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Abstract—It is well-known that fingerprinting-based position-
ing requires an exhaustive calibration phase to create a radio
map, which often requires recalibration. Model-based and ge-
ometric approaches try to mitigate this e↵ort at the expense
of a lower accuracy or high computational cost. This paper
introduces FastGraph, where a 3D graph is used to rapidly model
the radio propagation environment. By means of unsupervised
techniques, FastGraph is able to operate shortly after its deploy-
ment without previous knowledge about the environment. The
proposed solution uses a novel algorithm to automatically provide
location while simultaneously updating the radio map; and learn
the position of the Access Points (APs) and location-specific
radio propagation parameters. FastGraph has been evaluated
in two real-world environments, a factory-plant and a regular
university building, with results comparable to those obtained
by conventional radio map-based solutions.

Index Terms—Indoor Positioning, Wi-Fi SLAM, Unsupervised,
3D-Graph, Force-Directed, AP-Position Estimation.

I. Introduction
The ubiquitousness of WLANs has been opening the op-

portunity for many di↵erent positioning systems, especially
in indoor environments. Generally, we can separate Wi-Fi
positioning techniques in two main groups: Wi-Fi Finger-
printing Matching and Model-Based/Geometric. In order to
achieve low positioning errors, several solutions propose to
combine odometry and orientation information with Wi-Fi
RSS (Received Signal Strength) measurements. This type of
data is also explored in SLAM approaches.

In this paper we present FastGraph. Our core algorithm
implements a method inspired in a Force-Directed 3D Graph to
solve a set of equations in a way similar to Multidimensional
Scaling (MDS), providing unsupervised positioning without
relying in a manual calibration, radio maps, or previous knowl-
edge of the APs’ positions. In addition, the algorithm is not
based on assumptions such as that the propagation parameters
are uniform across the space or even for the same AP, or that
RSS measurements are unique for a specific area of the space.
The only requirement in our solution is the deployment of a
limited number of Anchor nodes, that are based on the low-
cost Raspberry Pi (RPi). The e↵ort of installing them is much
lower than the e↵ort and costs of generating a dense radio map
and keep it updated over a long period of time. In the absence
of anchors, the system may use a few labelled fingerprints as
reference points. Another key advantage of FastGraph is that
the system is ready to provide location estimations after just
a few minutes after installing the anchors.

II. Wi-Fi Based Positioning

Wi-Fi Positioning techniques are mostly based on Finger-
printing Matching or in Model/Geometric approaches [1].

A. Wi-Fi Fingerprinting

Radar [2] is a pioneer and well-known work in Wi-Fi Fin-
gerprinting. Fingerprinting techniques became popular because
they can provide positioning without additional hardware,
knowledge about the APs’ positions, or the space layout. One
advantage of this type of strategy is that it can be applied
to heterogeneous indoor spaces, including underground [3].
Fingerprinting solutions rely on scene analysis to map the Wi-
Fi radio signatures (fingerprints) at several locations to build
a fingerprint database, commonly known as Radio Map. This
is commonly known as the o✏ine/calibration phase. In the
online/location phase, the position of a device is estimated
by comparing the currently observed fingerprints against the
radio map. In this approach, the positioning performance is
related to the density and distribution of the fingerprints in
the radio map, which also becomes outdated due to RSS
variations [4], [5]. The radio signature at a specific position can
change rapidly due to interference, obstacles being moved, or
even due to open/closed doors and di↵erent density of people
inside the space. For this reason, in addition to the initial
calibration, keeping the radio map up to date requires frequent
recalibration. More detail about Wi-Fi Fingerprinting can be
found in [5], [6], [7].

