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Abstract: The growing intention to replace chemical food preservatives with plant-based
antimicrobials that pose lower risks to human health has produced numerous studies describing
the bactericidal properties of biopreservatives such as essential oils (EOs) in a variety of products,
including cheese. This study aimed to perform a meta-analysis of literature data that could summarize
the inactivation of Escherichia coli in cheese achieved by added EOs; and compare its inhibitory
effectiveness by application method, antimicrobial concentration, and specific antimicrobials. After a
systematic review, 362 observations on log reduction data and study characteristics were extracted
from 16 studies. The meta-regression model suggested that pathogenic E. coli is more resistant to
EO action than the non-pathogenic type (p < 0.0001), although in both cases the higher the EO dose,
the greater the mean log reduction achieved (p < 0.0001). It also showed that, among the factual
application methods, EOs’ incorporation in films render a steadier inactivation (p < 0.0001) than when
directly applied to milk or smeared on cheese surface. Lemon balm, sage, shallot, and anise EOs
showed the best inhibitory outcomes against the pathogen. The model also revealed the inadequacy
of inoculating antimicrobials in cheese purposely grated for performing challenge studies, as this
non-realistic application overestimates (p < 0.0001) the inhibitory effects of EOs.

Keywords: biopreservation; dairy; antimicrobials; mixed-effects model; meta-analysis

1. Introduction

Cheeses are ready-to-eat food products that generally are not subjected to any treatment by
consumers to ensure their safety before consumption [1]. This product is usually considered safe, due
to the physicochemical and antagonistic properties of naturally occurring microflora such as lactic
acid bacteria [2]. However, these dairy products can act as vehicles of transmission of foodborne
diseases. For instance, in 2017 and 2018, in the European Union (EU), 2.2% and 2.8% of strongly
evidenced foodborne outbreaks associated with severe symptoms and a high fatality rate were related
to contaminated cheese, respectively [3,4]. Moreover, “milk and milk products” compose 7.7% and
5.4% of the total number of outbreaks reported in 2017 and 2018 [3,4], thus implying that contamination
with pathogenic microorganisms does not occur only during cheese manufacturing and that the raw
material may be contaminated. When present in milk (raw or pasteurised), pathogenic microorganisms
impose a safety issue for cheeses, as bacteria remain viable during long periods of time, even at
refrigeration temperatures [5–7].
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Escherichia coli, pathogenic or non-pathogenic, are bacterial agents that can contaminate cheese
and have been discussed in numerous studies over the years [1,2,5,8]. Its prevalence in different
types of cheese has been studied and described by various authors, who have shown a large range
of values: Öksüz et al. (2004) [9] found that 4% of the raw milk cheese samples analysed (n = 50)
were contaminated with E. coli O157; Stephan et al., (2008) [10] found that 3.7% (n = 432) and 6.3%
(n = 364) of the raw milk cheese samples analysed in 2006 and 2007, respectively, were contaminated
with STEC (shiga toxin-producing E. coli); Rosengren et al., (2010) [8] identified E.coli isolates in 34%
of the sampled raw milk cheeses (n = 55) and in 3% of cheeses made with pasteurized milk (n = 96).
More recently, Ombarak et al., (2016) [11] found E. coli prevalence values of 74.5% and 21.7% for Karish
(n = 60) and Ras (n = 60) raw milk cheeses, respectively.

Over the past few years, many cheese-associated E. coli outbreaks have also been reported [12–16].
According to the most recent EFSA (European Food Safety Authority) and ECDC (European Centre
for Disease Prevention and Control) report on zoonoses, STEC was ranked as the fifth most frequent
causative agent associated with “milk and milk products” in strongly evidenced foodborne outbreaks
in 2018 in the EU (<10%) [4]. Additionally, STEC and “milk and milk products” ranked number 4 in
the top 10 pathogen/food vehicle pairs causing the highest number of deaths in strongly evidenced
foodborne outbreaks in the EU in 2017 [3].

