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In this article we perform the quantization of graphene plasmons using both a macroscopic ap-
proach based on the classical average electromagnetic energy and a quantum hydrodynamic model,
in which graphene charge carriers are modeled as a charged fluid. Both models allow to take into
account the dispersion of graphenes optical response, with the hydrodynamic model also allowing
for the inclusion of non-local effects. Using both methods, the electromagnetic field mode-functions,
and the respective frequencies, are determined for two different graphene structures. we show how
to quantize graphene plasmons, considering that graphene is a dispersive medium, and taking into
account both local and nonlocal descriptions. It is found that the dispersion of graphene’s opti-
cal response leads to a non-trivial normalization condition for the mode-functions. The obtained
mode-functions are then used to calculate the decay of an emitter, represented by a dipole, via the
excitation of graphene surface plasmon-polaritons. The obtained results are compared with the total
spontaneous decay rate of the emitter and a near perfect match is found in the relevant spectral
range. It is found that non-local effects in graphene’s conductivity, become relevant for the emission
rate for small Fermi energies and small distances between the dipole and the graphene sheet.

I. INTRODUCTION

In many cases, light-matter interaction can be under-
stood in a semi-classical picture, where matter is quan-
tized and the electromagnetic field (EM) is treated classi-
cally. This semi-classical approach holds when the num-
ber of photons in the field is large or the light source is
coherent. On the other hand, in order to understand the
properties of a small number of photons the quantization
of the EM field is required. Typical phenomena where the
quantization of the EM field is necessary involve entan-
glement, squeezed light, cavity electrodynamics, inter-
action of photons with nano-mechanical resonators, and
near-field radiative effects [1].

In near-field radiative effects, plasmonics emerges as
a promising candidate to observe quantum effects of the
electromagnetic radiation, an example being the Hong-
Ou-Mandel interference of plasmons [2]. Many other
quantum effects in plasmonics exist, such as the survival
of entanglement, particle-wave duality, quantum size ef-
fects due to reduced dimensions of metallic nanostruc-
tures, quantum tunneling of plasmons (which are simul-
taneously light and matter), and coupling of quantum
emitters to surface plasmons [3–11].

The exploration of quantum effects in plasmonics in
unusual spectral ranges, such as the THz and the mid-
IR, has been deterrent by the poor plasmonic response
of noble metals in these regions of the electromagnetic
spectrum. However, with the emergence of graphene
plasmonics [12, 13] the possibility of exploring quantum
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Figure 1. Schematic representation of the three systems con-
sidered in this paper: a single graphene layer (left), and
graphene double layer (center), and a graphene sheet near
a perfect metal. The quantities εn refer to the dielectric per-
mittivity of the medium n and σg refers to the optical con-
ductivity of graphene.

effects in these yet unexplored spectral regions is a pos-
sible prospect. Despite the fact that, at the time of writ-
ing, quantum effects involving graphene plasmons remain
illusive, the fact that graphene plasmons are character-
ized by low losses [14–16] boosts the above hope. In
addition, graphene plasmons screened by a nearby metal
(also called screened or acoustic plasmons) can be con-
fined down to the atomic limit [17], which certainly opens
the prospects of finding rich grounds for quantum plas-
monics and nonlocal effects [18, 19]. Indeed, the idea of
developing quantum optics with plasmons has already a
long history [20] and quantization of localized plasmons
in metallic nanoparticles was recently performed [21, 22].

The development of quantum theory of the electromag-
netic field in the presence of dieletric media has a long his-
tory and several approaches have been developed [23–35].
These methods are typically based either on the quantiza-
tion of the macroscopic classic energy[27], on the classical
dyadic Green’s function for the electric field[28] or on the
diagonalization of Hopfield-type Hamiltonians[26]. The
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quantization of evanescent EM waves [36, 37] and of the
EM field in the vicinity of a metal [38] have also been
considered in the past.

In this paper, we perform the quantization of graphene
plasmons, obtaining the plasmonic electromagnetic field
mode-functions and, importantly, their normalization,
when losses are neglected. These mode-functions are
then used to study the interaction of graphene plas-
mons with nearby quantum emitters and determine, in
a very intuitive way, using Fermi’s golden rule the spon-
taneous decay rate of the emitter due to plasmon emis-
sion. Thee quantization of graphene plasmons is per-
formed in two ways: (i) A macroscopic approach, which
starts from the classical time-averaged energy of the elec-
tromagnetic field in a dielectric [24, 27, 39, 40]. This
method allows for the inclusion of dispersion in the opti-
cal response of graphene. (ii) A hydrodynamic approach,
where graphene charge carriers are described in terms
of an electronic fluid, which couples to the eletromag-
netic field [41, 42]. The hydrodynamic approach allows
not only for the inclusion of dispersion, but also for the
inclusion of non-local effects in the optical response of
graphene.

The paper is organized as follows: in Section II, we
present the general macroscopic approach for the quan-
tization of the eletromagnetic field in dispersive, loss-
less media and a normalization condition for the mode-
functions is determined. In Section III, we present the
quantum hydrodynamic model or graphene. We will see
that when non-local effects are neglected, the result of
the macroscopic approach is recovered. In Section IV, the
plasmon dispersion relations, mode-functions and mode-
function normalization for a single graphene layer and for
a graphene-metal structures are obtained. In Section V,
we use the quantized plasmon fields to compute the decay
rate of a quantum emitter due to the spontaneous emis-
sion of plasmons. The plasmon emission rate is compared
with the total decay rate of the emitter, which is obtained
from the complete dyadic Green’s function for the electric
field. The role of non-local response of graphene is ana-
lyzed. Finally, we conclude with Section VI, commenting
the obtained results and discussing future research paths.
A set of appendices detailing the calculations is also pre-
sented.

II. MACROSCOPIC QUANTIZATION OF THE
PLASMON ELECTROMAGNETIC FIELD

In this section, we will describe how the plasmon fields
can be quantized using the macroscopic classical energy
of the electromagnetic field in a dispersive, lossless di-
electric medium, a method first used in Refs. [24, 27, 40].
For electric and magnetic fields with a harmonic time
dependence,

E(r, t) = Eω(r)e−iωt + c.c. (1)

B(r, t) = Bω(r)e−iωt + c.c. (2)

close to a central frequency ω, the time-averaged classical
electromagnetic energy in the presence of a dispersive,
lossless dieletric is given by [39, 43]

UEM(ω) =

∫
d3r

(
ε0E

∗
ω(r) · ∂

∂ω
[ωε̄r(r, ω)] ·Eω(r)

+
1

µ0
|Bω|2

)
, (3)

where ε̄r(r, ω) is the relative dielectric tensor of the
medium, ε0 and µ0 are, respectively, vacuum permittiv-
ity and permeability. The idea of this method is to take
the above equation as the quantum mechanical energy of
a EM field eigenmode with frequency ω. We will work
in the Weyl gauge, in which the scalar potential is set to
zero φ = 0, such that the electric and magnetic fields are
obtained only from the vector potential A as