The requirements of the calibration phase impose limits on
the scalability of fingerprinting solutions, being one of the
main challenges. Collaborative approaches have been proposed
to replace the professional site survey required for calibration.
In those systems the radio map is built and maintained with
the fingerprints collected and explicit annotated by the users
[7], [8], [9]. However, collaborative systems can be a↵ected by
the quality of the users’ feedback, resulting in poor position
accuracy. Also, the required user interaction is inconvenient.
For these reasons, some other approaches explore inertial
sensors and interfaces integrated in mobile phones to take
advantage of the user motion patterns, in order to construct
the radio map [8], [10], [11], [12]. However, the site survey
dependence on noisy step counters, and the users’ tendency to
visit the same areas, a↵ect the quality of the resulting radio
map. Another aspect to be taken into account in this type of
strategy is the energy e�ciency, as addressed in [13].978-1-5386-5635-8/18/$31.00 c�2018 IEEE
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B. Geometric or Model Approach
Model-Based techniques try to minimise the calibration

e↵ort by using, for example, radio propagation models, such
as the Log-Distance Path Loss Model (LDPL) instead of
fingerprinting matching [12], [14], [15], [16], [17]. The LDPL
relates the RSS at a given position with the distance to
the AP. The di↵erence between the RSS measurements of
the same AP in di↵erent known positions can be used to
approximate the AP’s position. Then the user position can
be estimated based on the RSS-based weighted centroid,
considering the approximated positions of the observed APs.
This type of techniques is largely a↵ected by the indoor
propagation complexity, for example due to severe multi-path
e↵ects. The reduced calibration e↵ort is typically translated
in worse positioning performance. In addition, the floor plans
or the APs’ locations are needed for most of these systems.
EZ, a system described in [14], uses the geometric spatial
constrains of the Wi-Fi propagation, given by the LDPL, with
opportunistic GPS fixes of some devices, and estimate the
location based on the relative signal measurements, without
requiring previous knowledge of the RF environment, floor
plan or APs locations. A genetic algorithm and optimization
technique are used to solve a system of LDPL equations. This
process requires high computational e↵ort, which can range
from minutes to several hours, depending on the space and the
problem size, and has to be repeated periodically. Determining
the necessary conditions under which a set of LDPL equations
has a unique solution is still an open problem. In addition, EZ
considers that the path loss exponent ⌘ is the same for one
AP in all areas of the space while, in practice, ⌘ is di↵erent
from location to location. EZ relies on GPS fixes, which can
be a problem in indoor spaces, and only considers a 2D space.
The authors report results close to conventional fingerprinting
solutions, without requiring extensive calibration.

Another approach is to use the attributes of the received
signals, such as the time that the signal takes from the
sender to the receiver or the angle at which the signal is
received. Examples of this type of methods can be found
in [10]. However, in most of these methods the position of
the APs must be known a priori, which is di�cult due to
the uncoordinated deployment of WLANs. The propagation
e↵ects, due to obstacles, signal fluctuations, and interference
also a↵ect this type of solutions.

Despite the fact that indoor propagation modeling is one of
the most complicated tasks in this field, it is highly relevant
as it may be used to replace or complement the site survey
techniques [1].

C. Wi-Fi SLAM
In robotics, the Simultaneous Localization and Mapping

(SLAM) approach is used to construct the space map while
locating the robot in the space. Some works have been done
to apply this approach to Wi-Fi. WiFi-SLAM [18] uses the
Gaussian Process Latent Variable Model (GP-LVM) to build
Wi-Fi RSS Maps without requiring Inertial Measurements
Units (IMU) data. The limitations of the WiFi-SLAM are

the computational e�ciency, and relying on assumptions on
a signature uniqueness and human walking patterns. Wi-Fi
GraphSLAM [19] improves the techniques based on GP-LVM,
in terms of computational e�ciency and the assumption on
signature uniqueness. In robotics, the GraphSLAM technique
is used for building the space map while estimating the
trajectory. Wi-Fi GraphSLAM uses gyroscope and pedometer
data, and similar Wi-Fi RSS observations to detect that the
user has returned to a previously surveyed physical location.
In WiSLAM [20] data from foot mounted IMU is combined
with the Wi-Fi RSS. The RSS measurements are translated
into distance using a log-distance propagation model. The
application scenarios are limited by the required foot-mounted
sensor and by fixing the path loss exponent to 2. However, for
indoor it is not realistic to assume a fixed and homogenous
path loss exponent value for all areas of the space.