The prevalence values and several outbreaks reveal the importance of further investigating the
contamination of cheese with E. coli. Moreover, E. coli is particularly concerning as several strains can
begin an infection with a small number of cells in the initial inoculum: for example, enteroinvasive and
enterohemorrhagic E. coli strains (EIEC and EHEC, respectively) may require an infective dose of only
about ten cells [17], while the infective dose of E coli O157:H7 (STEC) has been estimated to require
around 10–100 organisms [8]. To reduce E. coli contamination and proliferation in cheese, it is essential
to implement measures that can guarantee microbiological safety throughout the manufacturing
process, distribution, and storage. One alternative is through the incorporation of antimicrobials in the
product, a control measure that is common practice in industry.

A novel approach to antimicrobials has been the replacement of chemicals with plant-based
antimicrobials, such as essential oils (EOs) and plant extracts. In the last few years, several researchers
have demonstrated the antimicrobial capacity of essential oils (EOs) in several food matrices,
including cheese and other dairy products, by performing challenge tests of inoculated pathogenic or
non-pathogenic E. coli in cheese with added EOs [18–22]. A meta-analysis of published results can
synthesise, integrate, and distinguish the outcomes from various studies, producing a more precise
estimate of the effect size, with increased statistical power, than is possible with a single study [23].
Meta-analyses are useful in food safety research to address numerous research questions, including the
effect of interventions [23]. In this sense, the objective of this research was to provide an insight into
the effectiveness of EOs for E. coli control in cheese through a meta-regression approach, intended for
the optimisation of the use of such biopreservatives to improve the microbiological safety of cheeses.
Furthermore, through the construction of a multilevel meta-regression model, the effects of the different
EOs, methods of application, antimicrobial concentration, and exposure time can be disentangled
and understood.

2. Materials and Methods

2.1. Data Collection and Description of the Data Set

An electronic, systematic literature search was carried out in Scopus, PubMed and Web of Science
databases to find original articles, published since 2000, reporting on the application of EOs in cheese
making and their efficiencies against generic or pathogenic E. coli. The search aimed to find quality
studies validated by the scientific community.

The bibliographic searches were conducted by properly applying the AND and OR logical
connectors to combine terms regarding biopreservation and terms referring to biopreservatives’
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characteristics and capacities in the selected products as follows: (preservative OR extract OR
bio-preservati* OR biopreservati* OR “essential oil”) AND (antimicrobial OR inhibitory OR natural OR
plant OR functional) AND (activity OR capacity OR propert* OR effect*) AND (cheese). Grey literature
was not acquired to avoid data validity concerns and data duplication, since high-quality theses and
reports are likely to be also published in peer-reviewed journals. Other meta-analysis studies and
systematic reviews were also excluded. The criteria for inclusion of data were: (i) the temperature of
storage and antimicrobial concentration must be reported in each study; (ii) each study must have
collected mean log reduction values, at least, at 4 distinct time points (or, alternatively, 4 sets of mean
treatment and mean control values, so that the reduction could be calculated); (iii) no mixture of
essential oils; (iv) only positive mean log reduction values (no growth data); and (v) if an antimicrobial
film was used, the control must also have been coated with the film but without the antimicrobial (as
opposed to uncoated).

After assessing all the information from the publications, sixteen studies (N = 362) published from
2000 until August 2019 were considered appropriate for inclusion [18–22,24–34]. From the selected
studies, information on the study ID, source of the EO (plant name), strain and/or serotype, mean log
reduction, sample size (number of samples used to calculate the mean of the log reduction), storage
temperature (◦C), exposure time (defined as the time, in days, at which the log microbial reduction
was quantified in the challenge study), EO concentration, pathogen inoculum level (log CFU/g or
mL), and application type (defined as the mode of application of the antimicrobial; namely, milk, film,
cheese surface, and cheese mixture), were collected.

