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World population has been continuously increasing and progressively aging. Aging is 
characterized by a complex and intraindividual process associated with nine major cel-
lular and molecular hallmarks, namely, genomic instability, telomere attrition, epigenetic 
alterations, a loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunc-
tion, cellular senescence, stem cell exhaustion, and altered intercellular communication. 
This review exposes the positive antiaging impact of physical exercise at the cellular level, 
highlighting its specific role in attenuating the aging effects of each hallmark. Exercise 
should be seen as a polypill, which improves the health-related quality of life and func-
tional capabilities while mitigating physiological changes and comorbidities associated 
with aging. To achieve a framework of effective physical exercise interventions on aging, 
further research on its benefits and the most effective strategies is encouraged.

Keywords: aging, physical exercise, hallmarks, cellular, molecular, life span

iNTRODUCTiON

Aging is a complex and intraindividual process, usually defined as a time-dependent progressive loss 
of the individual’s physiological integrity, which eventually leads to deteriorated physical function 
(1). Within this line, the accumulated molecular and cellular damage across the individual’s life span 
often leads to age-associated pathological conditions and thus makes them more prone to death 
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AU-binding factor 1; BDNF, brain-derived neurotrophic factor; CRP, C-reactive protein; DNA, deoxyribonucleic acid; FoxO3, 
Forkhead box O3; GH, growth hormone; GHRH, growth hormone-releasing hormone; Glut 4, glucose transporter type 4; 
GnRH, gonadotropin-releasing hormone; GTP, guanosine triphosphate; hnRNP D, heterogeneous nuclear ribonucleoprotein 
D; HSPs, heat-shock proteins; IGF-1, insulin-like growth factor 1; IL, interleukin; MEF2, myocyte enhancer factor-2; miRNA, 
microRNA; mRNA, messenger RNA; mtDNA, mitochondrial DNA; mTOR, mammalian target of rapamycin; Myf, myogenic 
factors; MyoD, myoblast determination protein; NAD, nicotinamide adenine dinucleotide; NF-kB, nuclear factor kappa B; NK, 
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FigURe 1 | Nine cellular hallmarks contributing to aging.
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(2–5). Understanding the specific cellular and molecular mecha-
nisms implicit in aging still represents one of the most complex 
and integral issues that biological research has yet to overcome.

Despite hundreds of explored and developed theories, not 
a single one fully and comprehensively explains the process of 
aging (6). Traditionally, aging was not seen as an adaptation or 
genetically programmed phenomenon. More recently, biologic 
currents point to two main theories: the programmed aging 
and the damage or error-based theories. The first suggests an 
intrinsic biologic programmed deterioration of the structural and 
functional capacity of the human cells (7). The latter highlights 
the cumulative damage to living organisms leading to intrinsic 
aging (8). Nonetheless, a combination of these theories is usually 
preferred. In this sense, López-Otín et al. (1), in a state-of-the-
art review, proposed nine cellular and molecular hallmarks that 
contribute to the process of aging, including (1) genomic instabil-
ity, (2) telomere attrition, (3) epigenetic alterations, (4) loss of 
proteostasis, (5) deregulated nutrient sensing, (6) mitochondrial 
dysfunction, (7) cellular senescence, (8) stem cell exhaustion, 
and (9) altered intercellular communication (Figure  1). These 

hallmarks should be expressed during normal aging, with their 
experimental aggravation speeding up the aging process, and 
in contrast, their experimental amelioration retards the normal 
aging process, thus increasing a healthy life span.

The world population has been progressively aging and thus 
raising the average life expectancy. In 2015, an estimated 8.5% 
(617.1 million) of the world population were aged 65 and older. 
Within this line, the older population percentage is expected to 
keep increasing, with an average annual increase of 27.1 million, 
representing 12 and 16.7% of world population by the years 
2030 and 2050, respectively (9). With this life span increase 
and its associated aging comorbidities, a growing challenge has 
arisen to make older people physically active and functionally 
independent until the rest of their lives. Along with the nine 
cellular and molecular hallmarks stated above, aging is known 
to be correlated with several cardiovascular, cardiorespiratory, 
musculoskeletal, metabolic, and cognitive impairments (10). In 
this sense, regular physical activity in the older population—
especially aerobic and resistance training—plays an important 
role at a multisystem level, preventing severe muscle atrophy, 
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maintaining cardiorespiratory fitness and cognitive function, 
boosting metabolic activity, and improving or maintaining 
functional independence (10–13). Within this line, Garatachea 
et  al. (10) and Nelson et  al. (13) made an outstanding sum-
mary of the specific antiaging effects of physical exercise at 
the multilevel system, including (1) increasing neurogenesis 
and attenuating neurodegeneration and cognitive alterations; 
(2) decreasing blood pressure levels and increasing numerous 
cardiovascular functions, such as maximal cardiac output, 
regional blood flow and blood volume, body fluid regulation, 
endothelial and autonomic function, vagal tone and heart rate 
variability, and cardiac preconditioning; (3) improving respira-
tory function by increasing ventilation and gas exchange; (4) 
enhancing metabolic function in raising the resting metabolic 
rate, muscle protein synthesis, and fat oxidation; and (5) aug-
menting muscle function and, subsequently, body composition 
by improving muscle strength and endurance, maintaining or 
regaining balance, motor control, and joint mobility, as well as 
reducing weight and regional adiposity and increasing muscle 
mass and bone density. In addition, physical exercise has a posi-
tive antiaging impact at the cellular level, and its specific role in 
each aging hallmark is described below.

