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Abstract. This paper addresses the problem of solving a bound con-
strained global optimization problem by a population-based stochastic
coordinate descent method. To improve efficiency, a small subpopula-
tion of points is randomly selected from the original population, at each
iteration. The coordinate descent directions are based on the gradient
computed at a special point of the subpopulation. This point could be
the best point, the center point or the point with highest score. Prelimi-
nary numerical experiments are carried out to compare the performance
of the tested variants. Based on the results obtained with the selected
problems, we may conclude that the variants based on the point with
highest score are more robust and the variants based on the best point
less robust, although they win on efficiency but only for the simpler and
easy to solve problems.
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1 Introduction

The optimization methods for solving problems that have big size of data, like
large-scale machine learning, can make use of classical gradient-based methods,
namely the full gradient, accelerated gradient and the conjugate gradient, clas-
sified as batch approaches [1]. Using intuitive schemes to reduce the information
data, the stochastic gradient approaches have shown to be more efficient than
the batch methods. An appropriate approach to solve this type of problems is
through coordinate descent methods. Despite the fact that they were the first
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optimization methods to appear in the literature, they have received much at-
tention recently. Although the global optimization (GO) problem addressed in
this paper has not a big size of data, the herein proposed solution method is
iterative, stochastic and relies on a population of candidate solutions at each
iteration. Thus, a large amount of calculations may be required at each itera-
tion. To improve efficiency, we borough some of the ideas that are present in
machine learning techniques and propose a population-based stochastic coordi-
nate descent method. This paper comes in the sequence of the work presented
in [2].

We consider the problem of finding a global solution of a bound constrained
nonlinear optimization problem in the following form:

min f(x)
subject to x ∈ Ω, (1)

where f : Rn → R is a nonlinear function and Ω = {x ∈ Rn : −∞ < li ≤
xi ≤ ui < ∞, i = 1, . . . , n} is a bounded feasible region. We assume that the
objective function f is differentiable, nonconvex and may possess many local
minima in the set Ω. We assume that the optimal set X∗ of the problem (1) is
nonempty and bounded, x∗ is a global minimizer and f∗ represents the global
optimal value. To solve the GO problem (1), a stochastic or a deterministic
method may be selected. A stochastic method provides a solution, in general in
a short CPU time, although it may not be globally optimal. On the other hand,
a deterministic method is able to compute an interval that contains the global
optimal solution, but requires a much larger computational effort [3]. To generate
good solutions with less computational effort and time, approximate methods
or heuristics may be used. Some heuristics use random procedures to generate
candidate solutions and perform a series of operations on those solutions in order
to find different and hopefully better solutions. They are known as stochastic
heuristics. A method for GO has two main goals. One intends to explore the
search domain for the region where the global optimal solution lies, the other
intensifies the search in a vicinity of a promising region in order to compute a
high quality approximation.

This paper aims to present a practical study involving several variants of a
population-based stochastic method for solving the GO problem (1). Since our
goal is to make the method robust and as efficient as possible, a strategy based
on coordinate descent directions is applied. Although a population of candidate
solutions/points of large size is initially generated, only a very small subset of
those points is randomly selected, at each iteration – henceforward denoted as
subpopulation – to provide an appropriate approximation, at the end of each
iteration. Since robustness of the method is to be privileged, the point of each
subpopulation that is used to define the search direction to move each point
of the subpopulation is carefully chosen in order to potentiate both exploration
and exploitation abilities of the method. The point with the highest score of the
subpopulation is proposed. A comparison with the best and the center points is
also carried out.
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This paper is organized as follows. Section 2 briefly presents the coordinate
descent method and Sect. 3 describes the herein proposed stochastic coordinate
descent method when applied to a population of points. Finally, Sect. 4 contains
the results of our preliminary numerical experiments and we conclude the paper
with the Sect. 5.