The application type “milk” refers to the direct addition of the antimicrobial agent in bulk milk
before curding, whereas the application type “cheese surface” refers to the practice of smearing the
cheese surface with the tested antimicrobial. The category “film” was assigned to those challenge studies
where the antimicrobial was embedded in the packaging material through micro- or nano-encapsulation.
The application type “cheese mixture” was a special category created to accommodate results from
those challenge studies whose experimental methodology consisted of grinding cheese, inoculating it
with the pathogen, and adding the antimicrobial. Thus, “cheese mixture” does not reflect a real mode
of application of antimicrobials in the cheese manufacturing process context, but an experimental
protocol for challenge studies that researchers have probably devised for being handy but not realistic.
For simplification, the types of application “cheese mixture” and “cheese surface” will be referred to as
“mixture” and “surface,” respectively.

Figures 1 and 2 describe the E. coli square-root log reduction data retrieved as a function of the
square-root of exposure time and of the natural logarithm of the antimicrobial concentration, respectively,
for cheeses with essential oils incorporated by distinct application methods. The square-root and
natural logarithm transformations were necessary to normalise data distribution. A further description
of the data set is summarised in Table 1. Table 2 compiles the study characteristics extracted from each
primary study and the distribution of the mean log reduction data among the different levels of the
study characteristics extracted.
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Figure 1. Square-root (SQRT) of log reduction (log CFU/g or log CFU/ml) of E. coli as a function of 143 
the square-root (SQRT) of exposure time (day) in cheese with essential oils incorporated: in films 144 
(□); in milk (○); in cheese mixture (); on cheese surface (×). 145 
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Figure 2. Square-root (SQRT) of log reduction (log CFU/g or log CFU/ml) of E. coli as a function of 147 
ln(antimicrobial concentration) (%v/v or %w/w) in cheese with essential oils incorporated: in films 148 
(□); in milk (○); in cheese mixture (); on cheese surface (×). 149 
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Figure 1. Square-root (SQRT) of log reduction (log CFU/g or log CFU/mL) of E. coli as a function of the
square-root (SQRT) of exposure time (day) in cheese with essential oils incorporated: in films (�); in
milk (#); in cheese mixture (4); on cheese surface (×).
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Figure 2. Square-root (SQRT) of log reduction (log CFU/g or log CFU/mL) of E. coli as a function of
ln(antimicrobial concentration) (%v/v or %w/w) in cheese with essential oils incorporated: in films (�);
in milk (#); in cheese mixture (4); on cheese surface (×).
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Table 1. Distribution of log reduction data in E. coli by cheese descriptive category for the
biopreservatives meta-analyzed.

Categories Level N

Milk treatment

Pasteurised 147
Raw 27

Sterilised 10
Not stated 178

Milk species

Bovine 74
Caprine 160
Ovine 29

Not stated 99

Type of cheese

Hard cheese 29
Semi-hard cheese 10

Soft cheese 171
Not stated 152

Label

Coalho cheese 7
Domiati cheese 24

Feta cheese 160
Iranian white cheese 62

Kashar cheese 3
Lor cheese 24

Zamorano cheese 29
Undefined cheese 53

Starters
Present 78
Absent 112

Not stated 172

Essay type Inoculated 350
Non-inoculated 12

Strain/Serotype

ATCC 8739 24
CECT 101 1

EC 16 7
O157 15

O157:H7 70
O157:H7 ATCC 43895 24
O157:H7 CECT 5947 12

O157:H7 EDL-932 42
O157:H7 LH1 34

O157:H7 M364VO 17
O157:H7 VT7 negative 56

PTCC 1533 8
Not stated 52
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Table 2. Distribution of log reduction data (N) in E. coli by moderator for the
biopreservatives meta-analyzed.