eFFeCT OF PHYSiCAL eXeRCiSe ON 
eACH CeLLULAR HALLMARK

genomic instability
The accumulation of genetic damage throughout one’s life span 
takes a major role in the aging process (14). Genomic instability, 
caused by exogenous (physical, chemical, and biological) and 
endogenous factors [deoxyribonucleic acid (DNA) replication 
errors, spontaneous hydrolytic reactions, and reactive oxygen 
species (ROS)], often results in mutations, translocations, 
chromosomal gains and losses, telomere shortening, and gene 
disruption (15). In this sense, several cellular events contribute to 
genomic instability and subsequently to aging, including somatic 
mutations of nuclear DNA, mutations and deletions in aged 
mitochondrial DNA (mtDNA), and defects in the nuclear lamina 
(14, 16, 17). Increased genomic damage has been linked to aging, 
highlighted by the DNA repair deficits found in accelerated mice 
models, translated into many human progeroid syndromes (15, 
18, 19). Likewise, mtDNA mutations in aged subjects appear to 
be induced by early replication errors rather than later cumulative 
oxidative damage (20). In addition, the mutation of the nuclear 
lamina protein gene encoding and disturbances on its matura-
tion or dynamics leads to a few progeria syndromes (21–23). This 
premature aging is supported by the delayed onset of progeroid 
features and extended life span after decreasing prelamin A or 
progerin levels (24–26).

In the face of genomic instability, the organism has developed 
a panoply of DNA repair mechanisms that skirmish altogether 
to overcome DNA nuclear damage (27). Within the same line, 
genomic stability systems hold specific mechanisms to maintain 
proper telomere length and function and mtDNA integrity (28, 
29). Pharmacological and biologic strategies (mainly hormonal 
or genetic therapies) have been developed (30–32); howbeit, 

further research is required to validate nuclear architecture 
reinforcement for delaying normal aging (1).

Exercise plays a role in maintaining genomic stability. In rodent 
models, aerobic exercise improves DNA repair mechanisms and 
nuclear factor kappa B (NF-kB) and peroxisome proliferator-acti-
vated receptor gamma coactivator 1-alpha (PGC-1α) signaling 
(33–35). Moreover, it augments DNA repair (36) and decreases 
the number of DNA adducts (up to 77%), related to aging and 
several risk factors for cardiovascular diseases (37). In addition, 
a six-month resistance training program in an institutionalized 
elderly population showed a tendency to reduce cell frequency 
with micronuclei (~15%) and the total number of micronuclei 
(~20%), leading to a higher resistance against genomic instability 
(38). In a meta-analysis comprising data of 478 genetic elements 
(387 unique genes) associated with exercise from 1,580 individu-
als, 238 out of 387 genes decreased in DNA methylation percent-
age after physical exercise among older people. More specifically, 
the genes that presented DNA methylation decreases were associ-
ated with a cancer-suppressing micro-ribonucleic acid (miRNA) 
gene network (39).

Telomere Attrition
Telomeres are ribonucleoprotein complex structures that protect 
the integrity of information-carrying DNA throughout cell cycle, 
preventing the base pair loss of chromosomal DNA during cellu-
lar division. Over consecutive cellular divisions, telomere length 
naturally decreases till a minimum critical size, which precludes 
further cell division, causing cellular senescence or apoptosis, 
also known as the end replication problem (40). Telomerase, as 
an enzyme with a catalytic unit, answers to the end replication 
problem, promoting telomere lengthening (41). Nevertheless, 
the fact that most mammalian somatic cells did not express this 
enzyme explains the progressive loss of the terminal chromo-
somes’ ends as well as the limited proliferative capacity observed 
in some in vitro-cultured cells (42, 43). This enzyme deficiency in 
humans has been linked to premature manifestations of chronic 
diseases specially related to scarce tissue regenerative ability (such 
as pulmonary fibrosis, congenital dyskeratosis, or aplastic ane-
mia) (44). Telomere shortening is described during normal aging 
in human and mice cells (45–50). The fact that telomere length 
decreases with aging, contributing to the normal cell senescence 
process, suggested that this could be a potential marker for 
biological aging (51). Moreover, the leukocyte telomere length is 
also positively associated with a number of healthy living years, 
associated with numerous chronic conditions and their complica-
tions and with the mortality risk mainly at younger ages (52, 53). 
The association of chronic inflammation and elevation of pro-
inflammatory cytokines [cytokine tumor necrosis factor (TNF-α) 
and interleukin (IL)-6] and shortened leukocyte telomeres has 
been proposed by several authors (54–57). Regarding TNF-α, 
this cytokine seems to have a specific role in downregulating 
telomerase activity, causing telomere shortening (55).

Interestingly, recent evidence supports that telomerase 
activation can revert aging, namely, in the premature aging of 
telomerase-deficient mice when the enzyme is genetically reacti-
vated (58). The relationship between physical activity and healthy 
aging is well recognized, but the association between physical 
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activity and telomere length remains unclear. Aging induces 
DNA damage accumulation, especially in some particularly 
sensitive chromosomal regions such as telomeres, and recent data 
suggest that physical activity may play a protective role against 
stress-related telomere attrition (28, 59). Although the potential 
mechanism is unclear, exercise exhibits a favorable impact on 
telomere length, especially on a chronic pattern and particularly 
in older individuals antagonizing the typical age-induced decre-
ments in telomere attrition. Several potential mechanisms have 
been discussed linking exercise and telomere length decrements 
to changes in telomerase activity, inflammation, oxidative stress, 
and decreased skeletal muscle satellite cell content (60).

