
K-Taint: An Executable Rewriting Logic Semantics
for Taint Analysis in the K Framework

Md. Imran Alam1, Raju Halder1,2, Harshita Goswami1, and Jorge Sousa Pinto2

1Indian Institute of Technology Patna, India
2HASLab/INESC TEC & Universidade do Minho, Braga, Portugal
{imran.pcs16, harshita.mtcs14, halder}@iitp.ac.in, jsp@di.uminho.pt

Keywords: Taint Analysis, K Framework, Information Flow, Security.

Abstract: The K framework is a rewrite logic-based framework for defining programming language semantics suitable
for formal reasoning about programs and programming languages. In this paper, we present K-Taint, a rewrit-
ing logic-based executable semantics in the K framework for taint analysis of an imperative programming
language. Our K semantics can be seen as a sound approximation of programs semantics in the corresponding
security type domain. More specifically, as a foundation to this objective, we extend to the case of taint anal-
ysis the semantically sound flow-sensitive security type system by Hunt and Sands’s, considering a support
to the interprocedural analysis as well. With respect to the existing methods, K-Taint supports context- and
flow-sensitive analysis, reduces false alarms, and provides a scalable solution. Experimental evaluation on
several benchmark codes demonstrates encouraging results as an improvement in the precision of the analysis.

1 Introduction

Taint analysis is a widely used program analy-
sis technique that aims at averting malicious inputs
from corrupting data values in critical computations
of programs [Huang et al., 2014, Jovanovic et al.,
2006, Tripp et al., 2009]. Examples where taint at-
tacks severely compromise security are SQL injec-
tion, cross-site scripting, buffer overflow, etc. [Jo-
vanovic et al., 2006]. The following code snippet in
Figure 1 depicts one such taint attack where input sup-
plied by a malicious source through the formal param-
eter ‘src’ of the function ‘foo()’ may affect neighbor-
ing cells of the character array ‘buf ’ in the memory.

1. void foo(char *src){
2. char buf[20]; int i=0;
3. while(i<= strlen(src)){
4. buf[i] = src[i]; i++;}
5. return ;}

Figure 1: An Example Taint Attack

This way
attackers may
store some
malicious
data into the
neighboring
cells of ‘buf ’
which may
be accessed
by legitimate applications, causing unpredictable
behavior.

Static taint analysis approaches, in principle, ana-
lyze the propagation of tainted values from untrusted
sources to security-sensitive sinks along all possible

program paths without actually executing the code
[Cifuentes and Scholz, 2008, Huang et al., 2014, Jo-
vanovic et al., 2006, Tripp et al., 2009]. Of course,
due to their sound and conservative nature, they of-
ten over-approximate the analysis results which, al-
though may introduce false positives, however always
establish a security guarantee: tainted data cannot be
passed to security-sensitive operations.

In the context of software security, the integrity
of software systems is treated as a dual of the confi-
dentiality problem [Sabelfeld and Myers, 2006], both
of which can be enforced by controlling informa-
tion flows. Works in this direction have been start-
ing with the pioneer work of Denning and Denning
in [Denning and Denning, 1977] which enforces a re-
strictive information flow policy defined on a mathe-
matical lattice-model of security classes partially or-
dered by sensitivity levels. Inspired from this, a
wide range of language-based approaches are pro-
posed in the literature, majority of which focuses on
the confidentiality [Amtoft and Banerjee, 2004, Hunt
and Sands, 2006,Sabelfeld and Myers, 2006,Volpano
et al., 1996]. Nevertheless, in the line of taint infor-
mation flow addressing software integrity, the existing
data-flow and point-to analysis-based approaches [Jo-
vanovic et al., 2006, Noundou, 2015, Sridharan et al.,
2011,Tripp et al., 2009,Livshits and Lam, 2005] basi-
cally suffer from false alarms due to ignorance of the

control-flow and the semantics of constant functions.
Security type-system [Foster et al., 2002,Huang et al.,
2014] has emerged independently as a probably most
popular approach to static taint analysis in a compet-
ing manner.

In this paper, as a contribution to the same re-
search line, we put forward a rewriting logic-based
executable semantics for taint analysis in the K frame-
work, considering an extension of Hunt and Sands’s
semantically sound flow-sensitive security type sys-
tem as the basis. The K framework [Roşu and
Şerbănută, 2010] is a rewrite logic-based formal
framework for defining programming languages se-
mantics. Such semantic definitions are directly ex-
ecutable in a rewriting logic language, e.g. Maude
[Clavel and et al., 2007], thus support a development
of verification and analysis tools at no cost.

To summarize, our main contributions are:

• We explore the power of K framework to define
K-Taint.

• To this aim, we extend the flow-sensitive security
type system proposed by Hunt and Sands’s [Hunt
and Sands, 2006] as the basis.

• We specify K rewrite rules which captures taint
information propagation along all possible pro-
gram paths.

• We enhance our proposed approach in terms of
precision by handling pointer aliasing and con-
stant functions.

