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In this paper we develop a semi-analytical perturbation-theory approach to the calculation of the
energy levels (binding energies) and wave functions of excitons in phosphorene. Our method gives
both the exciton wave function in real and reciprocal spaces with the same ease. This latter aspect
is important for the calculation of the nonlinear optical properties of phosphorene. We find that
our results are in agreement with calculations based both on the Bethe-Salpeter equation and on
Monte Carlo simulations, which are computationally much more demanding. Our approach thus
introduces a simple, viable, and accurate method to address the problem of excitons in anisotropic
two-dimensional materials.

I. INTRODUCTION

Although black phosphorus was first obtained in 1914,
over a century ago, few research was developed around
this material throughout most part of the twentieth cen-
tury. In 100 years only around one hundred papers
have been written [1]. With the isolation of monolayer
graphene in 2004 [2], an intensive study has been made
on two-dimensional (2D) materials [3–5]. This opened
a new window of opportunity for black phosphorus to
show its potential in the form of a few-layer material,
named phosphorene. Since 2014, building on the work
done on graphene, hexagonal boron nitride (hBN), and
transition metal dichalcogenides (TMD’s), black phos-
phorus has been rediscovered [1].

Black phosphorus is the most stable of the phospho-
rus allotropes, and presents a unique structure when re-
duced to few layers. Along with graphite, it is one of
the few-layer materials composed by a single type of
atom, in this case, phosphorus [6]. Unlike graphene,
TMD’s, and hBN, phosphorene presents a rectangular
primitive cell composed of four atoms and the energy
gap is located at Γ−point in the Brillouin zone. Also, un-
like these other materials, phosphorene presents a highly
anisotropic crystallographic structure, as can be seen in
Figure 1. The puckering of its structure results in a
plethora of exotic properties, examples being the negative
Poisson ratio [7] and the existence of intrinsic dichroism
[8].

Contrary to what occurs in TMD’s, phosphorene
presents a direct band gap in both monolayer and bulk
forms. The values of the quasi-particle gap range from
0.3 eV (in bulk) to 2.0 eV (in monolayer) [9, 10]. Be-
sides that, phosphorene’s band gap can be finely tuned
through the number of layers. The increase of the gap
as the material is thinned can be understood in terms
of a concomitant increase of the quantum confinement
in the perpendicular direction to the stacking plane of
the layers. Studies have also reported high mobility and
high on-off current ratio in field-effect transistors [11–13].
This set of characteristics makes phosphorene a desirable

Figure 1. (Color online) Schematic representation of phospho-
rene from three different perspectives: top view, side view,
and in perspective. With this, the anisotropic nature of phos-
phorene’s crystal lattice becomes clear. Also at the bottom
left of the image an artistic view of phosphorene anisotropic
excitons is given.

material for electronic and optical applications [14–16].
Like many others 2D materials (graphene being a no-

table exception), excitons dominate phosphorene’s opti-
cal properties. Experimental works have reported highly
anisotropic and tightly bound excitons, with binding en-
ergies up to 900 meV [17]. A large binding energy allows
for stable excitons with increased lifetimes. These are im-
portant properties for future applications in light trans-
port and optically driven quantum computing [6]. Due to
the importance of optical applications involving phospho-
rene, in this paper we focus our attention on the study of
exciton binding energies and wave function anisotropy,
characteristics of this 2D material. Our approach fol-
lows a simple, yet effective, path. Instead of solving the
Bethe Salpeter equation starting from ab-initio calcula-
tions [18], which is computationally demanding, we fol-
low the path of solving the anisotropic Wannier equation.
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This approach has been shown, in the context of TMD’s
in strong magnetic fields, to produce binding energies in
full agreement with the solution of the Bethe-Salpeter
equation [19]. As we will see, our approach proposes a
semi-analytical form for the wave function of the excitons
up to a set of numerical coefficients determined from the
solution of a generalized eigenvalue problem.