Exercise has been associated with an upregulation of protec-
tive proteins (such as telomeric repeat-binding factor 2) and DNA 
repair pathway proteins (such as Ku proteins) as well as a down-
regulation of negative regulator proteins of cell cycle progression 
(such as p16) in middle-aged athletes supporting this relationship 
(61). Additionally, although it increases oxidative stress, continu-
ous physical exercise is associated with antioxidant activity and 
inferior levels of ROS, favoring the REDOX balance, protecting 
from DNA damage and subsequently shorter telomere attrition 
(62–64).

Satellite cells are specific skeletal muscle cell precursors 
activated during muscle regeneration processes or in response to 
muscle injuries. A positive correlation exists between the number 
of satellite cells and skeletal muscle telomere length in older 
adults (61). This pool of cells decreases normally during aging 
and appears to connect physical activity and skeletal muscle pres-
ervation since both resistance and aerobic exercise act as satellite 
cell pool stimulators, equalizing the decline related to aging (65).

epigenetic Alterations
The relationship between epigenetic regulation and aging is 
controversial and complex (1). Epigenetics studies the mitotically 
and/or meiotically heritable changes within genetic function that 
cannot be explained by DNA sequence changes (66). Although 
epigenome refers to the combination of chemical changes to 
DNA and histone proteins in a cell, epigenetic changes include 
alterations in DNA methylation patterns, the posttranslational 
modification of histones, and chromatin remodeling (such as 
miRNA expression changes) (67).

A multiplicity of epigenetic modifications affects all tissues 
and cells throughout life (68). Increased histone H4K16 acetyla-
tion, H3K4 trimethylation, or H4K20 trimethylation, as well as 
decreased H3K27 trimethylation or H3K9 methylation, make up 
age-associated epigenetic marks (69, 70). In mammals, at least 
three members of the sirtuin (SIRT) family—SIRT1, SIRT3, 
and SIRT6—contribute to healthy aging (71–73). For example, 
the transgenic overexpression of mammalian SIRT1 (closest 
homolog to invertebrate Sir2) improves health aspects during 
aging despite not increasing longevity (73). Losing the function of 
SIRT6 reduces longevity, and the gain extends longevity in mice 
(71, 74).

Actually, the literature clearly reveals that the epigenetic 
response is highly dynamic and influenced by different environ-
mental and biological factors, such as aging, nutrient availability, 
and physical exercise. Regular aerobic exercise can change the 

human genome through DNA methylation (75). Transient 
hypoxia conditions are a good example (76). Thus, by using epige-
netic mechanisms, aerobic exercise can induce the transcription 
of genes encoding telomere-stabilizing proteins and telomerase 
activity not only in animals (61, 77, 78) but also in humans (61). 
Losing promoter methylation and histone H4 deacetylation is 
associated with the changed gene expression profile in adaptation 
to aerobic exercise (63–67, 75–79). Also, the class II HDACs 4 and 
5 (transcriptional repressors) can translocate from the nucleus to 
the sarcoplasm of muscle fibers in response to aerobic exercise 
(79). In human and mouse muscles, the mitochondrial tran-
scription factor (TFAM), PGC-1a methylation, citrate synthase, 
MEF2A, gene promoters, and pyruvate dehydrogenase kinase 
isozyme (PDK4) decrease after acute aerobic exercise (80). In 
addition, aerobic exercise-induced SIRT-1 regulates the tumor 
suppressor PGC-1a, p53, NF-jB, and other transcription factors 
via its deacetylase activity (3, 81). Exercise effects are blocked by 
the overexpression of HDAC5 in transgenic mice, suggesting that 
histones are important in the transcriptomic response to muscle 
contraction (82).

Acute exercise is also associated with increases in messenger 
RNA (mRNA) expression by transient DNA hypomethylation 
of gene-specific promoter regions (76, 81). In turn, during the 
recovery period, this mRNA elevation enables protein synthesis 
and induces gradual structural remodeling and long-term func-
tional modifications (83). Also, calcium and insulin signaling was 
recently found to be differentially methylated in skeletal muscle 
after aerobic exercise (83). As far as we know, physical exercise, 
either aerobic or resistance, can influence miRNAs’ histone modi-
fications or DNA methylation in various tissues. These adaptations 
can occur in at least the brain, muscle, or cardiovascular system 
and are intrinsic to the skeletal muscle response during exercise 
(e.g., mitochondrial respiratory capacity, substrate delivery, and 
contractile function) (84, 85).

Chronic moderate aerobic exercise increases the methylation 
levels of the pro-inflammatory apoptosis-associated speck-like 
protein caspase gene, which modulates IL-18 and IL-1b in the 
aged leukocytes, thereby contributing to reduced age-related 
pro-inflammatory cytokines (86). In addition, several myogenic 
regulatory factors—e.g., myoblast determination protein 1, myo-
genin, or myogenic factors 5 (Myf5) and 6 (Myf6, also known 
as myogenic regulatory factor 4, Mrf4, or herculin)—can help 
fight age-related sarcopenia and frailty, all of them modulated by 
aerobic or resistance exercise (87–89). Exercise can also upregu-
late brain-derived neurotrophic factor (BDNF) induction and 
promote the remodeling of the chromatin containing the BDNF 
gene (90).

The effect of physical exercise on epigenetic changes is just 
the beginning. However, studies so far show that an important 
modulation of exercise exists on the epigenetics mechanisms, 
particularly in DNA methylation, specially of regular physical 
exercise.

