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Abstract: Geological materials are a potential source of pollutants, among which there is the 

radioactive isotope 222Rn, which result of radioactive decay of daughter radionuclides of uranium 

(238U). It is emitted as a gas that it can be released to the air to enter the human body, with the 

potential to affect internal organs (mostly the lungs) by alpha particles production. While the 

presence of uranium in the materials is a necessary condition for the production of Rn-222, the 

amount of gas emitted by the material depends on other characteristics that allow the migration of 

the gas. The main aim of this communication concerns a statistical analysis of results from diverse 

types of rocks.  
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al. [10]; Andrade et al. [14]). From these publications we collected (when available) minimum, average 

(mostly mean but also median) and maximum values. Given the general goal of this kind of 

publication it is expected that they are focused on materials that, at least potentially, can give high 

values of radon exhalation.  

In Figure 1 we present of the results of mass exhalation rates (a,c) and surface exhalation rates (b,d) 

considering the original values (a,b) and their logarithms (c,d), obtained with the software Statistica 

11 (Statsoft). As commonly happens in geochemical data, the distribution of original values is skewed 

due to the presence of higher values (since the considered parameters cannot have negative values). 

On the contrary, the logarithms of values show trends towards more balanced histograms, which are 

nonetheless somehow biased towards higher values (which would be expected given what was 

referred above).  

The vast majority of the collected results for surface area exhalation rates are below the value of 58 

Bq m−2 h−1 referred in UNSCEAR [2] for soil worldwide (but one should recall that the exhalation 

rate depends on factors such as porosity). The same material that in our review of gamma radiation 

(Sanjurjo-Sánchez & Alves [17]) was the clear highest value (with a concentration index which was 3 

times higher than the second highest value) is also the one that presents the higher deviation from 

the set of other results: the surface exhalation rate for a local stone (Bavarnegin et al. [9]) ,which seems 

to be enriched in uranium due to circulation of solutions, achieving 226Ra values that (using the 

conversion factors indicated in IAEA [18]) correspond to almost 7000 ppm given a Clarke of 

concentration (as defined by Ferman in 1933, according to Laznicka [19] and using the Clarke values 

indicated in this last author) around 4000. This uranium content will be around four times higher 

than the highest content referred in Laznicka [19] for the five biggest uranium deposits. The second 

highest value in terms of surface exhalation rate (which is around a ⅕ of the highest value) is for a 

granite studied by Allen et al. (2013). In the set of results of mass exhalation rate, the highest value 

corresponds to a tuff studied by Turhan et al. (2015), which is closely followed (around 10% lower) 

by a tuff studied by Marocchi et al. (2011).  
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The lowest value of surface exhalation rate also corresponds to granite studied by Bavarnegin et al. 

[9] while in terms of mass exhalation rates the lowest value was found for a marble studied by 

Andrade et al. [3] followed by a orthogneiss studied by Marocchi et al. [5].  

The effect of heterogeneity is illustrated by the study of Allen et al. [3] which found that the highest 

surface exhalation rate value of a measurement area is more than fifteen times higher than the global 

value of the slab and around three times higher than the highest value reported (in Bavarnegin et al. 

[9]).  

One can also highlight the results of Rafique & Rathore [11] which showed a significant value for a 

marble, being located in the central region of the histogram of log values and higher than many values 

for granites.  
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Figure 1. Histograms of values of mass exhalation rates (a) and their logarithms (b) and of surface 

exhalation rates (c) and their logarithms (d).  

3. Final Considerations  

As radon is the most important gaseous pollutant released by natural stones, it is of great interest to 

know the exhalation rates from these materials. Radon release depends on the uranium content of 

the rocks but also on their porosity, being affected by environmental factors as well. Like in many 

geochemical studies, the collected data on surface and mass exhalation rates of radon from diverse 

natural stone seem to be better described by a lognormal distribution, namely due to the presence of 

some cases with high uranium content. In general, the surface area exhalation rates of natural stones 

are below the soil worldwide average value.  

The behavior of uranium and radon exhalation in these materials needs to be studied in more detail 

in order to assess the risks to human beings, as one of the more noticeable risks of radon is the 

accumulation indoor in areas where these rocks are used as building materials. Nonetheless, from 

the studied set one can suggest values of 0.7 Bq kg−1 h−1 and 80 Bq m−2 h−1 as conservative upper 

values for mass exhalation rates and surface exhalation rate, respectively. In the case of surface 

exhalation rates we found one study with a result around five times above the indicated upper value. 

However, this specific case can be considered an anomaly in terms of building materials, one which 

is not usually available internationally (but which, represents a worrying situation for its uses), 

corresponding to a local situation with a remarkable uranium enrichment that achieves contents at 

the level of uranium deposits.  
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