2 Coordinate Descent Method

This section briefly presents the coordinate descent method (CDM) and its
stochastic variant. The CDM operates by taking steps along the coordinate di-
rections [1,4]. Hence, the search direction for minimizing f from the iterate xk,
at iteration k, is defined as

dk = −∇ikf(xk)eik (2)

where ∇ikf(·) represents the component ik of the gradient of f , eik represents
the ikth coordinate vector for some index ik, usually chosen by cycling through
{1, 2, . . . , n}, and xik is the ikth component of the vector x ∈ Rn. For a positive
step size, αk, the new approximation, xk+1, differs from xk only in the ikth
component and is computed by xk+1 = xk + αkdk. Note that the direction
shown in (2) might not be a negative directional derivative for f at xk. When
the index ik to define the search direction and the component of xk to be adjusted
is chosen randomly by Uniform distribution (U) on {1, 2, . . . , n}, with or without
replacement, the CDM is known as a stochastic CDM. This type of method has
attracted the attention of the scientific community because of their usefulness
in data analysis and machine learning. Applications are varied, in particular in
support vector machine problems [5].

3 A Population-Based Stochastic Coordinate Descent
Method

At each iteration of a population-based algorithm, a set of points is generated
aiming to explore the feasible region for a global optimum. Let |P | denote the
number of points in the population, where xi ∈ Rn represents the point with
index i of the population, where i ∈ P = {1, 2, . . . , |P |}. The likelihood is that the
greater the |P | the better is the exploration feature of the algorithm. However,
to handle and evaluate the objective f for a large number of points is time
consuming.

In order to improve the efficiency of the method, the number of function
evaluations must be reduced. Thus, the method is based on a random selection
of points from the original population, at each iteration k – herein designated
by the subpopulation k. Thus, at each iteration, a subpopulation of points (of
small size) is selected to be evaluated and potentially moved in direction to the
global optimum. This random selection uses the U either with or without replace-
ment to select the indices for the subpopulation from the set {1, 2, . . . , |P |}. Let
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P1, P2, . . . , Pk, . . . be the sets of indices of the subpopulation randomly chosen
from P .

At each iteration k there is a special point that is maintained for the next
iteration. This point is the best point of the current subpopulation. This way,
for k > 1, the randomly selected set Pk does not include the index of the best
point from the previous subpopulation and the size of the subpopulation k is
|Pk|+ 1. We note that the size of the subpopulation at the first iteration is |P1|.
The subsets of indices when generating the subpopulation satisfy the following
conditions: (i) P1 ⊂ P and Pk+1 ⊂ P\{kb} for k ≥ 1; (ii) |P1| � |P |; (iii)
|P2| + 1 ≤ |P1| and |Pk+1| ≤ |Pk| for k > 1; where kb is the index of the best
point of the subpopulation k. Onwards P+

1 = P1 and P+
k+1 = Pk+1 ∪ {kb} for

k ≥ 1 are used for simplicity [2].

We now show how each point xkj (j = 1, . . . , |P+
k |) of the subpopulation k is

moved. For each point, a search direction is generated. Thus, the point xkj
may

be moved along the direction, dkj
, as follows:

xkj = xkj + αkjdkj (3)

where 0 < αkj ≤ 1 is the step length computed by a backtracking strategy.

The direction dkj
used to move the point xkj

is defined by

dkj
= −∇if(xkH

)ei (4)

where ei represents the ith coordinate vector for some index i, randomly selected
from the set {1, 2, . . . , n}. We note that the search direction is along a component
of the gradient computed at a special point of the subpopulation k, xkH

, further
on denoted by the point with the highest score. Since dkj

might not be a descent
direction for f at xkj

, the movement according to (3) is applied only if dkj
is

descent for f at xkj . Otherwise, the point xkj is not moved. Whenever the new
position of the point falls outside the bounds, a projection onto Ω is carried out.

