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A B S T R A C T   

Microbial conversion of carbon monoxide (CO)/syngas has been extensively investigated. The microbial con
version of CO/syngas offers numerous advantages over chemically catalyzed processes e.g. the specificity of the 
biocatalysts, the operation at ambient conditions and high conversion efficiencies. Bioelectrochemical systems 
(BESs) exploit the capacity of electrochemically active bacteria (EAB) to use insoluble electron acceptors or 
donors to produce electricity or added-value compounds. Electricity production from different organic sources in 
BESs has been broadly demonstrated, whereas electricity production from CO/syngas has been very little re
ported. Acetate oxidation by a consortium of carboxydotrophic and CO-tolerant EAB has been suggested to be the 
main pathway responsible for indirect electricity generation from CO/syngas. Although electricity production in 
BESs from several organic sources has been widely investigated, the interest on BESs research is currently moving 
to the production of added-value compounds by electro-fermentation (EF) processes. EF allows to modify redox 
balances by the use of electric circuits to fine tune metabolic pathways towards obtaining products with high 
economic value. Although EF has been widely studied, the potential of use CO-rich gas streams as substrate has 
been under explored. This review presents and discusses current advances on microbial conversion of CO/syngas 
in BESs.   

1. Context, challenges and aim 

Humanity is facing unprecedented environmental concerns related 
to global warming and biosphere deterioration that results in an 
increasingly unsustainable human life in our planet. Intensive use of 
fossil fuels, unbalanced nutrients cycles, loss of biodiversity, water 
scarcity and low quality, and industrial activity, may risk the future of 
next generations. Microbial technology is a common element playing a 
central role in several Sustainable Development Goals (SDGs), contrib
uting to our path towards sustainability. The relevance of microbial 
technology related to SDGs is well revised by Timmis and co-authors [1]. 
Although the environmental microbiology research is in expansion, 
more than 80%–90% of microbial diversity remains to be discovered 
[2]. This unknown biodiversity combined with novel and challenging 
biotech processes has the potential to change sectors of chemicals, 
pharma, energy, materials, agriculture, food and environmental 
protection. 

Clean energy is one of the SDGs where microbial technology may 
play a central role. The unprecedented environmental concerns in 
combination with the continuous increase on utilization of fossil fuel 

energy, have stimulated the investigation on the production and use of 
alternative energy carriers such as syngas, bio-methane (CH4) or 
hydrogen (H2). Particularly, bioenergy research is increasingly looking 
for non-edible sources of biomass and for bio-based environmentally 
friendly processes. The biomass resources from agriculture [3–5], forest 
[6–8] and municipal waste [9–11] can be converted biologically or 
thermochemically. However, the biological conversion can be hindered 
by the presence of low-biodegradable organic matter. Furthermore, 
nearly any form of organic matter (industrial waste, plastics or other low 
biodegradable/recalcitrant materials) can be transformed through 
gasification processes. Biomass gasification, which is considered a way 
to increase the use of biomass for energy production, results in the 
production of a gaseous stream named syngas (or synthesis gas), mainly 
composed by carbon monoxide (CO), carbon dioxide (CO2) and H2 [12]. 
Depending on the biomass source and the operating conditions, syngas 
can contain some contaminants such as chlorine, nitrogen or sulfur 
compounds, among others [13,14]. CO-rich gas streams are also pro
duced as an off gas of certain industries like steel production [15] and 
petroleum refining [16], among others. 

Fermentation of this gas stream through the Wood-Ljungdahl 
pathway can produce a variety of alternative fuels and chemicals 
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contributing at the same time to the reduction of greenhouses gases, 
reducing the negative impact on the environment [15,17,18]. Syngas 
fermentation has advantages over the chemical catalytic processes 
(Fischer–Tropsch process) such as, higher specificity of the biocatalysts, 
operation at ambient conditions and greater resistance to catalyst 
poisoning [19,20]. Nonetheless, the production of a specific product 
from syngas is still a challenge in traditional fermentations, since 
metabolic routes are often redox imbalanced. Furthermore, limited 
reducing power of Wood-Ljungdahl pathway typically results in limited 
microbial growth rate and conversion yields of CO strains. Therefore, it 
is of utmost importance to continuously explore new biotechnological 
alternatives for biocommodities production, using CO/syngas as 
substrates. 

Syngas utilization in BESs appears as a versatile and innovative 
conversion process to produce added-value chemicals. Electro- 
fermentation (EF) (electrochemically-assisted fermentation) has the 
potential to produce compounds with higher purity and higher eco
nomic value from renewable carbon sources than traditional fermenta
tion. The use of electrodes assembled into electric circuits to supply 
extra reducing power have the possibility to improve microbial growth 
and to prevent the use of additives for balancing redox with simulta
neous production of added-value products. 

In 2009, the concept of bioelectrochemical syngas conversion in 
BESs was proposed by Kim and Chang, thus combining the biological 
conversion with the electricity production [21]. More recently, in 2018, 
production of added-value biochemicals from syngas in BESs have also 
been proposed [22]. This technology could be seen as a very promising 
4th generation biofuel process for upgrading waste gases treatment since 
it includes the concept of carbon capture and storage into chemicals 
and/or fuels. This review aims at presenting and discussing current 
advances and challenges of the electrochemically assisted microbial 
conversion of syngas components in BES. 