Moderators Level N

Antimicrobial

Anise 13
Black cumin seed 47

Lemon balm 12
Oregano 97

Rosemary 27
Sage 26

Shallot 15
Tarragon 8
Thyme 46

Zataria multiflora Boiss. 71

Application type

Cheese mixture 68
Film 113
Milk 98

Cheese surface 83

Exposure time, t (days) 0 ≤ t < 20
20 ≤ t < 4040 ≤ t ≤ 60

272
64
26

Storage temperature, T (◦C) 3 ≤ T < 1313 ≤ T < 2323 ≤ T ≤ 35
337
17
8

Inoculum level, Inoc
(log CFU/g or log CFU/mL)

1.5 ≤ Inoc < 4.254.25 ≤ Inoc ≤
7Non-inoculated

248
102
12

Antimicrobial concentration, Conc
(%v/v or w/w)

5 × 10−3
≤ Conc < 7

7 ≤ Conc < 1414 ≤ Conc ≤ 20

343
12
7

2.2. Meta-Regression Modelling

A mixed-effects linear model with weights was adjusted to the full data set to describe the
antimicrobial effect of EOs on the square-root of log reduction (

√
R). According to the information

provided on the pathogen strain and/or serotype, a new class variable was defined, “pathogenicity”,
composed of the levels “pathogenic” and “non-pathogenic”. Variables or moderators defined for data
analysis encompassed application type (App), exposure time (t), antimicrobial concentration (Conc),
antimicrobial concentration unit (ConcUnit), and pathogenicity (Pathog). The variables exposure time
and antimicrobial concentration were square-root and natural-logarithm transformed, respectively,
to reduce heteroscedasticity. Due to a lack of or uneven data, not all levels could be evaluated in
the meta-regression. More specifically, cheese categories described in Table 1, storage temperature,
and inoculum level could not be evaluated in the model.

The meta-regression model adjusted to the meta-analytical data was of the form,

√
Rikmn = (β0 + ui) + β1nPathogn + β2kAppk + (β3k + vi)Appk(

√
t)

+β4mConcUnitm + β5mConcUnitm(LnConc) + εikmn
(1)

where β0 is an intercept, β1n and β2k are the set of fixed effects of the n types of pathogenicity (class
variable consisting of the levels: pathogenic and non-pathogenic) and of the k types of application (class
variable consisting of the levels: cheese mixture, cheese surface, milk, and film), respectively; β3k is a
vector representing the effects of the square-root of exposure time

√
t nested within application type,

which allows the slopes of exposure time to take different values depending on the type of application
k used; β4m is the set of fixed effects of the m antimicrobial concentration units (class variable consisting
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of the levels: %v/v and %w/w), which allows comparing outcomes expressed in different units; and β5m
is a vector describing the impact of the natural logarithm of the antimicrobial concentration (LnConc)
nested within the antimicrobial concentration unit (ConcUnit). LnConc and ConcUnit were linked in the
nested term “ConcUnit(LnConc)” to evaluate the EO concentration effect on its own, without the impact
of the measure unit and implies that the slopes of antimicrobial concentration could take different
values depending on the concentration unit m.

The remaining unexplained variability was extracted by placing random-effects ui due to
antimicrobial type i in the intercept β0 and random effects vi due to antimicrobial type i in the
square-root of the exposure time slope β3k. These random effects ui, vi were assumed to be correlated
following a normal distribution with mean zero and a variance-covariance matrix (su

2, suv, sv
2)

from where the correlation coefficient ρ of the random effects was calculated. The error term εikmn
accounts for the residuals and follows a normal distribution with a mean of zero and a variance of s2.
Model parameters, as affected by moderators, were calculated from the fitted meta-regression, and the
significance of moderators was evaluated by an analysis of variance (α = 0.05).

By this random-effects arrangement, it was possible to assess the effectiveness of the EOs
by comparing the random effects ui (intercept) and vi (EO concentration slope). In this analysis,
the EO-specific intercept and slope values are interpreted as deviations ui and vi from the mean
values β0 and β3k, respectively. Thus, it was assumed that the higher the ui and vi, the stronger the
antimicrobial effect of the EOi.

In order to obtain precise estimates of the antimicrobial effect on pathogen inactivation and to
reflect the quality of research design, different weights were assigned to each primary study according
to the sample size (n) used along the experiment to evaluate microbial inactivation. When a source did
not present the number of replicates sampled to calculate the pathogen reduction, n = 3 was assigned,
as this was the modal value in the database.