III. The FastGraph solution

FastGraph core can be seen as a sophisticated trilateration
problem, where RSS values are used to obtain the distances
to the detected APs using the LDPL model and where a
3D graph is used to compute the estimated position. The
3D graph is continuously updated with the latest fingerprints
using and algorithm inspired on the Force-Directed method to
draw graphs. Fingerprints can either come from crowdsourcing
(unlabelled) of from anchor nodes (georeferenced). We argue
that the more gathered data through the whole scenario, the
more consistent will the graph be and, therefore, the lower
will be the positioning error.

A. The fundamental principles

The fundamental idea is based on creating a 3D Graph
that evolves to be a representation of the physical and radio
environment. In this Graph (see Fig.1), nodes represent APs,
Anchors, or Samples from Moving Devices. Only the position
of Anchor nodes is assumed to be known a priori. After each
new sample is added, the Graph is adjusted to a minimum
energy state. Each sample contains Wi-Fi RSS measurements,
collected at a specific position, of the nearby APs. In addition,
these samples can contain motion and orientation information.
A sample si is described as:

si = (deviceID, t, ((AP1,RS S 1), (AP2,RS S 2), ...) , dis, he),
where deviceID is the unique identifier of the device that
collected the sample, t is the timestamp when the sample was
collected. The list of (APi,RS S i) pairs is the RSS measure-
ments for the visible APs, dis is the linear displacement since
the previous sample and he is the current heading.

1) The Graph: The Graph has di↵erent types of nodes and
di↵erent types of edges that connect the nodes (see Fig.1).

A node on the Graph can be:
• AP node: nodei = (APi, (xi, yi, zi)), represents an Access

Pointi with unknown initial position (xi, yi, zi).
• Anchor node: nodei = (Ai, (xi, yi, zi)), represents Anchori

with fixed and known position.
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Fig. 1. Graph Concept (2D View)

• Samples node: nodei = (S i, (xi, yi, zi)), each sample
collected by a moving device originates a new sample
node in the Graph, with unknown initial position.

The nodes’ positions (pnode) on the Graph are subject to
constrains:
• Anchor nodes: Known and fixed positions.
• AP nodes and Sample nodes: pnode must be within the

3D space and not complex (e.g. pnode cannot be under-
ground or APs positions cannot be above the celling, and
xi, yi, zi must be real numbers).

An edge in the Graph connects two nodes and can be seen as
a spring with an elastic factor. The Natural Length (NL) of an
edge can be obtained based on di↵erent types of information,
depending on the two nodes that the edge connects. The edges
can be:
• RSS-based edge: A RSS-based edge can be seen as the

3D radio communication channel with an AP.
– Anchor $ AP: e = ((nodei, node j),NL,CL, ke1, ⌘)
– Sample $ AP: e = ((nodei, node j),NL,CL, ke2, ⌘)
where NL is the Natural Length of the edge estimated
based on the measured RSS using a propagation model,
CL is the Current Length of the edge, ke1 and ke2 are
the elastic constants, and ⌘ is the path loss factor.

• Motion edge: Connects two consecutive Sample nodes
from the same moving device. The NL of this type of
edge can be estimated through:
– Time-based: e = ((nodei, node j),NL,CL, ke3), where

the NL is the maximum displacement based on the time
di↵erence between the two samples.

– Odometry/Inertial-based: e = ((nodei, node j),NL,
CL, ke4), where NL is based on more accurate dis-
placement measurements between consecutive sam-
ples.

The edges based on accurate motion data, such as odometry,
can be used to improve the natural length estimations, as they
provide significantly more accurate displacement information,
which results in better spatial constrains between samples.

An edge can be in one of three di↵erent states (like a
spring):
• Relax state: CL = NL, means that the two nodes are at

the correct distance.

• Compression state: CL < NL, means that the two nodes
should be farther from each other.

• Tension state: CL > NL, means that the two nodes
should be closer.

2) Building the Graph: The Graph is built iteratively, based
on new samples, one sample at a time.