E(r, t) = −∂A(r, t)

∂t
, (4)

B(r, t) = ∇×A(r, t). (5)

The vector potential is then expanded in modes as

A(r, t) =
∑
λ

αλe
−iωλtAλ(r) + c.c., (6)

where αλ are amplitudes for the mode λ, with mode-
function Aλ(r) and corresponding frequency ωλ. The
mode-functions and frequencies are determined by solv-
ing the non-linear eigenvalue problem

∇×∇×Aλ(r) =
ω2
λ

c2
ε̄r(r, ωλ) ·Aλ(r), (7)

with c vacuum’s speed of light, which is just Ampère’s law
in the dielectric medium for the mode-function Aλ(r).
Next, we assume that the total time-averaged energy for
the vector potential Eq. (6) is given by

UEM =
∑
λ

UEM(ωλ) |αλ|2 . (8)

The quantization of the theory is achieved by promoting
the amplitudes αλ to quantum mechanical operators

αλ →
√

~
2Lλε0ωλ

âλ, (9)

α†λ →
√

~
2Lλε0ωλ

â†λ, (10)

where âλ (â†λ) are bosonic annihilation (creation) opera-
tors, which obey the usual equal-time commutation rela-
tions [

âλ, â
†
λ′

]
= δλ,λ′ , (11)

and Lλ is a mode-length which is determined by demand-
ing that the quantum mechanical Hamiltonian which is
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obtained from Eq. (8) by performing the replacement of
Eqs. (9) and (10),

Ĥ =
∑
λ

~U(ωλ)

4Lλε0ωλ

(
â†λâλ + âλâ

†
λ

)
, (12)

coincides with the Hamiltonian for a collection of quan-
tum harmonic oscillators

Ĥ =
1

2

∑
λ

~ωλ
(
â†λâλ + âλâ

†
λ

)
. (13)

Imposing this condition, we have that the mode-length is
given by Lλ = U(ωλ)/

(
2ε0ω

2
λ

)
. Using the mode-function

equation (7) to write∫
d3r |∇ ×Aλ(r)|2 =

∫
d3rA∗λ(r) · ∇ ×∇×Aλ(r)

=
ω2
λ

c2

∫
d3rA∗λ(r) · ε̄r(r, ωλ) ·Aλ(r), (14)

The mode-length can be written as

Lλ =

∫
d3rA∗λ(r) ·

(
ε̄r(r, ωλ) +

ωλ
2

∂

∂ω
ε̄r(r, ωλ)

)
·Aλ(r).

(15)
Notice that in the absence of dispersion, the second term
vanishes and Lλ reduces to the usual norm in the pres-
ence of a position dependent dielectric tensor ε̄r(r, ωλ).

Although this phenomenological method appears to be
unjustified, it has actually been shown to be correct for
the case in when the dielectric is modeled by a Lorentz
oscillator [40]. We will see in the next section, that Eq. 15
remains valid within a quantum hydrodynamic model of
graphene, even when non-local effects are included in the
optical response. As a matter of fact Eq. (15) for the
mode-length remains valid for any linear optical medium
(including effects of dispersion, non-locality, inhomogene-
ity and anisotropy) as long as losses can be neglected [44].

III. PLASMON QUANTIZATION WITHIN A
QUANTUM HYDRODYNAMIC MODEL

In this section, we will perform the quantization of
graphene surface plasmons employing a hydrodynamic
model. The hydrodynamic model treats both the elec-
tron gas and the electromagnetic field using a classical
picture and provides a simple and elegant way of in-
cluding non-local effects [45]. Non-local effects are taken
into account by including a pressure term in the Boltz-
mann equation, that arises due to Pauli’s exclusion prin-
ciple. A detailed derivation of the hydrodynamic model
for graphene can be found in [41, 42]. To illustrate the
method, we choose the simple case of a single graphene
sheet located at the plane z = 0, embedded by a static
dielectric medium with relative dielectric constant ε̄d(r).

A. Classical hydrodynamic Lagrangean and
Hamiltonian

The classical Lagrangean density for the hydrodynamic
model of graphene can be written as:

L = LEM + L2D hyd, (16)

where LEM is the Lagrangean density of the electromag-
netic field and L2D hyd describes the electronic fluid of
graphene and its coupling to the electromagnetic field.
Using once again the Weyl gauge, LEM is given by

LEM =
ε0
2

(∂tA) · ε̄d · (∂tA)− 1

2µ0
(∇×A)

2
, (17)

where ε̄d(r) is allowed to be position dependent, but
is frequency independent. Within the hydrodynamic
model, the electronic fluid of the graphene layer is de-
scribed by the fluctuation, n, of the density around
the equilibrium density, n0, and the displacement vec-
tor υ = (υx, υy, 0), which should not be confused with
the velocity field. In the Weyl gauge, L2D fluid is written
as[41, 42]

L2D hyd = δ(z)

(
1

2
n0m (∂tυ)

2
+mβ2n∇ · υ

+
mβ2

2n0
n2 − n0e∂tυ ·A

)
, (18)

where the δ-function δ(z) restricts the electronic fluid
to the z = 0 2D plane, m is the Drude mass and β
appears from the relation between the degeneracy pres-
sure and the electronic density and depends on the band
dispersion for the carriers (see Ref. [41]). In the ap-
proximation of the linear dispersion for graphene elec-
trons, the hydrodynamic parameters are given by [41]:
n0 = k2

F /π, m = ~kF /vF and β2 = v2
F /2, where kF

is the Fermi wavenumber and vF the Fermi velocity of
graphene. Equation (18) is the 2D equivalent Lagrangian
for the hydrodynamic model presented in [46].

Using the Euler-Lagrange equations for Eq. (18) with
respect to A, we obtain

∇×B =
1

c2
ε̄d∂tE− µ0n0e∂tυδ(z), (19)

which is nothing more than Ampère’s law in the presence
of a surface current given by

Jhyd
s = −en0∂tυ. (20)

Using the Euler-Lagrange equations for Eq. (18) with
respect to the fluid variables n and υ, we obtain the con-
tinuity and Newton’s second law with a diffusion term,
which read respectively

n0∇ · υ + n = 0, (21)

n0m∂
2
t υ +mβ2∇n = −en0E(z = 0), (22)
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from which we recognize the fluid electronic surface den-
sity

ρhyd
s = −en. (23)

Equations (19)-(22) correspond to the linearized hydro-
dynamic model for graphene [41] (see also [47]).

Notice that Eq. (21) has no dynamics. Therefore, we
can use it to eliminate the field n, thus obtaining a new
Lagrangean density

L′ = LEM + L′2D hyd, (24)

with

L′2D hyd = δ(z)

(
1

2
n0m (∂tυ)

2

− 1

2
n0mβ

2 (∇ · υ)
2 − n0e∂tυ ·A.