Loss of Proteostasis
Aging and some aging-related diseases are linked to impaired 
protein homeostasis, also known as proteostasis (91). The array 
of quality control is guaranteed through distinct mechanisms that 
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involve location, concentration, conformation, and the turnover 
of individual proteins, such as autophagy, proteasomal degra-
dation, or chaperone-mediated folding (92). These functions 
prevent the aggregation of damage components and ensure the 
continuous renewal of intracellular proteins, degrading altered 
proteins.

A loss of function or incoordination of these processes leads 
to accumulated damaged proteins and thus aging-associated 
deleterious effects (93) and neurological age-related conditions 
such as Alzheimer’s or Parkinson’s disease (91).

Aging impairs the autophagy–lysosomal and ubiquitin–pro-
teasome systems, which play a central role in cellular proteostatic 
mechanisms (94, 95). Conversely, physical activity induces 
brain, muscle, and cardiac autophagy (96). A joint program of 
moderate-intensity leg-resistance exercises and walking demon-
strated to upregulate autophagy muscle markers in old women 
(97), despite that these data are still restricted to aged subjects, 
and scarce evidence is still available in humans.

In mouse models, this effect seems to be mediated by the 
activation of BCL-2–beclin 1 complex (98). Acute resistance 
exercise programs induced muscle protein synthesis and 
decreased protein degradation through the activation of class 3 
phosphatidylinositol 3OH kinase Vps34 mVps34, which forms an 
autophagy regulator complex with beclin-1 (99, 100). Moreover, 
in transgenic mice, the beclin-1 disruption reduces autophagy, 
leading to neurodegeneration (101).

Aerobic exercise induces autophagy, thus preventing the 
loss of strength and muscle mass through the modulation of 
IGF-1, protein kinase B (Akt)/mammalian target of rapamycin 
(mTOR), and Akt/Forkhead box O3A signaling pathways (102, 
103), decreasing cardiovascular disease risk (97) and eliminating 
damaging proteins triggering neurodegeneration (98).

Similarly, the aging human brain exhibits a downregulation 
of beclin-1 (104). Higher basal levels of autophagy were related 
to healthy human exceptional longevity, and healthy centenar-
ians have higher serum levels of beclin-1 compared with young 
controls (105).

Atrogin-1 (MAFbx) is a muscle-specific ubiquitin ligase 
involved in muscle atrophy through FoxO signaling (106). The 
atrogin-1 upregulation is associated with cardiac and skeletal 
muscle atrophy, and atrogin-1 knockout mouse models corrobo-
rate its association with autophagy dysfunction, cardiomyopathy, 
and premature death (107, 108). Within the same line, compar-
ing aged atrogin-1 knockout mice with age-matched controls, 
the former shows a reduced tolerance to treadmill exercise and 
shortened life span (106).

The synthesis of cytosolic and organelle-specific chaperones 
is impaired in aging (109). Thus, chaperone associated functions, 
such as folding and protein stability, are conditioned throughout 
one’s life span (110, 111). In animal models, the upregulation of 
cochaperone of the heat-shock proteins (HSPs) was associated 
with prolonged life-span phenotypes (112), and HSF-1 activation, 
the heat-shock response regulator, was linked to longevity and 
thermotolerance (113, 114). Despite limited comparison studies, 
evidence supports that acute endurance- and resistance-type 
exercise protocols are associated with increased HSPs transcrip-
tion not only during activity but also immediately postexercise 

or several hours following exercise, which points out the possible 
favorable impact of physical activity on proteostasis (115).

Deregulated Nutrient Sensing
The growth hormone (GH) is produced by the anterior pituitary 
gland and is regulated by the growth hormone-releasing  hormone, 
acting mainly in the hepatocytes to induce insulin-like growth 
factor 1 (IGF-1) secretion. IGF-1 is also produced in distinct tis-
sues, such as osteocytes, chondrocytes, and muscle, to act in an 
autocrine or paracrine pattern (116).

Insulin and IGF-1 share the same intracellular signaling 
pathway, an important aging-controlling route highly conserved 
during evolution. In this sense, enhanced longevity has been 
associated with the reduced functions of GH, IGF-1, and insulin 
receptors and their intracellular effectors (such as Akt and mTOR 
complexes) (117–119). Within this scope, several authors associ-
ated dietary restriction with an increased life or health span prob-
ably mediated by an attenuation of insulin and IGF-1 signaling 
pathway (118, 120–132).

Regarding the intracellular effectors downstream, in ani-
mal models, the transcription factor FOXO represents the 
most relevant alteration linked to longevity (123, 124). The 
tumor-suppressor gene PTEN has also been associated with an 
antiaging impact on this signaling pathway, promoting energy 
expenditure and improving mitochondrial oxidative metabolism 
(125, 126). This balance between molecules with antiaging 
properties, emphasized by nutrient scarcity [FOXO, 5’-adenosine 
monophosphate-activated protein kinase (AMPK), and PTEN] 
against those that favor the aging process (GH, IGF-1, Akt, and 
mTOR), shows the relevance of deregulated nutrient sensing as a 
hallmark of aging (123, 124, 127).

Aging is also physiologically associated with somatopause, 
which represents a progressive decline in the GH secretory rate 
starting in the third decade of life, as reflected in decreasing 
IGF-1 levels (117, 128). In mouse models of premature aging, this 
GH-IGF-1 axis decline is also noted, highlighting this common 
denominator in normal and sped-up aging processes (129). This 
paradoxical observation can be integrated as a defensive response 
that downmodulates the GH-IGF-1 axis, promoting lower cell 
growth and metabolism, reducing cellular damage and aiming to 
extend life span (130).