• We present experimental evaluation results to es-
tablish the effectiveness of our approach.

The paper is organized as follows: Section 2 dis-
cusses the related works in the literature on static taint
analysis. Section 3 briefly introduces the K frame-
work. In section 4, we extend to the case of taint anal-
ysis the Hunt and Sands’s security type system. Sec-
tions 5 and 6 present the executable rewriting logic
semantics in K designed for taint analysis. Section 7
defines the semantics rules to handle pointer aliases
and constant functions. The experimental evaluation
results are reported in section 8. Finally, section 9
concludes our work.

2 Related Works
Although many language-based information flow

approaches addressing confidentiality exist in the lit-
erature [Sabelfeld and Myers, 2006, Hunt and Sands,
2006, Volpano et al., 1996], this section restricts the
discussions only to the static taint approaches in the
same line. Works on taint analysis, as a dual of confi-
dentiality, include security type systems [Foster et al.,
2002, Huang et al., 2014], flow-analysis [Evans and

Larochelle, 2002, Jovanovic et al., 2006, Noundou,
2015, Scholz et al., 2008, Tripp et al., 2009], point-
to analysis [Livshits and Lam, 2005, Tripp et al.,
2009], etc. The flow-sensitivity in CQual [Foster
et al., 2002] is triggered by specifying manually a
partial order configuration on security qualifiers. Un-
fortunately, CQual is unable to support implicit flow-
sensitivity in presence of branches. On the other
hand, SFlow [Huang et al., 2014], a type-based taint
analyzer for Java Web applications, performs type
judgement based on calling context viewpoint adap-
tion without actually flowing the context information
through the called function body, which may often
result false alarms. Like CQual, the SFlow also for-
goes the implicit flow. As alternative solutions, taint
analysis attracts many proposals on data-flow analy-
sis [Jovanovic et al., 2006, Noundou, 2015, Sridharan
et al., 2011, Tripp et al., 2009] and point-to analy-
sis [Livshits and Lam, 2005, Tripp et al., 2009]. Un-
fortunately, given the ignorance of control dependen-
cies, these techniques are unable to capture indirect
influence of taint information on other variables due
to implicit-flow. Although the authors in [Cifuentes
and Scholz, 2008, Corin and Manzano, 2012, Evans
and Larochelle, 2002, Scholz et al., 2008] have con-
sidered both data- and control-dependencies, these
approaches fail to address false positives in presence
of constant functions, such as x := 0× x, x := y− y,
etc. A summary of the state-of-the-art tools and tech-
niques in the line of static taint analysis only, as com-
pared with K-Taint, is given in Table 1.

3 The K Framework
The K framework provides a rewrite logic-based

framework suitable for design and analysis of pro-
gramming languages. Inspired by rewrite-logic se-
mantics project [Meseguer and Roşu, 2007], this
framework unifies algebraic denotational semantics
and operational semantics by considering them as two
different view over the same object.

To define semantics of programming language
constructs, the K framework mainly relies on config-
uration and K rewrite rules. Configuration specifies
the structure of the abstract machine on which pro-
grams written in that language will run and this is
represented as labeled nested cells (i.e., List, Map,
Bag, Set, etc.). For example, consider the following
configuration with three cells:

con f iguration≡ 〈〈K〉k 〈Map[Var 7→ Loc]〉env 〈Map[Loc 7→Val]〉store 〉T

The k cell holds a list of computational tasks, that is k :
List{K,y} where K holds computational contents
such as programs or fragment of programs and y is
the task sequentialization operator which sequential-

Table 1: A Comparative Summary (X� denotes partially successful at this stage)

K
-T

ai
nt

Pi
xy

Ta
in

tg
ri

nd

SA
IN

T

TA
J

Sp
lin

t

Pa
rf

ai
t

SF
lo

w

C
Q

ua
l

K
L

E
E

Semantics/Security
Type System X 7 7 7 X 7 X X X X

Explicit Flow X X X X X X X X X X
Implicit Flow X 7 7 7 7 X X 7 7 X
Constant Functions X� 7 7 7 7 7 7 7 7 7

Flow-Sensitivity X X X X X X X 7 X X
Context-Sensitivity X X 7 X X 7 X X 7 X
Language
Supported Imperative (including C-like

syntax)
PHP C C Java C C Java C C

izes program statements. The env cell maps variables
to their locations (i.e., env : Var 7→ Loc) and the store
cell maps locations to values (i.e., store : Loc 7→Val).
These cells are covered by the top cell denoted by T .
K rewrite rules are classified into two types: com-
putational rules, that may be interpreted as transition
in a program execution, and structural rules, that re-
arrange a term to enable the application of computa-
tional rule. For better understanding, let us consider
the following rule, considering two cells k and env,
for finding address of a variable:

〈 &Y
L

. . .〉k 〈. . .Y 7→ L . . .〉env

This specifies that the next task to evaluate is a refer-
ence operator (&) on the variable Y , which results the
location L in the memory based on the match in the
environment cell env.

