used to prepare specimens in the laboratory according to traditional 235 

techniques, which involved compressing the earth manually into a wood formwork creating 236 

cubes of approximately 10 cm, and then left to dry for four weeks. A total of twenty-three 237 

specimens for each construction technique were prepared: three specimens for capillarity test; 238 

five specimens as reference; and fifteen specimens for water repellents application (five 239 

specimens for each of the three water repellents). Specimens were characterized in terms of 240 

porosity, as showed in Table 2. Porosity is usually assessed through the immersion of the 241 

specimen in water. Since it is impossible to perform this test with earthen materials, porosity (n) 242 

was calculated as follows [19]: 243 

 

𝑛 =
𝑒

1 + 𝑒
 (1) 

The void ratio (e) was determined from the equation of the moist unit weight ϒ (kN/m3) and by 244 

applying an inverse formulation [19]: 245 

 

e =
𝐺𝑠(1+𝑤)ϒw

𝛾
− 1   (2) 
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Where Gs is the specific gravity of soil solids (see Table 3), ϒw is the unit weight of water (9.81 246 

kN/m3), and w is the moisture content. 247 

 248 

Table 2: Specimens characterization. 249 
 Moisture content Void ratio ϒ (kN/m3) Porosity 

Adobe 2.43 3.61 19.22 0.78 

Rammed earth 0.64 1.13 20.08 0.53 

 250 

A set of geotechnical, mineralogical, and chemical analyses were performed to characterize both 251 

soils in terms of particle size distribution (LNEC E196:1966 [45]) and specific gravity of soil 252 

solids (Gs) NP-83:1965 [46]. In addition, Atterberg limits, namely Liquid limit (LL), Plastic limit 253 

(PL), and Plasticity index (IP) (NP-143:1969 [47] were assessed. The modified Proctor test 254 

(LNEC E197:1967 [48]) was also performed, from which the maximum dry density after 255 

compaction (ρd) was obtained (only for rammed earth specimens). Finally, X-ray diffraction 256 

(XRD) and energy dispersive X-ray fluorescence (EDXRF) were performed as well. The results 257 

of all these tests are reported in Table 3. 258 

XRD analysis was carried out using a Philips PW-1830 diffractometer with a Cu Kα radiation. 259 

The operation conditions were 40 kV, 50 mA, a step size of 0.02˚ 2θ in the 3-90˚ 2θ range, and a 260 

step time of 2.50 seconds. The samples were dried and grinded before testing. For EDXRF, three 261 

samples from each soil were analyzed using an ArtTAX X-ray spectrometer (Bruker), equipped 262 

with an Xflash (Si (Li)) detector, with 170 eV resolution, and operating with a molybdenum X-263 

ray source. Elemental composition was acquired through an average of three different points, 264 

using a tube voltage of 40 kV, a current intensity of 600 μA, and live time of 180 s. 265 

 266 

Table 3: Geotechnical, mineralogical, and chemical characterization of adobe and rammed earth soils. 267 
 Particle size distribution Gs Atterberg limits ρd (g/cm3) XRD EDXRF 

Adobe 

0% Gravel (>2 mm) 

58% Sand (0.06 – 2 mm) 

15% Silt (0.002 – 0.06 mm) 

27% Clay (<0.002 mm) 

2.63 

LL 29% 

PL 18% 

IP 11% 

- 
Quartz, albite, 

pargasite 

Al, Si, K, Ca, 

Cr, Mn, Fe, 

Cu, Zn, Ba, 

Pb 

Rammed 

earth 

41% Gravel (>2 mm) 

34% Sand (0.06 – 2 mm) 

13% Silt (0.002 – 0.06 mm) 

12% Clay (<0.002 mm) 

2.65 

LL 45% 

PL 24% 

IP 21% 

2.13 

Quartz, 

feldspar, 

muscovite, 

goethite, and 

kaolinite 

Al, Si, K, Ca, 

Cr, Mn, Fe, 

Cu, Zn, Ba 
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4. Experimental research  268 

In the experimental campaign, two different measurements were done, namely capillarity and 269 

contact sponge method test. These tests were conducted on both reference (without any 270 

treatments) and surface treated specimens (water repellent treatment) of the two materials. The 271 

capillarity test was performed to understand the behavior of earthen materials in permanent 272 

contact with a given volume of water. 273 

To evaluate the possibility of using the contact sponge to measure initial water absorption in 274 

earthen materials, two parameters were monitored, the superficial alteration due to contact with 275 

water (through visual inspection of both specimen surface and sponge to verify any material loss 276 

– see Figure 8) and the efficiency on measuring water absorption (comparing results before and 277 

after treatment). 278 

 279 

4.1. Water absorption by capillarity 280 

In order to understand the behavior of unstabilized earthen specimens in contact with a 281 

considerable amount of water, as well as to analyze the damage and material loss associated, a 282 

preliminary capillarity test was done. To determine the water absorption by capillarity, code 283 

