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ABSTRACT 

Masonry is a composite material made of units (brick, blocks, etc.) and mortar. For 

periodic arrangements of the units, the homogenisation techniques represent a powerful tool 

for structural analysis. The main problem pending is the errors introduced in the 

homogenisation process when large difference in stiffness are expected for the two 

components. This issue is obvious in the case of non-linear analysis, where the tangent 

stiffness of one component or the tangent stiffness of the two components tends to zero with 

increasing inelastic behaviour. 

The paper itself does not concentrate on the issue of non-linear homogenisation. But as 

the accuracy of the model is assessed for an increasing ratio between the stiffness of the two 

components, the benefits of adopting the proposed method for non-linear analysis are 

demonstrated. Therefore, the proposed model represents a major step in the application of 

homogenisation techniques for masonry structures. 

The micro-mechanical model presented has been derived from the actual deformations 

of the basic cell and includes additional internal deformation modes, with regard to the 

standard two-step homogenisation procedure. These mechanisms, which result from the 

staggered alignment of the units in the composite, are of capital importance for the global 

response. For the proposed model, it is shown that, up to a stiffness ratio of one thousand, the 

maximum error in the calculation of the homogenised Young’s moduli is lower than five 

percent. It is also shown that the anisotropic failure surface obtained from the homogenised 

model seems to represent well experimental results available in the literature. 
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1. INTRODUCTION 

 

Masonry is a composite material made of units and mortar, normally 

arranged periodically. Utilising the material parameters obtained from 

experiments and the actual geometry of both components, viz. units (e.g. 

bricks, blocks or stones) and joints, it is possible to numerically reproduce 

the behaviour of masonry structures, see e.g. Lofti and Shing (1994), and 

Lourenço and Rots (1997). Nevertheless, the representation of each unit and 

each joint becomes impractical in case of real masonry structures 

comprising a large number of units. 

The alternative is to describe the composite behaviour of masonry in 

terms of macro or average stresses and strains so that the material can be 

assumed homogeneous. This problem can be approached, basically, from 

two directions. A possible direction is to gather extensive experimental data 

that can be used confidently in the analyses. It is stressed that the results are 

limited to the conditions under which the data are obtained. New materials 

and/or application of a well known material in different loading conditions 

might require a different set of costly experimental programs. Another 

direction, adopted in this paper, is to seek a more fundamental approach 

which resorts to homogenisation techniques. This approach, which  aims at 

describing the behaviour of the composite from the geometry and behaviour 

of the representative volume element (or basic cell, see Fig. 1), grants us a 

predictive capability. 

The techniques of homogenisation, Bakhvalov and Panasenko (1989), 

are currently becoming increasingly popular among the masonry 
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community. A method that would permit to establish constitutive relations 

in terms of averaged stresses and strains from the geometry and constitutive 

relations of the individual components would represent a major step forward 

in masonry modelling. Given the difficult geometry of the masonry basic 

cell, a close-form solution of the homogenisation problem seems to be 

impossible, which leads , basically, to three different lines of action. 

The first, very powerful approach is to handle the brickwork structure 

of masonry by considering the salient features of the discontinuum within 

the framework of a generalised / Cosserat continuum theory. This elegant 

and efficient solution, Besdo (1985) and Mühlhaus (1993), possesses some 

inherent mathematical complexity and has not been adopted by many 

researchers, even though being capable of handling the unit-mortar interface  

and true discontinuum behaviour. The step towards the practical application 

of such an approach is still to be done. 

A second approach, Anthoine (1995,1997) and Urbanski et al. (1995), 

is to apply rigorously the homogenisation theory for periodic media to the 

basic cell, i.e. to carry out a single step homogenisation, with adequate 

boundary conditions and exact geometry. It is stressed that the unit-mortar 

interface has not yet been accounted for by researchers. The complexity of 

the masonry basic cell implies a numerical solution of the problem, which 

has been obtained using the finite element method. The theory was thus 

used by the cited authors to determine macro-parameters of masonry and 

not, actually, to carry out analysis at the structural level. In fact, the rigorous 

application of  the homogenisation theory for the non-linear behaviour of 

the complex masonry basic cell implies solving the problem for all possible 
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macroscopic loading histories, since the superposition principle does not 

apply anymore. Thus, the complete determination of the homogenized 

constitutive law would require an infinite number of computations.  

The third approach can be considered as an “engineering approach”1, 

aiming at substituting the complex geometry of the basic cell by a simplified 

geometry so that a close-form solution of the homogenisation problem is 

possible. Keeping in mind the objective of performing analysis at the 

structural level, Pande et al. (1989), Maier et al. (1991) and Pietruszczak and 

Niu (1992) introduced homogenisation techniques in an approximate 

manner. The homogenisation has generally been performed in two steps, 

head (or vertical) and bed (or horizontal) joints being introduced 

successively. In this case masonry can be assumed to be a layered material, 

which simplifies the problem significantly. Lourenço (1996) further 

developed the procedure, presenting a novel matrix formulation that allows 

a much clearer implementation of linear elastic homogenisation algorithms 

and also a relatively simple extension to nonlinear behaviour. Again, it is 

stressed that the unit-mortar interface has not been accounted for by the 

cited researchers. 

