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Abstract. We study the problem of deriving the Lanczos potential and superpotential for
linearly perturbed Friedman-Lemaitre-Robertson-Walker (FLRW) spacetimes.

1. Introduction

Penrose [17] conjectured that the gravitational entropy should be related to the clumping of
matter and therefore associated with the Weyl or conformal curvature. Specifically, Penrose
suggested that a measure of the gravitational entropy should involve an integral of a quantity
derived from the Weyl tensor, and that the particle number operator for a linear spin-2 massless
quantized free-field might provide some clues, since the entropy measure could be taken as an
estimate of the ‘number of gravitons’ [17]. Since then, there have been several attempts to
construct gravitational entropy measures using polynomial invariants of the Weyl tensor (see
e.g. [8, 4, 16]) as well as density contrast functions [13, 10].

We have used Penrose’s conjecture and the particle number from linear theory in flat space
to motivate a definition of gravitational entropy in curved space [14]. In order to do that we
required a potential for the Weyl tensor which we took to be the Lanczos potential [12]. Illge [11]
has shown that any spinor field with the symmetries of the Weyl spinor locally has a Lanczos
potential which is determined by its value at a space-like hypersurface. Furthermore, for a
vacuum spacetime there exists a potential for the Lanczos potential, i.e. a superpotential for
the Weyl spinor [11] (see also [1]).

Apart from Illge’s result, which is difficult to apply, there is no general prescription for
obtaining a Lanczos potential for a given spacetime. A general expression for a Lanczos potential
in the case of perfect fluid spacetimes with zero shear and vorticity was given in [15]. More
recently, this result has been extended by Holgersson [9] to Bianchi I perfect-fluid spacetimes.
There are also several examples of Lanczos potentials for particular exact solutions, including
Godel, Schwarzschild, Taub and Kerr [3, 15, 5, 6].

In this short note, we consider the problem of deriving the Lanczos potential
and superpotential for linearly perturbed Friedman-Lemaitre-Robertson-Walker (FLRW)
spacetimes, which we then use to propose a new measure of the gravitational entropy in [14].
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2. The perturbed FLRW model
We consider a spacetime with a distinguished time-like direction given by the velocity vector
field u® of the fluid, and use the formalism of [7, 18], with the projected metric

hab = Gab + Uaus,

which is orthogonal to u®. The covariant derivative of u, can be written as
1 .
Vitla = g0hap + 0ab + wap — aty

where
. a _ 0. b_ 0. _ . b _
Oab = Oap); 0q =05 oaptt’ =0;  wap = wigp); waptt” = 0.

Then u“ is the acceleration (so that the overdot is u*V,), wyp is the vorticity tensor, o4, the
shear, and 0 the expansion. The stress—energy tensor for perfect fluids is Ty, = pugup + phap,
where p is the energy density and p the isotropic pressure of the fluid.

The Weyl tensor can be decomposed into its electric and magnetic parts, E,;, and H, relative
to the velocity vector u® as

Eab = Cacbducud7 Hab = C;cbducuda

where C; ., = %nacStCstbd- An FLRW background is conformally-flat with the fluid-flow being
geodesic, shear-free and twist-free so that @, = wep = 04y = 0= Egp = Hyp.

We shall now consider the FLRW metric g, with linear perturbations dgq, = P4 such that

Dypu’ = &%, = Vi, = 0. (1)
The perturbation is characterised as purely gravitational by requiring:
SRY =0. (2)
This implies that dp = dp = 0, and with the gauge conditions (1) also du® = du, = 0, so that
(5Té’ =0 and 00 = 0 = dwyp, = 1, while for the shear we introduce the notation:

1.
Yap = 00gy = §(I)ab- (3)

For the Weyl tensor, which is zero in the background, we find

. 2
Eab — _Eab _ 39 Eab, (4)

H® = curl £, (5)

with
curl X% = (curl X)® .= T]Cd(“DCXb)7
where D, is the covariant derivative on hypersurfaces orthogonal to u%, Ngpe = Napequ® is the

hypersurface volume form and 7,p.q the space-time volume form. Now, the field equation (2)
reduces to

2
|:]q)ab = gp q)ab
and from (3) and (2) we get
2 . 1 3 1
OYp = -0 3% —p—=p+ =60HZu. 6
ab 3 ab+(6p 2p+3 ) ab ()
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3. The Lanczos potential
The Lanczos potential is a tensor Lg,. = —Lpqe such that:

C

a

cd __ c d] cd [ ce d]
b= =VIL, " = V[ Ly — 26,,"V°Ly,

in the Lanczos gauge:
Loy =0=n""Lop ; VL = 0.

Holgersson [9] gave a useful decomposition of the Lanczos potential into irreducible parts as:
Lape = 2u[aAb]uc - A[ahb]c - 2u[acb}c + nabdsdc + u[anb]cdpd - ucnabdpd ) (7)
where A, and P, are orthogonal to u® and Sy, and C, are trace-free, symmetric and orthogonal
to u?.
Since the FLRW perturbation is trace-free, symmetric and orthogonal to u®, we seek a Lanczos

potential as in (7) with A, = P, = 0. Then from (7) and (3) we find the following expressions
for E,, and H,y:

1 .
Eab = 5(0111‘1 Sab - Cab): (8)
Hyy = %(Curl Cab + Sab)- 9)

which equated to (4) and (5) give the expressions for Cy, and Sgp.
Now, suppose a superpotential ¢, existed for all times with

Lape = v[a¢b]ea (10)
then from (7), we get expressions for Cyp and Sy as:
1, . 0
Cab = §(¢ab + §¢ab)7
1
Sab = 5(3111‘1 ¢ab7

which turn out to be incompatible with the Bianchi identities [14] (as is to be expected, since the
superpotential should not exist for non-vacuum). However, this procedure suggests the ansatz:

1 0
Cap = §(wab + §¢ab)
Sab = %Curl ¢ab (11)

in terms of another unknown tensor 4. So, we find from (9) and (11)

1 )
Hyp = Zcurl (¢ + w)ab‘

Comparing this equation with (5) we can choose

Yab = i(éab + Q;Z)ab)v (12)

so that 14, is known once ¢4, has been found. Then, from (8)

1. . 0 0 .
By = ~(—thap — ~ap — = 1 curl
ab 4( wab 3 ¢ab 3¢ab + curl cur ¢ab)7

3
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and combining this with (4) and (12) we get

2

4 . 6 60 8
O ) -+ — — = —0% 1
¢ab + 3 QZ)ab + (3 + 9 p)d’ab 3 aby ( 3)

which is a wave equation for ¢,,. We therefore have a complete prescription to determine a
unique L. for linearly perturbed FLRW, subject to choice of initial data. We can achieve (10),
at a given instant ¢y by choosing the data for (13) to be

(éab(xatO) - q)ab(x7t0)7 (14)

bap(x,10) B 4p(x, o).

since then, by (12), ¥g(x,to) = q'bab(x,to).
We summarize our results in the following proposition:

Proposition Given a perturbed FLRW spacetime and a choice of time tg, a Lanczos potential
Lape, in the Lanczos gauge, may be uniquely specified by (7) with (11), (12) and (13), subject to
the data (14). We may define a superpotential ¢qp such that (10) holds at to but this will not
hold at other times.
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