In the K framework, a language syntax is given us-
ing conventional BNF notation annotated with seman-
tics attributes which enforces the evaluation strategy
of the construct. For example, consider the following
definition for arithmetic expression:

syntax E ::= E1 "+" E2 [strict]

The attribute strict allows E1 and E2 to evaluate in
any order, thus enforces a non-determinism. The an-
notation above corresponds to the following four heat-
ing/cooling rules:

〈 E1 + E2

E1 y� + E2
...〉k | 〈

E1 + E2

E2 y� + E1
...〉k 〈

V1 y� + E2

V1 + E2
...〉k

| 〈V2 y E1+�
E1 + V2

...〉k

Here, V1 and V2 are the evaluated results of the ex-
pressions E1 and E2 respectively. The construct �
(HOLE) is a place-holder that will be replaced by the
result of the evaluated term or sub-term.

4 Extending Hunt and Sands’s Type
System to Taint Analysis

In this section, we define a type-based taint analy-
sis for imperative programming language supporting
functions, arrays, pointers, etc. Table 2 depicts the
abstract syntax of the basic language under consider-
ation, where D and E denote respectively a sequence

of declarations 〈τ id1, τ id2, . . .〉 and a sequence of
arithmetic expressions 〈E1, E2, . . .〉 respectively.

Table 2: Abstract Syntax of the Language

E ::= n | id | &id | ∗E | id[E] | E op E | (E), where op ∈ {+,−,×, /}

B ::= true | false | E rel E | ¬B | B AND B | B OR B,

where rel ∈ {>,6,<,>,==}

τ ::= int | f loat | char | bool | τ[n] | τ*

D ::= τ id

A ::= id := E | ∗E := E | id[E] := E | id := read()

C ::= skip; | D; | A; | defun id(~D){C} | call id(~E); | return; | return E; |
C1 C2 | if B then {C} | if(B) then {C1} else {C2} | while(B) do {C}

Our work mainly motivated by the security type
system proposed in [Hunt and Sands, 2006], which is
primarily proposed to detect possible leakage of sen-
sitive information from programs. Unlike other sim-
ilar type systems, [Hunt and Sands, 2006] is featured
with flow-sensitivity. We extend this flow-sensitive
type system for the purposes of our taint analysis with
an additional support to the context-sensitivity in case
of inter-procedural code, leading to a significant im-
provement in the precision. This is depicted in Fig-
ure 2. Although our proposal is scalable enough, we
consider, for the sake of simplicity, a simple instance
of the problem involving two security types: taint
and untaint. We will work with the flow semi-join
lattice of the type domain as SD = 〈S,v,t〉, where
S = {taint,untaint} and the partial order relation de-
fined as untaint v taint.

The typing judgements are of the form pc ` Γ

{C} Γ
′
, where pc ∈ S represents the security con-

text used to address implicit flow, C is the program
statements, and Γ, Γ

′
: Variables → S are environ-

ments. The security type T of expression E (denoted
Γ ` E : T) is defined simply by the least upper bound
of the types of all free variables (FV) in E, where t
represents the join operation in the security lattice SD.
The typing rules ensure that for any given C, Γ, and
pc there is an environment Γ

′
such that pc ` Γ {C} Γ

′

is derivable. We use the notation Γ ` ~E : ~T to denote
the sequence of type judgements 〈Γ ` E1 : T1, Γ `
E2 : T2, . . .〉. Similarly, Γ[[~id 7→~T]] denotes a sequence
of type substitutions 〈Γ[[id1 7→ T1]],Γ[[id2 7→ T2]], . . .〉.

[Expression]
Γ ` E : tx∈FV(E) Γ(x)

[skip]
pc ` Γ{skip}Γ

[Declaration]
pc ` Γ {τ id} Γ[[id 7→ pctuntaint]]

[Read]
pc ` Γ {id = read()} Γ[[id 7→ pct taint]]

[Assignment]
Γ ` E : T

pc ` Γ {id = E} Γ[[id 7→ pctT]]

[Function

Call]

Γ ` ~E :~T
de f un id(~D){C}
~X = getParam(~D)

Γ[[~X 7→~T]]≡ Γ′

pc ` Γ′ {C} Γ′′
pc ` Γ′ {de f un id(~D){C}} Γ′′

pc ` Γ {call id(~E)} Γ′′

[if]
Γ ` B : T pctT ` Γ{C}Γ′

pc ` Γ {i f B then C} ΓtΓ′

[if-else]
Γ ` B : T pctT ` Γ{C1}Γ′ pctT ` Γ{C2}Γ′′

pc ` Γ {i f B then {C1} else {C2}} Γ′ tΓ′′

[while]

Γ′i ` B : Ti pctTi ` Γ′i{C}Γ′′i 0≤ i≤ k
Γ′0 = Γ Γ′i+1 = Γ′′i tΓ Γ′k+1 = Γ′k

pc ` Γ {while B do {C}} Γ′k

Figure 2: Flow- and Context-sensitive Security Type Rules
for Taint Analysis

Observe that reading inputs from unsanitized sources
through read() always makes the corresponding vari-
ables tainted. The rule for function calls ensures the
context-sensitivity in the system, where getParam()
extracts formal parameters from the function defini-
tion. The analyzer associates security types with pro-
gram constructs treating source variables as tainted,
and then propagates their types along the program
code to determine application’s security. The flow
sensitive typing rules in case of branching statements
leverage the lattice-based operations on the security
domain, resulting into conservative analysis results.