The use of two separate homogenisation steps does not explicitly 

account for the regular offset of vertical mortar joints belonging to two 

consecutive layered unit courses. Moreover, the final result depends on the 

order in which the two homogenisation processes are carried out. 

                                                 
1 “Engineering” is used here not in the sense that it is empiric or practical but in the sense 

that must be engineered from reasoning. 
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Nevertheless, this simplified homogenisation approach has been used by 

several authors and performs very satisfactorily in the case of linear elastic 

analysis, Anthoine (1995) and Lourenço (1997). For the case of non-linear 

analysis, where the ratio between the stiffness of unit and mortar becomes 

larger, the simplified homogenisation approach leads to non-acceptable 

errors and should not be used. Lourenço (1997) has shown that large errors 

can occur in the standard two step homogenisation technique if there are 

large differences of stiffness (>10) between unit and mortar. Anthoine 

(1995,1997) has shown that the standard two step homogenisation technique 

does not take into account the arrangement of the units in the sense that 

different bond patterns (running bond and stack bond for example) may lead 

to exactly the same result. 

A different engineering approach has been proposed by Bati et al. 

(1999), in which a close-form solution of the periodic arrangement of units 

and mortar has been obtained, by substituting the parallelepiped-shaped 

units by elliptic cylinders. This mathematically elegant solution does not 

represent well the geometry and it is unclear if it represents an advantage 

with regard to the standard two-step homogenisation technique. 

The present paper presents a new micro-mechanical model, for 

masonry in stretcher bond2, to overcome the limitations of the standard two-

step homogenisation by a more detailed simulation of the interactions 

                                                 
2 “Stretcher bond” represents the typical arrangement of masonry units in a wall, with an offset half unit 

for the vertical mortar joints belonging to two consecutive masonry courses. The “stacked bond” 

arrangement, in which the vertical joints run continously through all the courses, is not allowed for 

structural purposes by most masonry codes. 
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between the different internal components of the basic cell.  The model can 

still be considered as an engineering approach, in which an ingenious 

observation of the behaviour of masonry leads to the simulation of 

additional internal deformation mechanisms of the joints, that become more 

and more important for increasing unit/mortar stiffness ratios. At this stage, 

the unit-mortar interface is not considered in the model. 

It is noted that micro-mechanical approaches that consider additional 

internal deformation mechanisms have been derived independently by van 

der Pluijm (1999) for the analysis of masonry subjected to flexural bending 

and by Lopez et al. (1999) for the non-linear analysis of masonry walls 

subjected to in-plane loading.  

In this paper, the full three-dimensional behaviour will be considered 

and attention will be given to a comparison between the results from a 

detailed finite element analysis (FEA) and the proposed micro-mechanical 

homogenisation model, in order to demonstrate the efficiency of the 

proposed solution. Finally, the adequacy of the model to reproduce the 

anisotropic failure surface of masonry will be discussed by means of a 

comparison with available experimental results. 

 

2. Descriptive analysis of masonry 

 

As a consequence of the differences in stiffness between units and 

mortar, a complex interaction between the two masonry components occurs 

when masonry is deformed. The differences in stiffness cause a unequal 
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distribution of deformations over units and mortar, compared with the 

average deformation of masonry composite. As a result the individual 

(internal) stresses of units and mortar deviate from the average (external) 

stresses of the composite. 

For the purpose of understanding the internal deformational behaviour 

of masonry components (units and mortar), when average deformations 

occur on the boundaries of the basic cell, detailed finite element calculations 

have been carried out for different loading conditions. For a clear discussion 

of the internal distribution of stresses, a right-oriented x-y-z coordinate 

system was defined, where the x-axis is the parallel to the bed joints, the y-

axis is parallel to the head joints and the z-axis is normal to the masonry 

plane, see Fig. 2.  This figure also shows the components considered in the 

present paper. The cross joint is defined as the mortar piece of the bed joint 

that is connected to the head joint. 

The mesh used in the analyses is depicted in Fig. 3 and consists of 

24 × 4 × 12 twenty-noded quadratic 3-D elements with reduced integration. 

The unit dimensions are 210 × 100 × 52 mm3 and the mortar thickness is 10 

mm. The assumption that the units are stiffer than the joints is usually made 

by the masonry research community. In the present analysis, in order to 

better understand the deformational behaviour of the mortar, the units are 

considered infinitely stiff (for this purpose, the adopted ratio between unit 

and mortar stiffness was 1000). 