If the new sample is from an anchor:
i. Create an Anchor node to represent the Anchor (if not

already exists).
ii. Create a AP node for each new AP, visible in the sample.

iii. Add or update the edges from the Anchor node to the
APs visible in the sample.

Otherwise if the new sample is from a moving device:
i. Create a new Sample node.

ii. Create a AP node for each new AP, visible in the sample.
iii. Create one edge from each AP visible in the sample.
iv. Create an edge to previous Sample nodes of the same

device (from time or odometry information).
3) Adjust the Graph to a Minimum Energy State: Update

the position of all nodes (except Anchor nodes), using a Force-
Directed inspired method. This means that each node is subject
to a Combined Force vector ~cF, resulting from the individual
forces applied by each edge connected to the node.

B. Building the Graph Iteratively
After placing the anchors, the system starts processing the

samples collected by the anchors to initiate the 3D Graph,
ignoring the samples from moving devices. The anchors’ data
is used to automatically estimate an initial position of the
AP nodes and to adjust the graph to the real-world space
configuration. When the algorithm detects that the position
of the APs has stabilised, which normally takes only a few
minutes, then the system begins to process also the samples
of the moving devices, providing positioning. When the system
is already operating, the additional samples provided by the
anchor nodes and the moving devices make the Graph to
automatically evolve and keep the radio map always updated
for the whole environment.

Anchor nodes are created at known positions when the first
sample from the anchor is processed. AP nodes are created
when they are observed for the first time, and they are initially
placed according to the first detected RSS measurements.
Sample nodes are created for every new sample from moving
devices, and are placed on an initial position given by the
weighted centroid in relation to the APs detected on the
sample, and that are already on the Graph.

With the exception of the Anchor nodes, the position of the
nodes on the Graph will be influenced by the spatial constrains
defined by the Natural Length (NL) of the edges.

Sample to AP edges are created when a new sample from
a moving device is processed and the Sample node is created.
These edges are RSS-based, therefore the Natural Length (NL)
is set to the distance estimated from the measured RSS value.
To obtain a distance from the RSS value the LDPL propagation
model is used. The LDPL model is frequently used to model
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Wi-Fi signals propagation [10], [12], [14], [15], [21], [22].
Using the LDPL model the RSS at a given position p at a
distance d from an AP is given by:

RS S p = RS S 0 �
 
10 ⇥ ⌘ ⇥ log10

 
d
d0

!!
(1)

RS S p is dependent on the RS S 0 (measured at d0, generally
1 meter), the distance to the transmitter (d) and the path loss
exponent (⌘) that reflects the fall rate of the RSS signal from
an AP at a specific position.

Therefore, the NL of an edge e can be given by:

eNL = 10
⇣

1
10⇥⌘⇥(RS S 0�RS S p)

⌘
(2)

In contrast to many works in the field, where the path loss
exponent of each AP is empirically set, we consider that this
exponent not only depends on the AP, but also in the location
of the sample. It is well-known that getting the exact sources of
noise in radio propagation is not an easy task, as it involves
many factors such as the presence of metallic objects. For
that reason, we consider that the communication channel from
a given position to a specific AP, that is represented by an
edge in the graph, has singular propagation characteristics,
and therefore a particular value of ⌘.

In the proposed solution ⌘ has a strong influence in the
estimated natural length of the edges and by consequence
in the nodes’ positions. For this reason, after adding a new
Sample node to the Graph, an initial estimation of the value
of ⌘ is done for each RSS-based edge of the Sample node. This
initial estimation is obtained after running a Gradient Descent
Algorithm and it is good enough in most of cases, in spite
of the fact that it might not be the optimal exponent. That
initial exponent is subject to improvement as more samples
are processed and the Graph evolves.

Anchor to AP edges are also RSS-based, and are created
when an AP is observed for the first time from an Anchor.
Existing edges are updated as new samples involving the
attached nodes are gathered. In contrast to the Sample nodes,
the Anchor nodes represent a set of observations. Therefore,
the RSS measurements of the same AP can be combined,
for example by averaging a given number of previous RSS
values. Using the combined RSS values leads to more robust
estimation of the NL with the LDPL model.