Besides the glucose sensing related to GH-IGF-1 axis activity, 
the interest on other nutrient-sensing systems is increasing—
mTOR, amino acid concentrations and anabolic metabolism; 
AMPK and adenosine monophosphate levels; and SIRTs and 
NAD+ levels. These last two nutrient sensors, AMPK and SIRTs 
(SIRT 1–7), arise as alternative markers to low-energy states 
opposite mTOR (117, 131, 132).

Exercise plays an important role in not only the glucose-sensing 
somatotrophic axis but also the three nutrient-sensing systems 
referred above, promoting a beneficial anabolic cellular state 
(133–136). The effect of exercise on glucose metabolism through 
increased glucose transporter type 4 production is another well-
known mechanism of improved insulin sensibility associated 
with physical activity (137). Additionally, exercise-induced GH 
and IGF-1 levels are influenced by exercise intensity, duration, 
and type (higher in intense interval protocols and resistance 
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exercise) (138–140). Thus, the increased muscle protein synthesis 
associated with resistance exercise is pointed out as a successful 
strategy to prevent age-related sarcopenia (141–143).

Mitochondrial Dysfunction
The clear causal relationship between mitochondrial dysfunction 
and aging has long been a target of great discussion; however, 
the specific mechanisms involved remain unrevealed. Initially, 
the mitochondrial free radical aging theory proposed that with 
increasing age came a progressive mitochondrial dysfunction, 
increasing ROS levels and subsequently further mitochon-
drial deterioration and generalized cellular damage (144). 
Nevertheless, dysfunctional mitochondria may contribute to the 
increase in aging process, independent of ROS levels (145, 146). 
Interestingly, increased ROS levels may extend the life span of 
yeast and Caenorhabditis elegans (147–149). In addition, a geneti-
cally manipulated impaired mitochondrial function that does not 
increase ROS levels does not seem to accelerate the aging process 
(145, 146, 150–152). Within the same lines, mice with genetically 
manipulated increased ROS levels, greater oxidative damage, or 
higher antioxidant defense levels do not seem to age quickly or 
possess extended life spans (145, 146, 150–154). In fact, the main 
ROS effect is to activate compensatory homeostatic responses. 
However, with the increased cellular stress and damage present 
in the aging process, the ROS levels, when exceeding a deter-
mined threshold, may even deepen age-related damage (155). 
Altogether, the findings led to the reconsideration of the ROS 
role in aging (156).

With increasing age comes a decline in mitochondrial integrity 
and biogenesis because of alterations in mitochondrial dynamics 
and mitophagy inhibition, impairing dysfunctional mitochon-
dria removal (156). Several mechanisms seem to be related to 
mitochondrial integrity and biogenesis, including mitochondrial 
deficiencies that increase their predisposition to permeabilize in 
the presence of stress, resulting in activated ROS-mediated and 
permeabilization-facilitated inflammatory reactions (157, 158). 
Within this line, lower biogenesis and reduced clearance often 
lead to a combination of increased damage and reduce mitochon-
drial turnover, which also accelerate the aging process (1).

With the aging process comes an accumulation of many 
mtDNA mutations, mostly deletions, which affect many tissues, 
including nervous and skeletal muscle tissues (159–162). Within 
this line, the respiratory system efficacy declines with increasing 
age, which leads to increased electron leakage and lower adeno-
sine triphosphate generation levels (163). The accumulation of 
oxidative stress-induced mtDNA mutations leads to the progres-
sive decay of the mitochondrial function (164, 165). Moreover, 
mtDNA is more vulnerable to oxidative damage than nuclear 
DNA as it lacks histones protection, DNA repair capacity, and 
non-coding introns (166). Additionally, mtDNA damage may 
proliferate as cells multiply, resulting in expanded physiologic 
damage (167).

The regular practice of physical exercise has a positive impact 
in the mitochondrial function. In this sense, endurance-trained 
humans presented higher levels of mitochondrial proteins 
expression, mtDNA, and TFAMs (168). When considering 
sedentary mtDNA mutator mice, which displayed symptoms of 

accelerated aging, a 5-month aerobic exercise program induced 
systemic mitochondrial biogenesis in the mtDNA and increased 
multiorgan oxidative capacity, thus providing phenotypic 
protection and reducing multisystem pathology and the risk for 
premature mortality (169). Hence, regular physical exercise may 
maintain a pool of bioenergetically functional mitochondria that, 
by improving the systemic mitochondrial function, contribute 
to morbidity and mortality risk reduction throughout one’s life 
span (169–172). Similarly, in the elderly population, the resist-
ance exercise through the PGC-1 and SIRT regulators (173) has 
decreased DNA oxidative damage (by stimulating their endog-
enous antioxidant defenses) (174), mitochondrial alterations 
induced by aging (37), and the improved oxidative capacity of 
muscle fibers (175).

Aged individuals often show a deficiency in cytochrome 
c oxidase within the sarcopenic skeletal muscles’ fibers with 
higher levels of mtDNA mutations (176–180). Moreover, the 
decreased mitochondrial enzyme activity frequently seen in aged 
individuals (181, 182) is accompanied with a downregulation 
of mRNAs encoding mitochondrial proteins (183–185). In this 
sense, resistance training has the potential to shift the mtDNA of 
skeletal muscle from healthy aged individuals, augmenting the 
mitochondrial function (180). Within the same line, a 6-month 
resistance exercise-training program reversed aging transcrip-
tional signature levels approaching the ones from younger adults, 
thus enhancing the mitochondrial function (185).

