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A B S T R A C T

With the possibility of quantum computers making an appearance, possibly capable of
breaking several well established and widespread crytposystems (especially those that
implement public key cryptography), necessity has arisen to create new cryptographic
algorithms which remain safe even against adversaries using quantum computers.

Several algorithms based on different mathematical problems have been proposed which
are considered to be hard to solve with quantum computers. In recent years, a new
lattice-based mathematical problem called Learning With Errors (and its variant Ring -
Learning With Errors) was introduced, and several cryptosystems based on this problem
were introduced, some of which are becoming practical enough to compete with traditional
schemes that have been used for decades.

The primary focus in this work is the implementation of two Ring - Learning With Errors
based schemes (one key exchange mechanism and one digital signature scheme) on the TLS
protocol via the OpenSSL library as a way of checking their overall viability in real-world
scenarios, by comparing them to classical schemes implementing the same functionalities.
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R E S U M O

Com a possibilidade do surgimento dos primeiros computadores quânticos, possivelmente
capazes de quebrar muitos dos cripto-sistemas bem difundidos e considerados seguros,
tornou-se necessário tomar precauções com a criação de novas técnicas criptográficas que
visam manter as suas propriedades de segurança mesmo contra adversários que usem
computadores quânticos.

Existem já muitas propostas de algoritmos baseados em problemas matemáticos
distintos que são considerados difı́ceis de resolver recorrendo a computadores quânticos.
Recentemente, foi introduzido um novo problema baseado em reticulados denominado de
Learning With Errors (e a sua variante Ring - Learning With Errors), e consequentemente
foram propostos vários cripto-sistemas baseados nesse problema, alguns dos quais começam
já a ser utilizáveis ao ponto de poderem ser comparados com os esquemas clássicos usados
há décadas.

O foco principal neste trabalho é a implementação de dois esquemas baseados no problema
Ring - Learning With Errors (mais precisamente, um esquema de troca de chaves e uma
assinatura digital) no protocolo TLS através da sua integração no OpenSSL como forma de
verificar a sua viabilidade em contextos reais, comparando-os com esquemas clássicos que
implementem as mesmas funcionalidades.
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I N T R O D U C T I O N

The security of most public key cryptosystems used today is based on problems such as
the integer factorization and discrete logarithm. There is currently no known algorithm
capable of running on a classical computer that can solve these problems in polynomial
time, although there is no formal proof that such an algorithm doesn’t exist. Both problems
are, however, solvable in polynomial time using a quantum algorithm known as Shor’s
algorithm [Sho94]. By being capable of solving these problems, even for a set of large
parameters, otherwise considered safe by today’s standard, a quantum computer running
Shor’s algorithm could recover private information from public one, which renders a
public key cryptosystem unsafe. Since most online services nowadays use asymmetric
cryptography as means of authentication, as well as for being capable of encrypting traffic
between two entities through the usage of key exchange mechanisms, a breakthrough in
quantum computing that results in the appearance of quantum computers powerful enough
to run Shor’s algorithm could mean that most services on the internet would have their
communications compromised on a massive scale, rendering internet browsing unsafe
worldwide.

Lattice based cryptography has been on the rise as a promising alternative to classical
asymmetric cryptographic algorithms, which unlike the latter is based on hard problems
that resist even quantum computers. By having a fundamentally different hard problem
than those of classic number-theoretic primitives, lattice based cryptography resists Shor’s
algorithm, and so far there is no known algorithm, both quantum or classical, that can
solve hard lattice problems in polynomial time. However, increased security isn’t the only
benefit lattice cryptography provides. In fact, a number of cryptographic functionalities were
made possible, such as fully-homomorphic encryption, that weren’t achievable previously
by classical cryptography.

In an effort to prepare for the eventual rise of quantum computers, the National Institute
of Standards and Technology (NIST) started a new process which, for the next few years,
aims at selecting one or more algorithms that are quantum-resistant and standardize them
for widespread use. The process started in December of 2016, and a call for proposals was
issued, with a deadline for the first round of submissions on November 30, 2017. The round
2 candidates were announced on January 30, 2019. From the 23 digital signature schemes
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submitted for round 1, only 9 managed to pass to the second round. Likewise, from the 59

public key encryption and key establishment algorithms submitted in the first round, only
17 made it to round 2.

The analysis and standardization of public key cryptography that is quantum-resistant
is extremely important. According to some predictions, quantum computers capable of
breaking modern public key cryptography could become a reality in more or less 20 years
and, according to NIST [ST17], the public key infrastructure currently in use throughout the
world also took around 20 years to be deployed. Therefore, the soonest quantum-resistant
schemes can be standardized, the soonest they can be deployed, which decreases the chances
of having most modern public key cryptography broken and worldwide communications
compromised.