The index of the point with highest score kH , at iteration k, satisfies

kH = arg max
j=1,...,|P+

k |
s(xkj

) where s(xki
) = D̂(xki

)− f̂(xki
) (5)

is the score of the point xki [6]. The normalized distance D̂(xki), from xki to
the center point of the k subpopulation, and the normalized objective function
value f̂(xki

) at xki
are defined by

D̂(xki
) =

D(xki
)−minj=1,...,|P+

k |
D(xkj

)

maxj=1,...,|P+
k |
D(xkj

)−minj=1,...,|P+
k |
D(xkj

)
(6)

and

f̂(xki) =
f(xki)−minj=1,...,|P+

k |
f(xkj )

maxj=1,...,|P+
k |
f(xkj

)−minj=1,...,|P+
k |
f(xkj

)
(7)
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respectively. The distance function D(xki) (to the center point x̄k) is measured
by ‖xki

− x̄k‖2 and the center point is evaluated as follows:

x̄k =
1

|P+
k |

|P+
k |∑

j=1

xkj . (8)

We note here that the point with the highest score in each subpopulation is
the point that lies far away from the center of the region defined by its points
(translated by x̄) that has the lowest function value. This way, looking for the
largest distance to x̄, the algorithm potentiates its exploration ability, and choos-
ing the one with lowest f value, the algorithm reenforces its local exploitation
capability. For each point with index kj , j = 1, . . . , |P+

k |, the gradient coordinate
index i may be randomly selected by U on the set {1, 2, . . . , n} one at a time for
each kj with replacement. However, the random choice may also be done using
U on {1, 2, . . . , n} but without replacement. In this later case, when all indices
have been chosen, the set {1, 2, . . . , n} is shuffled [5].

The stopping condition of our population-based stochastic coordinate descent
algorithm aims to guarantee a solution in the vicinity of f∗. Thus, if

|f(xkb
)− f∗| ≤ ε|f∗|+ ε2, (9)

where xkb
is the best point of the subpopulation k and f∗ is the known global

optimum, is satisfied for a given tolerance ε > 0, the algorithm stops. Otherwise,
the algorithm runs until a specified number of function evaluations, nfmax, is
reached. The main steps of the algorithm are shown in Algorithm 1.

Randomly generate the population in Ω
repeat

Randomly select a subpopulation for iteration k and select xkH

for each point xkj in the subpopulation do
Randomly select i ∈ {1, . . . , n} to choose the component of ∇f at xkH

Compute the search direction dkj according to (4)

if dkj is descent for f at xkj then
Move xkj according to (3)

Select the best point xkb of the subpopulation
until (9) is satisfied or the number of function evaluations exceeds nfmax

Algorithm 1: Population-based stochastic coordinate descent algorithm

4 Numerical Experiments

During the preliminary numerical experiments, well-known benchmark problems
are used: BO (Booth, n = 2), BP (Branin, n = 2), CB6 (Camel6, n = 2), DA
(Dekkers & Aarts, n = 2), GP (Goldstein & Price, n = 2), HSK (Hosaki, n = 2),
MT (Matyas, n = 2), MC (McCormick, n = 2), MHB (Modified Himmelblau,
n = 2), NF2 (Neumaier2, n = 4), PWQ (Powell Quadratic, n = 4), RG-2, RG-5,
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RG-10 (Rastrigin, n = 2, n = 5, n = 10) RB (Rosenbrock, n = 2), WF (Wood,
n = 4), see the full description in [7]. The MatlabTM (Matlab is a registered
trademark of the MathWorks, Inc.) programming language is used to code the
algorithm and the tested problems. The parameter values are set as follows:
|P | = 500, |P1| = 0.01|P |, |Pk| = |P1| − 1 for all k > 1, ε = 1E − 04 and
nfmax = 50000.