)
(25)

This new Lagrangean is equivalent to the Eq. (16) as
both lead to the same dynamics. Applying the Euler-
Lagrange equations to Eq. (24) with respect to A leads
to Eq. (19), while the equation obtained for υ reads

−m∂2
t υ +mβ2∇ (∇ · υ) = eE(z = 0), (26)

which can be obtained by combining Eqs. (21) and (22).
From the Lagrangean density Eq. (24), we define the

canonical momenta conjugate to A and υ, respectively,
as

Π =
∂L′

∂ (∂tA)
= ε0ε̄d∂tA, (27)

π =
∂L′

∂ (∂tυ)
= n0m∂tυ − n0eA(z = 0). (28)

In terms of the variables A, Π, υ and π, the classical
Hamiltonian obtained from Eq. (24) is given by

H =

∫
d3r

(
1

2ε0
Π · ε̄−1

d ·Π +
1

2µ0
(∇×A)

2

)
+

∫
d2x

(
(π + en0A(z = 0))

2

2n0m
+

1

2
n0mβ

2 (∇ · υ)
2

)
.

(29)

B. Canonical quantization of hydrodynamic model

In order to quantize the classical Hamiltonian Eq. (29),
we start by introducing the eigenmodes of the coupled
electronic fluid + electromagnetic field. Assuming, we
have in-plane translational invariance, we write the vec-
tor potential and fluid displacement variables as

A(r, t) =
1√
S

∑
q,λ

αq,λ(t)eiq·xAq,λ(z) + c.c., (30)

υ(x, t) =
1√
S

∑
q,λ

αq,λ(t)eiq·xυq,λ + c.c., (31)

where S is the area of the graphene layer, αq,λ(t) =
αq,λe

−iωq,λt are mode amplitudes with, ωq,λthe mode fre-
quency, and Aq,λ(z) and υq,λ are mode-functions, which,
following from Eqs. (19) and (26), obey the equations

[
ω2
q,λε0ε̄d(z)−

1

µ0
Dq ×Dq×

]
Aq,λ(z) =

= −iωq,λδ(z)en0υq,λ, (32)

mn0

[
ω2
q,λ − β2q⊗ q

]
υq,λ = iωq,λen0Aq,λ(0). (33)

where we defined the differential operator Dq = iq+ ẑ∂z.
From Eq. (33), we can write

υq,λ =
1

en0
σ̄hyd
g (q, ωq,λ) ·Aq,λ(0), (34)

where σ̄hyd
g (q, ω) is the conductivity within the hydro-

dynamic model, which we separate into transverse and
longitudinal components as

σ̄hyd
g (q, ω) = σhyd

g,T (q, ω)

(
1̄− q⊗ q

q2

)
+ σhyd

g,L (q, ω)
q⊗ q

q2
, (35)

respectively given by

σhyd
g,T (q, ω) =

e2n0

m

i

ω
, (36)

σhyd
g,L (q, ω) =

e2n0

m

iω

ω2 − β2q2
, (37)

where we identify D = e2n0/m as the Drude weight,
which for graphene is given by D = e2vF kF /π. Notice
that in the the limit q → 0, σ̄hyd

g (q, ω) reduces to the
Drude model. Inserting Eq. (34) into Eq. (32), we obtain

Dq ×Dq ×Aq,λ(z) =
ω2
q,λ

c2
ε̄r (q, z, ωλ) Aq,λ(z), (38)

with the dieletric function, including screening by
graphene electrons, being given by

ε̄r (q, z, ω) = ε̄d(z) +
i

ε0ω
σ̄hyd
g (q, ω) δ(z), (39)

in agreement with Eq. (7).
Inserting the expansions Eq. (30) and (31) into

Eq. (29), and using the orthogonality properties of the
mode-functions (Aq,λ(z), υq,λ) it is possible to write the
Hamiltonian for the hydrodynamic model as (see Ap-
pendix (B))

H =
1

2

∑
qλ

2ω2
q,λε0Lq,λα

∗
q,λαq,λ + c.c, (40)
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with the mode-length defined here as

Lq,λ =

∫
dzA∗q,λ(z) · ε̄d(z) ·Aq,λ(z) +

n0m

ε0
υ∗q,λ · υq,λ

+
ien0

2ε0ωq,λ

(
A∗q,λ(0) · υq,λ − υ∗q,λ ·Aq,λ(0)

)
. (41)

Promoting the mode amplitudes to quantum mechanical
operators as

α∗q,λ(t)→

√
~

2ε0ωq,λLq,λ
â†q,λ(t), (42)

αq,λ(t)→

√
~

2ε0ωq,λLq,λ
âq,λ(t), (43)

where â†q,λ(âq,λ) are creation (annihilation) operators for
the plasmon-polaritons, satisfying the usual equal-time
commutation relations Eq. (11), the quantum Hamilto-
nian for the hydrodynamic model becomes

Ĥ =
1

2

∑
qλ

~ωq,λ

[
â†q,λâq,λ + âq,λâ

†
q,λ

]
. (44)

We will now see that Eq. (41) can be recast in the same
form as Eq. (41). In order to do so, we use Eq. (34) which
allows to write Eq. (41) as

Lq,λ =

∫
dzA∗q,λ(z) · ε̄d(z) ·Aq,λ(z)

+
e2

ε0n0

βq2

(ω2 − βq2)
2

e2

ε0n0
A∗q,λ(0) · q⊗ q

q2
·Aq,λ(0).

(45)

It is easy to see that the above equation can also be
written as

Lq,λ =

∫
dzA∗qλ(z) ·

(
ε̄r(q, z, ωλ)

+
ωλ
2

∂

∂ω
ε̄r(q, z, ω)

∣∣∣∣
ω=ωλ

)
·Aq,λ(z), (46)

with ε̄r(q, z, ω) given by Eq. (39).

IV. DISPERSION RELATIONS AND
MODE-FUNCTIONS OF GRAPHENE PLASMON

IN TWO DIFFERENT STRUCTURES

We now wish to determine the dispersion relation and
mode-functions of graphene plasmons in two different
structures (see Fig. 1): a single graphene layer and a
graphene sheet in the vicinity of a perfect metal. As
in the previous section, we make use of the in-plane
translational invariance of the structures being consid-
ered. Therefore, the non-linear eigenvalue problem for
the mode-functions, Eq. 7, can be written as

Dq ×Dq ×Aq,λ(z) =
ω2
q,λ

c2
ε̄r (q, z, ωλ) Aq,λ(z), (47)

where

ε̄r (q, z, ωλ) = ε̄d (z) +
∑
`

i
σ̄g`(q, ω)

ε0ω
δ(z − z`), (48)

where ε̄d (z) is the dielectric constant of the medium,
which we assume to be isotropic and a piecewise ho-
mogeneous function of z, and ` labels the graphene
layers which are located at the planes z = z`, with
conductivityσ̄g`(q, ω). We model the conductivity of
each graphene layer with Eq. (35), which when includ-
ing losses becomes

σg,T (q, ω) = D
i

ω + iγ
, (49)