Sample to Sample edges are Motion edges, and are created
between samples of the same moving device, when possible.
The NL is given by the displacement obtained from odometry
or inertial data, or based on time elapsed between samples.

C. Adjusting the Graph
The 3D Graph evolves when a new sample is processed

and the Graph is adjusted. The position of the APs and the
position of the moving devices (Sample nodes) is estimated
by adjusting the Graph in order to respect the 3D spatial
constrains defined by the edges. The Anchor nodes provide
spatial references, in order for the Graph to keep the correct
rotation and scale. To adjust the Graph to a minimum energy
state a force-directed approach is used [23].

Following the spring analogy, each edge has associated a
force vector that is calculated based on the di↵erence between
the natural length (NL) and the current length (CL) of the edge,
that is then multiplied by a elastic constant (ke), that gives the
edge more a less elasticity. As explained before, each edge can
be in relax state, in tension or in compression, depending on
the current values of NL and CL. CL is the actual 3D distance
between the two nodes on the Graph. The elastic constant (ke)
is di↵erent for each type of edge, allowing each type of edge to
have di↵erent influence in the nodes’ positions. For example,
edges connecting Anchors and APs are less a↵ected by signal
fluctuations in the RSS measurements and, for this reason,
have higher value of ke.

The tension magnitude (te) applied by an edge e on the
connected nodes is given by:

te = ke ⇥ (CL � NL) (3)

The force vector ( ~eF) is then given by:

~eF = ( ~distance ⇥ û) ⇥ signum(tei) ⇥ log (1 + ktek) (4)

where, ~distance ⇥ û is the distance vector between the two
nodes times the unit vector, signum(te) is the signal of the
tension magnitude, and log (1 + ktek) is the logarithmic of the
tension module.

The total force applied to a node j ( ~cF j) is the vectorial sum
of all the forces associated to each edge ( ~eFi) connected to it:

~cF j =

nX

i=1

~eFi, for all node edges (5)

The Graph adjustment can a↵ect all nodes or a specific
sub-set of nodes. The Graph adjustment is an iterative process
that ends when all the nodes on the Graph move less than
a defined threshold, meaning that the Graph reached the
minimum energy state. In each iteration the nodes are moved
based on a velocity vector ( ~vel j) that is the linear combination
between the current ~cF j and ~cF j�1, in order to preserve part of
the momentum from the previous iteration. Hence the velocity
vector of a node in an iteration j is given by:

~vel j = � ⇥ ~cF j + (1 � �) ⇥ ~cF j�1 (6)

Each node is moved in order to minimise the forces applied
to it. The new position is calculated by adding to the current
position the velocity vector multiplied by a factor T :

~pos = ~pos + ~vel ⇥ T (7)

The T factor defines how much the node moves in a single
iteration in the direction defined by the velocity vector. This
controls how fast the node will converge to the position that
minimises all forces. In order to avoid oscillatory motion on
some nodes, the value of T is adjusted at each iteration. First
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the position variation for all nodes is calculated:

�posnodes =
1
n
⇥

nX

i=1

�pos ~nodei
(8)

The new value of T to be used in the next adjustment
iteration is then given by:

T =
2

� + �posnodes ⇥ �t
(9)

Where � is the amortisation factor, and �t is the time
taken by the previous iteration. With this solution the graph
converges to the minimum energy state faster, which improves
the performance of the algorithm in real time applications.

IV. RealWorld Deployment

A. Deployment Spaces

To test our solution we conducted experiments in two very
distinct spaces.

1) PIEP: The first deployment space is a polymers en-
gineering building PIEP at University of Minho. The PIEP
is very similar to a factory-plant, with an area of ⇡1000
m2. This space combines large open areas and smaller areas
obstructed by walls. There are several metallic elements,
industrial machinery and exposed beams, that result in several
reflections and multi-path e↵ects. This is a challenging space
for signal propagation, and is also very dynamic, because
machines and cargo are moved from place to place, and people
are frequently moving around. The space was mapped and a
XYZ referential defined. A ground truth grid, based on floor
tags spaced 1 meter from each other, was added to the space, to
define paths with known positions. Six anchors were installed
to cover the area.