This paper is organized as follows: In the next sec-
tion we present the model Hamiltonian, and transform
it in order to separate our problem in two parts: an
unperturbed Hamiltonian, which has cylindrical symme-
try, and a perturbation one, which includes the lattice
anisotropy information. Next, we introduce a simple
semi-analytical method that allows us to solve the cylin-
drical symmetric part of our problem. In Sec. III we
present the necessary formalism to compute the effect
of perturbations breaking the cylindrical symmetry. Af-
terwards, in Sec. IV, we compute the exciton binding
energies and wave functions for three different scenar-
ios: phosphorene encapsulated in hBN, phosphorene on
a substrate of silicon oxide (SiO2), and phosphorene in
freestanding form. Finally we compare our results to val-
ues obtained in other works, finding a good agreement.

II. MODEL HAMILTONIAN

We start this section introducing the effective Hamil-
tonian that will be used throughout the text to describe
the exciton dynamics in black phosphorus; it reads

H =
p2x

2µx
+

p2y
2µy

+ V (r). (1)

This is a center of mass Hamiltonian, composed of a ki-
netic (first and second) and potential (last) terms. Since
black phosphorus is a highly anisotropic material there
are two different reduced masses in the x and y direc-
tions, thus leading to two different contributions to the
kinetic terms, one for each direction in momentum space.
The reduced masses are defined as

µx/y =
mx/yMx/y

mx/y +Mx/y
, (2)

with mx/y and Mx/y being the effective masses of elec-
trons and holes, respectively, in the x/y direction. The
potential term V (r) corresponds to the Rytova-Keldysh
potential [20, 21], and is given by

V (r) = − e2

4πε0

π

2

1

r0

[
H0

(
κr

r0

)
− Y0

(
κr

r0

)]
, (3)

where r0 ∼ dε/2, with d and ε the thickness and dielectric
function of the 2D material, respectively; κ = (ε1+ε2)/2
is the mean dielectric function of the media surrounding
the 2D material (either different or equal on each side
of the material); H0(x) is the Struve function of zero
order and Y0(x) is the Bessel function of zero order of

the second kind. This potential is the solution of the
Poisson equation for a thin film embed in a medium.

With the intent of passing the anisotropy from the ki-
netic term to the potential energy V (r) term, we fol-
low the change of variables proposed by Rodin et al. in
Ref.[22]:√

µx/y

2µ̄m0
x/y = X/Y, µ̄ =

µxµy
µx + µy

1

m0
. (4)

Performing this change of variables, the Hamiltonian (1)
acquires the form

H = − ~2

4µ̄m0
∇2 + V (R

√
1 + β cos(2θ)), (5)

where the kinetic term has now the usual form, albeit
with a different mass, β = (µy − µx)/(µy + µx), and θ
is the in-plane polar angle. The parameter β character-
izes the degree of anisotropy. The larger it is the more
anisotropic the system is. The new variable R is defined
as R =

√
X2 + Y 2. We see that this variable change pro-

duces the desired effect, that is, the anisotropy is now
present in the potential, and the kinetic term takes the
usual form of an isotropic center of mass system, with re-
duced mass equal to 2µ̄m0. From now on we will work in
this new coordinate system, and only return to the orig-
inal x and y coordinates when plots are presented and
concrete values for averages of distances are computed.
To avoid misunderstandings we will warn the reader when
confusion may arise.

The main advantage of working with the Hamiltonian
in this form is two fold: (i) the unperturbed Hamiltonian
has cylindrical symmetry and (ii) we can now expand
the potential energy term in powers of β, allowing us
to separate Eq. (5) into an unperturbed Hamiltonian
and an additional perturbative potential energy. Taylor
expanding the potential energy up to order β2, we obtain

H =− ~2

4µ̄m0
∇2 + V (R) +

1

2
R cos(2θ)

dV

dR
β

+ cos2(2θ)
1

8

(
R2 d

2V

dR2
−RdV

dR

)
β2 +O(β3).

(6)
We can now divide our problem into two different stages:
(a) solving the unperturbed problem, whose Hamiltonian
consists of the first two terms in Eq. (6); (b) computing
the corrections introduced by the terms proportional to
β and β2.