Fig. 4 illustrates the deformation corresponding to the analysis of the 

basic cell under compression along the axes x, y and z, and under shear in 

the planes xy, xz and yz. Loading is applied with adequate tying of the nodes 
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in the boundaries, making use of the symmetry and antisymmetry conditions 

appropriate to each load case. Therefore, the resulting loading might not be  

associated with uniform stress conditions or uniform strain conditions. 

Linear elastic behaviour is assumed in all cases. 

Fig. 4a demonstrates that, for compression along the x-axis, the unit 

and the bed joint are mostly subjected to normal stresses, the bed joint is 

strongly distorted in shear and the cross joint is subjected to a mixed  shear / 

normal stress action. While the cross joint effect can be neglected if the 

cross joint is small compared to the basic cell, the shear of the bed joint 

must be included in the micro-mechanical model of masonry for stiff units. 

Fig. 4b demonstrates that, for compression along the y-axis, the unit 

and the bed joint are mostly subjected to normal stresses, and the head and 

cross joints are subjected to a mixed shear / normal stress action. These 

relatively local effects are difficult to include in the micro-mechanical 

model, have small influence on the overall behaviour of the basic cell and 

will not be considered. This is confirmed by the results of Lourenço (1997) 

where it was shown that the standard two-step homogenisation technique, 

which neglects such effects, leads to almost exact results (errors smaller 

than 2% for ratios unit / mortar stiffness up to 1000). 

Fig. 4c demonstrates that, for compression along the z-axis, all 

components of the basic cell are subjected to a truly homogeneous state of 

normal stress. This again is confirmed by the results of Lourenço (1997) 

where it was shown that the standard two-step homogenisation technique 

leads to almost exact results (errors smaller than 0.2% for ratios unit / 

mortar stiffness up to 1000). 
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Fig. 4d demonstrates that, for xy shear, the unit and the head joint are 

mostly subjected to shear stresses, the bed joint is strongly distorted in the 

normal direction (tension) and the cross joint is subjected to a mixed  shear / 

normal stress. Due to antisymmetric conditions, the neighbouring basic cells 

will feature normal compression in the bed joint. While the cross joint effect 

can be neglected if the cross joint is small compared to the basic cell, the 

normal stress of the bed joint must be included in the micro-mechanical 

model. 

The deformation of the basic cell under xz shear is shown in Fig.4e. 

The cell components are mostly subjected to shear stresses, with unit and 

head joint deformed in the horizontal plane, while the bed joint is distorted 

also in the vertical plane.  Therefore the shear stress yzσ cannot be neglected 

in a micro-mechanical model. 

Finally, the deformation of the basic cell under yz shear is shown in 

Fig.4f. All cell components are mainly distorted by shear in the vertical 

plane, while minor local stress components do not produce significant 

overall effects.    

 

3. Formulation of the micro-mechanical model  

3.1 General 

Lourenço (1997) has shown that large errors can occur in the standard 

two-step homogenisation technique if there are large differences of stiffness 

(>10) between unit and mortar. The micro-mechanical model presented in 
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this paper overcomes this limitation by a more detailed simulation of the 

interactions between the different internal components of the basic cell.   

The main idea of this approach, derived from observations of 

deformations calculated with the finite element analyses shown in the 

previous section, is that the standard two-step homogenisation technique 

neglects some deformation mechanisms of the bed joint, that become more 

and more important for increasing unit/mortar stiffness ratios, such as:   

• vertical normal stress in the bed joint, when the basic cell is loaded with 

in-plane shear;   

• in-plane shear of the bed joint, when the basic cell is loaded with an 

horizontal in-plane normal stress;   

• out-of-plane shear yzσ  of the bed joint, when the basic cell is loaded 

with out-of-plane shear stress xzσ . 

These mechanisms are due to the staggered alignment of the units in a 

masonry wall and are neglected by the standard two-step homogenisation 

techniques, which are based on the assumption of continuous perpendicular 

head joints. 

Due to the superposition principle, which applies in linear problems, 

the elastic response of the basic cell to a generic load can be determined  by 

studying six basic loading conditions: three cases of normal stress and three 

cases of simple shear.  In the present formulation, for each loading case and 

each basic cell component, suitably chosen components of the stress and 

strain tensors are assumed to be of relevance for the stress-strain state of the 

basic cell, while all the others are neglected, see Fig. 6 and Fig. 8 for 



 

 

11 

examples. Equilibrium is, of course, ensured for all loading cases. The 

number of unknowns of the problem is larger than in the usual 

homogenisation procedure in order to take into account the above "second 

order" effects.  The unknown internal stresses and strains can be found from 

equilibrium equations at internal interfaces between basic cell components, 

with a few ingenious assumptions on the cross joint behaviour and on the 

kinematics of the basic cell deformation, see Fig. 5 for the adopted 

geometric symbols. The equivalent properties of an homogenised material 

are then easily derived from the internal stresses and strains, by forcing the 

macro-deformation of the model and of the homogenised material to be the 

same, meaning that both systems must contain the same strain energy.   