5 K Specification of Security Type
System: A Roadmap

This section provides a roadmap to specify K
rewrite rules corresponding to the typing rules de-
picted in Figure 2. Let us consider the typing judge-
ment pc ` Γ{C}Γ′ which specifies that the security
environment Γ

′
is derived by executing the statement

C on the security environment Γ under the program’s
security context pc. To capture this, let us give al-
gebraic representations of Γ, Γ

′
, C and pc in K by

defining a configuration consisting of three cells – k
cell to contain program statements as a sequence of
computations, env cell to hold the security levels of
program variables and context cell to capture current
program context pc in the security type domain – as
follows:

〈
〈K〉k 〈Map〉env 〈Map〉context

〉
T .

The corresponding K rewrite rule capturing the

type judgement pc ` Γ{C}Γ′ is specified as:

〈C
.
. . .〉k 〈

Γ

Γ
′ 〉env 〈pc 7→ 〉context

The symbol “. . . ” appearing in the k cell represents
remaining computations. As a result of the execution
of C which eventually be consumed (denoted by dot),
the previous environment Γ in the env cell will be up-
dated by the modified environment Γ′ (implicitly) in-
fluenced by the current value (denoted by) of the
security context pc in the context cell.

Similarly, the derivation rule Γ ` E : T speci-
fied as 〈. . . E 7→ T . . .〉env means that expression E
has the security type T somewhere in the environ-
ment env. Each security type rule is written based
on a number of premise judgements Γi ` ζi above a
horizontal line, with a single conclusion judgement
Γ ` ζ below the line. For example, given the type rule
Γ `M : Nat Γ ` N : Nat

M+N : Nat
, the corresponding K rule is de-

fined as: 〈 M+N
M+Nat N

. . .〉k 〈. . . M 7→ Nat,N 7→ Nat . . .〉env

where M: Nat, N: Nat, and +Nat : Nat × Nat 7→ Nat.
Having this setting as foundation, in the next section
we specify K rewrite rules for static taint analysis of
imperative language in the abstract security type do-
main S.

6 K Rewriting Logic Semantics for
Taint Analysis

This section introduces an executable rewriting
logic semantics in the K framework for taint analysis
of our language under consideration. As mentioned
earlier, our semantics can be seen as a sound seman-
tics approximation in the security type domain.

To this aim, we consider the following K model-
ing of the program configuration on which the seman-
tics is defined:

configuration ≡
〈
〈K〉k 〈Map〉env 〈Map〉context 〈 〈Map 〉λ-De f 〈List〉 f stack 〉control

〈List〉in 〈List〉out 〈 〈Map〉alias 〈Set〉ptr 〉ptr-alias
〉

T

As mentioned earlier, the special cell 〈〉k contains
the list of computation tasks of a special sort K sepa-
rated by the associative sequentialization operator y.
The environment cell env maps variables (including
pointers variables) to their security types. The cur-
rent program context pc over the security domain is
captured in context cell. The λ-Def cell supports in-
terprocedural feature holding the bindings of function
names (when defined) to their lambda abstraction. All
the function calls are controlled by control cell main-
taining a stack-based context switching using fstack
cell. The cells in and out are used to perform stan-
dard input-output operations. To avoid false nega-
tives in the analysis-results, we consider ptr-alias cell

which maintains pointer aliasing information in alias
cell. The ptr cell is aimed to separate pointer variables
from other variables to assist the alias analysis.

Figure 3 depicts the semantics rewrite rules for
taint analysis in the K definitional framework. We la-
bel the defined rules by R- for future reference. These
rules captures both the explicit and implicit flow sen-
sitivity, the context-sensitivity in presence of func-
tion calls, the semantics of constant functions, pointer
aliases, etc. Let us explain these rules in detail.

Declaration, Input, Lookup and Assignment:
The first rule (R1a)decl deals with variables declara-
tions and initialization of variables by their initial se-
curity types (untaint in our case) in the environment
cell env. Any unsanitized input gets its type tainted
in the rule (R1b)read. The lookup rule (R2)lookup re-
places the variable term appearing on top of k cell
by its security type by looking into the environment
cell. Note that the look up rule for constant terms,
although we do not mention here, always returns un-
taint. As defined in rule (R3a)ar-op, the security types
of expressions are sound approximated by least upper
bound (defined in rule (R8)join) of their component-
terms security types. Rule (R3b)asg which handles as-
signment computations, updates the security type of
id somewhere in the env cell by the least upper bound
of the security types of the right hand side expression
(i.e. T) and program’s current security context pc in
the context cell. The assignment is then replaced by
an empty computation.