The Learning With Errors (LWE) problem is a problem introduced by Oded Regev in
[Reg05] that can be reduced in complexity to worst-case lattice problems, which are known
to be hard to solve. Although there have been some cryptosystems based on this problem
as is, the most recent and promising cryptosystems are related to a variant of the former
called Ring - Learning With Errors (R-LWE) or Learning With Errors Over Rings, introduced
in [LPR10] by Lyubashevsky, Peikert, and Regev. This problem is shown by the authors to
have similar security properties to the LWE problem, while at the same time being more
efficient by requiring parameters with smaller sizes.

Throughout the years since its introduction, the R-LWE served as a base for several
cryptographic schemes, including not only several signature algorithms and key exchange
mechanisms, but also fully homomorphic encryption schemes. A more detailed overview
on some digital signatures and key exchange mechanisms will be given in chapter 2.

Safe communications on the web are usually accomplished using the TLS protocol, a
successor of the now deprecated SSL protocol. In essence, this protocol works on top
of a transport protocol like TCP and provides four different cryptographic applications
for safe communications, those being symmetric encryption, key exchange mechanisms,
authentication mechanisms (digital signatures) and message authentication codes. Since
the main purpose of post-quantum cryptography is to provide new asymmetric public key
cryptosystems that resist quantum computers, the attention in this paper is focused on
digital signatures and key exchange mechanisms, both of which are vulnerable to algorithms
solving integer factorization and discrete logarithms.

Key exchange mechanisms currently employed in the TLS protocol are used to determine a
handshake between two communicating entities, usually a server and a client, by generating
a secret key to be used through the session to symmetrically encrypt messages sent between
the two participating entities. Since these secret keys are unique per session, the handshake
protocol has to occur every time a new session is created.
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Digital signatures on TLS provide authentication between parties through the use of
digital certificates. When a client starts communicating with a server, it requests the server’s
certificate, which contains its public signing key, to ensure the server is in fact a trusted
entity. The client can use the server public key to verify signatures made by said server. The
client can also be requested to provide a certificate to authenticate itself, in which case the
process is similar, where both entities request the other’s certificate, validate them and use
the public keys in said certificates to validate each others signatures.

The TLS protocol uses the algorithms for each cryptographic functionality in the form of
ciphersuites. Each ciphersuite is represented by a string that specifies which algorithm is to
be used for every cryptographic functionality. Picture 1 shows an example of a ciphersuite
currently used in TLS by the Microsoft Windows 10 operating system.

Figure 1: TLS ciphersuite example

In order to use new algorithms in this protocol, it is necessary to add new ciphersuites
that include the new cryptographic functions that the involved entities can now use in the
communication. For instance, if both the client and server have access to a quantum-safe
key exchange mechanism, then it can be used to create the shared secret key for symmetric
encryption in that session as would have been done with a classical key exchange mechanism
like the ECDHE (Elliptic Curve Diffie-Hellman Ephemeral) shown in 1.

The currently best established implementation of the TLS protocol is arguably present in
the OpenSSL toolkit, which by being open-source facilitates the possible inclusion of new
algorithms, since all the code is accessible to anyone that might want to read and perhaps
even contribute. Because of its widespread use, allied to the accessibility of the source code,
integrating new digital signature and key exchange schemes in OpenSSL is a good way
to include these algorithms in the TLS protocol. It is noteworthy, however, that the source
code implementation is highly complex, containing a lot of files that need to be altered and
possibly thousands of lines of code that need to be added or modified [SM16].

Given the highly complex implementation, which has suffered a lot of changes throughout
the years, rendering tutorials of previous versions less useful, the integration can be achieved
through different means. One such way consists of trying to follow one or more examples
of previous successful attempts at integrating new algorithms. Even though examples like
that exist, those implementations occurred in previous versions of OpenSSL, which was
significantly modified in certain parts with subsequent versions. Another way of including
a new algorithm could be through the use of engines. An engine is essentially a way
of running external implementations of an algorithm on OpenSSL. However, there is a
way which is probably the most useful one out of these three, which is making use of
the Open Quantum Safe Project , which will be detailed in chapter 4. Essentially, it’s a
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project introduced in [SM16] which offers a much simpler and more modular way of adding
post-quantum algorithms to OpenSSL, by making use of an external library to which the
algorithms must be added1.

Even though the primary objective of this dissertation is to integrate post-quantum,
”learning with errors” based algorithms on TLS, there are great benefits in trying to extend
those algorithms to different tools that also benefit from widespread usage across the world.
One such tool is the cryptography package from the programming language Python, which
is a package that offers a rich set of different cryptographic functionalities, among which
are several digital signatures and key agreement mechanisms. Because it is heavily used
worldwide, and currently does not support post-quantum algorithms, it would be interesting
to integrate the Open Quantum Safe algorithms in this package, in order to be able to test
their standalone usage in a simpler, more accessible way.

Since integration on OpenSSL was accomplished using the Open Quantum Safe Project by
adding the new algorithms to the project’s library, integration on Python’s cryptography
was accomplished by integrating the whole Open Quantum Safe library in the package,
allowing the usage of every algorithm supported in the project directly on Python, instead
of only the new ones added in the context of this dissertation.