σg,L(q, ω) = D
iω

ω2 + iωγ − β2q2
, (50)

where D = 4EFσ0/ (π~) is the Drude weight, with EF
graphene’s Fermi energy, σ0 = πe2/ (2h) and γ is a re-
laxation rate. When determining mode-functions we will
set γ = 0, but we allow for γ 6= 0, for the situation when
ohmic losses are included in Section (V). The presence of
the δ-functions in Eq. (48), implies that boundary con-
ditions at each interface located at z = z`:

ẑ×
(
Eq,λ

(
z+
`

)
−Eq,λ

(
z−`
))

= 0, (51)

ẑ×
(
Bq,λ

(
z+
`

)
−Bq,λ

(
z−`
))

= µ0Js,q,λ(z`), (52)

where Eq,λ (z) = iωq,`Aq,λ(z) and Bq,λ (z) = Dq ×
Aq,λ(z) are the electric and magnetic fields correspond-
ing to mode Aq,λ(z), and Js,q,λ(z`) = σ̄g`(q, ω)·Eq,λ (z`)
is the surface current in the graphene layer `. In addi-
tion to the boundary conditions Eqs. (51) and (52), to
determine of the plasmon modes one must impose that
the fields decay for z → ±∞. Having determined the
plasmon mode-function, Aq,sp(z), and dispersion, ωq,sp,
the mode-length can be obtained from Eqs. (46) and (48)
as

Lq,sp =

∫
dzεd(z)A

∗
q,sp(z) ·Aq,sp(z)

+
i

ε0ωq,λ

∑
`

A∗q,sp(z`)·
∂

∂ω
[ωσ̄g`(q, ω)]ω=ωq,sp

·Aq,sp(z`).

(53)

We will now analyse the different structures in detail.

A. Single layer graphene

We first discuss the simplest case of a single graphene
sheet (see left panel of Fig. 1). The problem of finding
the spectrum of the surface plasmons in a graphene sheet
was first considered in [48] and a detailed derivation can
be found in Refs. [49, 50]. We assume that the single
layer of graphene is located at z = 0, with a encapsulating



6

dielectric medium n = 2 for z > 0 and a medium n = 1
for z < 0, such that

εd(z) =

{
ε2, z > 0

ε1, z < 0
. (54)

In order to determine the plasmon mode, we look for p-
polarized solutions of the electric field (the electric field
lies in the plane of incidence) in the form of evanescent
waves for z → ±∞. In each piecewise homogeneous re-
gion we have that Dq · Eq,λ(z) = 0. The mode-function
must then take the form

Aq,sp(z) =

{
A+

2 u+
2,qe

−κ2,qz, z > 0

A−1 u−1,qe
κ1,qz, z < 0

, (55)

where

κn,q =

√
q2 −

ω2
q,sp

c2n
, (56)

with cn = c/
√
εn the speed of light in medium n, and we

introduced the vectors

u±n,q = i
q

q
∓ q

κn,q
ẑ. (57)

Imposing the boundary conditions Eqs. (51) and (52),
we obtain the following implicit relation for the surface
plasmon dispersion:

ε1
κ1,q

+
ε2
κ2,q

+ i
σg(q, ωq,sp)

ε0ωq,sp
= 0, (58)

In general, Eq. (58) has no analytical solution, except in
the simple case where ε1 = ε2, in which case its solution
reduces to solving a quadratic equation.

The corresponding mode-function can be written as

Aq,sp(z) =

{
u+

2,qe
−κ2,qz, z > 0

u−1,qe
κ1,qz, z < 0

, (59)

and the mode-length is obtained according to Eq. (53) as

Lq,sp =
ε2

2κ3
2

(
κ2

2 + q2
)

+
ε1

2κ3
1

(
κ2

1 + q2
)

+
D

ε0

β2q2

(ω2 − β2q2)
2 , (60)

where the last term is due to the dispersion in the
graphene layer. We point out, that within the hydro-
dynamic model used for conductivity of graphene, this
contribution is only non-zero if non-local effects are also
included, that is if β 6= 0.

B. Graphene-metal structure

We now move to the more complex case of a graphene
sheet near a perfect metal (see right panel of Fig. 1).

We assume that the metal interface is located at z = −d
and the graphene layer is located at z = 0. The dieletric
constant is given by

εd(z) =

{
ε2, z > 0

ε1, 0 > z > −d
. (61)

Noticing that the plasmon field should decay for z →∞,
the mode-function should have the form

Aq,sp(z) =

{
A+

2 u+
2,qe

−κ2z z > 0

A+
1 u+

1,qe
−κ1z +A−1 u−1,qe

κ1z 0 > z > −d
.

(62)
Notice that the presence of a perfect metal at z = −d
implies that the tangential component of the electric field
should vanish. Imposing the previous condition and the
boundary conditions Eqs. (51) and (52) at z = 0, we
obtain a homogeneous system of equations 1 −1 −1

ξ2 − ε1
κ1

ε1
κ1

0 eκ1d e−κ1d

 A+
2

A+
1

A−1

 = 0, (63)

where ξ2 = ε2
κ2

+ i
σg,L
ε0ω

. The dispersion relation of the
screened plasmons is obtained by looking for the zero
the determinant of the previous matrix, which leads to
the condition for the dispersion relation

ε1
κ1

coth (κ1d) +
ε2
κ2

+ i
σg
ωε0

= 0, (64)

The boundary conditions imply that the mode-function
is given by

Aq,sp(z) =


sinh (κ1d) u+

2,qe
−κ2z , z > 0

iqq sinh (κ1 (z + d)) +

+ q
κ1,q

ẑ cosh (κ1 (z + d)) , 0 > z > −d

The mode-length can be determined from Eq. 53, and we
obtain

Lsp,q =
ε2

2κ3
2,q

sinh2 (κ1,qd)
(
κ2

2 + q2
)

+
ε1

2κ3
1,q

[
1

2
sinh (2κ1,qd)

(
κ2

1,q + q2
)

+ dκ1,qε1
ω2

c2

]
+ sinh2 (κ1,qd)

D

ε0

β2q2

(ω2 − β2q2)
2 , (65)

where, as in Eq. (60), the last term is due to the disper-
sion of graphene.

We note that the dispersion relation for the screened
plasmons, Eq. (64), is the same one that would be ob-
tained for the acoustic plasmons in a symmetric graphene
double layer structure (center panel of Fig. 1). In this
structure, we have two graphene layers located at z = 0
and z = −dgdl. The dieletric constant of the encapsulat-
ing medium is given by

εd(z) =


ε2, z > 0

ε1, 0 > z > −dgdl

ε3, −dgdl > z

, (66)
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Since the plasmonic modes should decay for z → ±∞,
the plasmon mode-function must have the form

Aq,sp(z) =


A+

2 u+
2,qe

−κ2z z > 0

A+
1 u1,qe

−κ1z +A−1 u1,qe
κ1z 0 > z > −dgdl

A−3 u−3,qe
κ3z −dgdl > z

.