Cellular Senescence
Cellular senescence is the stable arrest of the cell cycle combined 
with stereotyped phenotypic modifications (186–188). Initially, 
cellular senescence was associated with telomere attrition, but 
other age-related triggers were posteriorly identified, namely, 
non-telomeric DNA damage, and derepression of the INK4/ARF 
locus (42, 187, 189). Some authors have directly used quantifica-
tion of senescence-associated β-galactosidase (SABG) to identify 
senescent cells in different-aged tissues (190, 191). Surprisingly, 
they identified higher SABG values in hepatic, skin, lung, and 
spleen tissues in older mice compared to younger mice. However, 
this differential was not observed in heart, skeletal muscle, and 
kidney tissues. Based on these facts, the concept that cellular 
senescence is not a generalized property of all tissues in aged 
organisms was raised (191). Beyond that, senescent cell accumu-
lation in different tissues seems to be dependent, in one hand, on 
an increased rate of senescent cell generation and, in other hand, 
on a decreased rate of clearance (192–194).

The cell’s senescence process is usually associated with a 
deleterious purpose from senescent cell proliferation with aging. 
Nevertheless, its primary purpose is to prevent damaged cell 
proliferation and trigger their demise by the immune system, 
resulting in a beneficial cell compensatory response, contribut-
ing to tissue homeostasis. When tissues exhaust their regenerative 
capacity, the compensatory response to damage becomes harmful 
and accelerates aging (195).

Exercise, specifically aerobic, induces the secretion of anti-
tumorigenic myokines and greater natural killer cell activity, 
contributing to a decreased incidence of oncologic disease and 
improved cancer prognosis (196). Moreover, the increased 
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expression of telomere repeat-binding factor 2 and Ku70 and the 
reduced expression of apoptosis regulators (such as cell cycle-
checkpoint kinase 2, p16INK4a, and p53 or survival regulators) 
are associated with the beneficial impact of exercise on cellular 
senescence (61).

A part of DNA damage, excessive mitogenic signaling, is 
strongly associated with the senescence (197). The main mecha-
nisms reported that implement senescence in response to this 
variety of oncogenic insults were p16INK4a/Rb and p19ARF/p53 
pathways (1, 198). Senescent cells present upregulated p16INK4a 
and p21 cell cycle inhibitors. p21 is a downstream target of p53 
and telomere dysfunction (199, 200). Aerobic exercise has been 
inversely correlated with p16INK4a mRNA levels in peripheral 
blood T lymphocytes, which might promote protective outcomes 
against age-dependent alterations (201).

The secretome of a senescent cell presents dramatic alterations 
becoming particularly enriched in pro-inflammatory cytokines 
and matrix metalloproteinases that may contribute to aging 
(10, 202, 203). This senescence-associated secretory phenotype 
(SASP) as a DNA damage response explains how senescent 
cells alter tissue microenvironments (204). Once again, aerobic 
exercise suppresses liver senescence markers and downregulates 
inflammatory mediators (reducing gamma glutamyltranspepti-
dase activity and levels of p21, p53, and IL-6) (205).

Exercise is capable of upregulating cardiac telomere-stabilizing 
proteins, providing protection against doxorubicin-induced car-
diomyopathy and promoting antisenescent effects (77). Within 
the same line, the same research group (61) showed that besides 
improving telomere biology in the thoracic aorta and in mono-
nuclear cells, exercise could also reduce the vascular expression 
of apoptosis regulators. Moreover, it allows endurance athletes 
to increase telomerase activity and downregulate cell-cycle 
inhibitors compared with sedentary individuals. In addition, 
Song et al. (206) found that in humans, the practice of aerobic 
exercise reduced the expression of DNA damage biomarkers and 
correlated negatively with telomere length in peripheral blood 
T  lymphocytes and positively with p16INK4a expression, sup-
porting previous findings.

Stem Cell exhaustion
In aging, the declining regenerative potential of tissues is obvious 
(1). A good example is the age-related decline in hematopoiesis, 
causing a diminished production of adaptive immune cell, a pro-
cess designated as immunosenescence (207). Similar processes 
were found in adult stem cell compartments, including the mouse 
forebrain (208), muscle fibers (209), or bone (210). An overall 
decrease in cell-cycle activity of hematopoietic stem cells has been 
revealed (211), connected with the overexpression of cell cycle-
inhibitory proteins such as p16INK4a (212) and DNA damage 
accumulation (211).

For the long-term maintenance of the organism, the deficient 
proliferation of stem and progenitor cells is harmful, but an 
excessive proliferation can also be deleterious by speeding up 
the exhaustion of stem cell niches (1). Within this line, physi-
cal exercise is one of the most potent stimuli for the migration/
proliferation of the stem cell subsets from their home tissue to 
impaired tissues for later engraftment and regeneration (95). In 

this sense, regular physical exercise attenuates age-associated 
reduction in the endothelium reparative capacity of endothelial 
progenitor cells (213). In addition, exercise activates pluripotent 
cells’ progenitors, including mesenchymal and neural stem cells, 
which improve brain regenerative capacity and cognitive ability 
(95).