The next chapters introduce some of the most well known and influential contributions in
post-quantum cryptography, starting on the origin of the ”learning with errors” problem,
since it is the base problem on which the proposed cryptosystems stand, and ending on some
of the most recent systems proposed, which are perhaps the systems with the best chances
of becoming standards in the future. Because this work revolves around key agreement
schemes as well as digital signatures, greater focus is given when analyzing literature related
to these mechanisms.

Chapter 2 is divided into three sections, namely sections 2.1 and 2.2, which introduce a
revision of the current state of the art, by describing the most important contributions on
this subject, and section 2.3, which refers to similar work accomplished in recent years.

Chapter 3 introduces some mathematical notations and some cryptographic schemes in
more detail.

Chapters 4 and 5 delve into the algorithm’s integration details, divided into two parts:
integration on the Open Quantum Safe Project liboqs library, which includes a section
regarding the cryptography integration, and integration into OpenSSL using the liboqs
library.

Chapter 6 showcases some tests regarding different algorithms (classical, post-quantum
and hybrid variants), both in the generation of digital certificates and in the establishment of
TLS connections.

1 The project itself isn’t entirely made for OpenSSL, nor is it dependant on it. Instead, it is a standalone C library
implementing post-quantum algorithms. The authors then integrated the library on a fork of OpenSSL, making
the process of including new algorithms more modular.
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Finally, some reflections on the obtained results, as well as future works suggestions, can
be seen in chapter 7.
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B A C K G R O U N D L I T E R AT U R E

Since the award winning work of Oded Regev in [Reg05], which introduced the learning with
errors (LWE) problem, numerous cryptographic functionalities based on this problem have
been proposed by a myriad of different authors. Because LWE cryptography is relatively
recent when compared to classical cryptography, one problem that arose throughout the years
is finding a concrete instantiation of parameters to be used when using LWE cryptography.

Even though public key cryptography has received more attention in the post-quantum
scenario, it doesn’t mean that symmetric cryptography is safe from attacks from quantum
computers, as pointed in [DW17] and [DDW18]1. In fact, the authors devised the first
quantum key-recovery attack on Feistel block ciphers, which is the base for multiple block
cipher schemes used today. Even though these attacks do not use Shor’s algorithm, since
they don’t explore the problems described above, they do make use of quantum computers,
meaning symmetric encryption is also a subject of interest in post-quantum cryptography
that shouldn’t be overlooked.

2.1 lwe based schemes

Several cryptographic schemes based on the LWE problem have been proposed since its initial
introduction in 2005 [Reg05]. These schemes are not the most common nowadays, mainly
because the ring variant of this problem also benefits from strong security assumptions
[LPR10], while at the same time allowing for shorter parameters overall, which leads to
the development of more practical schemes. Nevertheless, it is relevant to briefly review
some LWE based schemes if not for anything else because it presents an overview of what
has been proposed throughout the years, and why the R-LWE variant made significant
improvements to the initial problem. Furthermore, there is a key exchange mechanism,
called Frodo, that was submitted to NIST and passed to the second round along with other
R-LWE based schemes, which shows that schemes based on this problem may still be viable
options for standardization.

1 The authors also mention Grover’s algorithm [Gro96], a quantum algorithm that reduces search complexity for
a given dimension N parameters to approximately

√
N.
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2.1. LWE based schemes 7

2.1.1 Encryption Schemes

The first LWE based encryption scheme was proposed by Oded Regev in [Reg05]. This public
key encryption scheme, as is the case with every subsequent scheme based on this problem,
works under the assumption that the LWE problem is as hard to solve as worst-case lattice
problems like the Shortest Vector Problem (SVP), as is proved by the author in the same
paper. As virtually all public key encryption schemes, whether classical or quantum-safe,
this scheme is composed of 3 main functions, namely private and public key generation,
encryption and decryption.

According to Regev, the set of parameters proposed in the paper for this encryption
scheme can guaranty the security of the scheme. For a given security parameter n, with the
proposed parameter set, the public key size is Õ(n2). However, this scheme was still much
more efficient than previous public key lattice-based cryptosystems, since those required
public keys of size Õ(n4). Moreover, encryption of a message would see its size grow by
Õ(n2), while the author’s proposed scheme would grow a message by Õ(n).

The author furthers matters even more by proposing a method of reducing the size of
the public key to Õ(n). That solution would, however, involve the need for every user of
the cryptosystem to share a fixed random set of vectors a1 to am, where m is a parameter of
the scheme, instead of generating said vectors in the generation of the public key, further
reducing its size. According to the author, this solution does not affect the security of the
cryptosystem in any way.

Even though the scheme proposed is far more efficient than previous schemes, it still
involves the use of public keys that can grow to impractical sizes, especially in situations
where large parameters might be necessary.