2) DSI-DEP: The second deployment space was a building
at the University of Minho. A floor of this building has
a combined square footage of around 4638m2. The DSI-
DEP is a space with characteristics very distinct from PIEP.
The layout of the DSI-DEP is complex with several o�ces,
rooms and corridors, which result in di↵erent propagation
characteristics in relation to PIEP, where the main obstacles
are large industrial metallic machines. At the DSI-DEP the
strategy for the solution deployment was di↵erent from that
used at PIEP. Instead of having several anchors installed at
fixed positions, a unit that can be used as moveable anchor
(Tripod Testing Unit - TTU) was designed and developed. In
the DSI-DEP we collected Anchor data at 13 distinct locations.

B. Experiment Devices

We developed di↵erent devices to deploy and evaluate our
solution in real world environments. The Raspberry Pi 3
(RPi) was chosen as base for the solution implementation.
The Wi-Fi interface allows to collect Wi-Fi data, and the IO
interfaces (USB, GPIO) allow to use external sensors and
devices when necessary. Software modules were developed to
collect di↵erent types of data such as Wi-Fi, orientation and
distance, as well as to control and monitoring the devices.

Power

Wi-Fi

Wi-Fi

Raspberry

IMU

EncoderRaspberry

MTU

TTU

Fig. 2. Moving Testing Unit (MTU) and Tripod Testing Unit (TTU)

1) Anchors: Each anchor is based on a single RPi3 and is
able to send data to a central server and be controlled remotely.

2) Moving Testing Unit (MTU): The Moving Testing Unit
(MTU) (Fig. 2) was developed in order to simulate a moving
device, such as an autonomous robot or machine moving
inside a factory. The MTU core is also a RPi3, with the USB
interfaces allowing to integrate external sensors. To measure
travelled distance between samples a Magnetic Encoder at-
tached to one wheel is used, and an Internal Measurement
Unit (IMU) is used to track the direction of moving (heading).
A smartphone keeps track of the ground truth tags, using the
camera, and also collects data. Four additional 2.4 GHz Wi-Fi
interfaces were connected to the MTU to collect additional
data, that can be used to improve the position estimation, as
described in [24]. In the experiments reported in this paper
we only use Wi-Fi data, and from a single interface, this way
a simple smartphone can be used. All of the additional data,
such as the motion/orientation and cellular data is still being
used to test the other possible applications of the proposed
solution.

3) Tripod Testing Unit (TTU): This unit has also a RPi as
base, with four additional external Wi-Fi interfaces (Fig. 2).
The TTU is light and can be easily carried and moved from
place to place, therefore can be used not only to work as an
anchor buts also to work as a moving device, in applications
where the magnetic encoder and the IMU is not used. This
simple approach, can be easily placed at any location, and the
height and direction can be precisely set.

V. Experimental Results

A. Experiments at PIEP

In a first experiment we tested the performance in estimating
the position of the APs using only the data collected by the
anchors (Fig.3). The plot on top, shows the sum of the position
change, after each iteration, as we add more data (for all
eleven APs), and the plot on the bottom shows the average
positioning error in the same conditions. These results show
that, as expected, with more samples from the anchors, the
average error of the APs positions decreases.
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Fig. 3. APs positions variations over samples processed (40500 samples)

TABLE I
Anchors Only: APs Position Error inMeters

AP XY Error Z Error XYZ Error
AP1 4.79 1.54 5.04
AP2 7.20 1.54 7.36
AP3 3.73 1.24 3.93
AP4 4.33 0.44 4.36
AP5 4.17 0.0 4.17
AP6 5.0 2.87 5.78
AP7 8.82 0.0 8.82
AP8 3.67 2.96 4.71
AP9 5.26 1.33 5.43

AP10 6.90 0.5 6.92
AP11 17.47 1.33 17.52

Average 6.49 1.26 6.73

Despite the variation in the APs position becomes lower,
the position estimation error keeps dropping, even though at
a slower rate, as the APs position variation decrease with
more samples processed. Table I shows each AP position
estimation error after the 40500 samples. The average error in
AP position estimation was 6.73 meters in XYZ, using only
the data provided by the anchors.