Conditional or Iteration: The presence of condi-
tion B in simple if - or while-statement gives rise to
the following two: (i) implicit flow of taint informa-
tion based on the security type of B, and (ii) multiple
execution paths with the possibility of entering into
the if - or while-block. The former is achieved by up-
dating the security context µ in the context cell based
on the security type of B and the later is achieved
by following restorec(µ) and approx(ρ). These are
depicted in rules (R4)if, (R6)while, (R9a)restore and
(R9b)approx.

Specifically, restorec(µ) restores the previous con-
text on exiting a block guarded by B and approx(ρ)
provides a sound approximation of the semantics as
a least upper bound of the environments obtained
over all possible execution paths due to the pres-
ence of B. Observe that the least fixed point so-
lution in case of “while” is achieved by defining
an auxiliary function fixpoint() as follows: either

(1) 〈fixpoint(B,C,ρi)

.
. . .〉k〈ρ′i〉env when ρi = ρ′i, or (2)

〈 fixpoint(B,C,ρi)

while(B) do {C}
. . .〉k〈ρ′i〉env when ρi 6= ρ′i. Note that

the first case indicates that the computation reaches

(R1a)decl : 〈 τ id
.

. . .〉k 〈
ρ

ρ[id← T : Type]
〉env (R1b)read : 〈 read()

taint
. . .〉k

(R2)lookup : 〈 id
T : Type

. . .〉k 〈 . . . id 7→ T : Type . . .〉env

(R3a)ar-op : 〈 T1 : Type op T2 : Type
T1 : Type t T2 : Type

. . .〉k

(R3b)asg : 〈 id := T : Type
.

. . .〉k 〈. . . ρ[id 7→
µ(pc)tT : Type

]

. . .〉env 〈µ〉context

(R4)if : 〈 i f (B : T) then {C}
C y restorec(µ) y approx(ρ)

. . .〉k 〈
µ

µ[pc← µ(pc)tT]
〉context 〈ρ〉env

(R5a)if-else :

〈 i f (B : T) then {C1} else {C2}
C1 y exitIf()y restoreenv(ρ)yC2 y exitElse()y restorec(µ)

. . .〉k 〈ρ〉env

〈 µ
µ[pc← µ(pc)tT]

〉context

(R5b)exit-if : 〈 exitIf()
save(ρ)

. . .〉k〈ρ〉env (R5c)exit-else : 〈 exitElse()
approx(save(ρ))

. . .〉k

(R6)while :

〈 while(B : T) do {C}
C y restorec(µ)y approx(ρ)y f ixpoint(B,C,ρ)

. . .〉k 〈ρ〉env

〈 µ
µ[pc← µ(pc)tT]

〉context

(R7a)fun-decl :

〈 de f un Func name(Params){C}
.

. . .〉k
〈
〈 ψ

ψ[Func name← lambda(Params,C)]
〉λ-De f

〉
control

(R7b)fun-lookup :

〈 call Func name(Es : T s)
lambda(Params,C)(Es : T s)

. . .〉k
〈
〈. . . Func name 7→ lambda(Params,

C) . . .〉λ-De f
〉

control

(R7c)fun-call :

〈 lambda(Params,C)(Es : T s) y K
McDecls(Params,T s)yC y return;

. . .〉k
〈
〈 .List
[ListItem(ρ,K,Ctr)]

. . .〉 f stack Ctr
〉

control〈ρ〉env

(R7d)fun-ret :

〈 return(T : Type);y
T : Type y K

. . .〉k
〈
〈 [ListItem(ρ,K,Ctr)]

.List
. . .〉 f stack (

−
Ctr

)〉
control 〈

−
ρ
〉env

(R8)join :

〈T1 : TypetT2 : Type . . .〉k =


〈 T1 : TypetT2 : Type

untaint
. . .〉k , i f T1 = T2 = untaint

〈 T1 : Type t T2 : Type
taint

. . .〉k , otherwise

(R9a)restore : 〈 restorec(µ)
.

. . .〉k 〈 µ
〉context

(R9b)approx : 〈 approx(ρ)
.

. . .〉k 〈
ρc

ρtρc
〉env

Figure 3: K rewrite rules for executable semantics-based
taint analysis

the fix-point and therefore the computation is con-
sumed. If not, then the iteration continues as shown
in the second case.

The soundness of the analysis in presence of if-
else is guaranteed by approximating the analysis-
results from both the branches C1 and C2 (a may-
analysis), as depicted in rule (R5a)if-else, (R5b)exit-if
and (R5c)exit-else. Observe that both the branches
are executed over the same environment (using

restoreenv(ρ) which restores environment and is de-
fined similar to the rule (R9a)restore) which occurs at
the entry point of if-else.