Other encryption schemes worthy of notice are that which was proposed by Chris Peikert
in [Pei08], which was proven by the author to be safe against chosen plaintext attacks,
or another cryptosystem proposed by Miklós Ajtai and Cynthia Dwork in [AD97] which
precedes both of the schemes aforementioned and which, while not being based on the
learning with errors problem, is based on a special variant of the SVP problem, called
unique-SVP. This scheme is one of the schemes mentioned above which is significantly less
efficient than that proposed by Regev.

Lindner and Peikert introduced in [LP10] an improved cryptosystem which the authors
characterize as being more compact and efficient than other cryptosystems proposed at
the time, such as the one introduced by Regev, while at the same time providing stronger
security levels. It is noteworthy that even though the proposed system requires lower key
sizes by an order of 10 compared to previous models, the authors recognize that the keys
are still too large to be used in most applications, pointing to the R-LWE as a way to reduce
parameter sizes significantly.
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2.1.2 Key Exchange Schemes

Key exchange (or key agreement) mechanisms are used to determine a shared key between
parties over an untrusted network without revealing any private information that could
render the whole communication unsafe. However, there exist multiple variants that can
be used to achieve this purpose (for instance, authenticated and unauthenticated schemes).
Since key agreement schemes used in the TLS protocol are mostly unauthenticated, like
Diffie-Hellman (although there are exceptions, like RSA for key agreement, which can
authenticate the server), it makes sense that an attempt to integrate a new key agreement
based on lattice cryptography would share the same property, mainly because the general
structure of the protocol would remain the same, maintaining a similar interface to that of
classical algorithms.

Most LWE and R-LWE schemes to be introduced are essentially key encapsulation
mechanisms (KEM), although some are defined as key exchange schemes and are structurally
compared to the Diffie-Hellman key exchange. Following the definition Chris Peikert
provides in [Pei14], a KEM (or key transport mechanism) is a set of four algorithms (Setup,
Gen, Encaps, Decaps), where:

• Setup produces a public parameter;

• Gen outputs a public (encapsulation) key pk and a private (decapsulation) key sk, given
the public parameter;

• Encaps uses the public key and parameter and generates a ciphertext c ∈ C and a key
k ∈ K;

• Decaps uses the private key and ciphertext to produce a k ∈ K.

Ding, Xie, and Lin [DXL12] define one of the drawbacks of a key transport mechanism
(Peikert defines key transport mechanism as a synonym of key encapsulation mechanism),
which is the fact that the secret shared between the two parties will be determined exclusively
by one of them. However, some authors, like Alkim et al. [Alk+16], present two variants
of a scheme, one that derives the shared secret from both parties involved in the exchange
and one that requires only one of them to derive it. Both schemes are presented with KEM
notation (i.e., with Gen, Encaps and Decaps), yet the authors seem to use the terms KEM and
key exchange as synonyms, deviating from the definitions in [DXL12]. In [Bos+14], the
authors define the scheme as a key exchange scheme, and yet the same scheme is mentioned
in [Alk+15] with KEM notation. Finally, in [Bos+17], the authors use the KEM proposed
to create a key exchange protocol, which is obtained as a ”direct application of the key
encapsulation mechanism” [Bos+17].

It seems reasonable to conclude that, even though some of the literature regarding LWE
and R-LWE schemes isn’t completely clear in respect to how exactly each scheme should
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be called, all of them seem to be have something in common, which is that all schemes
implement a protocol to derive a shared secret between two peers on an untrusted channel.
It seems to be the case that the term key exchange is adequately described by this definition,
and so the proposed schemes introduced in this chapter will use this general definition.

In [DXL12] the authors propose a new key exchange protocol similar to the Diffie-Hellman
exchange, but based on LWE for hardness instead of the discrete logarithm problem. As is
pointed out by the authors, one cryptographic property of great relevance in a cryptographic
algorithm, in this case a key exchange mechanism, is forward security, which the Diffie-
Hellman protocol possesses, contrarily to encryption based key exchange mechanisms
(RSA for example). When establishing a secure connection between two parties using the
Diffie-Hellman protocol, each session key derived from the algorithm is ephemeral, which
means that even if an adversary can recover the session key and decrypt messages, other
messages exchanged between parties in previous sessions are still protected, since each
session has a different key unrelated to any other used before or after. Exchanging keys
using an encryption scheme like RSA means that if somehow one private key used for key
exchange would be compromised, every message in every session between parties with a
compromised private key could be recovered, because the agreed-upon key to encrypt every
message would be decrypted using the private key.

The scheme is based on a notion present in the traditional Diffie-Hellman scheme,
which is the commutativity of exponentiation, i.e., gxy = (gx)y = (gy)x. This property
is used in the scheme via a multiplication of two vectors with a square matrix M, i.e.,
xT My = (xT M)y = xT(My).

The shared key agreed by the parties results from the use of a function called by the
authors as a robust extractor, which essentially outputs the same value from two different
inputs if those inputs are close enough to each other (the difference between the two values
is upper-bounded by a certain value δ) and if their difference is an even number. Provided
the two conditions are met, the authors provide a mathematical proof that the extractor
always outputs identical values, meaning both parties can derive the exact same session key
from approximate ones.