The stem cells more affected by aging are myogenic, known 
as satellite cells (214). Satellite cell alterations manage the 
reduced replacement and repair efficiency potential in human 
skeletal muscle tissue myofibers. Age-reduced functionality or 
the number of these cells inhibits proper muscle-mass mainte-
nance (214–217). Age-related atrophy by type II muscle fibers is 
influenced by the decline in the content of type II muscle fiber 
satellite cells (214). Sarcopenia is related to these cells’ atrophy 
and so are its pathophysiological mechanisms (218). Besides that, 
aging reductions in strength and muscle mass are directly con-
nected with myonuclear content, the muscle fiber type-specific 
cross-sectional area, and satellite cell content (219). Animal 
studies showed that aerobic exercise not only promotes satellite 
cell pool expansion in young and old mice (220) but also potenti-
ates myofibers with greater numbers of satellite cells in young 
and old rats (221). Thus, skeletal muscle regulation depends 
on the satellite cells (222). This contribution to skeletal muscle 
regeneration is well documented (223, 224) and involves several 
mechanisms, including neurotrophic and vascular factors (IGF-1 
and other growth factors), immune response, neurotransmitters, 
and cytokines (such as IL-6, testosterone, or nitric oxide), most 
of which are modulated by exercise (167). Resistance training can 
induce, in young adults and during aging, the hypertrophy of type 
II fibers (225, 226) by skeletal muscle satellite cell proliferation 
and differentiation, which attenuates prosarcopenic physiologi-
cal and age-related events (214, 218, 219). Moreover, muscular 
hypertrophy generated by resistance exercise training is related 
to satellite cells (227). Myostatin, a protein that inhibits muscle 
differentiation and growth in the myogenesis process, is also 
involved in the process (228). Probably, the same localization 
of myostatin and satellite cells explains the worsened myogenic 
capacity of the aged skeletal muscle (229). In fact, Snijders et al. 
(228) revealed an aging-blunted activation of type II muscle fiber 
satellite cells in response to acute stimuli of resistance exercise.

Interestingly, pharmacological interventions are also being 
explored to increase stem cell function. Using rapamycin for the 
inhibition of mTORC1 can delay aging by improving proteosta-
sis and affecting energy sensing, which may improve stem cell 
function, in the hematopoietic system and intestine (230–232). 
The pharmacological inhibition of the GTPase CDC42, whose 
activity is increased in aged hematopoietic stem cells, may also 
rejuvenate human senescent cells (233).

Altered intercellular Communication
The physiological aging process implicates several alterations 
on intracellular communication mechanisms, namely, in 
neuroendocrine, endocrine, and neuronal levels (234–237). 
Inflammation plays a central role in this age-related alteration, 
contributing to a predominant pro-inflammatory phenotype 
associated with progressive aging, also known as “inflam-
maging” (238). This inflammaging is caused by distinct 
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TABLe 1 | General guidelines for exercise prescription in older individuals.

Type of exercise Frequency intensity (0–10) Duration/volume

Aerobic exercise ≥5 days/week for 
moderate intensity

5–6 30–60 min/day in 
bouts of at least 
10 min each to total 
150–300 min/week

≥3 days/week for 
vigorous intensity

7–8 20–30 min/day to 
total 75–100 min/
week

3–5 days/week 
for combination 
of moderate and 
vigorous intensity

5–8 Combination of 
both

Muscle 
strengthening

≥2 days/week Start with light 
(40–50% of 1RM)

8–10 exercises 
involving the major 
muscle groups 
with 1 set of 10–15 
repetitions each

Progress to 
moderate 
(60–70% of 1RM)

Flexibility ≥2 days/week Until tightness or 
slight discomfort

Hold for 30–60 s

For quantifying the perceived physical exertion in older individuals, a 10-point scale 
should be used: 0 is considered an effort equivalent to sitting and 10 an all-out effort; 
moderate intensity comprises 5 and 6 and vigorous intensity between 7 and 8. 
Moderate intensities should produce a noticeable increase in heart rate and breathing, 
while a vigorous intensity should produce a substantial increase in heart beat and/or 
breathing (82).
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mechanisms: pro-inflammatory tissue damage accumulation, 
additional cumulative dysfunction of the immune system, 
elevated levels of pro-inflammatory cytokines’ secretion by 
senescent cells, altered autophagy response, and the increased 
activation of the NF-kB transcription factor (163, 238–240). 
All these mechanisms will promote the activation of different 
pro-inflammatory pathways leading to increased levels of IL-1b, 
TNF, and interferons (163, 238). In this sense, different endo-
crine axes (renin–angiotensin, adrenergic, and insulin-GH), as 
part of neurohormonal signaling, are altered with aging because 
of increased inflammatory reaction levels, the decline of immu-
nosurveillance against pathogenic agents and premalignant 
cells, and composition changes in the peri- and extracellular 
environment (238). Additionally, the decay factor AU-binding 
factor 1 (AUF1 or heterogeneous nuclear ribonucleoprotein D) 
has also been linked to inflammaging as an important factor in 
inflammatory response cessation, conditioning cytokine mRNA 
degradation, and contributes also to maintaining telomere 
length by activating the expression of the telomerase catalytic 
subunit telomerase reverse transcriptase, linking this same 
factor to different hallmarks discussed above (241). Chronic 
muscle contractile activity upgraded different AUF1 isoforms 
secretion (p37, p40, and p45) in the muscle of healthy rats, 
resulting in improved muscle plasticity (242).

Pro-inflammatory state and stress activate hypothalamic 
NF-kB expression, which downregulates gonadotropin-releasing 
hormone neurons and subsequently gonadotropins by the ante-
rior pituitary, explaining some age-related comorbidities such 
as bone fragility, muscle weakness, and reduced neurogenesis 
(237). The enhanced activation of the NF-kB transcription factor 
is referred to as one of the transcriptional signatures of aging, 
and its expression restriction has been associated with skin reju-
venation in animal models (243). Besides, the use of genetic or 
pharmacological inhibitors of the NF-kB signaling was associated 
with the prevention of age-associated features in distinct sped-up 
aging mouse models (32, 244). The SIRT family (SIRT 1–7), in 
the same point of view, seems to downregulate inflammation-
related genes acting as a protective factor to aging and many other 
inflammatory pathological conditions (245–248).