3.2 Young’s moduli and Poisson’s coefficients 

The Young's moduli and the Poisson's coefficient of an equivalent 

orthotropic material can be derived from the elastic strains of the basic cell 

loaded with a uniform normal stress on the two faces perpendicular to a 

given axis (x, y or z). All other stresses vanish on the boundary. Fig. 9 shows 

the case of uniform loading in the horizontal in-plane direction (x-axis).  In 

this case all shear stresses and strains inside the basic cell are neglected, 

except the in-plane shear stress and strain (σxy and εxy) in the bed joint and in 

the unit.  Non-zero stresses and strains are assumed to be constant in each 

basic cell component, except the normal stress σxx  in the unit, which must 

be a linear function of x to account for the effect of the shear σxy in the bed 

joint, and the shear stress  σxy in the unit, linear in y. 
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With these hypotheses, the following relations hold for the stresses at 

internal or boundary interfaces: 
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and for the strains:  
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where l is half of the unit length, h is half of the unit height and t is half of 

the bed joint width. Unit, bed joint, head joint and cross joint variables are 

indicated throughout this paper respectively by the superscripts b, 1, 2  and 

3, respectively. b
xxσ and b

xxε are the mean value of the normal stress 

xxσ and normal strain xxε in the unit. 0
xxσ , 0

yyσ , 0
zzσ are the uniform 

normal (macro) stresses on the faces of the homogenised basic cell, 

respectively in the x-, y- and z-direction.  The equilibrium of the unit (Fig. 7) 

yields: 

(10)   2b
xx

1
xy

1b
xx hσσ)tl(hσ =−+   

where we assume that the shear acts only on the bed-unit interface (l-t). 
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If b
xxσ is linear in x, its mean value in the mid-unit (equal to the mean value 

in the unit) is: 

(11)    
2

σ
2b

xx
1b

xxb
xx

σ+σ
=    

From Eqs.(10,11) we get : 
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h2
tlσ
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which have been used in Eqs. (1,3). The couple required for the momentum 

equilibrium of one fourth of the unit in the basic cell (Fig. 6) derives from 

the neighbouring cell along y-axis.  The symmetric unit quarter of the cell 

above (Fig. 7) reacts at the centre line of the unit with a couple due to a self-

equilibrating vertical stress distribution, which is neglected in the model. 

In Eqs.(1-9) the unknown stresses and strains in the cross joint can be 

eliminated by means of the following relations: 

 

(13)  2
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(14)    13
xxxx σσ =  

 

Eqs.(13) assume that the cross joint behaves as a spring connected in 

series with the bed joint in the x-direction, connected in series with the head 

joint in the y-direction and connected in parallel with the bed joint in the z-

direction. Eq.(14) represents the equilibrium at the cross-bed joint interface. 

It can be noted that the stress-strain state in the cross joint does not play a 



 

 

14 

major role in the problem, because of its usually small volume ratio, so finer 

approximations are not considered. 

Introducing Eqs.(13-14) in Eqs. (1-9) results in the elimination of all 

unknowns related to the cross joint. Further coupling with the nine elastic 

stress-strain relations in the unit, head joint and bed joint, namely, 

(15)   
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,        k = b,1,2, 

yields a linear system of 18 equations. The unknowns are the six normal 

stresses and strains of the three components (unit, head joint and bed joint) 

and the shear stress and shear strain in the bed joint, amounting to a total of 

20 unknowns. 

Two additional equations are therefore needed to solve the problem. 

The equations can be derived introducing the shear deformation of the bed 

joint: the elastic mismatch between the normal x strains in the unit and in 

the head joint is responsible for shear in the bed joint because of the 

staggered alignment of the units in a masonry wall. This mechanism is clear  

in Fig. 9 (where only the horizontal displacements have been magnified for 

sake of clearness) and leads to the approximated relation3: 

                                                 
3 If the assumed linear behaviour of b

xxε in x is taken into account, it would lead 

to
b

1
xy

b
xx

2b
xx hE2

tl −
σ+ε=ε , but usually the second term in the right-hand side can be 

neglected. 
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(16)            
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This relation holds in the hypothesis that the bed joint does not slip on the 

unit.  With the additional elastic relation:   

(17)    1
1

1 2 xyxy εG=σ    

a system of 20 equations and 20 variables is finally obtained. This linear 

system of equations can be solved numerically4 to give the internal stresses 

and strains for uniaxial load in the i-direction, given by 

     

(18)  )(0,1 00 ijjjii ≠== σσ         ,      i, j = x, y, z 

 

where i represents the three orthogonal directions associated with  the axis x, 

y or z.  The shear stress in the unit can be found by means of the internal 

equilibrium equation : 
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4 It is noted that an explicit symbolic solution does exist and has been obtained. 