(67)
Imposing the boundary conditions Eqs. (51) and (52) at
z = 0 and z = d, we obtain the following homogeneous
system of equations

1 −1 −1 0
ξ2 − ε1

κ1

ε1
κ1

0

0 eκ1d e−κ1d −e−κ3d

0 ε1
κ1
eκ1dgdl − ε1

κ1
e−κ1dgdl ξ3e

−κ3dgdl



A+

2

A+
1

A−1
A−3

 = 0,

(68)
where ξ2 = ε2

κ2
+ i

σgtop,L
ε0ω

and ξ3 = ε3
κ3

+ i
σgbot,L

ε0ω
. The dis-

persion relation is obtained from zeroing the determinant
of the previous matrix. Since the system is composed of
two graphene sheets the double layer structure has two
dispersion branches, a low energy one – the acoustic mode
– and a high energy one – the optical mode. In the op-
tical mode, the charge oscillations in the two graphene
sheets are in-phase; whereas in the acoustic mode, the
charge oscillations are out-of-phase. In the particular
case where, we have a symmetry structure, with ε2 = ε3
and the conductivities of the top and bottom graphene
layers are the same σgtop,L = σgbot,L = σg,L, the zero-
ing of the determinant factorizes into two independent
expressions

ε1
κ1

tanh

(
κ1ddlg

2

)
+
ε2
κ2

+ i
σg,L
ωε0

= 0 (69)

for the optical mode, and

ε1
κ1

coth

(
κ1ddlg

2

)
+
ε2
κ2

+ i
σg,L
ωε0

= 0 (70)

for the acoustic one. Notice that the relation for the
acoustic mode dispersion Eq. (70) coincides with the
equation for the screened plasmon Eq. (64) provided
ddlg = 2d. This fact can be understood in terms of image
charges as depicted in Fig. 2.

In the bottom panel of Fig. 3 we depict the loss func-
tion for the graphene-metal system. Clearly, only one
branch is seen, which coincides with the acoustic branch
of the double layer graphene upon considering d equal
to half that of the double layer system, as explained in
Fig. 2.

An alternative way to obtain the plasmon dispersion
relation is to look for poles (or resonances in the pres-
ence of losses) in the so called loss function[50] , which is
defined as

L(q, ω) = −Im [rp(q, ω)] , (71)

where rp(q, ω) is the reflection coefficient of the structure
in consideration for the p-polarization, and q and ω are

Figure 2. Comparison of the double layer graphene system
and the graphene-metal case. Due to the image charges in the
metal-graphene structure, the spectrum of the double layer
graphene is equivalent to that of the graphene-metal system
if we take into account that graphene is at at distance dgdl/2
from the metal, where dgdl is the interlayer distance in the
double layer case. Therefore, the graphene-metal distance has
to be d/2 to obtain the same spectrum as for the graphene
double layer . For a full numerical equivalence of the two
spectra it is also necessary to have ε1 = ε3 in the double layer
geometry.

the in-plane wavevector and frequency of the impingent
radiation, respectively (see Appendix A). For a symmet-
ric graphene double layer (ε1 = ε3 and σgtop,L = σgbot,L)
and neglecting losses γ → 0, this coefficient has poles at
the solutions of Eqs. (70) and (69), as can be seen com-
paring those equations with Eq. (A5). The loss function
for the double layer graphene is depicted in the left panel
of Fig. 3, as function of ω and of a dimensionless param-
eter s = qc/ω which defines the dispersion relation of the
single graphene layer, clad by two different dielectrics of
dielectric functions ε1 and ε2, in the electrostatic limit by

ω(s) =
4αEF
ε1 + ε2

s, (72)

where EF is the Fermi energy of graphene and α is the
fine structure constant of vacuum. In the top panel of
Fig. 3 two branches are clearly seen: a high energy one –
the optical branch – and the acoustic branch at lower en-
ergies. At high energies and high s the two branches
merge and converge to the single layer branch. The
reader may wonder why the lower branch starts at finite
momentum. This happens due to the definition of the
s parameter, which involves both the frequency and the
real wavenumber q. This choice allows to clearly separate
the two branches in the (ω, s) plane.

V. APPLICATION: QUANTUM EMISSION
CLOSE TO GRAPHENE STRUCTURES

We will now apply the quantization of the plasmon
modes in grahene structures to the problem of sponta-
neous emission by a quantum emitter which is located
above the structure. We model the quantum emitter as
a two-level system embedded in medium 2 at position
r0 = (0, 0, z0). The quantum emitter couples to the plas-

monic field via dipolar coupling:Ĥsp-d = −d̂ · Êsp(r0),
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Figure 3. Loss function [Eq. (71)] for the p-polarization re-
flection coefficient for: (Top panel) a graphene double layer
structure; (Bottom panel) graphene near a perfect metal. The
parameters use in the top panel are dgdl = 20 nm, ε3 = 1, and
for the bottom panel d = 10 nm. The remaining parameters
used in both panels are: ε1 = 3.9, ε2 = 1, EF = 0.2 eV and
~γ = 10 meV. In both plots, non-local effects were neglected
(β = 0).

with

d̂ = dgeĉ
†
g ĉe + h.c. (73)

Êsp(r) =
∑
q

(
i

√
~ωq,sp

2Sε0Lq,sp
Aq,sp(z)eiq·xâq,sp + h.c.

)
(74)

where ĉ†g/e(ĉg/e) is the creation (annihilation) operator

for the ground/excited state of the two-level system and

dge =
〈
g
∣∣∣d̂∣∣∣ e〉 is the dipole matrix element.

The transition rate of an emitter due to emission of

surface plasmons in graphene is given by Fermi’s golden
rule [51, 52]:

Γsp =
2π

~
∑
q

∣∣∣〈g;nq,sp + 1| d̂ · Ê |e;nq,sp〉
∣∣∣2 δ (~ω0 − ~ωq,sp) ,

(75)
where ω0 is the transition frequency, |g;nq,sp + 1〉 rep-
resents a final state with one more surface plasmon and
the emitter in the ground state and |e;nq,sp〉 represents
an initial state with nq,sp plasmons in graphene and the
emitter in the excited state. The transition matrix ele-
ment for spontaneous plasmon emission, when there are
no surface plasmons in the initial state,is given by

〈g; 1| d̂ · Ê |e; 0〉 = i

√
~ωq,sp

2Sε0Lq,sp
dge ·A∗q,sp(z0), (76)

With this result the transition rate reads

Γsp =
1

4π~ε0

∫
d2q

~ωq,sp

Lq,sp

∣∣dge ·A∗q,sp(z0)
∣∣2×

× δ (~ω0 − ~ωq,sp) , (77)

Using the mode-function we can write∣∣dge ·A∗q,sp(z0)
∣∣2 = Nq |dge|2 e−2κ2,qz0×

×

(
cos2 φ sin2 ψ +

q2

κ2
2,q

cos2 ψ

)
, (78)

ψ is the angle the dipole makes with the axis perpendic-
ular to graphene (z-axis), and φ is the azimuthal angle.
The prefactor Nq is define as Nq = 1 for the single-

layer graphene case and as Nq = sinh2 (κ1,qd) for the
graphene+metal structure. Using the in-plane isotropy
of the system, the momentum integration in Eq. (77) can
be trivially performed, yielding:

Γsp = Nq0

q0ωq0,sp

Lq0,sp

(
∂ωq0,sp

∂q

)−1 |dge|2

4~ε0
e−2κ2,q0

z0×

×

(
sin2 ψ + 2

q2

κ2
2,q0

cos2 ψ

)
, (79)

where q0 is the momentum of a surface plasmon, with
frequency ω0, i.e., ω0 = ωq0,sp. So far the expression for
Γsp is general. The differences arise from the particular
forms of the dispersion ωq,sp, the mode length Lq,sp and
the prefactor Nq.