Dealing with Functions: We specify the rules
(R7a)fun-decl, (R7b)fun-lookup, (R7c)fun-call, and
(R7d)fun-ret to handle interprocedural feature in
our analysis. For each function definition, the rule
(R7a)fun-decl creates a lambda abstraction binding it
to the function name in the 〈 〉λ-De f cell. Coming
across a function call, the rule (R7b)fun-lookup replaces
this function call by its lambda abstraction. We
use a helper function McDecls() which recursively
extracts the formal parameters in the called function
and assigns to them the security types of the actual
parameters in the calling function, as shown below:

〈 McDecls((param, params),(Type, Types))
param := Type; y McDecls(params, Types)

. . .〉k

Note that the function McDecls() enforces the con-
text sensitivity by treating same function call with dif-
ferent parameters differently. As usual, McDecls()
is followed by a sequence of computations C in the
function body and then by a return statement. When
a function returns the result by explicitly mention-
ing it as “return E” statement, the rule (R7d)fun-ret
is applied which returns the security type of the re-
sultant expression and restores the previous context
to start the execution of remaining tasks specified as
〈 [ListItem(ρ,K,Ctr)]

.List
. . .〉 f stack.

7 Dealing with Pointers Aliasing and
Constant Functions

The rules defined for implicit flow in Figure 3
are unsound in presence of pointers. More precisely,
given an assignment computation id :=E, the correct-
ness of the analysis is established by ensuring the up-
date of the security type not only for id but also for all
of its aliases by the security type of E. To handle this
scenario, the nested cells alias and ptr are designed
to store the alias information and the set of pointer
variables. The semantics rules are depicted in Fig-
ure 4. In case of a simple assignment id := E when
id is not a pointer variable, the rule (R10a)alias trig-
gers the update of the security type of id and its di-
rect pointers identified in the alias cell by the security
type of E. As a consequence of it, the rule (R10b)alias
then performs the same update action to all of its in-
direct pointers as well. The reason behind this is to
ensure that all pointers which are pointing, directly
or indirectly, to a taint value must be tainted, lead-
ing to a sound analysis. Similarly, rules (R10c)alias,
(R10d)alias, and (R10e)alias refer to the assignment of
security types to pointer variables and the creation

of new alias information in the alias cell. This is to
note that the author in [Asăvoae, 2014] integrated the
alias analysis in K as an instantiation of the collecting
semantics where alias information can be extracted
from the alias cell on demand-driven way. Our ap-
proach follows the same line, but in a much simpler
way without considering an exhaustive execution in
worst case scenario.

(R10a)alias: 〈
id := E : T

id := T y P := T
. . .〉k

〈
〈. . . P 7→ PointsTo(id) . . .〉alias

〈η〉ptr
〉

ptr-alias 〈ρ〉env when P ∈ η

(R10b)alias: 〈
P := T
R := T

. . .〉k
〈
〈. . . R 7→ PointsTo(P) . . .〉alias〈η〉ptr

〉
ptr-alias

〈. . . P 7→
T

. . .〉env when P ∈ η

(R10c)alias: 〈
P := &Q : T

P := T
. . .〉k

〈
〈 ξ[P 7→

PointsTo(Q)
] 〉alias 〈η〉ptr〉

ptr-alias when P ∈ η

(R10d)alias: 〈
P := Q : T

P := T
. . .〉k

〈
〈. . . Q 7→ PointsTo(S) . . . P 7→

PointsTo(S)
. . .〉alias〈η〉ptr

〉
ptr-alias when P ∈ η

(R10e)alias: 〈
P :=∗ Q : T

P := T
. . .〉k

〈
〈. . . Q 7→ PointsTo(S) . . . S 7→

PointsTo(M) . . . P 7→
PointsTo(M)

. . .〉alias〈η〉ptr
〉

ptr-alias when P ∈ η

(R11)con-func : 〈id1 ∗ id2 . . .〉k =


〈 id1 ∗ id2

untaint
. . .〉k when id1 = zero

or id2 = zero

〈 id1 ∗ id2

id1 ∗Type id2
. . .〉k otherwise

Figure 4: K rules for pointer aliasing and constant functions

Apart from this, capturing the semantics of con-
stant functions has a significant impact on the pre-
cision of taint analysis. For example, consider the
statement v := x× 0 + 4, where x is a tainted vari-
able. It is worthwhile to observe that, although the
syntax-based taint flow makes the variable v tainted,
the semantics of the constant function “x×0+4” that
always results 4 irrespective of the value of x makes
v untainted. The semantics approximation in the se-
curity domain, due to the abstraction, leads to a chal-
lenge in dealing with constant functions. As a par-
tial solution, we specify rules for some simple cases
of constant functions such as x - x, x xor x, x × 0,
etc. We mention one of such rules in (R11)con-func.
In this context, as a notable observation, we con-
sider the following scenario: given the code fragment
y := read(); x := y; v := x xor y, the analysis success-
fully marks the variable v as tainted. Indeed, attack-
ers may inject some malicious input containing a vul-
nerable control part for which the xor operation fails
to nullify the effect, affecting the subsequent critical
computation involving v.