Nevertheless, the complexity of the solution precludes its use for practical purposes. The 

system of twenty equations can be easily reduced to a system of nine equations, which 

can be solved with any efficient linear solver. 
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The homogenised Young's moduli and Poisson's coefficients of the 

basic cell are finally:  
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and the subscript i in the Young’s modulus E and the Poisson’s ratio 

calculation i)(  indicates that the values are calculated for uniaxial loading 

in the i-direction (i = x, y, z). 

 

3.3    In-plane shear modulus xyG  

The homogenised shear modulus Gxy can be calculated by loading the 

basic cell with simple in-plane shear by means of suitable load and 

displacement fields.  All external loads are zero on the basic cell boundary, 

except a uniform shear stress 0
xyσ applied on the upper and lower face, and 

the equilibrium reactions xyσ  on the left and right face.   In this case the 

model neglects all stresses (and corresponding strains), except the in-plane 

shear in each basic cell component and the normal vertical component 

1
yyσ in the bed joint.  Non-zero stress and strain components are assumed to 

be constant in each basic cell component, except xyσ in the unit, which 
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must be a linear function of x to account for the effect of the normal stress 

1
yyσ in the bed joint.  The deformation of the basic cell is approximated as 

shown in Fig. 10, with the bed joint in traction. Note that in the 

neighbouring basic cells (along x-axis) the bed joint is in compression, due 

to the antisymmetric loading conditions.   

The internal stresses can be related by the equilibrium at adequately 

isolated parts of the composite: 
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where b
xyσ is the mean value of b

xyσ in the unit. 

The normal strain 1
yyε can be derived from the geometric considerations in 

Fig. 10, where all the geometric quantities can be defined. Neglecting 

second order terms, it is straightforward to obtain:  

(24) 
l
y

t
y

t

y
l
ty

t
tt b

xyxyyy 22
,

22
22 21 ∆

+
∆

=−
∆+∆

≅
−′

≅ εεε  

which lead to : 

(25)   b
xyxyyy εεε −= 21  

and, introducing the linear elastic relation between stress and strain, finally: 
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Eqs.(23,26), combined with the shear stress-strain relations 
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yield the shear stresses in the basic cell components: 
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The shear strains of the basic cell components and of the homogenised 

material, according to the deformation shown in Fig. 10, are related by the  

strain-displacement relations : 
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which lead to 
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The shear strains i
xyε  in the above equation can be calculated from the shear 

stresses given in Eq.(28) by means of the elastic relations of Eq.(27), 

resulting, finally, in the homogenised shear modulus Gxy 
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where k is defined in Eq.(28). 

 

3.4    Out-of-plane shear modulus xzG  
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To calculate the homogenised shear modulus Gxz, simple out-of-plane 

shear conditions in the xz-plane are imposed to the basic cell.  Right and left 

faces are loaded with a uniform shear 0
xzσ , while all other boundary stresses 

are zero, except the equilibrium reactions xzσ on front and rear face.  Only 

out-of-plane shear stresses xzσ  in each basic cell component and 1
yzσ  in the 

bed joint (and corresponding strains) are taken into account in the model, 

while all others are neglected.  Non-zero stress and strain components are 

assumed to be constant, except b
xzσ which varies linearly in x to account for 

the effect of 1
yzσ in the bed joint. 

The deformation of the basic cell in this case is approximated as shown 

in Fig. 11, where one side has been fixed for the purpose of graphical 

clarity.  The shear strain 1
yzε , with geometric considerations, can be found to 

be:  
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The following relations also hold: 
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By means of the shear stress-strain relations 

( 34)   b,1,2)(k2 == k
xzk

k
xz G εσ  
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and of the kinematic relations 

( 35)  
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Eqs.(32,33) yield : 
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and the homogenised shear modulus can be finally found as: 
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3.5    Out-of-plane shear modulus  yzG  

The basic cell in this case is assumed to be in simple out-of-plane shear 

(in the plane yz) by means of appropriate boundary conditions.  The external 

load is a uniform shear stress 0
yzσ  applied on upper and lower face of the 

basic cell, while equilibrium reactions yzσ act on front and rear face, where 

the boundary condition uy=0 is imposed.  Only the shear stresses yzσ (and 

corresponding strains) are taken into account in the model.  It can be argued, 

from the deformation shown in Fig. 12 (where one side has been fixed for 

the purpose of graphical clarity), that  

(38) 
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Combining these equations with the stress-strain relations 

(39)   b,1,2)(k2 == k
yzk

k
yz G εσ  

yields: 
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The homogenised strain is  
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and the homogenised shear modulus yzG  is finally given as: 
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4. ELASTIC RESULTS 

 

The model described in the previous section has been applied to a real 

masonry basic cell and compared with the results of an accurate finite 

element analysis (FEA). This was considered a better evaluation of the 

analytical model that comparing analytical results with experimental results. 