In order to solve the unperturbed problem we will in-
troduce a semi-analytical method that has already shown
excellent results in a previous work [23]. The quasi-
analytical nature of this method makes it less compu-
tationally demanding than other approaches, and much
simpler to work with when compared to fully numerical
calculations which diagonalize the Bethe-Salpeter equa-
tion starting from ab-initio calculations. Inspired by the
analytical solution of the 2D hydrogen atom [24], we write
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the exciton wave function as

ψ(0)
ν (r) = Aν

N∑
j=1

cνj e
imθr|m|e−ζjr, (7)

where eimθr|m| follows from the eigenfunctions of the
z−component of the angular momentum and from the
radial behavior of the wave function near the origin, for
m = 0,±1,±2, ..., the magnetic quantum number; the
exponential term (Slater basis) e−ζjr describes the decay
of the radial part of the wave function far from the origin,
with a decay rate determined by the parameter ζj ; the
coefficients cνj weight the different terms in the sum and
Aν is a normalization constant given by

Aν =

√
1

2πSν
, (8)

with Sν =
∑N
j=1

∑N
j′=1 c

ν∗
j c

ν
j′(ζj+ζj′)

−2−2|m|Γ(2|m|+2),
and where Γ(x) is the Gamma function. The index ν en-
codes both the principal (n) and the angular (m) quan-
tum numbers. An additional advantage of this method
is that the matrix elements of both the kinetic operator
and the electron-electron interaction do not mix different
m values and, therefore, the eigenvalue problem is block
diagonal in the angular momentum space. In this work,
and contrary to Ref. [23], we opt to work with a Slater
basis instead of a Gaussian one since this choice allows
us to obtain more accurate results using fewer terms in
Eq. (7). Contrary to the Gaussian basis, we have found
that the Slater basis requires more care in the choice of
parameters defining the grid of ζj ’s (see below).

Using the proposed wave function and computing
the matrix elements of the kinetic and potential opera-
tors (see Appendix), the generalized eigenvalue problem,
whose numerical solution gives the coefficients cνj and the
unperturbed binding energies E(0)

ν , acquires the form

N∑
j=1

[H(ζi, ζj)− S(ζi, ζj)E
(0)
ν ]cνj = 0, (9)

where H(ζi, ζj) is the Hamiltonian kernel and S(ζi, ζj)
is the superposition kernel. Both kernels have analytical
expressions that are given in the Appendix. The super-
position kernel differs from a Kronecker-δ since the Slater
basis is not orthogonal. Equation (9) was first introduced
in nuclear physics and is termed the Griffin-Hill-Wheeler
equation [25]. The key aspect of this method is the sen-
sible choice of the parameters ζj . A choice not so well
known is the use of a logarithmic grid of ζ’s according to
the rule given in Ref.[26]

Ω =
ln ζ

A
, A > 1, (10)

where the grid Ω is composed of equally spaced values in
the interval [Ωmin,Ωmax] and A is real number typically
chosen between 2 and 5. The interval is divided in N
steps.

III. PERTURBATION THEORY

With the unperturbed problem dealt with, we will use
this section to present the necessary formalism to com-
pute the corrections introduced by the perturbation

H(1) =
1

2
R cos(2θ)

dV

dR
β

+ cos2(2θ)
1

8

(
R2 d

2V

dR2
−RdV

dR

)
β2,

(11)

that is, the remaining terms of the potential expansion
given in Eq. (6).

We start noting that the kernel expressions given in
the Appendix do not depend on m but rather on its ab-
solute value |m|. This means that every state withm 6= 0
will be degenerate, since two states with equal principal
quantum number n and magnetic quantum numbers m
and −m will have the same kernels, and therefore the
same eigenenergies. One thus needs to be careful when
computing the energy corrections through perturbation
theory, since a separation between degenerate and non-
degenerate states must be made.