A. Decay rate for local conductivity

We will now study the plasmon emission rate, when
non-local effects are neglected, β = 0 in Eq. (50).

We first focus on the case of a quantum emitter close
to a single graphene layer and the same dielectric above
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and bellow the graphene layer, ε1 = ε2 = ε. Using the
analytic solution of Eq. (58) for this case, we can write
Eq. (79) as

Γgsl
sp =

d2
ge

4~ε0

[
2ω4

0

(
~

2αEF c

)2

+
ω2

0ε

c2

]
e−2κqz0

Lq0,sp
×

×

[
sin2 ψ + 2κ−2

[
ω4

0

(
~

2αEF c

)2

+
ω2

0ε

c2

]
cos2 ψ

]
.

(80)

In Figs. 4 and5, we plot the ratio Γgsl
sp /Γ0, where Γ0 =

d2
geω

3
0/
(
3πε0~c3

)
the total decay rate of an emitter in

vacuum, for different graphene-quantum emitter dis-
tances z0 and dipole orientations. For comparison, we
will display the ratio Γfull/Γ0, where Γfull is the total de-
cay rate (including both plasmon and photonic losses) of
the quantum emitter. The total decay rate can be com-
puted from the knowledge of the reflection coefficients,
which are incorporated into the dyadic EM Green’s func-
tion [50, 51, 53] (see Ref. [54] for a detailed study of
the properties of an emitter near graphene using Dyadic
Green’s functions). For a dipole in medium n = 2, the
total decay rate is given by

Γfull

Γ0
= 1 +

3

2
cos2 ψRe

(∫ ∞
0

dq

k3
1

q3

kz,1
rpe
−2κ2z0

)
+

3

4
sin2 ψRe

(∫ ∞
0

dq

k1

q

kz,1

(
rs − rp

c2q2

ω2

)
e−2κ2z0

)
,

(81)

where rs/p are reflection coefficients for the s/p-
polarization and kn = ω/cn and kz,n are defined in Ap-
pendix A.

A number of details are worth mentioning. There are
two distinct behaviors of the decay rate Γfull. At low fre-
quency the curves shoot up due to Ohmic losses, which
are not included in Eq. (80). At intermediate frequencies,
the curves develop a clear resonance due to the excitation
of surface plasmons in graphene. Also the maximum of
the resonances blue-shifts with the decrease of the dis-
tance of the dipole to the graphene sheet. This behavior
is easily explained remembering that the dispersion of the
surface plasmons in single layer graphene is proportional
to
√
q. Since the distance z0 introduces a momentum

scale q ∼ 1/z0, smaller z0 values correspond to higher
q-values and higher energies of the resonant maximum.
Equation (80) for the plasmon emission rate produces
exactly the same resonance (same magnitude and same
maximum of the resonance position) as Γfull, indicating
that in this region, the decay rate of the quantum emit-
ter is dominated by plasmon emission. This is further
shown in Fig. 5, where losses were arbitrarily reduced
in the evaluation of Γfull. We can also avoid the super-
position of the Ohmic and surface plasmon contributions
choosing either a larger Fermi energy or a larger distance
from graphene to the metal. In Fig. 5 the ratio Γ/Γ0 is

Figure 4. Decay rate of a quantum emitter close to a single
graphene layer as a function of emitter frequency, for different
emitter-graphene distances z0. The solid lines show the de-
cay rate due to plasmon emission as evaluated with Eq. (80).
The dashed lines show the total decay rate computed used
Eq. (81). The parameters used are ε1 = ε2 = 1, EF = 0.3
eV, and cos2 ψ = 1/3. For the evaluation of the total decay
rate a broadening of ~γ = 4 meV was used. The local form
of graphene conductivity was used (β = 0).

Figure 5. Decay rate of a quantum emitter close to a single
graphene layer as a function of emitter frequency, for differ-
ent dipole orientations: ψ = 0 and ψ = π/3. Solid lines show
the emission rate [Eq. (80)] and the dashed lines show the
total decay rate [Eq. (81)]. The parameters considered where
z0 = 70 nm, EF = 0.4 eV, and ε1 = ε2 = 1. In the evalua-
tion of the total decay rate a broadening factor of ~γ = 0.1
meV was used. For such small losses, the decay rate is com-
pletely dominated by the plasmon emission. The local form
of graphene conductivity was used (β = 0).

smaller than the ones in Fig. 4 due to the larger distance
of the dipole to the graphene sheet.

An analytic expression for the plasmon emission rate
can be also obtained for the case of graphene-metal struc-
ture assuming that κ1d� 1. In this limit, Eq. 64 can be
approximately solved, yielding ~ωq,sp =

√
4αdEF~c/εq.

Plugging this result in Eq. 79, we obtain
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Figure 6. Density plot of the transition rate of a quantum
emitter due to the emission of surface plasmons in a graphene-
metal structure. The used parameters are z0 = 30 nm, EF =
0.2 eV, ε1 = 3.9, and ε2 = 1, ψ = 0. Making line cuts at
constant d we can easily see the presence of a resonance in
the dipole transition rate due to the excitation of graphene
screened plasmons.

Γgm
sp '

d2
12

4ε0~
ε sinh2(κ1d)

4αdEF~c
(~ω0)2e−2κ2z0

Lsq(ωat)

×
(

sin2 ψ + 2
q2

κ2
2

cos2 ψ

)
. (82)

This plasmon emission rate is shown in Fig. 6 as a func-
tion of ω and the graphene-metal separation d. As in the
case of a single graphene layer, for each d there is a well
defined peak as function of ω.