In fact, the analytical model needs material data for the components and this 

type of data, at least for the mortar, always result from debatable 

assumptions or debatable interpretation of experimental results at the 

composite level (the curing conditions of mortar inside the composite are 

impossible to replicate, leading to meaningless results if the mortar 

specimens have been cured outside the composite). In the finite element 
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analysis and the analytical model, the properties of the components can be 

taken absolutely equal. 

The same elastic properties have been adopted for the bed joint, head 

joint and cross joint (E1 = E2 = E3 = Em, ν1 = ν2 = ν3 = νm). Different 

stiffness ratios between mortar and unit are considered. This allows to 

assess the performance of the model for inelastic behaviour. In fact, non-

linear behaviour is associated with (tangent) stiffness degradation and 

homogenisation of non-linear processes will result in large stiffness 

differences between the components. In the limit, the ratio between the 

stiffness of the different components is zero (or infinity), once a given 

components has no stiffness left.  The unit dimensions are 210 × 100 × 52 

mm3 and the mortar thickness is 10 mm.  The material properties of the unit 

are kept constant, whereas the properties of the mortar are varied.  For the 

unit, the Young's modulus Eb is 20 GPa and the Poisson's ratio νb is 0.15.  

For the mortar, the Young's modulus is varied to yield a ratio Eb / Em 

ranging from 1 to 1000.  The Poisson's ratio νm is kept constant to 0.15.   

The adopted range of  Eb / Em is very large (up to 1000), if only linear 

elastic behaviour of mortar is considered. However, those high values are 

indeed encountered if inelastic behaviour is included. In such case, Eb and 

Em should be understood as linearised tangent Young’s moduli, representing 

a measure of the degradation of the (tangent / secant) stiffness matrices 

utilised in the numerical procedures adopted to solve the non-linear 

problem. Note that the ratio Eb / Em tends to infinity when softening of the 

mortar is complete and only the unit remains structurally active.   
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The elastic properties of the homogenised material, calculated by means 

of the proposed micro-mechanical model, are compared in Fig. 13 with the 

values obtained by FE analysis. The agreement is very good in the entire 

range 1≤ Eb / Em ≤1000. Fig. 14 gives the relative error of the elastic 

parameters predicted by the proposed model  and show that it is always ≤ 

6%.  The thinner curves in Fig. 14 ("simplified model") give the results of a 

simplified model (Ex only), derived from the model presented in the paper, 

but  where the deformation mechanisms of the bed joint, mentioned in 

Sec.3.1, have not been taken into account.  The simplified model therefore 

neglects the main effects due to the misalignment of the units in the 

masonry wall and coincides with the full model when the units are aligned 

in the wall. The simplified model is, therefore, closer to the standard two-

step homogenisation referred to in Chapter 1. Fig. 14 also includes the 

results of the standard two-step homogenisation of Lourenço (1997). A non-

acceptable error up to 45% is found in such case, for the homogenisation of 

the elastic Young’s modulus along the x direction. Directions y and z are not 

shown in the picture for the sake of clarity of the picture. Less pronounced 

differences are found in these directions as the unit geometry if oriented in 

the x direction and the running bond reduces largely the influence of the 

head joint for homogenisation in the y direction, see Lourenço (1997). 

For large ratios Eb / Em the simplified model predicts value of Ex, vxz and 

Gxz much smaller than the actual values obtained by FE analysis.  The large 

and increasing errors of the simplified model on these variables (up to 50%) 

indicate that for very degraded mortar the neglected deformation 

mechanisms of the bed joint contribute significantly to the overall basic cell 
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behaviour.  In the proposed micro-mechanical model the in-plane shear 

resistance of the bed joint ( 1
xyσ ) is responsible for the increased stiffness in 

the x-direction (up to 50%), which could not be accounted for only with the 

normal stresses in the unit and in the mortar.  This increase of the stiffness 

in x yields also higher Poisson's coefficient in y and z.  The vertical normal 

stress in the bed joint ( 1
yyσ ) contributes to the in-plane shear stiffness, while 

the out-of-plane shear ( 1
yzσ ) can double (for very large ratios Eb / Em) the 

shear resistance of the basic cell to a shear load 0
xzσ  calculated with the 

simplified model. 

 

5. A HOMOGENISED FAILURE CRITERION 

 

Failure of quasi-brittle materials such as concrete and masonry is a 

difficult issue. Even for apparently simple loading conditions such as 

uniaxial compression, failure mechanisms denoted as Mode I, Mode II or 

local crushing are the object of a long-going debate among researchers, see 

van Mier (1998) for a discussion. For masonry under uniaxial compression, 

a lot of researchers claim that mortar is subjected to triaxial compression 

and the unit is in a mixed uniaxial compression - biaxial tension, see e.g. 