Starting with the non-degenerate states (m = 0), the
first-order energy correction is elementary and is given
by the matrix element (all the matrix elements in this
work are known analytically)

E(1)
ν =

〈
ψ(0)
ν

∣∣∣H(1)
∣∣∣ψ(0)

ν

〉
, (12)

where the superscript (0) indicates that these are unper-
turbed wave functions, that is, they are the solution of
first two terms of Eq. (6). Looking at the wave function
given in Eq. (7), especially to its angular dependence,
one realizes that the first-order energy correction is zero
for the perturbation term proportional to β, since the
integral of cos(2θ) between 0 and 2π vanishes. Only the
β2 portion of the perturbation gives a non-zero result
up to first order correction to the unperturbed binding
energies.

For the degenerate states, the first-order correction is
obtained from the solution of the secular equation

det
[
H

(1)
αβ − Eδ

β
α

]
= 0, (13)

with

H
(1)
αβ =

〈
ψ(0)
α

∣∣∣H(1)
∣∣∣ψ(0)

β

〉
. (14)

For clarity sake let us work out a specific case that will
be used later in the text. Consider the degenerate states
(n = 2,m = ±1). The energy corrections will be given
simply by

E(1) = ±
〈
ψ
(0)
2,1

∣∣∣H(1)
∣∣∣ψ(0)

2,−1

〉
+
〈
ψ
(0)
2,1

∣∣∣H(1)
∣∣∣ψ(0)

2,1

〉
, (15)

where the first term will only produce a finite contribu-
tion for the perturbation term proportional to β, and the
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second term for the term proportional to β2. The new
eigenstates will be superpositions of the original unper-
turbed states, that is

|2px/y〉 =
1√
2

(∣∣∣ψ(0)
2,1

〉
±
∣∣∣ψ(0)

2,−1

〉)
. (16)

This superposition of states is to be expected, since m is
no longer a suitable quantum number, due to the loss of
rotational symmetry in the original problem.

To further improve the energy eigenvalues, we compute
the second-order correction for the non-degenerate states,
only considering the term of H(1) linear in β, since we
only want corrections up to β2. This correction reads

E(2)
ν =

∑
µ6=ν

∣∣∣〈ψ(0)
µ

∣∣ 1
2R cos(2θ)dVdRβ

∣∣ψ(0)
ν

〉∣∣∣2
E

(0)
ν − E(0)

µ

. (17)

Although the sum should cover all the µ states different
from ν, we consider only the dominant term in the sum,
that is, that for which the ratio |〈ν|H(1)|µ〉|2/(E(0)

ν −
E

(0)
µ ) has the largest absolute value. Therefore, the ex-

act value for the ground state energy will be slightly more
negative than what we actually compute. It is important
to note that, once again, the angular dependence of the
wave functions plays a crucial role in evaluating the ma-
trix elements, since there will be coupling only between
µ and ν states whose angular functions combine to give
e±2imθ. Since cosine is an even function, and only the
real part of the exponential will couple with cos(2θ), the
sign difference in the complex exponential will not change
the matrix element value.

Having determined the binding energies corrections, we
proceed to compute the first-order correction to the wave
functions, using the relation

|ψ(1)
ν 〉 =

∑
µ6=ν

〈
ψ
(0)
µ

∣∣H(1)
∣∣ψ(0)

ν

〉
E

(0)
ν − E(0)

µ

|ψ(0)
µ 〉, (18)

where, and once again, we only consider the dominant
term in the sum.

IV. RESULTS

In this section we apply the formalism introduced pre-
viously to three different cases: phosphorene encapsu-
lated in hBN; phosphorene on a substrate of SiO2; and
freestanding phosphorene. Due to the similarities be-
tween the analysis for these three physical systems, we
will give special attention to the case of phosphorene en-
capsulated in hBN (due to its experimental relevance),
and comment on the differences to the other two scenar-
ios.