In our previous work [2], we have used the gradient computed at x̄. Besides
this variant, we have also tested a variant where the gradient is computed at
the best point of the subpopulation. These variants are now compared with the
new strategy based on the gradient computed at the point with highest score,
summarized in the previous section. All the tested variants are termed as follows:

– best w (best wout): gradient computed at the best point and the coordinate
index i (see (4)) is randomly selected by U with (without) replacement ;

– center w (center wout): gradient computed at x̄ and the coordinate index i
is randomly selected by U with (without) replacement ;

– hscore w (hscore wout): gradient computed at the point with highest score
and the coordinate index i is randomly selected by U with (without) replace-
ment ;

– best full g (center full g / hscore full g): using the full gradient computed at
the best point (x̄ / the point with highest score) to define the search direction.

Each variant was run 30 times with each problem. Tables 1 and 2 show the
average of the obtained f solution values over the 30 runs, favg, the minimum f
solution value obtained after the 30 runs, fmin, the average number of function
evaluations, nfavg, and the percentage of successful runs, %s, for the variants
best w, center w, hscore w and best wout, center wout, hscore wout. A successful
run is a run which stops with the stopping condition for the specified ε, see
(9). The other statistics also reported in the tables are: (i) the % of problems
with 100% of successful runs (% prob 100%); (ii) the average nf in problems
with 100% of successful runs (nfavg 100%); (iii) average nf in problems with
100% of successful runs simultaneously in the 3 tested variants (for each table)
(nfavg all100%). A result printed in ‘bold’ refers to the best variant shown and
compared in that particular table. From the results, we may conclude that using
with or without replacement to choose the coordinate index i (see (4)) has no
influence on the robustness and efficiency of the variant based on the gradient
computed at the best point. Variants best w and best wout are the less robust
and variants center w, hscore w and hscore wout are the most robust.

When computing the average number of function evaluations for the problems
that have 100% of successful runs in all the 3 tested variants, best w wins, fol-
lowed by hscore w and then by center w (same is true for best wout, hscore wout
and center wout). We remark that these average number of evaluations corre-
spond to the simpler and easy to solve problems. For the most difficult problems
and yet larger problems, the variants hscore w (75% against 50% and 69%) and
hscore wout (69% against 50% and 63%) win as far as robustness is concerned.
This justifies their larger nfavg 100% values.
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Table 1. Results based on the use of one coordinate of the gradient, randomly selected with replacement.

best w center w hscore w

favg fmin nfavg % s favg fmin nfavg % s favg fmin nfavg % s

BO 6.772E-09 4.354E-09 495 100 6.616E-09 1.496E-11 2082 100 6.543E-09 2.061E-09 1555 100
BP 3.979E-01 3.979E-01 96 100 3.979E-01 3.979E-01 681 100 3.979E-01 3.979E-01 239 100
CB6 -1.032E+00 -1.032E+00 935 100 -1.032E+00 -1.032E+00 385 100 -1.032E+00 -1.032E+00 512 100
DA -2.478E+04 -2.478E+04 786 100 -2.478E+04 -2.478E+04 1251 100 -2.478E+04 -2.478E+04 1020 100
GP 3.000E+00 3.000E+00 828 100 3.000E+00 3.000E+00 1262 100 3.000E+00 3.000E+00 1564 100
HSK -2.346E+00 -2.346E+00 81 100 -2.346E+00 -2.346E+00 305 100 -2.346E+00 -2.346E+00 110 100
MT 9.652E-09 9.006E-09 1542 100 8.650E-09 5.902E-09 2255 100 8.556E-09 1.157E-09 2159 100
MC -1.913E+00 -1.913E+00 93 100 -1.913E+00 -1.913E+00 318 100 -1.913E+00 -1.913E+00 172 100
MHB 3.510E-01 2.662E-10 12144 77 5.525E-09 7.487E-10 1721 100 4.254E-09 5.141E-10 1450 100
NF2 3.728E-03 3.690E-05 50009 0 1.023E-02 6.221E-06 50020 0 4.403E-03 6.601E-05 50020 0
PWQ 6.514E-03 1.936E-07 50013 0 5.965E-03 5.386E-06 50019 0 6.655E-03 1.723E-05 50021 0
RG-2 4.643E-01 3.165E-09 18947 63 4.568E-09 1.868E-11 1505 100 4.160E-09 1.600E-10 2074 100
RG-5 3.283E+00 5.984E-09 43593 13 4.026E-09 8.058E-12 5918 100 3.855E-09 3.368E-12 6981 100
RG-10 5.373E+00 1.990E+00 50007 0 3.317E-02 1.994E-10 13911 97 3.157E-09 2.200E-11 20202 100
RB 5.346E-04 3.505E-08 50008 0 6.533E-03 1.224E-06 50027 0 5.449E-03 2.052E-07 50023 0
WF 8.587E-04 1.706E-05 50012 0 1.490E-01 6.966E-06 50018 0 2.425E-01 4.423E-03 50021 0