2. Types of BESs and mechanisms 

BESs are a type of bioreactor in which electrochemical and biological 
reactions occur simultaneously. In BESs, the chemical energy stored in a 
compound is converted into bioenergy by a biocatalyst that can be 

applied at the anode (anodophiles) for electricity production catalyzing 
oxidation reactions [23] and/or at the cathode (cathodophiles) for 
valuable biochemicals production catalyzing reduction reactions [24, 
25]. The electrons released during redox reactions by anodophiles can 
be captured for direct electricity production in microbial fuel cells 
(MFCs) [26] or used by cathodophiles to produce added-value chemicals 
[27]. 

To date, electricity production in MFCs has been the most investi
gated topic in the BESs field [28]. The most common MFCs are 
composed by two chambers, an anode and a cathode, separated by a 
membrane. At the anode chamber, electrons and protons are produced 
by the oxidation of a biodegradable compound (electron donor), by a 
biocatalyst. The electrons are then transferred to the anode by different 
electron transfer mechanisms. Posteriorly, the electrons flow through an 
external electrical circuit from the anode to the cathode, producing 
electricity. Protons flow through the membrane from the anode chamber 
to the cathode chamber, thus ensuring the charge balance. At the 
cathode chamber, electrons and protons combine with a final suitable 
electron acceptor (e.g. oxygen) [29]. 

Although MFCs are the most investigated type of BESs, the current 
scenario and interest on BESs research is moving to the production of 
biochemicals. Controlling the oxidation-reduction potential (ORP) of 
the fermentation broth is an efficient way to direct the metabolic 
pathways toward the production of specific products, because intracel
lular redox homeostasis is influenced by the extracellular ORP [30]. The 
most common strategies to control extracellular ORP include gas 
sparging [31], pH control and chemical supplementation of the medium 
[32]. ORP control using an external power source has been investigated 
[33]. 

Extracellular ORP control in BESs has been used to electrochemically 
assist the fermentation of an energy-rich substrate in a process named EF 
[34]. In EF, an electrode is introduced in the fermentation broth to 
induce the conversion of the substrate into a specific product by 
imposing a potential. Compared to conventional fermentation processes, 
EF allowed to produce metabolites of economic interest, such as bio
butanol, at higher yields [35]. The most common EF system is composed 
by an anode and a cathode chambers separated by a membrane. Like 
MFCs, the oxidation of an electron donor, at the anode, produces elec
trons and protons. The electrons move towards an external electrical 
circuit from the anode to the cathode, while protons diffuse through the 
membrane. In a EF system, microorganisms can be present at the anode 
chamber catalyzing oxidation reactions (bioanode) producing a com
pound more oxidized than the substrate (e.g. glycerol to ethanol) (anodic 
EF) [36] and/or at the cathode chamber catalyzing reduction reactions 
(biocathode) producing a compound more reduced than the substrate (e. 
g. glycerol to 1,3-propanediol) (cathodic EF) [37]. The electrons could 
be transferred to the anode and collected from the cathode by different 
electron transfer mechanisms. 

2.1. Electron transfer mechanisms 

In BESs, the electrons can flow from microorganisms to the anode 
and from the cathode to microorganisms [38]. In both cases, microor
ganisms can use a direct or a mediated way to exchange electrons with 
the electrodes. 

Direct electron transfer (DET) implies the physical contact between 
the electrode surface and the microorganisms. In monolayer biofilms, 
this contact may occur through the c-type outer membrane cytochromes 
associated with outer membrane of the bacterial cell [39]. In multilay
ered biofilms, some microorganisms have the capability to develop 
conductive pili, known as nanowires, since only few cells have direct 
access to the electrode surface. Nanowires are conductive nanofilaments 
of proteins which enable long-range electron transfer between micro
organisms and the electrode surface [40]. 

Microorganisms that cannot contact directly with the electrode sur
face and that are not capable to develop nanowires, use a mediated 
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electron transfer (MET) mechanism for exchange electrons with the 
electrode. MET involves the use of redox-active organic molecules 
referred as redox mediators which can be self-secreted by cells or added 
to the medium such as phenazines, flavins and quinones [41]. 

Data from literature indicate that microorganisms from all three 
domains of life have been identified in anodic biofilms: most often 
Proteobacteria, but also Firmicutes, Euryarchaeota and Ascomycota. On 
the other hand, only microorganisms from Bacteria and Archaea do
mains were identified in cathodic biofilms: most often Proteobacteria 
but also Firmicutes, Actinobacteria and Euryarchaeota [39]. Bacteria 
from the genera Shewanella and Geobacter, considered as electrochemi
cally active bacteria (EAB), can act as anodophiles oxidizing an electron 
donor and transferring the electrons to the electrode but also as cath
odophiles collecting electrons from the electrode to reduce an electron 
acceptor [24]. 