After testing the APs position estimation we tested the
device positioning estimation using only Wi-Fi data. Our
algorithm begins by processing data from the anchors to create
the 3D Graph, and uses that anchors data to estimate initial
positions for the APs. After only 500 samples processed from
each anchor (around 8 min of sampling), the system starts
locating the MTU by processing the MTU Wi-Fi samples.
In Fig.4 we can see the real time positioning error for each
sample processed from the MTU, along four di↵erent paths.

The plot in Fig.5 shows the samples at the position where
they have been collected, where the colour is used to represent
the error in the estimated position for that sample. We can see
two peaks, almost identical, with a maximum error of around
24m. These two peaks are identified as low coverage and low
line of sight (LOS) area. This samples were collected in an
isolated area, below a metal bridge. The plot in Fig.5, shows
the samples at the position where they have been collected.
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Fig. 4. Real Time Positioning Error: Wi-Fi Only PIEP
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Fig. 5. PIEP Critical Area

The critical area that generated the two peaks is identified by
the red rectangle and by the light green colour of the samples.
As the map shows, we do not have any AP at the left of
that area, and we have the bridge, at lower level than the
APs, obstructing the signals. In Fig.4, we can observe that the
error increases and decreases progressively before and after the
peaks. In the map, we can see the same pattern in the colour of
samples, becoming lighter (higher error) when going further
left and then becoming darker when coming back. Each one
of the peaks represents going to that area and coming back,
since in two paths (2 and 4) the MTU travelled to that area.

Even with the high errors resulting from the critical area,
our solution obtained an average error of 5.65m. PIEP is a
very di�cult environment due to metallic elements all over the
space, with the critical area below a metallic bridge. However,
the problem in that area can be eliminated by installing new
access points. Without consider the samples collected at the
critical area, the average error is 4.26m, 1.39m less, and the
max error drops to 15.51m. Fig.8 shows the CDF of the
position error for all paths, with and without considering the
samples collected at the critical area.

We also tested our solution in the same conditions but giving
the APs truth positions to the algorithm. As expected the
mean error dropped significantly (from 5.65 to 3.98 meters).
These results suggest that the positioning performance can be
improved in applications where the APs positions are known.
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B. Experiments at DSI-DEP
The second set of experiments were performed at DSI-DEP,

where there are a large number of visible APs, some of them
inside o�ces or in nearby buildings. In order to evaluate the
algorithm ability to find the position of the APs, we mapped
the real position of the APs located in the corridors and some
inside o�ces in the first and second floor. With around only
6 minutes of samples, at the first floor, where data samples
were collected, the algorithm estimated the APs positions with
an average XYZ error of 8.21 meters and a max error of
15.88 meters. At the second floor the average error in the
APs positions estimation was 15.58 meters, almost the double
of the error in first floor, and the max error was 23.26 meters.
The larger error is expected since we only installed anchors
in the first floor, therefore the position estimations of the APs
at the second floor are based on the data provided by the
anchors in the first floor, which is not ideal. We compare these
results with Serendipity [17], which finds the APs position
in an unsupervised manner, using the dissimilarities between
pairs of APs and reference scans at known positions. The
authors assume homogeneous characteristics for the APs and
indoor space. The algorithm cannot locate APs individually,
requiring a dense AP coverage with at least two APs coverage
overlapping, and scans in all floors. The number of floors is
required to cluster the APs into di↵erent floors, then a 2D
position is estimated. The authors report an error ranging from
3.5m to 6.7m, in two buildings with floor area of 1000m2 and
1750m2. We compare this with our 3D error of 6.73m in PIEP
(in an area of 1000m2) and 8.2m in the first floor of the DSI-
DEP (with area of 4638m2). We do not compare with the
results at the second floor of the DSI-DEP, since the positions
of those APs were estimated without any scan in that floor.

