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Abstract. We study the problem of deriving the Lanczos potential and superpotential for
linearly perturbed Friedman-Lemaitre-Robertson-Walker (FLRW) spacetimes.

1. Introduction
Penrose [17] conjectured that the gravitational entropy should be related to the clumping of
matter and therefore associated with the Weyl or conformal curvature. Specifically, Penrose
suggested that a measure of the gravitational entropy should involve an integral of a quantity
derived from the Weyl tensor, and that the particle number operator for a linear spin-2 massless
quantized free-field might provide some clues, since the entropy measure could be taken as an
estimate of the ‘number of gravitons’ [17]. Since then, there have been several attempts to
construct gravitational entropy measures using polynomial invariants of the Weyl tensor (see
e.g. [8, 4, 16]) as well as density contrast functions [13, 10].

We have used Penrose’s conjecture and the particle number from linear theory in flat space
to motivate a definition of gravitational entropy in curved space [14]. In order to do that we
required a potential for the Weyl tensor which we took to be the Lanczos potential [12]. Illge [11]
has shown that any spinor field with the symmetries of the Weyl spinor locally has a Lanczos
potential which is determined by its value at a space-like hypersurface. Furthermore, for a
vacuum spacetime there exists a potential for the Lanczos potential, i.e. a superpotential for
the Weyl spinor [11] (see also [1]).

Apart from Illge’s result, which is difficult to apply, there is no general prescription for
obtaining a Lanczos potential for a given spacetime. A general expression for a Lanczos potential
in the case of perfect fluid spacetimes with zero shear and vorticity was given in [15]. More
recently, this result has been extended by Holgersson [9] to Bianchi I perfect-fluid spacetimes.
There are also several examples of Lanczos potentials for particular exact solutions, including
Gödel, Schwarzschild, Taub and Kerr [3, 15, 5, 6].

In this short note, we consider the problem of deriving the Lanczos potential
and superpotential for linearly perturbed Friedman-Lemaitre-Robertson-Walker (FLRW)
spacetimes, which we then use to propose a new measure of the gravitational entropy in [14].
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2. The perturbed FLRW model
We consider a spacetime with a distinguished time-like direction given by the velocity vector
field ua of the fluid, and use the formalism of [7, 18], with the projected metric

hab = gab + uaub,

which is orthogonal to ua. The covariant derivative of ua can be written as

∇bua =
1
3
θhab + σab + ωab − u̇aub

where
σab = σ(ab); σa

a = 0; σabub = 0; ωab = ω[ab]; ωabub = 0.

Then u̇a is the acceleration (so that the overdot is ua∇a), ωab is the vorticity tensor, σab the
shear, and θ the expansion. The stress–energy tensor for perfect fluids is Tab = ρuaub + phab,
where ρ is the energy density and p the isotropic pressure of the fluid.

The Weyl tensor can be decomposed into its electric and magnetic parts, Eab and Hab relative
to the velocity vector ua as

Eab = Cacbducud, Hab = C∗
acbdu

cud,

where C∗
acbd = 1

2η st
ac Cstbd. An FLRW background is conformally-flat with the fluid-flow being

geodesic, shear-free and twist-free so that u̇a = ωab = σab = 0 = Eab = Hab.
We shall now consider the FLRW metric gab with linear perturbations δgab = Φab such that

Φabub = Φa
a = ∇aΦab = 0. (1)

The perturbation is characterised as purely gravitational by requiring:

δRb
a = 0. (2)

This implies that δρ = δp = 0, and with the gauge conditions (1) also δua = δua = 0, so that
δT b

a = 0 and δθ = 0 = δωab = δu̇a, while for the shear we introduce the notation:

Σab := δσab =
1
2
Φ̇ab. (3)

For the Weyl tensor, which is zero in the background, we find

Eab = −Σ̇ab − 2
3
θ Σab, (4)

Hab = curl Σab, (5)

with
curl Xab ≡ (curl X)ab := ηcd(aDcX

b)
d,

where Dc is the covariant derivative on hypersurfaces orthogonal to ua, ηabc = ηabcdud is the
hypersurface volume form and ηabcd the space-time volume form. Now, the field equation (2)
reduces to

2Φab =
2
3
ρ Φab

and from (3) and (2) we get

2Σab =
2
3
θ Σ̇ab + (

1
6
ρ− 3

2
p +

1
3
θ2)Σab. (6)
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3. The Lanczos potential
The Lanczos potential is a tensor Labc = −Lbac such that:

C cd
ab = −∇[cL d]

ab −∇[aL
cd

b] − 2δ[ c
[a ∇

eL d]
b]e ,

in the Lanczos gauge:
L a

ab = 0 = ηabcdLabc ; ∇cL c
ab = 0.

Holgersson [9] gave a useful decomposition of the Lanczos potential into irreducible parts as:

Labc = 2u[aAb]uc −A[ahb]c − 2u[aCb]c + η d
ab Sdc + u[aηb]cdP

d − ucηabdP d , (7)

where Aa and Pa are orthogonal to ua and Sab and Cab are trace-free, symmetric and orthogonal
to ua.

Since the FLRW perturbation is trace-free, symmetric and orthogonal to ua, we seek a Lanczos
potential as in (7) with Aa = Pa = 0. Then from (7) and (3) we find the following expressions
for Eab and Hab:

Eab =
1
2
(curl Sab − Ċab), (8)

Hab =
1
2
(curl Cab + Ṡab). (9)

which equated to (4) and (5) give the expressions for Cab and Sab.
Now, suppose a superpotential φab existed for all times with

Labc = ∇[aφb]c, (10)

then from (7), we get expressions for Cab and Sab as:

Cab =
1
2
(φ̇ab +

θ
3
φab),

Sab =
1
2
curl φab,

which turn out to be incompatible with the Bianchi identities [14] (as is to be expected, since the
superpotential should not exist for non-vacuum). However, this procedure suggests the ansatz:

Cab =
1
2
(ψab +

θ
3
φab)

Sab =
1
2
curl φab (11)

in terms of another unknown tensor ψab. So, we find from (9) and (11)

Hab =
1
4
curl (φ̇ + ψ)ab.

Comparing this equation with (5) we can choose

Σab =
1
4
(φ̇ab + ψab), (12)

so that ψab is known once φab has been found. Then, from (8)

Eab =
1
4
(−ψ̇ab −

θ̇
3
φab −

θ
3
φ̇ab + curl curl φab),
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and combining this with (4) and (12) we get

2φab +
4
3
θφ̇ab + (

θ̇
3

+
θ2

9
− ρ)φab =

8
3
θΣab, (13)

which is a wave equation for φab. We therefore have a complete prescription to determine a
unique Labc for linearly perturbed FLRW, subject to choice of initial data. We can achieve (10),
at a given instant t0 by choosing the data for (13) to be

φab(x, t0) = Φab(x, t0), (14)
φ̇ab(x, t0) = Φ̇ab(x, t0).

since then, by (12), ψab(x, t0) = φ̇ab(x, t0).
We summarize our results in the following proposition:

Proposition Given a perturbed FLRW spacetime and a choice of time t0, a Lanczos potential
Labc, in the Lanczos gauge, may be uniquely specified by (7) with (11), (12) and (13), subject to
the data (14). We may define a superpotential φab such that (10) holds at t0 but this will not
hold at other times.
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