% prob 100% 50 69 75
nfavg 100% 607 1607 3170
nfavg all100% 607 1067 916
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Table 2. Results based on the use of one coordinate of the gradient, randomly selected without replacement.

best wout center wout hscore wout

favg fmin nfavg % s favg fmin nfavg % s favg fmin nfavg % s

BO 7.221E-09 4.119E-09 521 100 6.865E-09 3.723E-10 1723 100 6.306E-09 9.252E-10 1641 100
BP 3.979E-01 3.979E-01 126 100 3.979E-01 3.979E-01 794 100 3.979E-01 3.979E-01 196 100
CB6 -1.032E+00 -1.032E+00 883 100 -1.032E+00 -1.032E+00 358 100 -1.032E+00 -1.032E+00 487 100
DA -2.478E+04 -2.478E+04 753 100 -2.478E+04 -2.478E+04 1272 100 -2.478E+04 -2.478E+04 1032 100
GP 3.000E+00 3.000E+00 904 100 3.000E+00 3.000E+00 1375 100 3.000E+00 3.000E+00 1518 100
HSK -2.346E+00 -2.346E+00 69 100 -2.346E+00 -2.346E+00 295 100 -2.346E+00 -2.346E+00 113 100
MT 9.701E-09 9.103E-09 1500 100 8.286E-09 4.319E-09 2190 100 8.199E-09 2.762E-09 2127 100
MC -1.913E+00 -1.913E+00 103 100 -1.913E+00 -1.913E+00 300 100 -1.913E+00 -1.913E+00 154 100
MHB 3.168E-01 8.286E-11 9682 83 5.692E-09 1.428E-10 1975 100 3.787E-09 2.452E-10 1357 100
NF2 3.016E-03 4.736E-05 50010 0 1.033E-02 7.602E-05 50017 0 5.700E-03 8.673E-05 50024 0
PWQ 6.014E-03 1.635E-05 50014 0 5.501E-03 9.561E-07 50025 0 5.293E-03 1.100E-06 50026 0
RG-2 4.975E-01 3.109E-09 22302 57 3.245E-09 4.320E-11 1846 100 4.137E-09 3.149E-11 2082 100
RG-5 1.957E+00 4.262E-09 41991 17 3.317E-02 3.006E-12 7943 97 3.762E-09 2.160E-11 7759 100
RG-10 6.567E+00 7.386E-09 46919 7 3.317E-02 3.264E-11 15331 97 5.592E-08 1.516E-11 22677 97
RB 2.924E-04 9.952E-09 49438 7 6.361E-03 9.378E-07 50028 0 5.017E-03 1.505E-08 50021 0
WF 9.078E-04 3.213E-06 50008 0 1.287E-01 7.751E-05 50019 0 1.794E-01 1.618E-04 50027 0

% prob 100% 50 63 69
nfavg 100% 607 1213 1679
nfavg all100% 607 1038 908
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The results reported in Table 3 aim to show that robustness has not been
improved when the full gradient is used. All the values and statistics have the
same meaning as in the previous tables. Similarly, the variant based on gradient
computed at the best point reports the lowest nfavg all100% but also reaches
the lowest % prob 100%. The use of the full gradient has deteriorated the re-
sults mostly on the variant center full g when compared with both center w and
center wout.