We end this section stating the fundamental results
on K-Taint. We skip the proofs for brevity.
Theorem 1 (Soundness). The semantics defined in

Table 3: Taint Analysis on Benchmark Programs Set [SecuriBench, 2006,Cavallaro et al., 2008,Vogt et al., 2007,Evans et al.,
2003, Russo and Sabelfeld, 2010] (X: Passed, 7+: False Positives, 7−: False negatives)

Progs. Descriptions K-Taint Splint
[Evans and Larochelle, 2002]

Pixy
[Jovanovic et al., 2006]

SFlow
[Huang et al., 2014]

CQual
[Foster et al., 2002]

Prog1 Explicit Flow X X X X X
Prog2 Implicit Flow X 7− 7− 7− 7−
Prog3 Malware Attack X 7− 7− 7− 7−
Prog4 XSS Attack X 7− 7− 7− 7−
Prog5 Buffer Overflow 7+ X X 7+ ,7− 7−
Prog6 Constant Function “subtraction” X 7+ 7+ 7+ 7+
Prog7 Program consists of multiple functions X 7− , 7+ 7− X 7−
Prog8 Program with context-sensitivity X 7− , 7+ X X 7+
Prog9 Factorial Program X 7− 7− 7− 7−
Prog10 Binary Search 7+ 7− 7− 7− 7−
Prog11 Merge Sort 7+ 7− 7− 7− 7−
Prog12 Program with flow-sensitivity X 7− X 7− 7−
Prog13 Swapping of two numbers using pointers X X X X 7−

the K-Taint is a sound approximation of the concrete
collecting semantics with respect to variables security
properties.
Theorem 2 (Termination). Any execution in the
K-Taint is always finite.

Consider the security type domain S of n security
levels with order relation v. Given si,s j ∈ S, si v s j
denotes that si is more trusted than s j. For example,
untaint v taint.
Definition 1 (st -indistinguishability). Let X be the set
of program variables participating in critical compu-
tations of a program P. Let st ∈ S be the permissible
security level for critical computations in P, meaning
that any variable in X with security level sv st can se-
curely participate in the critical computations. Given
two type environments ρ1 and ρ2, we say that they
are st -indistinguishable (denoted 〈ρ1〉env ≈st 〈ρ2〉env)
iff ∀x ∈ X . ρ1(x)v st ∧ρ2(x)v st , meaning that they
agree on the sensitivity levels for security-sensitive
variables.
Theorem 3 (Non-interference). Given any two type
environments ρ1 and ρ2 such that 〈ρ1〉env ≈st 〈ρ2〉env.
A program P is secure iff K-executions of P on the
above two environments result into the environments
〈ρ′1〉env and 〈ρ′2〉env respectively satisfying 〈ρ′1〉env ≈st
〈ρ′2〉env.

8 Experimental Analysis
We have implemented the full set of semantics

rules (more than 200 rules) in the K tool (version
4.0) for our imperative language under consideration
and performed experiments on a set of benchmark
codes collected from [SecuriBench, 2006, Cavallaro
et al., 2008, Evans et al., 2003, Russo and Sabelfeld,
2010,Vogt et al., 2007] and on some well-known pro-
grams1,2. A wide range of representative programs

1The online version of K tool is available at
http://www.kframework.org/tool/run/

2The full set of semantics rules in K-taint and the evalu-
ation results on the test codes are available for download at

are considered, including explicit flow, implicit flow
due to conditional or iteration, XSS attacks, malware
attacks, merge sort, binary search, factorial, constant
functions, etc. Since K-Taint supports C-like lan-
guage, it accepts the benchmark C-codes files as input
from the console using K Framework-specific com-
mands. The evaluation results are shown in Table
3. The results of K-Taint are compared with the re-
sults obtained from some of the available static taint
analysis tools, such as Splint [Evans and Larochelle,
2002], Pixy [Jovanovic et al., 2006], SFlow [Huang
et al., 2014], and CQual [Foster et al., 2002], are re-
ported in columns 3-7. The notations ‘7+’ and ‘7−’
indicate failures due to false positives and false nega-
tives respectively, whereas ‘X’ indicates a success-
ful detection of taint vulnerabilities. Observe that,
due to the flow-sensitivity, context-sensitivity and the
enhancement to deal with constant functions, K-Taint
significantly reduces the occurrences of false alarms.
The authors in [Cavallaro et al., 2008], [Russo and
Sabelfeld, 2010] and [Vogt et al., 2007] highlighted
some special cases where their approaches fail. We
consider those special cases (shown as Prog3, Prog4
and Prog12 in Table 3), and observed that K-Taint suc-
cessfully captures those taint flows.

9 Conclusion
This paper presented an executable rewriting logic

semantics for static taint analysis of an imperative
programming language in the K framework. The pro-
posed approach has improved precision with respect
to the existing techniques, as shown by our experi-
mental evaluation on a set of well-known benchmark
programs. We made the full set of semantics rules
and the experimental data available for download. We
are currently investigating how to integrate in the pro-
posed analyzer a preprocessing phase which allows
to address specific cases where exact variables values
may improve the precision. We consider in our fu-
ture endeavor more semantic rules to cover more lan-

www.iitp.ac.in/∼halder/ktaint

guage features as an extension to the current imper-
ative language and we also address more semantics-
based non-dependencies.