B. Decay rate with non-local effects

We now focus on the role of non-local effects in the
graphene conductivity play in the emitter decay rate. We
will restrict ourselves to the case of a quantum emitter
close to a single layer of graphene. In Fig. 7, we com-
pare the transition rate of a quantum emitter calculated
taking into account non-local effects β 6= 0 in Eq. (37),
with the local case β = 0. The left panel shows the re-
sult for EF = 0.6 eV, z0 = 7 nm, while the right panel
shows the result forEF = 0.6 eV, z0 = 2 nm. We can
see that the nonlocal effects play an important role at
smaller emitter-graphene distances. As the distance be-
tween quantum emitter and the graphene layer, z0, de-
creases, non-locality leads to an increase and blueshift
of the resonance in the transition rate as a function of
the emitter frequency. We have also verified (not shown)
that the non-local effects are also more prominent in the
case of lower electronic densities.

Figure 7. Comparison between the plasmon emission rate of
a quantum emitter close to a single layer of graphene using
the local (β = 0) and non-local (hydr.) (β 6= 0) models for
the graphene conductivity (see Eq. (37)). The used EF = 0.6
eV, ε1 = ε2 = 3.9, ψ = 0. Left panel : z0 = 7 nm. Right
panel: z0 = 2 nm. The nonlocal effects causes an increase
and blueshift of the resonance in the transition rate as the
distance z0 between the quantum emitter and the graphene
decreases.

VI. CONCLUSIONS

In this paper, we have performed the quantization of
graphene plasmons, in the absence of losses, and applied
the field quantization to the interaction of an emitter
with doped graphene. The quantization was performed
using both a macroscopic energy approach and a quan-
tum hydrodynamic model, which allows for the inclusion
of non-local effects in the EM response of graphene. The
quantization approaches used allow for the determina-
tion of the plasmon EM field mode-functions and, im-
portantly, their normalization, which becomes non-trivial
when dispersion is included.

When comparing the total decay rate of a quantum
emitter (as obtained using the full EM dyadic Green’s
function) with the decay rate due to quantum emission,
it was shown that plasmon emission completely domi-
nates the decay rate, for typical emitter-graphene sepa-
rations and emitter frequencies. It was shown that non-
local effects in the graphene response, become increas-
ingly important for smaller graphene-emitter separations
and smaller Fermi energies.

The advantage of the quantization method developed
in this work lies in its simplicity. The mode-functions are
obtained from the solution of the Maxwell equations for
the vector potential, and the normalization of the mode-
functions can be expressed as a simply integral, which
only involves the dielectric function of the medium. For
situations when only a few modes contribute significantly
to the physics, as in the case of quantum emission domi-
nated by plamons, mode-functions allows to a much sim-
pler and physically transparent description than the full
EM dyadic Green’s function. Since, the determination of
the mode-functions only involves the solution of the clas-
sical Maxwell equations, the quantization of the electro-
magnetic field of more complexes structures can be eas-
ily achieved. We also note that the procedure gives both
the quantized form of the electric and magnetic fields.
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Therefore, we could also study the enhancement of the
spin relaxation. The only change would be the interac-
tion Hamiltonian, which in this case would be of the form
HI = −µ · B, where µ is the magnetic dipole moment
of the emitter and B the quantized magnetic field of the
surface plasmon.

In possession of a quantized theory for graphene plas-
mons, we have set the stage for the future discussion of
other quantum effects involving these collective excita-
tion made simultaneously of light and matter.
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Appendix A: Reflection coefficients of graphene
structures

In this appendix we provide the reflection coefficients
needed for the evaluation of the full decay rate of a quan-
tum emitter, Eq. (81).

1. Reflection coefficients for a single graphene layer

The Fresnel problem for a single graphene sheet has
been considered in Ref. [50]. Therefore we provide here
the final results only and for simplicity we assume we are
dealing with non-magnetic media. For an incoming wave
from region 2, and for the s−polarization the reflection
and transmission coefficient read

rs =
kz,2 − kz,1 − µ0ωσg,T
kz,2 + kz,1 + µ0ωσg

, (A1)

ts =
2kz,2

kz,2 + kz,1 + µ0ωσg,T
, (A2)

whereas for the p−polarization we have

rp = −ε2kz,1 − ε1kz,2 − kz,1kz,2σg,L/ (ωε0)

ε2kz,1 + ε1kz,2 + kz,1kz,2σg,L/ (ωε0)
, (A3)

tp =

√
ε1
ε2

2kz,2ε1
ε2kz,1 + ε1kz,2 + kz,1kz,2σg,L/ (ωε0)

. (A4)

In these equations, we have kz,n =
√
εnω2/c2 − q2 = iκn,

and σg,L/T is the optical longitudinal/transverse conduc-
tivity of graphene, ε0 and µ0 are the vacuum permitivity
and permeability, respectively, q is the wavenumber along
the graphene sheet, and ω is the frequency of the elec-
tromagnetic radiation.

2. Metal-graphene reflectance coefficient

The reflection coefficient for the p-polarization for this
structure is given by

rp = 1− 2kz,1k
2
2 sin (kz,1d)

kz,1 sin (kz,1d) (kz,2µ0ωσg,L + k2
2) + ikz,2k2

1 cos (kz,1d)
,

(A5)
where k2

n = εnω
2/c2, d is the graphene-metal distance,

and κ2
n = k2

n − q2, where q is the wavenumber along the
graphene sheet. For the s−polarization we have

rs = −1 +
2kz,2 sin (kz,1d)

sin (kz,1d) (kz,2 + µ0ωσg,T ) + ikz,1 cos (kz,1d)
.

(A6)

Appendix B: Diagonalization of Hydrodynamic Hamiltonian

1. Orthogonality of mode-functions

We start by showing that the mode-functions (Aq,λ(z), υq,λ) obey certain orthogonality conditions which will be
useful. We start by writing the equations for the mode-functions within the hydrodynamic model, Eqs. (32) and (33),
in matrix form as [

ω2
q,λε0ε̄d(z)− 1

µ0
Dq ×Dq× iωq,λen0δ(z)

−iωq,λen0δ(z) n0m
(
ω2
q,λ − β2q⊗ q

)
δ(z)

] [
Aq,λ(z)
υq,λ

]
= 0. (B1)
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Let us now consider another mode λ′, with mode-function (Aq,λ′(z), υq,λ′), solution of[
ω2
q,λ′ε0ε̄d(z)− 1

µ0
Dq ×Dq× iωq,λ′en0δ(z)

−iωq,λ′en0δ(z) n0m
(
ω2
q,λ′ − β2q⊗ q

)
δ(z)

] [
Aq,λ′(z)
υq,λ′

]
= 0. (B2)

Now we contract Eq. (B1) with
[

A†q,λ′(z) υ†q,λ′

]
, Eq. (B1) with

[
A†q,λ(z) υ†q,λ

]
and integrate both equations over

z obtaining∫
dz
[

A†q,λ′(z) υ†q,λ′

] [ ω2
q,λε0ε̄d(z)− 1

µ0
Dq ×Dq× iωq,λen0δ(z)

−iωq,λen0δ(z) n0m
(
ω2
q,λ − β2q⊗ q

)
δ(z)

] [
Aq,λ(z)
υq,λ

]
= 0, (B3)