One interesting aspect of the key agreement proposed, besides the use of the extractor
aforementioned, is that contrarily to most systems that sample a secret from Zn

q , this system
samples the secrets from the error distribution, basing itself on a variant of the LWE problem
called the Hermit Normal Form LWE (HNF-LWE), which doesn’t affect the hardness of the
problem [App+09].

In a nutshell, after generating parameters q, n and α, as well as uniformly random
matrix M in Zn×n

q , the key exchange protocol involves Alice and Bob each choosing a secret
vector sA or sB from a Gaussian distribution DZn,αq, an error vector eA or eB from the same
distribution and computing, respectively, pA = MsA + 2eA and pB = MTsB + 2eB, which
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represent the public key to be sent to the corresponding party. Internally, each party then
respectively calculates values KA = sT

A pB + 2e′A and KB = pT
AsB + 2e′B using the key sent by

the other party. These values are close to each other due to the fact that both the secret and
error vectors have small Euclidean norms compared to q. Alice then derives the shared key
by applying the robust extractor function to KA, and Bob by doing the same to KB, which
is guaranteed to provide an identical shared key if the protocol is followed correctly. The
public and shared keys are all calculated mod q.

The proposed scheme was considered by the authors as being more efficient than other key
exchange schemes based on LWE encryption. Still, the authors also propose a variant of the
key exchange described based on the R-LWE problem, further improving the performance of
the scheme. Also, based on the R-LWE variant scheme, they extend the protocol to support
multiple parties at the same time, but leave its mathematical proof as an open problem.

The scheme described inspired other, more recent proposals, namely the scheme proposed
in [Bos+14] and, consequently, [Alk+15], which will be described in section 2.2.

In [KV09], the authors describe the first password-based authenticated key exchange
(PAKE) scheme with security based on lattices. Essentially, this is a protocol that allows
two peers to derive a shared symmetric key from a shared, usually low entropy password.
The proposed scheme is based on an encryption scheme which in turn is based on the LWE
problem, and is proven by the authors to be IND-CCA secure. In [KV10] the same authors
introduce a framework to create a generic one-round PAKE algorithm, in which parties send
only one message to each other and do it simultaneously.

In 2016, the authors in [Bos+16] introduced a new scheme called Frodo and demonstrated
that, even though it is based on the LWE problem, it can still be efficient enough to be used
in real-world scenarios. Even more, the authors compare the Frodo scheme with two R-LWE
schemes (BCNS [Bos+14] and NewHope [Alk+15]) and conclude that, while it is true that
schemes that are based on the R-LWE problem do tend to have fewer message sizes and
latency on communications, the differences are small enough to still make the scheme a
viable option for replacing the usage of a classical scheme.

It is worth mentioning that when testing the standalone implementation of the algorithm,
the scheme revealed to be 1.8 times slower than the classical ECDH nistp256 and 9 times
slower than NewHope, which is based on R-LWE. The authors point out, however, that when
using a protocol like TLS, the gap between Frodo and other schemes becomes much narrower.
Because of all the different components involved in the TLS protocol, and because it can
possess several bottlenecks that aren’t directly related to the key exchange algorithm itself,
differences in loading times are severely reduced, effectively showing that the standalone
implementations do not dictate, by themselves, how viable the scheme can be.

The slightly increased loading times and message sizes, as explained by the authors,
when compared to the loading speed of an average web page, does not greatly impact
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the experience. While the values are worse than those that can be obtained by ECDH or
NewHope, in most cases the differences are small enough as to not even be perceivable.

The increase in efficiency can be attributed to two major differences when compared
to other LWE schemes: a better alternative for noise sampling, i.e., the usage of noise
distributions that are more efficient to sample than the discrete Gaussian distributions and
the optimization of a pseudo-random generator for public parameters, namely, the public
matrix A to be used by both parties in a communication. Furthermore, since the matrix is
generated from a small seed, it allows for smaller communication sizes since there is no
need anymore to transmit the whole matrix, sufficing it instead to transmit the small seed.
As is pointed out by the authors, the optimization of this pseudo-random generator was
important to achieve the high efficiency needed to compete against R-LWE schemes, since it
still is computationally expensive, with around 40% of the whole computation time for each
peer.

Since the Frodo scheme is based on the LWE problem, the authors explain why they didn’t
base it instead on the more efficient R-LWE variant. Essentially, even though the R-LWE
variant is currently as hard to solve as the original LWE problem, for the same parameter
size, it remains unknown if one day it might be proven to be much easier to break than the
original LWE problem, since the problem is based on the worst-case hardness of problems in
ideal lattices, as opposed to generic lattices. It is because of the possibility that one day there
might be a new discovery that renders worst-case problems in ideal lattices much easier to
solve as opposed to generic lattices that the authors seem to believe there is a clear benefit in
designing a scheme that is viable in terms of real-world usage that is simply based on the
more generic and well studied LWE problem.