To evaluate the fraction of variability in
√

R that could be explained by the moderators (R2), a null
model version (no moderators) of Equation (1) was fitted, and τ2 was calculated as (su

2 + suv + sv
2).

From the fitted full model (Equation (1)), τ2
res was calculated as (su

2 + suv + sv
2), and finally R2

was estimated as (τ2
− τ2

res)/τ2. The histogram of Pearson’s residuals (estimates of experimental
error calculated from the difference between the observed values and the predicted values) was also
produced to verify the robustness of the model. The meta-regression model described was fitted
using the lme (linear mixed-effects models) function from the nlme package implemented in R software
(version 3.6.2, R Foundation for Statistical Computing, Vienna, Austria) [35].

3. Results and Discussion

The results of the analysis of variance of the meta-regression adjusted are presented in Table 3.
The model allowed for the inclusion of several moderating variables; however, some terms were
not included as fixed effects as they were highly confounded with other variables, or because
the data was not equally distributed among the different levels of a variable. This was the case
for all cheese descriptive categories depicted in Table 1, storage temperature, and inoculum level.
Nonetheless, information on the term “Strain/Serotype” was used to group strains/serotypes in two
classes, pathogenic and non-pathogenic, thus creating a new moderating variable, “Pathogenicity”.
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Table 3. Test of fixed effects of the meta-regression models predicting the square-root of log reduction
(log CFU/g or mL) of E. coli in cheese with incorporated essential oils (EOs) as a function of
moderating variables.

Fixed Effects Num DF/Den DF F-Value Pr > F

Pathogenicity 1/341 84.45 <0.0001
Application type 3/341 41.77 <0.0001

App(
√

t) 4/341 179.3 <0.0001
ConcUnit 1/341 12.70 0.0004

ConcUnit(LnConc) 2/341 6.291 0.0021

* Num DF and Den DF refer to the numerator and denominator degrees of freedom for the F-test (F-value),
respectively. Pr > F is the p-value associated with the F statistic of a given fixed effect.

In Table 3, the significance of the terms “pathogenicity”, “application type”, “App(
√

t)”,
and “ConcUnit(LnConc)” reveals the impact of such variables on the microbial reduction promoted
by EOs in cheese. The term “App(

√
t)” not only shows that exposure time has a strong influence on

microbial reduction, but also that such an effect is dependent upon the mode of application of the
antimicrobial in cheese. In this sense, this term indicates that some modes of EOs application are more
effective than others for pathogen inactivation, and that to achieve a certain microbial reduction, distinct
exposure times are needed according to the mode of application selected. The term “ConcUnit” shows
the need to properly group outcomes originating from different units, so that a correct evaluation of the
results is possible. In that sense, the term “ConcUnit(LnConc)” reveals the positive association between
antimicrobial concentration and microbial inhibition, while linking the antimicrobial concentration
used with its corresponding unit.

The fitted parameters of the meta-regression modelling the antimicrobial effect of EOs against
E. coli are presented in Table 4. A clear tendency for microbial reduction is observed when EOs are
incorporated in cheese, as revealed by the positive intercept β0. Further insight on the variables
affecting microbial inactivation is provided by an analysis of the remaining parameters. The β1n values
demonstrate the distinct efficiency of EOs depending on the pathogenicity of the targeted bacteria:
non-pathogenic E. coli is expected to be more susceptible to EO action (β1n = 0), whereas pathogenic
E. coli seems to present higher resistance (β1n = −0.200). The EOs’ inhibitory capacity is generally
due to their ability to degrade and damage cellular walls, cell membranes, and membrane proteins,
enhancing the cell membrane permeability and leading to the escape of bacterial cell contents [36].
Moreover, EOs have also shown antimicrobial activity against pathogenic E. coli due to their inhibitory
effects on biofilm formation and on major virulence factors, such as shiga toxin, through the inhibition
of shiga toxin encoding genes and through phage induction and production [37,38].