Hendry (1998). The assumption that failure of masonry is governed solely 

by the tensile failure of the unit, induced by the expansion effect of mortar, 

is certainly highly debatable because the influence of the micro-structure 
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(voids, inclusions, etc.) is also a key issue. A discussion on these aspects is 

out of the scope of the present paper and will not be carried out. 

The sole objective of this section is to demonstrate that the shape of the 

anisotropic failure surface based on the micro-mechanical homogenised 

model is reasonable and seems to be able to reproduce experimental results 

available in the literature. A direct connection to the triggered failure modes 

is not the issue here. Currently, a research project being carried out at 

University of Minho is addressing these issues. 

The homogenised micro-mechanical model allows to calculate not only 

the homogenised material properties of the basic cell, but also stresses and 

strains in each basic cell component. Making use of the superposition 

principle, holding up to failure if an elastic-brittle behaviour is assumed for 

mortar and unit, the stress distribution for an arbitrary loading case can be 

derived by linear combination of the solutions of the six basic problems 

presented in Chapter 3. 

Then, the failure load for the homogenised cell results from reaching the  

failure criteria of any of the two components. For the purpose of this 

section, the simplest failure criteria can be considered for the unit and 

mortar. Assuming that both materials are isotropic, the Rankine yield 

surface has been assumed to describe the tensile behaviour, while the classic 

von Mises criteria has been adopted to describe the compression behaviour, 

see Fig.14. These are defined by  

 

Rankine:  k
t

k
p σσ =        



 

 

26 

(43) 

Von Mises        :  k
c

k
Mises σσ =           ;             k=1,2,b 

 

where k
pσ  is the maximum principal tensile stress, k

Misesσ  is the equivalent 

von Mises stress, and k
tσ , k

cσ  are the tensile and compressive strengths of 

the component k. It is stressed that von Mises is hardly acceptable as a 

failure criterion for frictional materials subjected to general three-

dimensional stress states, which is not the case here. On the contrary, it can 

approximate failure in the compression-compression regime or the tension-

compression regime for plane stress problems, as adopted here. It has been 

used for this purpose by a number of authors. 

Fig. 16 shows the resulting failure surfaces in the plane stress space 

( 1σ , 2σ ) for a test case, where the principal loading stress directions 

coincide with the material axes, i.e. only in-plane normal stresses 1σ , 2σ  

and no shearing are applied on the cell faces. The material and geometric 

parameters for unit and mortar, which are defined in the picture, aim at 

reproducing the results from Page (1981,1983). In the micro-mechanical 

model, the principal directions in the bed joint do not coincide with the 

material axes even in the absence of shear loading, due to presence of shear 

in the bed joint.  The intersection of all failure surfaces (the thicker line in 

Fig. 16a which is reproduced in Fig. 16b) is the failure surface of the 

homogenized basic cell.  In the unit, due to the variation of b
xxσ with x , the 

compression failure criteria is applied to the point which leads to a 

maximum of the von Mises stress, which can be easily calculated. 
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The stresses in Fig. 16 have been normalised by the mortar tensile 

strength ( tmσ ) for the purpose of comparison with experimental results. It 

can be noted that the plot of the yield stress in the unit of Fig. 16a is not a 

perfect ellipse (check top and bottom parts): actually it is the intersection 

(worst value) of two different von Mises ellipses, corresponding to the 

maximum and minimum values of the stress b
xxσ , which has been assumed to 

vary linearly with x in the unit. For a given stress path, the failure loads and 

the type of failure mechanism depend strictly on geometry, on elastic 

material properties and above all on the relative material strengths of the 

different cell components.  Note that the direction of the maximum principal 

stress in each component does not correspond always to the same material 

direction, but does change with the load ratio 1σ / 2σ . Additionally, the 

tensile stress of the unit in the compression-compression range is zzσ  as the 

lateral expansion in z of the mortar (prevented in x and y by the biaxial 

compression) is the cause of a tensile stress state of the unit in the direction 

z. 

According to the proposed model, Fig. 16b shows that, for the selected 

material and geometric properties, failure by tension of the head joint is 

expected in the tension-compression range, while tension in the bed joint is 

the cause of the failure in the compression-tension range. In the 

compression-compression range, three mechanisms are responsible of the 

failure of the cell for decreasing 1σ / 2σ  ratios: tensile failure in the bed joint 

(for very high ratios), compressive failure in the head joint and compressive 

failure in the bed joint. Again, it is believed that these conclusions are 
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debatable and more research is needed on the issue of compressive failure of 

masonry. 