EN15801 [21] was followed. Consequently, three adobe specimens and three rammed earth 284 

specimens were placed inside six separate plastic boxes with a bedding layer of absorbent paper 285 

on the bottom. Distilled water was added until saturation of the paper and each specimen was 286 

then placed on top of it. The specimens were weighed at regular time intervals. The test was 287 

done at laboratory conditions of 20 ˚C and 60% RH. 288 

In the first 30 minutes, the adobe specimens showed an increase of mass by 3%, after three hours 289 

an increase of 8%, and after 24 hours the weight increased by 10% (this latter value remained 290 

stable until 72 hours). In the case of rammed earth specimens, after 30 minutes an increase of 1% 291 

of the mass was observed, after three hours by 3%, and 5% after 24 hours (this latter value 292 

remained stable until 72 hours). However, during the test, some difficulties in weighting the 293 

specimens were observed, due to material loss in both earthen techniques. A considerable 294 

amount of soil remained onto the bedding layer in the bottom of the box, making impossible to 295 

achieve accurate weight values and leading to misleading percentages of gained weight during 296 

the test. After 24 hours in contact with water, adobe specimens started to crack and rammed earth 297 
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specimens showed deformation at the base, increasing the material loss. After 72 hours, the test 298 

was stopped, and the specimens were placed inside an oven at 100 ˚C to complete water 299 

evaporation. Specimens were again placed in laboratory conditions at 20 ˚C and 60% RH and 300 

weighted. The material loss was calculated by the difference of initial and final weight, with an 301 

average value of 6% for adobe specimens and 5% for rammed earth specimens. 302 

Figure 5 illustrates the main differences between the initial and final states of the six studied 303 

specimens. Additionally, it is possible to observe the material attached to the bottom layer and 304 

the development of cracks. 305 

 306 
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Figure 5: Different stages of capillarity test for each adobe and rammed earth specimen. 307 
 308 

4.2. Contact sponge method  309 

In order to not only assess the possibility of using contact sponge method to characterize initial 310 

water absorption on earthen materials but also to have a comparative study before and after 311 

treatment, three different water repellent products were applied on both adobe and rammed earth 312 

specimens. The selection of water repellent was based on the most commonly used products, 313 

according to the literature [15], [49], [50]. Therefore, one synthetic and two natural products 314 

were chosen: (a) commercial water repellent with a base of organosiloxane oligomers (Silo 112 315 

CTS®, Spain); (b) linseed oil; (c) beeswax (prepared in a solution of 3% of turpentine). 316 

Two layers of each product were applied on one surface (exposed surface in a wall) using a 317 

brush, to simulate a real case scenario. Each product was applied on five specimens of adobe and 318 

five specimens of rammed earth, having also five specimens from each building technique as a 319 

reference. The contact sponge test was performed seven days after applying the products to 320 

guarantee their curing and stabilization to environmental conditions.  321 

Contact sponge method was performed following the Italian Standard UNI 11432 [51], using 322 

five sponges and capsules for each set of five specimens tested (Figure 6). Preliminary tests were 323 

done in order to define the time in which the sponge must be in contact with the specimen 324 

(should be between 30 seconds and 3 minutes, according to the standard). For this experiment, 325 

60 seconds of contact time was chosen. Following the procedure, 5 ml of distilled water was 326 

poured on the top of each sponge. The weight of the sponge inside the capsule is taken before 327 

and after contact with each specimen. It is also important to mention that no pressure was applied 328 

on the sponge, since it is confined inside the plastic capsule and the experiment was always 329 

carried out in the vertical position to simulate in situ conditions (Figure 7). All specimens were 330 

kept inside a controlled environmental temperature of 20 ± 5˚C and relative humidity of 60 ± 331 

5%. Likewise, contact sponge tests were also carried out in the same conditions. 332 
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(a) 

 

 
(b) 

 
Figure 6: Contact sponge method apparatus: (a) adobe specimens; (b) rammed earth specimens. 333 

 334 

 
(a) 

 

 
(b) 

 

Figure 7: Example of contact sponge test procedure: (a) adobe specimen; (b) rammed earth specimen. 335 
 336 

5. Results and discussion 337 

Based on the visual inspections of specimens’ surface both adobe and rammed earth samples 338 

showed no evidence of material loss, deformation nor cracking. Moreover, through sponge 339 

inspection after performing the test, it was also observed the absence of any residual material on 340 

it. Additionally, water is barely absorbed by the specimens where products were applied. 341 

Observing the examples in Figure 8, reference specimens exhibit a clear mark by the contact 342 

between the wet sponge and the earthen material, whereas in case of specimens with water 343 

repellent treatment this mark is less evident or even non-existent.  344 

 345 
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 REFERENCE SILO 112 LINSEED OIL BEESWAX 