The β2k values provide further insight into the different microbial reductions achieved when
distinct application modes are used, as previously revealed by analysis of variance through the
significant term “application type”. In the model, the mode of application “mixture” is considered
the “base value”, with a mean of zero (β2k = 0.000), implying that the remaining application types
reflect positive and negative deviations from that mean. Essential oil incorporation within films
surrounding the product (β2k = 0.023) or into cheese mixtures attained an overall lower microbial
reduction, while their addition in milk (β2k = 1.312) revealed to be the application type leading to the
highest microbial inactivation, followed by a smearing of the cheese surface (β2k = 0.642).
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Table 4. Parameter estimates of the meta-regression model predicting the square-root of log reduction
(log CFU/g or mL) of E. coli in cheese with incorporated EOs as a function of moderating variables.

Parameters Mean SE Pr > |t| Heterogeneity

Predictors of
√

Rijk

τ2
res = 0.316

R2 > 95%

β0 (intercept) 0.661 0.227 0.004
β1n (Pathogenicity)

Non-pathogenic 0 - -
Pathogenic −0.200 0.052 0.000

β2k (Application type)
Application type: mixture 0 - -

Application type: film 0.023 0.117 0.842
Application type: milk 1.312 0.284 0.000

Application type: surface 0.645 0.200 0.001
β3k (App(

√
t))

Application: mixture 0.676 0.033 0.000
Application: film 0.281 0.019 0.000
Application: milk 0.075 0.012 0.000

Application: surface 0.078 0.018 0.000
β4m (ConcUnit)

Unit: %v/v 0 - -
Unit: %w/w −0.248 0.112 0.028

β5m (ConcUnit(LnConc))
Unit: %v/v 0.324 0.094 0.001

Unit: %w/w 0.302 0.093 0.001

Variances
su 0.562
sv 0.260

ρ(susv) 0.628
s (residual) 0.120

From the β3k parameter, the different mean values indicate that distinct exposure times to the
antimicrobial are needed to achieve a target microbial reduction depending on the application type.
More specifically, it can be observed that applying the EO to a cheese mixture (β3k = 0.676) or within a film
(β3k = 0.281) promotes faster inhibitory effects than applying the EO to the cheese surface (β3k = 0.078)
or into the milk (β3k = 0.075). When comparing the results of the β3k parameter against those of β2k, it
is possible to observe that nesting the square-root of exposure time within the application type leads
to different outcomes in terms of antimicrobial action of those application methods. In fact, the β2k
parameter suggests an increase of inhibitory capacity as follows: mixture<film<surface<milk; whereas
β3k suggests the following order for the effect of the antimicrobial in time: milk<surface<film<mixture.
Although using the experimental practice of the “cheese mixture” for a challenge study may point
out to the highest rates of inactivation, this application method does not represent the real cheese
manufacturing process context, and moreover, this inoculation protocol seemingly leads to significantly
overestimated values of E. coli reduction, showing that this is not a suitable methodology for challenge
studies. Instead, internationally accepted guidelines for conducting challenge tests of food products
are provided in ISO 20976-1:2019, which recommends test units representative of a food matrix to be:
(i) the complete content of the packaging unit; or (ii) aseptically sampled portions from the packaging
unit or from the bulk food [39].

In this sense, the results suggest that incorporation of EO into films appears to be the most
effective defence against E. coli, whereas application in milk or on the surface yields lower, similar,
results. In films, the retention and release properties of encapsulated EOs in the polymer matrix are
determinant for antimicrobial efficacy, as this mechanism ensures the release of consistently effective
inhibitory doses over long periods of time [40]. In milk, however, a slow, controlled release of the EOs
is not possible, and, moreover, its antimicrobial activity is impaired by milk fat content [41] and other
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food components. These issues may justify the lower efficacy of EOs in milk matrix, compared to films,
observed in our study.