3. Microbiology of CO/syngas conversion 

Added-value compounds can be produced from syngas during its 
fermentation using carboxydotrophic microorganisms. Microbial con
version of syngas by carboxydotrophic bacteria involves microbial 
fermentation through the Wood-Ljungdahl pathway which is also called 
the Acetyl-CoA pathway (Fig. 1) [42,43]. Carboxydotrophic bacteria can 
use CO as carbon source due to the presence of the enzyme 
CO-dehydrogenase [43]. Several types of carboxydotrophic microor
ganisms have been described, namely acetogenic, hydrogenogenic and 
methanogenic microorganisms, mainly producing acetate, H2, and CH4, 
respectively. Acetate production by acetogenic carboxydotrophs such as 
Alkalibaculum bacchi [44], Clostridium ljungdahlii [45] and Clostridium 
carboxidivorans [46] typically occurs under mesophilic conditions. H2 is 
typically produced under thermophilic conditions by hydrogenogenic 
microorganisms such as, Moorella stamsii [47] and Calderihabitans mar
itimus KKC1 [48]. Regarding the ability to produce CH4 from CO, only 
few species, namely, Methanosarcina barkeri [49], Methanosarcina 

acetivorans [50], Methanothermobacter thermoautotrophicus [51] and 
M. marburgensis [52] have been reported. Different added-value prod
ucts, namely ethanol, butanol, 2,3-butanediol and other short- and 
medium-fatty acids can also be produced, e.g. by different members of 
Clostridium genus [19,53–55]. 

Despite the known advantages of syngas fermentation, the produc
tion of a specific product at high rate and high selectivity is still a 
challenge in the field of syngas fermentation technology [56–58]. 
Recent studies demonstrated that the use of increased pressure increased 
the gas-liquid mass transfer accelerating the conversion rates, but also 
influenced the distribution of metabolites [104–106], suggesting the 
activation of different metabolic pathways [59,60]. 

A recent study demonstrated an alternative method for syngas con
version, which relies on the development of a microbial consortium 
combining carboxydotrophic and CO-tolerant EAB [21,61] that have the 
ability to transfer/to accept electrons to/from an insoluble electron 
acceptor/donor, as explained above [62,63]. 

Based on the analysis of the metabolic products associated to the 
electricity production from syngas in BESs, two main pathways have 
been suggested: (1) directly, through direct transfer of electrons to the 
anode by Fe(III)-reducing carboxydotrophic bacteria [61] and (2) indi
rectly, through the conversion of CO fermentation products, such as 
acetate or H2, by CO-tolerant anodophilic microorganisms [64]. Ace
togenic carboxydotrophic microorganisms, such as Alkalibaculum bacchi, 
C. ljungdahlii or C. carboxidivorans present in the microbial consortium 
are responsible for CO conversion to acetate (Equation (1)), which seems 
to be the main direct substrate for electricity production in MFCs, by e.g. 
Geobacter sulfurreducens (Equation (2)). Mehta and coworkers demon
strated the tolerance of an enriched anodophilic community up to 70% 
of CO in the gas phase [61,65]. In particular, the tolerance of 
G. sulfurreducens to CO, a well-known model EAB, was confirmed up to 
150 kPa in the headspace [66]. 

Another potential pathway involves indirect electricity production 
by conversion of H2 (Equation (3)), previously produced from CO by 

Fig. 1. Schematic representation of Wood-Ljungdahl pathway (CODH, carbon monoxide dehydrogenase; ACS, Acetyl-CoA synthase; THF, tetrahydrofolate).  
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hydrogenogenic carboxydotrophic microorganisms (Equation (4)). 
Electricity production from H2 by G. sulfurreducens, has been demon
strated [67]. Additionally, conversion of H2 and CO2 to acetate (Equa
tion (5)), by homoacetogenic bacteria, can also occur [61]. 

4CO+ 2H2O→CH3COOH + 2CO2 Equation 1  

CH3COOH + 2H2O→2CO2 + 8H+ + 8e− Equation 2  

H2 → 2H+ + 2e− Equation 3  

CO+ H2O→H2 + CO2 Equation 4  

2CO2 + 4H2→CH3COOH + 2H2O Equation 5 

Kim and collaborators confirmed, in a two-stage reactor system, that 
metabolic products from CO oxidation, namely acetate, can be 
consumed by anodophilic microorganisms for electricity production 
[21]. Hussain and collaborators confirmed that electricity production 
from CO in mesophilic CO-fed MFCs, relies on the development of a 
consortium of carboxydotrophic microorganisms, which convert CO to 
acetate, and CO-tolerant anodophiles, which convert acetate to elec
tricity (e.g. G. sulfurreducens) [68]. Homoacetogenic bacteria (e.g. Clos
tridium sticklandii), known to utilize H2 and CO2 for acetate formation 
were also identified. Methanogens responsible for CH4 generation from 
H2 and CO2 (e.g. Methanobacterium formicicum and M. beijingense) were 
also identified in the microbial biofilm, as well as the acetoclastic 
methanogen, Methanothrix soehngenii [68]. 