2.1.3 Signature Schemes

Until the works of Gentry, Peikert, and Vaikuntanathan [GPV07] and Lyubashevsky and
Micciancio [LM08] there had been no lattice-based signature scheme to be proposed with
a formal security proof, although some schemes had been proposed as far back as 1997 in
[GGH97], as well as in 2001 in [HPS01]. These schemes did not provide any formal security
proof, and where eventually broken [Duc+13; Lyu11].

Both schemes proposed have security proofs. The scheme in [GPV07] uses a hash-and-sign
technique to sign messages, which results in very large signatures that can be impractical in
many real-world use scenarios. The scheme proposed in [LM08], while possessing smaller
signature sizes, is a one-time signature scheme, which as is mentioned in [GPV07], [Lyu09]
and [Lyu11], would need hash or Merkle trees to become a full signature scheme, which
might not be the best solution in practice. As is pointed out by the authors, not only is this
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scheme capable of producing shorter signatures and keys, but is also efficient signing and
verifying messages, with time complexity being ”almost linear” [LM08].

One signature scheme proposal by Lyubashevsky in [Lyu09] was introduced in 2009 which
employed a framework called Fiat-Shamir [FS87], traditionally used for number-theoretic
schemes. The author demonstrates in this paper that the framework can be used in lattice
based cryptography by creating a signature scheme capable of creating signatures much
smaller than those of previous aforementioned schemes. As is stated by the author, the
signatures produced have around 50000 bits, which is a major improvement in size.

Even though the signature size in [Lyu09] is significantly lower than that of other schemes
(some have signatures with millions of bits in size), as is stated by the same author in a
different, posterior paper [Lyu11], ”it is still not as small as one would like”. The author
proposes a new scheme, provably secure in the random oracle model, that greatly reduces key
and signature sizes compared to hash-and-signature schemes proposed before. Furthermore,
it is considered by the author as being relatively simple, and capable of having more efficient
signatures by changing the base of the hardness to the LWE problem instead of other
lattice-based problems. Finally, the author provides, as is occasionally done, a variant of the
scheme based on the R-LWE problem, reducing even more key sizes and computational cost
to create and verify signatures.

Most signature schemes based on hard problems on lattices, especially the LWE, suffer
from some form of impracticality caused by key sizes necessary to create provably secure
systems, as well as from the complexity of operations like signing and verifying. As was
the case with key exchange mechanisms aforementioned, some authors, in their proposals,
include a scheme variant where the hardness is based on the R-LWE as perhaps the best
way to increase efficiency without sacrificing security, making schemes much more practical
for real-world usage.

2.2 r-lwe based schemes

Modern lattice cryptography has seen a number of proposed schemes based on the R-LWE
problem, which since its introduction by Lyubashevsky, Peikert, and Regev in [LPR10], has
been shown to allow for constructions that benefit from similar security problems, while
needing much smaller key sizes and performing more efficiently.

As is stated in [LPR10], there are multiple reasons for the increased efficiency of R-LWE
when compared to the traditional LWE. One boost in efficiency comes from the most
complex operations in R-LWE schemes usually being polynomial multiplications, which can
be accomplished with O(n log n) complexity using highly efficient algorithms like the NTT
(number theoretic transform) or simply using FFT (fast fourier transforms) to multiply large
polynomials (with large degree n). This accomplishes polynomial multiplication significantly
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faster than the traditional multiplication algorithms, with complexity O(n2). On top of that,
while in the LWE problem each product between vectors a and s generates a single number,
the same product in the ring variant generates n values in Zq and, as mentioned above, the
cost of the a× s is reduced via efficient polynomial multiplication algorithms already well
established and with several implementations. Furthermore, samples in the ring variant can
be reduced by a factor of n when compared to the LWE problem, reducing key sizes, which
was, to some extent, a problem in every proposed scheme based on the LWE problem.

Because of such an improvement in efficiency, creating schemes that can effectively
”replace” number-theoretic cryptosystems became more feasible, leading to proposals that
pose as some of the currently best schemes in post-quantum cryptography, and possibly
suitable for the integration on the TLS protocol. Among other properties, some that are
especially useful in such a scheme are as follows:

• Efficiency: the algorithm should be efficient enough to, at least, not cause significant
delay compared to other classical algorithms in real-life scenarios;

• Security: the scheme must be as secure as possible, so as to not lose any value regarding
safety when compared to already well established number-theoretic algorithms;

• Simplicity: mainly in the current context, it’s useful to take into account complexity of
implementation, since the integration of an algorithm into OpenSSL is already a fairly
complex process, involving potentially hundreds or even thousands of changes in the
source code [JN16]. Even when integrating via Open Quantum Safe, it still is useful to
select algorithms that are somewhat compatible to the project’s API.

There is also another property that is important to consider, which is the similarity a
scheme bears to previous classical schemes that are already implemented on OpenSSL and
TLS [Bos+14; Alk+15]. This property makes particular sense in this context as it is greatly
beneficial to be able to simply ”substitute” an existing, already integrated algorithm on
OpenSSL as a means to integrate post-quantum cryptographic schemes.