Acknowledgement
This work is partially supported by the research grant
(SB/FTP/ETA-315/2013) from the Science and Engi-
neering Research Board (SERB), Department of Sci-
ence and Technology, Government of India.

REFERENCES

Amtoft, T. and Banerjee, A. (2004). Information flow
analysis in logical form. In SAS, volume 3148,
pages 100–115. Springer.

Asăvoae, I. M. (2014). Abstract semantics for alias
analysis in k. Electronic Notes in Theoretical
Computer Science, 304:97–110.

Cavallaro, L., Saxena, P., and Sekar, R. (2008). On the
limits of information flow techniques for mal-
ware analysis and containment. In Proc. of Int.
Conf. on Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 143–163.
Springer.

Cifuentes, C. and Scholz, B. (2008). Parfait: design-
ing a scalable bug checker. In Proc. of the 2008
workshop on Static analysis, pages 4–11. ACM.

Clavel, M. and et al. (2007). All about maude-a high-
performance logical framework: how to specify,
program and verify systems in rewriting logic.
Springer-Verlag.

Corin, R. and Manzano, F. A. (2012). Taint analysis
of security code in the klee symbolic execution
engine. In ICICS, pages 264–275. Springer.

Denning, D. E. and Denning, P. J. (1977). Certifi-
cation of programs for secure information flow.
Communications of the ACM, 20(7):504–513.

Evans, D. and Larochelle, D. (2002). Improving secu-
rity using extensible lightweight static analysis.
IEEE software, 19(1):42–51.

Evans, D., Larochelle, D., and Evans, D.
(2003). Splint manual: Version 3.1.1-1.
http://lclint.cs.virginia.edu/manual/manual.html.

Foster, J. S. et al. (2002). Cqual user’s guide. Univer-
sity of California, Berkeley, version 0.9 edition.

Huang, W., Dong, Y., and Milanova, A. (2014). Type-
based taint analysis for java web applications.
In In Proc. of Int. Conf. on Fundamental Ap-
proaches to Software Engineering, pages 140–
154. Springer.

Hunt, S. and Sands, D. (2006). On flow-sensitive se-
curity types. In Conf. Record of the 33rd ACM

SIGPLAN-SIGACT Sym. on POPL, pages 79–90,
S. California. ACM.

Jovanovic, N., Kruegel, C., and Kirda, E. (2006).
Pixy: A static analysis tool for detecting web ap-
plication vulnerabilities. In IEEE Symposium on
Security and Privacy (S&P’06), pages pp. 258–
263. IEEE. IEEE.

Livshits, V. B. and Lam, M. S. (2005). Finding se-
curity vulnerabilities in java applications with
static analysis. In USENIX Security Symposium,
volume 14, pages 18–18.

Meseguer, J. and Roşu, G. (2007). The rewriting
logic semantics project. Theoretical Computer
Science, 373(3):213–237.

Noundou, X. N. (2015). Saint: Simple
static taint analysis tool users manual.
https://archive.org/details/saint 201507.

Roşu, G. and Şerbănută, T. F. (2010). An overview of
the k semantic framework. The Journal of Logic
and Algebraic Programming, 79(6):397–434.

Russo, A. and Sabelfeld, A. (2010). Dynamic vs.
static flow-sensitive security analysis. In 23rd
IEEE Computer Security Foundations Sympo-
sium, pages 186–199. IEEE.

Sabelfeld, A. and Myers, A. C. (2006). Language-
based information-flow security. IEEE Journal
on selected areas in communications, 21(1):5–
19.

Scholz, B., Zhang, C., and Cifuentes, C. (2008).
User-input dependence analysis via graph reach-
ability. Technical Report SMLI TR-2008-171,
Mountain View, CA, USA.

SecuriBench (2006). Stanford securibench micro.
http://suif.stanford.edu/∼livshits/work/securibench-
micro/.

Sridharan, M., Artzi, S., Pistoia, M., Guarnieri, S.,
Tripp, O., and Berg, R. (2011). F4f: taint analy-
sis of framework-based web applications. ACM
SIGPLAN Notices, 46(10):1053–1068.

Tripp, O., Pistoia, M., Fink, S. J., Sridharan, M., and
Weisman, O. (2009). Taj: effective taint analysis
of web applications. In ACM Sigplan Notices,
volume 44, pages 87–97. ACM.

Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E.,
Kruegel, C., and Vigna, G. (2007). Cross site
scripting prevention with dynamic data tainting
and static analysis. In NDSS, volume 2007,
page 12.

Volpano, D., Irvine, C., and Smith, G. (1996). A
sound type system for secure flow analysis. J.
Comput. Secur., 4(2-3):167–187.