On the other hand, added-value biochemicals production from syn
gas in BESs relies on the development of an anaerobic consortium of 
carboxydotrophic bacteria and CO-tolerant cathodophiles. Im and col
laborators investigated the microbial community developed in the 
cathode of a mesophilic CO-fed BES, under cathode potential control 
(− 1.1 V vs. Ag/AgCl) [22]. The results confirmed the development of a 
microbial consortium of carboxydotrophic bacteria, such as bacteria 
from the genus Acetobacterium, known as CO fermenting acetogen [69] 
and cathodophiles, such as bacteria from the genus Desulfovibrio, 
described to utilize electrons from a cathode to reduce H+ to H2. Other 
bacteria from the genus Petrimonas, known as fermentative bacteria, 
which can use carbohydrates and some organic acids [70] and Alistipe, 
which produce volatile fatty acids (VFAs), including succinate, acetate 
and propionate, were also identified [71]. Recently, Im and collabora
tors used zero valent iron as electron donor to isolate CO converting 
microorganisms [72]. The authors performed sequential batch assays 
using zero valent iron as electron donor under CO as headspace gas. 
After the 13th transfer of culture, sequencing results showed that the 
strains almost matched with Clostridium sp. (HN02) and Fonticella sp. 
(HN43). The electrochemical activity of the isolated strains was tested in 
a BESs under cathode potential control (− 1.1 V vs. Ag/AgCl). Both 
strains produced acetate from CO using the electrode as electron donor, 
thus suggesting that both strains were electrochemically active. Never
theless, the mechanisms involved into electrons capture from the elec
trode were not elucidated. 

4. BESs-based systems for CO/syngas conversion 

Syngas conversion in conventional fuel cells such as polymer elec
trolyte membrane fuel cells [73] or solid oxide fuel cells [74] has been 
investigated. However, the noble metal catalysts used in the fuel cells 
are easily poised by CO [75] and sulfur [74], compounds present in 
syngas. Thus, syngas should be purified before use in fuel cells [76]. CO 
harnessing in BESs is a sustainable alternative to syngas usage in con
ventional fuel cells. Contrary to the fuel cells, the biocatalysts (e.g. 
acetogens) used in BESs can use CO and are tolerant to sulfur com
pounds, thus not requiring syngas purification previous to its use in BESs 
[21]. 

4.1. Electricity production 

MFCs allow the conversion of renewable sources (e.g. syngas from 
biomass gasification) into electricity. In MFCs, syngas is used as carbon 
source by a biocatalyst, thus producing protons and electrons, at the 
anode. Several examples of electricity production from syngas using 
MFCs are summarized in Table 1. 

Kim and Chang were the first authors to report the production of 
electricity from CO in a two-stage reactor system composed by a 
fermenter and a MFC, in 2009 [21]. In a first stage, an enriched anaer
obic community of Acetobacterium spp. was responsible for CO conver
sion to acetate. In a second stage of the process, the fermentation 
products were directly and continuously fed to an MFC. The combina
tion of the two systems allowed the conversion of CO to electricity. One 
year later, Mehta and coworkers reported the conversion of CO into 
electricity in a (one-stage) single-chamber MFC [61]. The presence of 
soluble (e.g. acetate) and gaseous (e.g. H2, CH4) degradation products 
into the fermentation broth suggested that a consortium of carboxydo
trophic and CO-tolerant anodophilic microorganisms was the respon
sible for the CO conversion into electricity. Although the indirect 
electricity production seems to be predominant, the authors also suggest 
the possibility of direct electron transfer to the electrode surface by Fe 
(III)-reducing carboxydotrophic bacteria [61]. 

Gas-liquid mass transfer limitations have been reported as a major 
concern in biological CO conversion [77]. Hussain and collaborators 
tested the use of a polymer silicone membrane and thin wall silicone 
tubing to improve CO transfer efficiency [78]. A significant enhance
ment of CO gas-liquid mass transfer was obtained, which increased the 
power output, leading to an increase in CO conversion efficiency. 

Carbon paper containing platinum (Pt) or cobalt 
tetramethoxyphenyl-porphyrin (CoTMPP) as catalyst were used, at the 
cathode, in the previous works. However, only in 2011, Neburchilov and 
collaborators studied the potential inhibition of the cathode activity by 
CO [65]. CoTMPP, FeTMPP, and Co/FeTMPP gas diffusion cathodes 
were tested in comparison of a carbon cloth gas diffusion Pt cathode. The 
best performance in terms of power output was obtained using a 
Co/FeTMPP cathode with a Co:Fe ratio of 3:1, in comparison to CoTMPP 
and Pt cathode, demonstrating that MFCs with non-noble metal cathode 
catalysts can produce more power than that obtained with a 
Pt-containing cathode. 

In 2012, Hussain and coworkers studied the effect of a moderately 
thermophilic temperature on CO conversion in MFCs [79]. In compari
son to a similar MFC operated under mesophilic conditions, the ther
mophilic conditions led to a higher power density, higher syngas 
conversion efficiency as well as an improved Coulombic efficiency (CE). 
Similarly, to the previous results obtained, the presence of Geobacter 
species, Acetobacter species and methanogens suggested that syngas 
conversion to electricity takes place by a two-step process. 