Taking the properties aforementioned in careful consideration, the background work
revision will be focused on proposed schemes for both signature schemes and key exchange
mechanisms that share these properties to some extent.

2.2.1 Key Exchange Schemes

Perhaps one of the most relevant R-LWE key exchange mechanism to mention is that
proposed by Ding, Xie, and Lin in [DXL12], which was already mentioned in the LWE variant
section. This scheme, as was previously mentioned, is phrased as a Diffie-Hellman like
scheme. Furthermore, it has been improved by Peikert [Pei14] regarding the reconciliation
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mechanism (i.e., the mechanism that assures Alice and Bob share an identical key based
on an approximate one), and served as a base for a new R-LWE key exchange protocol
in [Bos+14], which was then integrated on OpenSSL. The scheme was then revised and
some alterations were made to increase performance and security. The resulting scheme,
called NewHope [Alk+15], was then further simplified for easier implementation by the
same authors in [Alk+16]. This new variant avoids the reconciliation mechanisms used by
previous schemes, which according to the authors has a relatively low impact on the overall
performance, and no impact whatsoever on the security of the NewHope scheme.

The R-LWE variant in [DXL12] is a fairly straightforward change from the initial LWE
variant, still making use of the robust extractor as a reconciliation mechanism for deriving
identical keys. Because of the properties of the R-LWE variant, this scheme is capable of
functioning with fewer parameter sizes and operates with lower computational complexity,
which is estimated by the number of polynomial multiplications in the scheme. In the
comparison made by the authors in [DXL12] against proposed schemes in [LPR10] and
[SS11], they reveal that the scheme has shorter parameters as well as lower communication
and computational complexity.

[Pei14] introduces in his paper a new reconciliation mechanism that is fundamentally
different from that proposed in [DXL12], and one that is actually general enough to be used
in every key exchange mechanism, while effectively reducing the ciphertext to be sent in
size approximately in half.

Essentially, the mechanism uses a cross-rounding technique to make sure every bit derived
from two ”approximate” shared keys is identical while remaining unbiased. The mechanism
is first illustrated using a parameter q which, at first, is considered to be even. When q is
even, the cross-rounding function is as follows (the equation is present in [Pei14]):

〈v〉2 := b4
q

.vcmod2 (1)

As the author points out, as long as q is greater than 2 and even, if v ∈ Zq is uniformly
random, then 〈v〉2 is also uniformly random. If, however, q is odd, then 〈v〉 is biased towards
0 [Pei14].

As is the case with nearly every scheme using rings, q is usually a big prime, therefore
being odd. As is, the cross-rounding would create bias in the determined bit. To solve the
problem, the author introduces a tweak which involves temporarily working modulo 2q, by
defining a new function dbl that outputs a value v̄ = 2v− ē ∈ Z2q, for ē ∈ {0, 1} uniformly
sampled or ē ∈ {−1, 0, 1} with probability 1

2 for 0 and 1
4 for 1 and −1.

The reconciliation mechanism works via a function rec which receives a peer public key
and a mask 〈v〉2 which is a string of bits derived from the peer’s approximate shared key
v. Peikert shows (on claim 3.1 and claim 3.3, section 3 of [Pei14]) that, while bve2, which is
the shared key, is a private parameter, it is safe to send 〈v〉2 as a public parameter, since it
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perfectly hides bve2. After receiving the peer’s public key and the approximate shared key
mask 〈v〉2, the other peer can then derive the exact agreed upon key bve2 by applying the
rec function using as arguments both the public key and the mask. Claim 3.2 holds that for
peer approximate keys w and v, and for small error value e ∈ [− q

8 , q
8 ], if w = v + e, i.e., if the

approximate keys are ”close” to each other, then rec(w, 〈v〉2) = bve2. Using this mechanism
both peers can agree on a private, exact shared key bve2 exchanging only public information,
as is the objective of a key exchange scheme.

The reconciliation mechanism is presented in [Pei14] as being used on a value v ∈ Zq.
To apply it to polynomials in R-LWE schemes, the mechanism must be applied to each
coordinate (polynomial coefficient) independently. The process is identical to that which
was described before.

In [Bos+14], the authors implement an unauthenticated key exchange mechanism by using
a key exchange algorithm similar to that of [DXL12], but with the reconciliation mechanism
described in [Pei14], given its increased performance. The scheme proposed is phrased as a
key exchange scheme and not a KEM, to allow for an easier comparison to Diffie-Hellman
like schemes. Nevertheless, it can be interpreted as a KEM, with the usual Setup, Gen, Encaps
and Decaps methods, in which the Encaps function outputs a ciphertext c and a key to be used
for symmetric encryption (the agreed-upon key), and the Decaps method receives the peer’s
public key and uses it to recover the same symmetric encryption key from the ciphertext
received.