Nevertheless, a comparison between the results obtained with the micro-

mechanical model and the experimental results of Page (1981,1983) are 

given in Fig. 17. The agreement in the actual values is misleading as the 

parameters of the micromechanical model were fitted to obtain the actual 

uniaxial strengths exhibited in the experiments. Nevertheless, very good 

agreement is found in the shape of the yield surface, indicating that the 

proposed model can be used as a possible macro-model to represent the 

composite failure of masonry. Such an approach might reduce the effort to 

develop and implement specific complex macro-models for the composite 

behaviour of masonry such as in Lourenço et al. (1998). 

It is stressed that the present work is, at this stage, mostly fundamental 

and represents a contribution to researchers working in the homogenisation 

field. Homogenisation methods represent powerful tools available for 

analysts, but are not yet fully developed. The aim of this section is only to 

demonstrate that an anisotropic failure criterion similar to the criteria 

observed experimentally can be obtained. Given the difficulties in 

adequately measuring mortar and interface properties, i.e. the absence of 

adequate experimental values to assess the model, and the actual simplicity 

of the model, the analytical results presented seem of value to the authors. 

Finally, it must be stressed that failure by tension of the head joints will 

not imply necessarily the failure of the composite system in the macroscale, 

as adopted in this paper. For the simplified approach used here, this seems 

the most reasonable assumption (i.e. if the weakest link fails, the system 
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fails). The issue of actual non-linear behaviour of the components with 

progressive stiffness degradation must be assessed elsewhere. The definition 

of failure is a tricky issue for a composite material such masonry. The well-

know experimental results of Page (1981,1983) indeed result from a 

definition of failure in compression as early splitting of the bed joints in 

tension, in the case of compression parallel to the bed joints, see Dhanasekar 

et al. (1985). 

 

6. CONCLUSIONS 

 

This paper presents a novel micro-mechanical homogenisation model for 

masonry, which includes additional deformation modes of the basic cell. 

From a comparison with the results obtained in a detailed finite element 

simulation of the basic cell, it is demonstrated that relatively small errors 

occur in the homogenisation process, by including these mechanisms. The 

proposed one-step homogenisation represents a major development with 

respect to the standard two-step homogenisation process, head and bed 

joints being introduced successively, in which very large errors occur for 

large differences between the unit and mortar stiffness, Lourenço et al. 

(1998). 

Finally, it is shown that the anisotropic failure surface obtained from the 

proposed micro-mechanical model, assuming elastic-brittle behaviour of 

unit and mortar, seems to, qualitatively, reproduce well the experimental 

results available for the composite behaviour of masonry. The quantitative 
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assessment of the model cannot be addressed at this stage, due to the 

reduced experimental data available. It is expected that interface behaviour 

and progressive stiffness degradation must be included in the simplified 

homogenisation techniques to assess the their quantitative performance. 
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Fig. 1 – Basic cell for masonry and objective of homogenisation 
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Fig. 2 – Definition of (a) masonry axes and (b) masonry components considered in the analysis: unit, head joint, bed joint and cross joint 
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Fig. 3 – Finite element mesh for the basic cell adopted in the analyses 
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(b) Y Direction 
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(c) Z Direction 
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(d) XY Direction 
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(e) XZ Direction 
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(f) YZ Direction 

Fig. 4 – Deformed configuration resulting from the finite element analysis on the basic cell: (a) compression x, (b) compression y, (c) 

compression z, (d) shear xy, (e) shear xz and (f) shear yz.
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Fig. 5 – Adopted geometry symbols. 
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Fig. 6 – Normal stress loading parallel to the x axis: (a) equivalent homogenised cell; (b) assumed deformation behaviour; (c) assumed involved stress components  
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Fig. 7 – Normal stress loading parallel to the x axis: unit equilibrium (couple moment equal to self-equilibrating vertical stress distribution)
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Fig. 8 – Normal stress loading parallel to the y axis: (a) equivalent homogenised cell; (b) assumed deformation behaviour; (c) assumed involved stress components  
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Fig. 9 – Model assumptions for compression along the x axis 
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Fig. 10 – Model assumptions for xy shear 
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Fig. 11 – Model assumptions for xz shear 
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Fig. 12 – Model assumptions for yz shear 
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(c) 
Fig. 13 – Comparison between the micro-mechanical model and FEA results for different stiffness ratios: (a) Young’s moduli, (b) Poisson’s ratio 

and (c) Shear moduli 
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(c) 
Fig. 14 – Comparison between the micro-mechanical model and FEA results for different stiffness ratios: (a) Young’s moduli, (b) Poisson’s ratio 

and (c) Shear moduli 
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Fig. 15 – Composite von Mises-Rankine failure criteria in the principal stress space. 
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(b) 

Fig. 16 – Calculated micro-mechanical failure criterion for masonry under biaxial in-plane loading (principal axes coincident with material axes): 

(a) complete failure modes of the unit and mortar and (b) composite masonry failure. 
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Fig. 17 – Comparison between micro-mechanical failure criterion and experimental results of Page (1981,1983). 
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