Hussain and collaborators further investigate, in 2014, the potential 
of use a multi-anode/cathode MFC to improve the efficiency of the 
process [80]. Different operating temperatures and anode/cathode 
electrodes configurations were tested. The adoption of a multi-electrode 
design consisting of 3 anodes and 2 cathodes, allowed to improve the 
power output as well as the CE in comparison to any mesophilic 
syngas-fed MFC. However, according to the authors, an improvement in 
the gas-liquid mass transfer in combination with methanogenic activity 
inhibition may further enhance the performance of the system. 

4.2. Added-value biochemicals production 

Although, the use of BES for sustainable electricity production has 
been widely investigated over the years, BESs research is currently 
moving to the conversion of electrical current into added-value bio
chemicals and fuels (e.g. acetate, CH4 and H2) [81]. BESs have been used 
to modify the extracellular ORP by imposing a potential to electro
chemically assist the conversion of a renewable source (e.g. glucose, 
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glycerol, syngas) into valuable compounds in a EF process [58,82]. The 
application of EF processes for added-value compounds production has 
been investigated to modify the extracellular ORP in mixed microbial 
communities as well as to deviate the microbial metabolism of pure 
cultures. 

Moscoviz and coworkers investigated the effect of imposing a 
cathodic potential on glycerol EF using a mixed-culture bioaugmented 
with G. sulfurreducens [83]. The authors obtained an increase of 10% 
(91 mM–101 mM) on 1,3-propanediol production under EF conditions, 
when compared with conventional fermentation process. The produc
tion of other metabolic products such as succinate, ethanol and propi
onate was negatively affected. Interestingly, the authors demonstrated 
that the difference in the product yields was supported by bacterial 
population selection rather than a shift in individual metabolic 
behavior. The exact way of how the cells metabolism is influenced by EF 
is not well known. However, it is known that various metabolic pro
cesses that compete for reducing power from the NADH/NAD+ pool, can 
adversely affect the 1,3-propanediol production yield in glycerol 
fermentation [84]. Zhou and coworkers demonstrated that the use of an 
electrode to provide additional reducing equivalents resulted in an 
improvement of 25% (1 mM–4 mM) on 1,3-propanediol production 
possibly due to the enhance of NADH generation routes [85]. The 
applied potential can impact the microbial population structure and also 
selects the microbial community composition on the electrode’s surfaces 
influencing the intracellular redox regulations [83,84]. 

The applied potential in EF processes, could also shift the products 
spectrum in pure cultures. A recombinant Klebsiella pneumoniae was 
investigated for 3-hydroxypropionic acid (3-HP) production from glyc
erol in a BES. In comparison to conventional fermentation, glycerol EF 
resulted in an increment of 1.7-fold (12.9 mM–21.5 mM) on 3-HP pro
duction [86]. In another study, the EF of fructose was investigated using 
Clostridium autoethanogenum as biocatalyst. The results showed a 
decrease on acetate production as a consequence of C. autoethanogenum 

metabolism modification [87]. An enhancement of 35-fold (0.28 
mM–9.87 mM) and 3-fold (0.73 mM–2.21 mM) on lactate and 2,3-buta
nediol production, respectively, was observed in comparison to con
ventional fermentation. Choi and coauthors, evidenced a metabolic shift 
in C. pasteurianum metabolism during glucose and glycerol EF [88]. 
Using glucose and at a cathode potential poised at +0.045 V vs. SHE, 
acetate and butyrate production decreased, whereas the production of 
butanol increased 10 mM (2.1 mM–12.2 mM) when compared with a 
conventional fermentation (without electricity). On the other hand, 
using glycerol and at a cathode potential poised at +0.045 V vs. SHE, 
butanol production decreased whereas 1,3-propanediol production 
increased almost 30 mM (60 mM–95 mM) [88]. The authors demon
strated that the use of an electrode to supply reducing equivalents 
induce a metabolic shift toward NADH-consuming pathways for more 
reduced compounds production over the stoichiometric contribution of 
the electrons. Recently, Arunasri and collaborators used Escherichia coli, 
as a model organism, and pyruvate, as substrate, to provide insights into 
metabolic shifts as a result of potential application [89]. The authors 
demonstrated that applied potential modified the expression of genes 
encoding key enzymes in the pyruvate metabolic pathway namely 
lactate dehydrogenase (ldhA), pyruvate formate lyase (pflB), pyruvate 
dehydrogenase (aceF), hydrogenase (hycE) and NADH: oxidoreductase 
(nuoB). H2 production was improved by 7.9-fold and 5.3-fold at cathode 
potential controlled at − 0.8 V and − 0.2 V, respectively, whereas applied 
potential of +0.8 V enhanced the production of lactate by 1.9-fold when 
compared to the control. At − 0.8 V, the key genes involved in the 
pathway for H2 production were all significantly up-regulated [89]. The 
electroactivity of some carboxydotrophic microorganisms has been 
demonstrated. C. ljungdahlii was applied in a BES to harvest electrons 
from a cathode to reduce CO2 to multicarbon chemical commodities 
[90]. 

EF of CO/syngas represents a new approach that has not yet been 
reviewed so far. In a EF system, an electron donor is oxidized at the (bio) 

Table 1 
Reported examples of electricity production from syngas/carbon monoxide in bioelectrochemical systems.  