The cross-talk interorgan may explain the correlation between 
aging-related changes in different tissues. Cellular senescence 
influences neighbor cells during aging via gap–junction contacts, 
growth factors, interleukins, and ROS, highlighting the impor-
tance of microenvironment contribution during the process and 
offering the possibility to modulate aging in different levels (249). 
Chronic exercise, especially aerobic type, may restore defective 
intercellular communication, decreasing mitochondrial ROS pro-
duction and upregulating the endogenous antioxidant profile (33).

Muscle contraction is traditionally associated with myokine 
secretion (proteins, growth factors, cytokines, or metallopepti-
dases) elevated during and after exercise (97). Interestingly, 
the muscle-released IL-6 creates a healthy influence, inducing 
the production of anti-inflammatory cytokines, IL-1 receptor 
antagonist, IL-10, or TNF soluble receptors, while restraining 
pro-inflammatory cytokine TNF-α production (250, 251). 
Within these lines, several authors associated lifelong aerobic 
exercise training with lower inflammatory levels, especially with 

lower levels of C-reactive protein, IL-6, and TNF-α, particularly 
in advanced decades of life (252–254).

PHYSiCAL ACTiviTY 
ReCOMMeNDATiONS

Older individuals must practice physical exercise to maintain 
the health-related quality of life and functional capabilities that 
mitigate physiological changes and comorbidities associated 
with aging. Recommendations made herein are based on the 
most recent American College of Sports Medicine Guidelines 
(255) (Table  1). Physical exercise should include aerobic 
exercise, muscle strengthening and endurance training, and 
flexibility and neuromotor exercises. Physical exercise difficulty 
and intensity progression should be tailored to the individual’s 
tolerance, preference, and specific needs. Thus, lighter intensity 
and duration are recommended at earlier stages, especially for 
those who are deconditioned or functionally impaired or pre-
sent chronic conditions that preclude the performance of more 
demanding physical tasks. More debilitated and frail individuals 
may initially require aerobic training activities to improve their 
physical fitness before proceeding to more demanding tasks. 
In opposition, individuals presenting sarcopenic muscles may 
need to improve their muscular strength and endurance before 
engaging in aerobic training. When the chronic conditions 
or comorbidities preclude accomplishing the recommended 
minimum of physical exercise, older individuals should not 
remain sedentary, and physical training should be performed 
as tolerated to provide a therapeutic benefit. Training sessions 
should be supervised by a qualified health professional and fin-
ish with an adequate cooldown (gradual reduction of physical 
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intensity complemented with flexibility exercises), especially 
among individuals with cardiovascular disease.

Individuals with increased fall risk or present functional and 
mobility limitations benefit from the addition of neuromotor 
exercise training (2–3  days/week), comprising balance, agility, 
and proprioceptive training (255–257). General recommenda-
tions to progressively increase the exercises’ difficulty include (i) 
more challenging postures by gradually shortening the support 
base, (ii) more exercises comprising more dynamic movement 
that perturb the center of gravity, (iii) higher focus on the postural 
muscle groups exercises, and (iv) progressive reduction of the 
sensory input.

OveRview AND TAKe-HOMe MeSSAge

Cellular aging hallmarks are codependent and co-occur with 
the aging process. Understanding their causal network enables 
the conception of a framework to develop novel interventions to 
attenuate the aging process. As López-Otín et al. (1) referred in 
their review, cellular hallmarks may have beneficial or deleteri-
ous effects and may be subclassified into three main categories: 
primary (genomic instability, telomere attrition, epigenetic 
alterations, and proteostasis loss), antagonistic (deregulated 
nutrient sensing, mitochondrial dysfunction, and cellular senes-
cence), and integrative (stem cell exhaustion and altered inter-
cellular communication) hallmarks. The primary hallmarks are 
the initiating triggers and are always associated with deleterious 
effects, such as DNA damage from chromosomal aneuploidies, 
mtDNA mutations, telomere loss, epigenetic drift, and defective 
proteostasis. On the opposite, the antagonistic hallmarks have 
a beneficial responsive effect to attenuate damage when present 
in lower levels; however, when these are exacerbated or present 
at chronic levels, especially when promoted by the primary 
hallmarks, they have a progressive harmful effect, inducing 

cellular damage and promoting the aging process. The integra-
tive hallmarks result from the accumulated damage from the 
primary and antagonistic hallmarks and directly interfere with 
tissue homeostasis and account for age-associated functional 
decline.

To face the increase in average life expectancy, many therapeutic 
interventions aiming at the life-span expansion have emerged (1). 
Nevertheless, many of these therapeutic interventions comprise 
expensive pharmacologic agents associated with an increased 
complication risk because of adverse events and polymedication. 
On the other hand, physical exercise is free, reduces the risk of 
many potentially lethal diseases, and helps strike the increasing 
sedentary behavior and physical-inactivity pandemic. Within 
this line, although exercise does not mitigate the aging process, 
it attenuates many of the deleterious systemic and cellular effects 
and improves the function of most of the mechanisms involved in 
aging. In this sense, further research on its most effective benefits 
in elderly people is warranted.

Looking at the big picture, although many paths lead to 
Rome, the safest and most triumphant route should extensively 
rely on physical exercise. This should be seen as a polypill, and 
the elderly community should be encouraged to engage in the 
continuous and regular practice of healthy physical activities. 
The motto is “Move for your life,” and remember, exercise is 
medicine.
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