Let us start applying the semi analytical method in-
troduced in Sec. II to black phosphorus encapsulated in
hBN. For this experimental scenario we have κ = 4.5,

and r0 = 25 Å[27]. Considering the effective masses of
Ref.[28], presented in Table I, one obtains β = 0.62. Us-
ing the parameters: N = 25, A = 5, and Ω = [−2, 2] we
obtain the unperturbed binding energies given in Table
II. A plot of these binding energies is shown in Figure 2.

Ref. [27] Ref. [29] Ref. [28]

mx 1.15m0 0.20m0 0.46m0

my 0.24m0 6.89m0 1.12m0

Mx 7.29m0 0.20m0 0.23m0

My 0.24m0 6.89m0 1.61m0

β -0.78 0.94 0.62

Table I. Values for the effective masses of electrons (m) and
holes (M) in the x and y directions. The masses are pre-
sented in terms of m0, the bare electron mass. We have used
the effective masses of Ref. [28]. We have checked that the
binding energy of the 1s exciton, for free standing phospho-
rene, changed by 6 meV if one uses β = −0.78.

(1,0) (2,0) (2,±1) (3,±1) (3,±2)

in hBN -234 -50 -64 -25 -26

on SiO2 -428 -121 -160 -66 -78

Freestanding -799 -340 -424 -232 -262

Table II. Unperturbed exciton binding energies (in meV) ob-
tained using the semi-analytical method described in Sec. II,
for phosphorene encapsulated in hBN, on a substrate of SiO2,
and freestanding. The parenthesis refer to the exciton state
(n,m). These values were obtained using the N = 25, A = 5,
and Ω = [−2, 2]. A value of r0 = 25 Å was considered [27].
As discussed previously, we observe that states with m 6= 0
are degenerate. We also note that, as expected, the binding
energies are inferior for the cases with more dielectric screen-
ing, that is, higher values of κ (κ = 1 for freestanding and
κ = 2.4 for phosphorene on SiO2). Let us stress that the
energies given in this table refer to the solution of the Hamil-
tonian given by the first two terms of Eq. (6); the effect of
the perturbation has not yet been considered.

For the cases of black phosphorus on a SiO2 sub-
strate, and for freestanding black phosphorus, we ob-
served larger binding energies (in absolute value) than
when we encapsulate the material in hBN. This is a sen-
sible result, since in these two other cases the effect of
dielectric screening is reduced and, as a consequence, the
excitons are more tightly bound. Freestanding phospho-
rene presents the largest exciton binding energies of the
lot.

After computing the unperturbed eigenenergies we
proceeded to compute the energy corrections as described
in Section III. Calculating the first order corrections to
the degenerate and non-degenerate states using equations
(12) and (15) is a straightforward process. The same can-
not be said about the second order corrections, where an
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Figure 2. (Color online) Plot in a log-scale of the unper-
turbed exciton binding energies (actually, −Ebinding = −E(0)

ν )
for phosphorene encapsulated in hBN. Each column corre-
sponds to a different quantum number m (0,±1,±2, from left
to right), and each color corresponds to a specific quantum
number n (from 1 to 4).

approximation is made when truncating the sum over
the different states. As was previously discussed in the
text that follows Eq. (17), we only consider the domi-
nant term of the sum. To do this correctly a plot like
the one in Fig. 2 is useful, since it allows us to see with
clarity which combination of two states is likely to give
the largest contribution. States with similar unperturbed
binding energies will, in principle, produce a significant
contribution to the correction. An example of this is the
second correction to the state n = 2, m = 0. Here the
dominant term is obtained from the matrix element with
the state n = 3, m = ±2, giving a correction of around
−13 meV. Although this may seem a higher value than
expected for a second order correction, looking at Fig-
ure 2 it becomes clear that the states n = 2, m = 0
and n = 3, m = ±2 present the smallest difference of
the unperturbed binding energies (orange–green), which
enhance the weight of this contribution, making it the
dominant term to the perturbative sum.

The values we obtained for the corrected ground state
binding energy and their comparison to other results from
the literature are summarized in Table III. In this table
we observe an excellent agreement between our values
and the ones given by other references, using different
numerical approaches (note, however, that there is a cer-
tain degree of dispersion within the values reported by
different works). In agreement to what was found in the
other works, the three more tightly bound excitons corre-
spond to 1s, 2py, and 2s states. We also emphasize that
the proximity between results extends across the three
considered combinations of phosphorene and dielectrics.