Substrate Flow rate (L LAnode
− 1 

d− 1) 
Biocatalyst Setup Anode Cathode Power output (mW 

L− 1) 
CO removal 
(%) 

CE 
(%) 

Reference 

CO 
CO þ
H2 

2 Anaerobic 
sludge 

Air-cathode 
MFC 

Graphite 
felt 

CoTMPP 1.35 21 9 [61] 
4.8 6.4 53 9 
7.5 5.75 47 6 
10.2 0.02 3 1 
11.6 5.13 61 5 
4.8 4.52 53 9 

CO 2 Anaerobic 
sludge 

Air-cathode 
MFCb 

Graphite 
felt 

Pt-carbon paper 4 98 7 [78] 
3 14 92 16 
4 12.2 88 9  
4 Air-cathode 

MFCc 
19.3 74 11 

6 11.2 68 7 
CO þ H2 3 Air-cathode 

MFCb 
6.3 41 9  

4 Air-cathode 
MFCc 

8 57 7 

CO 477a Anaerobic 
sludge 

Air-cathode 
MFC 

Graphite 
felt 

Pt-carbon cloth 
CoTMPP 
CoTMPP:FeTMPP 
(3:1) 

12 n.a. n.a. [65] 
477a 12.8 n.a. n.a. 
477a 16. n.a. n.a. 

CO þ H2 4 Anaerobic 
sludge 

Air-cathode 
MFCb 

Carbon felt CO/FeTMPP 11 97 9 [79] 
6 34 92 26 
8 33 88 20 
10 16 73 12 

CO þ H2 1.2 Anaerobic 
sludge 

Multi-anode 
MFC 

Carbon felt MnO2-gas diffusion 17 (37 ◦C) 91 26 [80] 
2 33 (37 ◦C) 90 43 
3 12 (37 ◦C) 77 21 
2 15 (45 ◦C) 69 23 
2 10 (50 ◦C) 53 15 

n.a. Not available. 
a ml of CO per day (mL d− 1). 
b MFC equipped with a silicone tubing membrane for CO transfer to the anodic liquid. 
c MFC equipped with a silicone membrane for CO transfer to the anodic liquid. 
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anode producing electrons and protons. At the cathode, cathodophiles 
are responsible for draw, directly or indirectly, electrons from the 
electrode to convert syngas into more reduced compounds. 

Im and collaborators investigated the production of VFAs from syn
gas in BESs using a mixed microbial community [22]. Since CO con
version is typically limited by the reducing power, the authors tested 
and confirmed that the applied potential (− 1.1 V vs. Ag/AgCl) provided 
the additional reducing equivalents, improving the yield of syngas 
conversion. Among other VFAs, acetate was the main product. 

Based on the previous work, Baek and collaborators investigated the 
potential of a combination of electrodialysis with syngas-fed BESs to 
recover acetate [91]. Since acetate transport trough the membrane is 
affected by the applied potential and current in MFCs, various currents 
(− 5 mA, − 10 mA and − 15 mA) were applied to the BESs. The results 
showed that the amount of acetate transported increased with the in
crease of current applied. Although, the authors demonstrated the 
in-situ production and separation of acetate using an 
electrodialysis-based bioelectrochemical system, there are still chal
lenges, for example related to the ion-exchange membrane fouling, that 
need to be solved. 

Recently, Chu and coauthors, studied different CO/CO2 fractions as 
alternative to pure CO2 to improve the microbial electrosynthesis of 
C2–C6 carboxylates [92]. The best performance was obtained in terms of 
C4 and C6 carboxylates production at a CO fraction of 50%. The elec
trons deviation for CH4 production and biomass growth decrease with 
the increase of CO fraction. Microbial diversity analysis demonstrated 
that the relative abundance of Acetobacterium sp. and Clostridium sp. 
increased by increasing the CO fraction. In EF of CO, mixed cultures 
were less sensitive to the increase of CO concentration than the pure 
cultures. 

Although acetate is the main product detected reported in the liter
ature, several other added-value compounds could be produced from 
CO. Table 2 summarizes the reactions of some possible products ob
tained from CO as well as the correspondent standard cell potential 
(ΔE0’). According to literature, the products of CO/syngas EF and rates 
of production may vary depending on applied potentials, observed 
current densities, cathodic communities and CO fraction. Thus, redi
recting the microbial metabolism by imposing different potentials to the 
cell, is a promising strategy to obtain a selected compound of interest. 