Table 3. Results based on the use of the full gradient.

best full g center full g hscore full g

favg nfavg % s favg nfavg % s favg nfavg % s

BO 6.331E-09 208 100 5.862E-09 4841 100 5.397E-09 883 100
BP 3.979E-01 185 100 3.979E-01 2142 100 3.979E-01 294 100
CB6 -1.032E+00 116 100 -1.032E+00 465 100 -1.032E+00 558 100
DA -2.477E+04 3398 100 -2.477E+04 33403 77 -2.477E+04 4220 100
GP 3.000E+00 658 100 3.000E+00 1701 100 3.000E+00 1235 100
HSK -2.346E+00 55 100 -2.346E+00 636 100 -2.346E+00 72 100
MT 9.615E-09 756 100 5.753E-09 5153 100 4.442E-09 709 100
MC -1.913E+00 41 100 -1.913E+00 1320 100 -1.913E+00 78 100
MHB 5.123E-01 10005 83 5.116E-09 2743 100 4.665E-09 1526 100
NF2 6.756E-03 50009 0 3.470E-02 50014 0 9.037E-03 50027 0
PWQ 1.082E-02 50011 0 6.890E-02 50020 0 5.892E-03 50020 0
RG-2 1.194E+00 39004 23 5.076E-09 6722 100 5.181E-09 6118 100
RG-5 1.718E+01 50013 0 4.245E+00 50018 0 4.669E+00 50015 0
RG-10 6.179E+01 50016 0 3.333E+01 50023 0 3.254E+01 50019 0
RB 5.162E-03 50006 0 2.809E-05 44037 47 3.643E-04 47933 17
WF 4.247E-01 50006 0 3.000E-01 50019 0 7.109E-01 50024 0

% prob 100% 50 56 63
nfavg 100% 677 2858 1569
nfavg all100% 288 2323 547

Table 4 compares the results obtained with five of the above mentioned prob-
lems with those presented in [2]. The comparison involves the three tested vari-
ants center w, hscore w and hscore wout, which provided the highest percentages
of successful runs, 69%, 75% and 69% respectively. This table reports the values
of favg and nfavg, after 30 runs. We note that the herein stopping condition is
the same as that of [2]. All reported variants have 100% of successful runs when
solving GP, MHB, RG-2 and RG-5. However, only the variant hscore w reaches
100% success when solving RG-10 (see last row in the table).

5 Conclusions

In this paper, we present a population-based stochastic coordinate descent method
for bound constrained GO problems. Several variants are compared in order to
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Table 4. Comparative results.

results in [2] center w hscore w hscore wout

favg nfavg favg nfavg favg nfavg favg nfavg
GP 3.00E+00 833 3.00E+00 1262 3.00E+00 1564 3.00E+00 1518
MHB 5.10E-09 1229 5.53E-09 1721 4.25E-09 1450 3.79E-09 1357
RG-2 3.40E-09 1502 4.57E-09 1505 4.16E-09 2074 4.14E-09 2082
RG-5 3.52E-09 13576 4.03E-09 5918 3.86E-09 6981 3.76E-09 7759
RG-10 2.65E-01 30104 3.32E-02 13911 3.16E-09 20202 5.59E-08 22677
(% s) (77) (97) (100) (97)

find the most robust, specially when difficult and larger problems are consid-
ered. The idea of using the point with highest score to generate the coordinate
descent directions to move all the points of the subpopulation has shown to be
more robust than the other tested ideas and worth pursuing.

Future work will be directed to include, in the set of tested problems, in-
stances with varied dimensions to analyze the influence of the dimension n in
the performance of the algorithm. Another matter is related to choosing a spec-
ified number (yet small) of gradient coordinate indices (rather than just one)
by the uniform distribution on the set {1, 2, . . . , n}, to move each point of the
subpopulation.
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