ADOBE 
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Figure 8: Visual inspection of adobe and rammed earth surfaces and sponge after performing the test. 346 
 347 

According to the results of the contact sponge test, Figure 9 reports the data of reference 348 

specimens, i.e., without any superficial treatment. In general, adobe specimens absorb less water 349 

than rammed earth specimens, which can be explained by the presence of less active clay. 350 

Besides that, the results show that for each earthen technique, one of the specimens clearly 351 

absorbed less water than the others. This may be due to irregularities of the surface, for instance, 352 

a greater number of voids, leading to less absorption of water. So, according to these data, it is 353 

possible to conclude that the surface plays an important role regarding the homogeneity of 354 

results. The average values of water absorption were thus computed excluding the two outliers, 355 

resulting in 0.42 g/cm2.sec (x10-3) for adobe (CoV of 8%) and 0.67 g/cm2.sec (x10-3) for rammed 356 

earth (CoV of 9%) specimens. 357 

 358 
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(a) (b) 

Figure 9: Water absorption for reference specimens: (a) adobe (A1 – A5); (b) rammed earth (R1 – R5). 359 
 360 

After applying the three water repellent products, the contact sponge method was performed 361 

under the same conditions and the results obtained are shown in Figure 10. As expected, 362 

specimens with water repellents revealed a reduction in water absorption, thus suggesting the 363 

effectiveness of these treatments. In the case of adobe specimens, all three treatments showed a 364 

similar reduction in water absorption, with a decrease of about 94%. This value represents not 365 

only a significant improvement in the water repellence capacity of the adobe surface, but it also 366 

indicates how efficient the contact sponge method can be. Also, in rammed earth specimens, the 367 

same impressive results are observed. There is a decrease of 97% of water absorption after 368 

applying Silo 112, 91% in the case of linseed oil, and 95% with beeswax.  369 

Small differences between the results of each product applied on different earthen techniques 370 

(adobe and rammed earth) may be due to surface and matrix interaction, penetration level and 371 

chemical bonding. However, results show that it is possible to measure water absorption with 372 

accuracy, even when dealing with such a heterogeneous material as earth. 373 
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(a)  (b) 

Figure 10: Contact sponge test results on specimens after treatment with water repellent products on: (a) adobe; (b) 375 
rammed earth (with the indication of average (μ) and standard deviation (σ) values). 376 

 377 

6. Conclusions 378 

Water absorption by any porous material is an important parameter to access, especially when 379 

dealing with cultural heritage buildings. Though in most cases like stone or mortar materials, the 380 

amount of water required to perform a capillarity test is a neglected factor, it plays an essential 381 

role in earthen materials. Results showed that water uptake by the capillarity method caused 382 

severe consequences in the material state. Material loss, cracking and physical alteration were 383 

observed in all tested specimens. Moreover, assessing the real water absorption curve became 384 

almost impossible due to the considerable amount of material loss (6%), which can mislead the 385 

results.  386 

Through a set of laboratory tests, it was possible to conclude that the contact sponge method can 387 

be safely used in earthen materials, without changing the material nor deteriorating its surface. 388 

The contact sponge method can be applied in earthen materials or earthen heritage superficial 389 

layers since it does not represent any risk or originate any major deterioration phenomena. 390 

Furthermore, this test also proved to be efficient in analyzing the effect of water repellent 391 

treatment.  392 

The three water repellents tested for this study showed to work as a hydrophobic barrier since all 393 

specimens reduced significantly (more than 90%) the absorption of water by the adobe and 394 

rammed earth specimens. It is also important to notice the impressive result observed from the 395 
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natural products when compared with the synthetic product. Both linseed oil and beeswax 396 

demonstrated similar performance regarding water repellency as the commercial Silo 112, 397 

revealing their capacity as an alternative sustainable solution to synthetic products.  398 

For conservation purposes and especially in maintenance plans, by using this simple tool in an 399 

earthen heritage site, one can obtain important outputs about the efficiency of a given surface 400 

treatment over time. It was possible to observe, that surface irregularities are an important factor 401 

to consider when using this method. The sponge should be completely in contact with the 402 

surface. To avoid ambiguous conclusions, it is essential to perform contact sponge test on a 403 

considerable number of specimens or areas (if dealing with a case study), so outliers can be 404 

identified clearly. Since adobe and rammed earth are traditional and hand-made construction 405 

materials, there is no uniformity between samples or even a wall, so performing the tests in a 406 

large number of specimens (laboratory) or spots (in situ) is highly recommended. 407 

 408 

Nevertheless, more research data is required to understand if the contact sponge test can be used 409 

for other types of soils and construction techniques different from the ones approached in this 410 

research. Moreover, future work should also handle with case studies and include deteriorated 411 

surfaces. 412 

 413 
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