5. Performance of BESs-based systems for CO/syngas conversion 

The performance of CO/syngas fed-MFCs could be assessed by the 
CO removal efficiency (%) which represents the fraction of the initial CO 
that was used and the CE (%) which represents the fraction of electrons 
recovered as current. According to the literature, CO removal efficiency 
in MFCs varied between 3% and 98% whereas CE varied between 1% 
and 43% (Table 1). Improved gas transfer systems to increase the CO 
transfer to the anodic medium resulted in high CO removal efficiency 

(98%) at a CO flow rate of 2 L LAnode
− 1 d− 1 [78]. A lower CO removal 

efficiency was observed at higher CO flow rate (10 L LAnode
− 1 d− 1) indi

cating a possible inhibition of the microbial community at high levels of 
fluxes of CO [61]. Although high CO removal efficiency was reported at 
a CO flow rate of 2 L LAnode

− 1 d− 1, a CE of only 7% was obtained [78]. Low 
CE (43% in maximum) described for CO/syngas-fed MFCs is a result of 
the use of mixed microbial communities. This CE is comparable to CE 
reported for wastewater-fed MFCs, which are in the range of 15% with 
winery wastewater [94], 26% with swine wastewater [95], 22% with 
hospital wastewater [96] and 25% with municipal wastewater [97], 
among others. 

As mentioned above, CO conversion in MFCs with a mixed microbial 
community results in some concurrent pathways (Equations (1)–(5)). A 
two-step process in which CO is first converted to acetate and then to 
electricity has been hypothesized as the main pathway for indirect 
electricity production. Beyond direct electricity production from CO, 
indirect electricity production from H2 has also been suggested. 
Furthermore, the use of complex microbial communities involves the 
substrate consumption via other competing metabolic pathways, 
resulting in the presence of other metabolites in the off gas and effluent. 
Several soluble and gaseous metabolic products such as CH4, H2 and 
acetate were identified during the study of the metabolic products [61, 
78,80]. According to the literature, the percentage of CH4 in the 
CO/syngas-fed MFCs off-gas varied between 3% and 22%, whereas the 
percentage of H2 varied between 1% and 37% (Table S1). Acetate in the 
effluent varied between 6 mg L− 1 to 220 mg L− 1. 

CE (%) could also be used to assess the performance of CO/syngas 
fed-BESs for added-value compounds. CE represents the fraction of 
consumed electrons recovered into products. Low electron recovery ef
ficiency was reported for a CO-fed BES showing that there is an imbal
ance between the electrons supply and their incorporation into desired 
compounds, possibly due to the deviation of electron for non-target 
chemicals production and/or proton reduction to H2 [22]. Among 
other compounds such as propionate and butyrate, acetate was the main 
metabolic product obtained (~2 g L− 1). Im and coworkers demonstrated 
that higher CE could be obtained by using neutral red as electron 
mediator, achieving a maximum acetate concentration of 8.5 g L− 1 [22]. 
As mentioned above, the electro-stimulation of the metabolism of pure 
cultures could be a sustainable alternative toward the optimization of 
fermentation process to improve microbial growth and produce valuable 
metabolites. 

Besides electrons deviation for non-target chemicals production, 
electrons are also used for microbial growth and maintenance. Compa
rable microbial growth is observed on conventional fermentation and EF 
[83]. 

Table 2 
Thermodynamics of chemical reactions involved in CO conversion into added-value products.  

Products Reaction ΔG◦′ (kJ mol− 1)a nb ΔE◦′ (V)c 

Hydrogen CO + H2O ↔ CO2 + H2 − 20 2 0.104 
Methane CO + 3H2 ↔ CH4 + H2O − 151 6 0.261 
Acetate 4CO + 2H2O → CH3COOH + 2CO2 − 175 4 0.453 

2CO + 2H2 → CH3COOH − 135 4 0.350 
Ethanol 6CO + 3H2O → CH3CH2OH + 4CO2 − 224 8 0.290 

3CO + 3H2 → CH3CH2OH + CO2 − 164 8 0.212 
2CO + 4H2 → CH3CH2OH + H2O − 144 8 0.187 

Butanol 12CO + 5H2O → CH3CH2CH2CH2OH + 8CO2 − 494 16 0.320 
2,3-butanediol 11CO + 5H2O → CH3CHOHCHOHCH3 + 7CO2 − 388 14 0.287 
Butyrate 10CO + 4H2O → CH3CH2CH2COOH + 6CO2 − 398 12 0.343 
Acetone 8CO + 3H2O → CH3COCH3 + 5CO2 − 322 10 0.334  

a ΔG◦′ was obtained from [42,93]. 
b n - number of electrons transferred in the balanced equation. 
c ΔE◦′ was calculated according to the equation ΔG◦′ = - n F ΔE◦′ (where F is Faraday’s constant = 96,485 C mol− 1). 
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6. Current bottlenecks of CO/syngas conversion in BESs and 
future trends 

Gas streams treatment and valorization with simultaneous electricity 
and/or added-value biochemicals production in BESs is as a feasible 
strategy to increase the productivity, and/or to expand the product 
scope of gas fermentation processes. Conversion of other gaseous carbon 
sources (e.g. CO2) in BESs has been extensively presented [93,98–100], 
whereas a syngas-fed BESs represents a novel approach. 

Electricity production in an MFC has been proposed for microbial 
conversion of syngas, contributing at the same time to the reduction of 
greenhouses gases emission, lowering the negative impact on the envi
ronment. Although MFCs are the most investigated type of BESs, the 
potential of BESs to produce added-value compounds has attracted the 
interest of the industrial world. The potential to produce building 
blocks, namely acetate, from CO/syngas through EF is already proved. 