∫
dz
[

A†q,λ(z) υ†q,λ

] [ ω2
q,λ′ε0ε̄d(z)− 1

µ0
Dq ×Dq× iωq,λ′en0δ(z)

−iωq,λ′en0δ(z) n0m
(
ω2
q,λ′ − β2q⊗ q

)
δ(z)

] [
Aq,λ′(z)
υq,λ′

]
= 0. (B4)

Taking the conjugate of Eq. (B4), we obtain∫
dz
[

A†q,λ′(z) υ†q,λ′

] [ ω2
q,λ′ε0ε̄d(z)− 1

µ0
Dq ×Dq× iωq,λ′en0δ(z)

−iωq,λ′en0δ(z) n0m
(
ω2
q,λ′ − β2q⊗ q

)
δ(z)

] [
Aq,λ(z)
υq,λ

]
= 0. (B5)

Subtracting this last equation from Eq. (B3), we obtain

∫
dz
[

A†q,λ′(z) υ†q,λ′

] (
ω2
q,λ − ω2

q,λ′

)
ε0ε̄d(z) i (ωq,λ − ωq,λ′) en0δ(z)

−i (ωq,λ − ωq,λ′) en0δ(z) n0m
(
ω2
q,λ − ω2

q,λ′

)
δ(z)

[ Aq,λ(z)
υq,λ

]
= 0. (B6)

If ωq,λ 6= ωq,λ′ , we can divide by ωq,λ − ωq,λ′ obtaining one of the orthogonality conditions:∫
dz
[

A†q,λ′(z) υ†q,λ′

] [
(ωq,λ + ωq,λ′) ε0ε̄d(z) ien0δ(z)

−ien0δ(z) n0m (ωq,λ − ωq,λ′) δ(z)

] [
Aq,λ(z)
υq,λ

]
= 0. (B7)

We can obtain an additional orthogonality relation. If we take the complex conjugate of Eq. (B3), replace q→ −q
and λ→ λ′, and using the fact that ωq,λ = ω−q,λ, we obtain[

ω2
q,λ′ε0ε̄d(z)− 1

µ0
Dq ×Dq× −iωq,λ′en0δ(z)

iωq,λ′en0δ(z) n0m
(
ω2
q,λ′ − β2q⊗ q

)
δ(z)

] [
A∗−q,λ(z)
υ∗−q,λ

]
= 0. (B8)

We now contract this equation with
[

A†q,λ(z) υ†q,λ

]
, integrate over z and take its complex conjugate, obtaining

∫
dz
[

At
−q,λ(z) υt−q,λ

] [ ω2
q,λ′ε0ε̄d(z)− 1

µ0
Dq ×Dq× −iωq,λ′en0δ(z)

iωq,λ′en0δ(z) n0m
(
ω2
q,λ′ − β2q⊗ q

)
δ(z)

][
Aq,λ(z)
υq,λ

]
= 0. (B9)

Contracting Eq. (B1) with
[

At
−q,λ(z) υt−q,λ

]
and integrating over z we obtain∫

dz
[

At
−q,λ(z) υt−q,λ

] [ ω2
q,λε0ε̄d(z)− 1

µ0
Dq ×Dq× iωq,λen0δ(z)

−iωq,λen0δ(z) n0m
(
ω2
q,λ − β2q⊗ q

)
δ(z)

] [
Aq,λ(z)
υq,λ

]
= 0. (B10)

Subtracting Eq. (B9) from (B10), we obtain

∫
dz
[

At
−q,λ(z) υt−q,λ

]  (
ω2
q,λ − ω2

q,λ′

)
ε0ε̄d(z) i (ωq,λ + ωq,λ′) en0δ(z)

−i (ωq,λ + ωq,λ′) en0δ(z) n0m
(
ω2
q,λ − ω2

q,λ′

)
δ(z)

[ Aq,λ(z)
υq,λ

]
= 0. (B11)

For ωq,λ + ωq,λ′ 6= 0, we obtain a second orthogonality condition:∫
dz
[

At
−q,λ(z) υt−q,λ

] [ (ωq,λ − ωq,λ′) ε0ε̄d(z) ien0δ(z)
−ien0δ(z) n0m (ωq,λ − ωq,λ′) δ(z)

] [
Aq,λ(z)
υq,λ

]
= 0. (B12)
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2. Hamiltonian in term of mode amplitudes

We now insert the expansion of the fields in terms of mode-functions, Eqs. (30) and (31), into the classical Hamil-
tonian (29). Using Eqs. (27) and (28), we can write

H =
1

2

∑
q,λλ′

(
hλ,λ′(q)α∗q,λ′(t)αq,λ(t) + h̃λ,λ′(q)α−q,λ′(t)αq,λ(t)

)
+ c.c., (B13)

where

hλ,λ′(q) =

∫
dz
[

A†q,λ′(z) υ†q,λ′

]
[
ωq,λ′ωq,λε0ε̄d(z) + µ−1

0 Dq ×Dq 0
0 δ(z)

(
n0mωq,λ′ωq,λ + n0mβ

2q⊗ q
) ] [ Aq,λ(z)

υq,λ

]
(B14)

h̃λ,λ′(q) =

∫
dz
[

At
−q,λ′(z) υt−q,λ′

]
[
−ωq,λ′ωq,λε0ε̄d(z) + µ−1

0 Dq ×Dq 0
0 δ(z)

(
−n0mωq,λ′ωq,λ + n0mβ

2q⊗ q
) ] [ Aq,λ(z)

υq,λ

]
(B15)

Using the mode-function equation (B1), we can write

hλ,λ′(q) = ωq,λ

∫
dz
[

A†q,λ′(z) υ†q,λ′

] [
(ωq,λ′ + ωq,λ) ε0ε̄d(z) ien0δ(z)

−ien0δ(z) δ(z)n0m (ωq,λ′ + ωq,λ)

] [
Aq,λ(z)
υq,λ

]
, (B16)

h̃λ,λ′(q) = ωq,λ

∫
dz
[

At
−q,λ′(z) υt−q,λ′

] [ (ωq,λ − ωq,λ′) ε0ε̄d(z) ien0δ(z)
−ien0δ(z) δ(z)n0m (ωq,λ − ωq,λ′)

] [
Aq,λ(z)
υq,λ

]
. (B17)

Using the orthogonality condition (B12) we conclude that h̃λ,λ′(q) = 0. The orthogonality condition (B7) implies that
hλ,λ′(q) = 0, except when λ = λ′ (assuming there are no degeneracies in ωq,λ). Therefore, we see that the classical
Hamiltonian can be written as in Eq. (40), with the mode-length being biven by

Lq,λ =
1

2ε0ω2
q,λ

∫
dz
[

A†q,λ′(z) υ†q,λ′

] [ 2ω2
q,λε0ε̄d(z) iωq,λen0δ(z)

−iωq,λen0δ(z) 2ω2
q,λδ(z)n0m

] [
Aq,λ(z)
υq,λ

]
, (B18)

which can be written as Eq. (41).
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