In Figure 3 we plot the probability density (squared

modulus of the corrected wave functions) for the three
more tightly bound excitons of phosphorene encapsulated
in hBN. As stated before, these correspond to 1s, 2py,
and 2s states, respectively. Although we only show the
plots for the case where we encapsulate phosphorene in
hBN, the plots obtained for the other two situations are

in hBN on SiO2 freestanding

This work -256 -449 -825

Ref. [30] -300 -460 -910

Ref. [27] -260 -440 -810

Ref. [22] -220 – –

Ref. [13] – -380 –

Ref. [31] – -396 –

Ref. [28]† – – -850

Ref. [17]* – – -900±120

Ref. [32] – – -740

Ref. [18] – – -840

Ref. [33] – – -780

Ref. [34] – – -860

Ref. [35]* – – -762

Table III. Comparison between the perturbed ground state
exciton binding energy obtained in this work, taking in con-
sideration the effect of the terms in the potential energy pro-
portional to β and β2, and the ones available in the literature.
All energies are given in meV. We report a good agreement
between our values and the ones obtained in other works for
the three considered configurations. The * on Ref.[17] and on
Ref. [35] means that the values presented in these references
were obtained experimentally, while the others are theoret-
ical predictions. We note that the theoretical results corre-
spond to both the solution of the Wannier equation, quan-
tum Monte Carlo simulations, and the solution of the Bethe-
Salpeter equation, depending on the reference. We also stress
the existence of a certain degree of dispersion among the re-
sults from different works. The † mark in Ref. [28] means we
have used in our calculation the effective masses of this ref-
erence (our calculation of the exciton binding energy agrees
well with that of this reference).

extremely similar to these ones, the only difference being
the the smaller area across which the probability den-
sity extends, since the higher binding energy in these
other two scenarios leads to more localized wave func-
tions. Plotting these functions we have returned to the
original x and y coordinates through the relation given
in Eq. (4).

Finally we compute the mean value of x2 and y2 in the
corrected exciton ground state. Although this may be
a straightforward process, one aspect should be noted:

when evaluating the matrix elements one should only
consider the contributions up to β2, since otherwise one
would be inconsistent with the potential expansion made
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Figure 3. (Color online) Probability density (squared modulus of the corrected wave functions) for the 1s, 2py, and 2s exciton
states of phosphorene encapsulated in hBN. These three states correspond to the three more tightly bound excitons. These plots
emphasizes the effect of the phosphorene anisotropic crystallographic structure on its excitons. When dealing with isotropic
systems, such as the 2D hydrogen atom, the 1s orbital presents a circular shape. This is not the case in phosphorene, where
we see that for the 1s state, what was once a circle, is now a disk stretched along the x direction. The same reasoning applies
to the other two plots.

in the beginning of the text. The values we found for
Lx =

√
〈x2〉gs and Ly =

√
〈y2〉gs for the three consid-

ered cases are presented in Table IV. There we see that
Lx > Ly in agreement with the plot of Fig. 3. We also
note that as the effect of dielectric screening diminishes,
the values of both Lx and Ly decrease. This is a direct
consequence of the connection between dielectric screen-
ing and the exciton binding energies, since as screening
effects decrease, the binding energy grows, and the wave
functions become more localized. We further note that
the ratio between the values of Lx and Ly for freestand-
ing phosphorene is in agreement with the one obtained
in Ref.[27].

in hBN (κ = 4.5) on SiO2 (κ = 2.4) freest. (κ = 1)

Lx (nm) 1.1 0.89 0.78

Ly (nm) 0.54 0.44 0.39

Table IV. Computed values of Lx =
√
〈x2〉gs and Ly =√

〈y2〉gs for phosphorene, using the perturbed 1s wave func-
tion (gs stands for ground-state). It’s possible to see that
as κ decreases the values of Lx and Ly also decrease. This
is a direct consequence of the higher localization of the ex-
citon ground-state wave function. The abbreviation “freest.”
stands for “freestanding”.