Since our AP position estimation is in 3D, Fig.6 shows the
XZ plan, with the estimated position of the APs in the first and
second floor. As we can see, with the exception of two APs of
the second floor, all other APs are placed in the correct floor,
even though no anchors were installed in the second floor.
With anchors in the second floor we can expect results similar
to the AP’s in the first floor, where the Z position error is very
small. It is out of the scope of this paper to further discuss
multi-floor support, but these results strongly suggest that the
proposed algorithm can automatically support multiple floors
even without anchors in all floors.

The positioning results at DSI-DEP are shown in Fig.7
and Fig.8. The errors were measured at ten di↵erent known
positions. The average error was 5.08m and the max error was
14.86m. The APs at the second floor, with higher error, were
also used in the position estimation process. Considering this,
and as already explained, we expect that by adding anchors
to the second floor the APs position estimation for that floor
will improve, improving also the positioning performance.

C. Comparing with other methods
We compare our solution with the results of two Tracks of

the 2017 IPIN competition [25]: Track 1 Smartphone-based
(on- site) and Track 3 Smartphone-based (o↵-site).
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The objective of Track 1 is to evaluate the competing system
on-site and in real-time. The competing teams are not allowed
to install any instrumentation in the competition area. Our
solution require data from the anchors, however this would not
be a problem since the competing teams have at least a full
day before the competition to survey the area. We could simply
use our TPU device, to collect the anchors data, since we do
not need these data to be available in real-time. In this track,
competing teams are given the coordinates of a starting point,
from where they must start walking over a reference path. Any
sensor available can be used to track the user trajectory. In our
results we do not use any information besides Wi-Fi, neither
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TABLE II
Comparing with IPIN’17 Track 1 and Track3

Track 1 (on-site) Mean 3/4 error
SNU-NESL PDR 6.2m 8.8m

MCL 12.6m 16.8m
XMC 23.0m 30.8m

Track 3 (o↵-site) Mean 3/4 error
UMinho Team 3.00 3.48m
AraraDS Team 3.74 3.53m

Yai Team 3.51 4.41m
HFTS Team 3.52 4.45m

Our Solution (PIEP) 5.65m 6.91m
Our Solution (DSI-DEP) 5.08m 6.21m

we know the starting point.
Track 3 is an o↵-site competition, where all the data for

calibration is provided, including Wi-Fi, data from all kind of
sensors in a mobile device and some ground-truth positions. In
this track the competing teams can calibrate their algorithms
with several ground-truth databases provided.

As we can see in Table II, our solution performance is better
than the results of the Track 1 (on-site), and somewhat worse
than the Track 3 (o↵-site). These are encouraging results, since
we are comparing with state of the art solutions. In addition,
our results are based in Wi-Fi data only, and our system is un-
supervised without requiring extensive calibration. In addition,
our solution performance is very similar in two environments
that are completely di↵erent, in propagation characteristics,
layout, build materials, AP coverage, and dimensions.

VI. Conclusion

In this paper we have presented FastGraph, a solution that
can be used in several applications. It allows to provide real-
time unsupervised positioning, just a few minutes after its
deployment. It is able to automatically generate a radio map
of the space, keep it updated over the time, and estimate the
position of the APs. The proposed solution has been validated
in two di↵erent environments, showing promising results in
Wi-Fi based positioning and AP-location estimation. We argue
that the full potential of this solution is yet to be explored.
The radio maps and the APs positions estimations can be
used in many other applications, such as Wi-Fi networks
maintenance or evaluation. The presented results used Wi-Fi
data only. As future work, our short-term objective is to extend
FastGraph to include data from other sensors (odometry,
cellular and 5G networks, etc.). Our long-term goal is targeting
a seamless indoor/outdoor positioning system and a solution
for autonomous robots and machines in a factory environment,
achieving an average error below 1 meter.
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