The mean values of β4m show a divergence of the inhibitory effect depending on the antimicrobial
concentration unit used. The significance of this parameter highlights the importance of properly
grouping antimicrobial concentration values according to its units for an appropriate assessment
of the results. For this reason, the two variables LnConc and ConcUnit were linked in the term
“ConcUnit(LnConc)”, in order to evaluate the EO concentration effect on its own, without the impact
of the measure unit, so that more precise estimates (reduced standard errors) could be obtained.
The positive intercepts of the term “ConcUnit(LnConc)”, described by β5m, depict the positive
association between antimicrobial concentration and microbial inhibition, meaning that higher EO
concentrations lead to greater inhibitory effects. The similar mean values of β5m reveal that E. coli
inactivation is reasonably the same regardless of the antimicrobial concentration unit used (%v/v or
%w/w).

The analysis of random-effect marginal intercepts and natural logarithm of antimicrobial
concentration slopes is presented in Table 5. Very distinct antimicrobial effects can be achieved
depending on the selected EO, as shown by the large variability of the intercept and slope values.
Although all the EOs meta-analysed presented bactericidal effects against E. coli, assessing the random
effects, it seems that lemon balm, sage, shallot, and anise present the greatest bactericidal effects against
E. coli in cheese.

Table 5. Random effects of the meta-regression models predicting the square-root of log reduction (log
CFU/g or mL) of E. coli in cheese with incorporated essential oils.

Essential Oil Intercept Slope

Anise 0.087 0.025
Black cumin seed −1.368 −0.345

Lemon balm 0.229 0.269
Oregano −0.193 −0.304

Rosemary 0.228 −0.139
Sage 0.283 0.345

Shallot 0.615 0.182
Tarragon −0.127 0.194
Thyme 0.118 −0.116

Zataria multiflora Boiss. 0.128 −0.111

(*) Values in bold highlight the EOs leading to the greatest pathogen inhibition.

The outcomes of another meta-analysis study aiming to describe L. monocytogenes and S. aureus
inactivation by essential oils [42] also revealed the high-level antimicrobial effects of lemon balm
and sage EOs against those pathogens. The similar results from our investigation demonstrate
the efficacy of the EOs from these two specific plants against the growth of both Gram-positive
(L. monocytogenes and S. aureus) and Gram-negative (E. coli) bacteria. However, available literature
suggests that Gram-negative bacteria are generally more resistant to EOs than Gram-positive bacteria,
due to different cell membrane compositions [36], so it is possible that the antimicrobial efficacy of
lemon balm and sage against E. coli is reduced in comparison to their efficacy against L. monocytogenes
and S. aureus, even if lemon balm and sage EOs were the ones revealing the greatest inhibitory action
against E. coli out of all the EOs retrieved. Nonetheless, it is important to refer to a recent study
focusing on polyphenols, a class of plant secondary metabolites highly responsible for antibacterial
activity [43], that showed that microbial sensitivity to antimicrobial agents is, among several factors,
strain-dependent [44]. This supports the need for strain as a characterization level when evaluating
the antimicrobial effectiveness of biopreservatives such as EOs.

The essential oils described in Table 5 can be attributed to five plant taxonomic families: Apiaceae
(anise), Ranunculaceae (black cumin seed), Lamiaceae (lemon balm, oregano, rosemary, sage, thyme,
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Zataria multiflora Boiss.), Amaryllidaceae (shallot) and Asteraceae (tarragon) [45]. The EOs revealing
greatest bactericidal effects in our study belonged to the Apiaceae, Lamiaceae, and Amaryllidaceae
families. In the last few decades, studies have revealed the broad spectrum of biological activities
of the Apiaceae species and have shown that both extracts from these plants and isolated groups of
compounds (such as phthalides), exhibit antimicrobial properties [46]. Numerous studies have also
reported promising results regarding the biological activities of Lamiaceae’s compounds, which are
predominantly polyphenols and can be found in large quantities [47,48]. Since there is a positive
correlation between the antibacterial activities and phenolic content of dietary spices and medicinal
herbs [49], EOs of this family could be anticipated as high antimicrobial action promoters. Other studies
have also focused on the antibacterial activity of Amaryllidaceae plants and its characteristic isoquinoline
alkaloid constituents that provide a unique chemical fingerprint for Amaryllidaceae plants and are used
for antimicrobial screening measures [50].