The perturbed binding energies of the three mostly
bounded excitons are given in Table V. As expected, the
mostly bounded states occur for the smallest value of the
average dielectric function κ.

1s 2py 2s

in hBN (κ = 4.5) -256 -89 -61

on SiO2 (κ = 2.4) -449 -206 -149

freest. (κ = 1) -825 -502 -405

Table V. Perturbed binding energies, up to order β2, of the
three mostly bounded excitonic states in the three experimen-
tal scenarios discussed in the text. All energies are in meV.

V. CONCLUSIONS

In this work we have studied excitons in phosphorene
in three different scenarios: encapsulated in hBN, on a
substrate of SiO2, and freestanding.

Our approach to this problem hinges on a change of
variable proposed by Rodin et al. in Ref. [22] that al-
lowed us to treat the problem as an unperturbed Hamilto-
nian on which a perturbation, originated from the crystal
structure anisotropy, acts. We then introduced a simple,
yet effective, semi-analytical method that allowed us to
solve the unperturbed part of our problem. Essentially
the method requires the numerical determination of a
set of coefficients cj that define the wave-functions of the
radial-symmetric problem once and for all; the rest of the
calculations are analytical. To compute the effect of the
crystal anisotropy characteristic of phosphorene we used
perturbation theory. Because the wave-function of the
excitons is analytical up to a set of numerical coefficients,
we can give the excitonic wave function both in real and
reciprocal spaces using simple analytical formulas. This
will be important in future work in connection with the
optical nonlinear properties of phosphorene [36, 37].
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In possession of an analytical formula for the excitonic
wave function, we computed the exciton binding ener-
gies in three different scenarios, having obtained -234,
-428 and -799 meV for the ground state binding energy
of phosphorene encapsulated in hBN, phosphorene on a
SiO2 substrate, and freestanding phosphorene, respec-
tively. These values are in agreement with (within the
same range) the values presented in other works using dif-
ferent numerical approaches. In all the considered cases
the three more tightly bound excitons corresponded to
1s, 2py, and 2s states. We then plotted the probabil-
ity density for different exciton states and, although not
shown, we could have done the same in the reciprocal
space, since the semi-analytical nature of our approach
allows to pass between the real and reciprocal spaces
with ease. We have also computed the characteristic
length scales for the exciton ground state, having ob-
tained Lx = 1.1 nm and Ly = 0.53 nm for freestanding
phosphorene, and higher values for the other two stud-
ied cases. The difference between Lx and Ly reflects the
crystal anisotropy that characterizes this 2D material.
Finally we note that the method can be generalized to
include the effect of electric (Stark effect [38]) and mag-
netic (magneto-optics) fields.
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Appendix A: Kernel Expressions

In this appendix we present the analytical expressions
for the Hamiltonian kernel H(ζi, ζj) , and the overlap
kernel S(ζi, ζj):

S(ζi, ζj) = 2π(ζi + ζj)
−2−2|m|Γ(2 + 2|m|) (A1)

H(ζi, ζj) = K(ζi, ζj) + V (ζi, ζj) (A2)

with

K(ζi, ζj) =
πζiζj(ζi + ζj)

−2−2|m|(µx + µy)(~c)2Γ(2 + 2|m|)
2µxµy

(A3)
and

V (ζi, ζj) =
πα~c
κ2r20

{
− 2κ3Γ(2 |m|+ 3)(ζi + ζj)

−2|m|−3
3F2

(
1, |m|+ 3

2
, |m|+ 2;

3

2
,

3

2
;− κ2

r20(ζi + ζj)2

)

+ r3022|m|+1 cos(π|m|)Γ(|m|+ 1)2
(
κ

r0

)−2|m|
2F1

(
|m|+ 1, |m|+ 1;

1

2
;−r

2
0(ζi + ζj)

2

κ2

)}
(A4)
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