However, a few practical challenges need to be overcome to 
approach this technology to the commercial level. Technical hitches 
related to gas-liquid mass transfer limitations have been reported as the 
main issue associated to syngas fermentation. The selection of an 
adequate electrode with an adequate porosity should be considered 
since, high porosity results in a high specific surface area maximizing the 
microbial attachment thus favoring their contact with the gas. The use of 
gas diffusion electrodes has demonstrated encouraging results [101]. 
Moreover, the selection of a CO-poisoning resistant electrode is of 
utmost importance since common catalysts used (e.g. Pt) suffer from 
high toxicity by CO, in addition to their environmental impact and high 
cost. Preliminary results demonstrated that promising results could be 
obtained by using gas diffusion electrodes containing non-noble metal 
catalysts (e.g. Co or Fe) [65]. The low electron transfer rate between 
electrodes and biocatalysts is another challenge that should be further 
investigated. Genetic engineering, recently considered in BES research, 
can contribute to optimize the electron transfer rates, to either increase 
productivities or to produce a new product at interesting titres [102]. 
Consortia of carboxydotrophic and CO-tolerant EAB have been reported 
as fundamental for syngas conversion in BES. However, the presence of 
different microorganisms could lead to the diversion of electrons to 
other metabolic pathways, thus resulting in a low CE which is also an 
aspect that should be further investigated. The use of pure cultures could 
be an alternative to target formation of a specific target product. 
Selected microorganisms should be able to use the electrode as electron 
acceptor/donor for syngas conversion into electricity/added-value 
compounds, respectively. Data from literature demonstrated that some 
carboxydotrophs such as Clostridium ljungdahlii [90] and Moorella ther
moacetica [98] are capable to draw electrons from an electrode. 

As reported before by several authors it is not only highly important 
to improve product formation and increase productivities, but also 
reduce energy/operating costs, before scaling-up EF processes 
[100–103]. A techno-economical evaluation has to be developed to 
evaluate if the gains (value of the products generated) in process 
compensate the additional costs of the EF (energy application). In this 
context, there are several examples showing that EF allows to increase 
products formation rates and titres, making EF more attractive, even 

from an economic point of view, when compared to 
non-electrochemically assisted fermentation [85,107,108]. In an 
example, Harnisch and co-workers reviewed, in 2015, the technical 
parameters and hurdles that should be taken into account before 
scaling-up EF [109]. Based on bulk electricity prices, the authors 
anticipated that EF of sucrose for lysine production would be able to 
provide significant cost savings (8% in EU and 18% in US) in comparison 
with traditional process. The authors also stated that more economic 
systems should be developed, mainly for production of specialty 
chemicals that are not competitively produced by existing industrial 
fermentation processes [109]. 

Nevertheless, EF can use renewable current mainly from intermittent 
solar and wind sources. Furthermore, it was demonstrated that micro
bial community on BES revealed to be resilient to current fluctuations 
and capable to restore the electrochemical activity regardless the 
duration of power interruptions [110,111]. Thus, EF could be a relevant 
process using intermittent and fluctuating renewable energy for syngas 
EF, allowing its conversion into storable chemicals and/or gaseous fuels. 

From the economic perspective, the cost of the process should be 
compensated by the value of the products generated. However, it is 
imperative to improve cost-effective electrodes and cells configurations 
to increase the general process performance. Scale-up is also an 
important issue to consider in order to bring the technology to higher 
levels of readiness. Although further studies are needed before these 
systems can be applied to industrial environment, the proof-of-principle 
of syngas conversion in BESs is proved to be technologically feasible. 
Further, the results obtained for added-value compounds production are 
quite encouraging, thus, motivating further novel research opportu
nities. The understanding as the applied potentials could influence the 
metabolic pathways towards the formation of a specific product from 
syngas is an inspiring scientific challenge. In conclusion, electro
chemical bioconversion of syngas is seen as a very promising 4th gen
eration biofuel process substituting fossil fuels, thus contributing to the 
reduction of greenhouse gas emissions. Research on electrochemical 
bioconversion of syngas will contribute to design new eco-innovative 
and green processes for gas streams valorization. 
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Table S1 
Reported examples of electricity production from syngas/carbon monoxide in bioelectrochemical systems.  

Substrate Flow rate (L LAnode
− 1 d− 1) Acetate mg L− 1 CH4% H2% Reference 

CO 
CO þ H2 

2 172 5.2 7.6 [61] 
4.8 18 4.5 0.1 

(continued on next page) 
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Table S1 (continued ) 

Substrate Flow rate (L LAnode
− 1 d− 1) Acetate mg L− 1 CH4% H2% Reference 

7.5 66 5.5 0.6 
10.2 70 0.1 0.0 
11.6 220 4.2 1.4 
4.8 49 22.1 22.1 

CO 2 6 15 5.3 [78] 
3 58 9.3 2.1 
4 74 9.4 4.7  
4 18 11.1 3.1 
6 46 15.3 4.8 

CO þ H2 3 51 3.3 26.0  
4 35 11.5 22 

CO þ H2 1.2 26 13 14 [80] 
2 61 15 14 
3 44 10 9 
2 31 13 20 
2 19 7 37  
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