Nevertheless, it is important that researchers and the food industry also consider the bioavailability
of essential oils’ compounds and the EO-food interaction. In this sense, the results of the meta-regression
presented here are specific for cheeses only, meaning that they may not be accurate if extrapolated
to other food products. The results might be particularly adequate for conclusions on soft cheeses,
as this cheese type comprised the highest amount of data (N = 171; Table 1) when compared to hard or
semi-hard cheeses (N = 29 and N = 10, respectively; Table 1). Since cheese-related foodborne illnesses
have been generally linked to soft cheese or cheese made from raw or unpasteurized milk and rarely
hard cheese [2], it was expected that most research available is on soft cheeses.

Heterogeneity analysis was then conducted and revealed that the moderators introduced to
the model explained more than 95% of the between-EO variability in microbial log reductions,
which is mainly due to the inclusion of moderators that were able to account for the between-EO
variability in the log reductions gathered from the literature. This result shows that the differences in
microbial reductions were not only due to the EO source but also due to the distinct application types,
antimicrobial concentrations, exposure times, and microbial pathogenicity.

Lastly, to evaluate the quality and robustness of the meta-regression model, the histogram of
Pearson’s residuals was built, and the goodness-of-fit was assessed, as shown in Figures 3 and 4.
The residuals can be considered as elements of variation unexplained by the fitted model, which are
expected to be roughly normal and approximately independently distributed, with a mean of 0 and
constant variance. The histogram is a fast, graphical method to evaluate residuals, and as seen from
Figure 3, this meta-regression model has its residuals symmetrically distributed around zero. Regarding
the correlation value of the goodness-of-fit, R = 0.943 can be considered high for a meta-analysis study.
In this sense, the histogram and goodness-of-fit support the robustness of the model and its usefulness
in providing a valuable insight on the effectiveness of EOs as affected by different variables against
E. coli growth.

Overall, our research shows that meta-regression modelling may help obtain a greater
understanding on the main variables influencing microbial reduction when biopreservatives such as
EOs are to be included in fermented dairy products, which is crucial information for the food industry.
Moreover, this information can be useful for the experimental design of challenge studies and for the
optimisation of the use of EOs as a biopreservation technology for E. coli control in cheeses to ensure
the microbial quality and safety of this product.
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4. Conclusions

Literature data was used to build a meta-analytical regression model that summarises the reduction
of E. coli in cheese achieved by an incorporation of essential oils and clarifies the inhibitory effectiveness
by distinct antimicrobials, antimicrobial concentrations, and application methods.

This meta-regression model showed that the effectiveness of added EOs were regulated by
E. coli pathogenicity, exposure time, antimicrobial concentration, and the method of application of
the biopreservative (cheese mixture, cheese surface, incorporated in film or directly added to milk).
The model evidenced that, for a given EO, distinct application methods would require different
exposures times to achieve the same microbial reduction. In general, comparing among the factual
methods of an application of antimicrobials, EOs’ incorporation in films seem to produce faster E. coli
inactivation than an application of them onto the cheese surface or in milk. Lemon balm, sage, shallot,
and anise EOs showed the highest bactericidal effect outcomes against E. coli.
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This meta-analysis study also uncovered one issue related to the experimental design of challenge
tests. From the results, it can be stated that an incorporation of the antimicrobial in grated cheese
(“cheese mixture”) is not an adequate practice for challenge studies, as it does not accurately represent
the real manufacturing process and tends to overestimate EOs’ capacity to inactivate pathogens.
Instead, approved protocols must be used to investigate how food antimicrobials affect microbial
kinetics in challenge studies.
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