The authors go through great lengths to make sure the scheme is safe both against classical
and quantum attacks, and take a rather conservative approach by choosing the degree n
in the polynomial ring to be 1024, as opposed to the usual 512. Also, two versions of the
protocol are implemented, where one version actually runs in constant time, in order to
further improve security. In fact, since the algorithm involves sampling from a discrete
Gaussian distribution, and because sampling from such a distribution opens the system to
side-channel attacks, such as timing attacks [Akl+16a; Cho17; Alk+15], it may be worth the
extra effort to reduce chances of a successful attack.

The implementation by Bos et al. [Bos+14] will be further mentioned in 2.3, since the
authors then integrate their own implementation on the TLS protocol via OpenSSL.

Following the work in [Bos+14], Alkim et al. [Alk+15] introduce a variant of the
unauthenticated scheme with a few changes aiming at increasing both security and efficiency,
by proposing new parameters, a new error distribution other than the regular discrete
Gaussian and even a new, better reconciliation mechanism. The authors claim to ”double
the security parameter, halve the communication overhead, and speed up computation by
more than a factor of 8”.

One major cause for inefficiency pointed out by the authors is the Gaussian sampling,
which they point out can be substituted by a centered binomial distribution with minimal
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impact in security, while not being as hard to implement. In fact, according to the authors,
sampling from a Gaussian distribution only makes a considerable difference when dealing
with signature schemes or lattice trapdoors [Alk+15].

As was the case with the implementation in [Bos+14], the authors propose the set of
parameters to use in the scheme. While keeping the n = 1024, mainly to achieve long-term
security, they change the modulus q to 12289, a value much lower than the 232 − 1 proposed
in [Bos+14]. The authors present mainly two reasons for the value, namely the fact that the
reconciliation mechanism is more error tolerant, meaning that the error-to-modulus ratio
can be improved, leading to better security, and that 12289 is the first prime in which q ≡ 1
mod 2n, which leads to more efficiency when using the number-theoretic transform (NTT).

In relation to the public polynomial a, Alkim et al. provide two reasons to generate a every
time a new key exchange occurs: protection against backdoors and against all-for-the-price-
of-one attacks. Briefly, a backdoor could be included in the generation of a by an authority
with dishonest intents, generating the public polynomial in such a way that could weaken
the security of the system.

Supposedly, if an adversary with incredible computational problem would find a way to
solve the problem for the polynomial a, even of it took a long time, then every communication
using this scheme would be compromised, because every communication used the same a.

By generating a every session, it is possible to avoid these problems by not depending on
an authority to generate a and by making the solving of the problem in a long time (like a
year) still irrelevant to compromise future communications.

In practical terms, a is generated using an extendable-output function (XOF) officially
standardized by NIST in the SHA-3 standard [Fot15] called SHAKE128 (SHAKE128 and
SHAKE256 are actually the first XOFs to ever be standardized by NIST). In a nutshell, this
function generates a variable length output with 128 bits of security. Even though there is
a 256 bit variant, and that it doesn’t decrease the scheme’s performance significantly, the
authors explain that such a variant is not needed since potential collisions are not capable of
attacking the system.

The reconciliation mechanism, which allows for a better error tolerance, involves the
encoding of 4 polynomial coefficients at a time into a single bit, by determining the bit via
the distance of the vector represented by the coefficients to a specific point in a lattice D̃4

with a basis composed of the three base vectors x, y and z in a Z4 referential and a fourth
vector g = ( 1

2 , 1
2 , 1

2 , 1
2 ). When the key agreement results in an approximate shared key, the

client and server have slightly different vectors in the D̃4 lattice. In essence the difference
between the client vector and the closest lattice point is sent to the server which adds it to
its own vector. To reduce the amount of information sent, the Voronoi cell defined by the
lattice point is subdivided in smaller cells and only information about that particular cell is
sent to the server.



2.2. R-LWE based schemes 17

However efficient the scheme may be, and it is more efficient than those of Peikert [Pei14]
and Ding, Xie, and Lin [DXL12], the reconciliation is, even according to the authors, quite
complex, both in the understanding of the technique and the corresponding implementation.

With this in mind, a new variant was proposed by the same authors in [Alk+16], which
avoids the whole mechanism described above, at a relatively low trade-off. Specifically, of
the two messages exchanged (Alice to Bob and then Bob to Alice), only that from Bob to
Alice has an increase in size, and only of 128 additional bytes, not leaving a huge impact on
performance.

The new variant, which was named NewHope-Simple, eliminates the reconciliation
mechanism by following the ”encryption-based approach”, instead of the ”reconciliation-
based approach”. In this new variant, Bob generates a uniformly random bit string v to
be encoded in a polynomial k. This is accomplished using the function NHSEncode, which
encodes each bit from v into four coefficients in k, in ”steps” of 256. The corresponding
function is NHSDecode, which takes the four coefficients and calculates the corresponding
bit. The next step is to calculate polynomial c (similarly to what was described before) and
then calculating c̄ using another function called NHSCompress, and what it does is basically
a modulus switching from q to 8. This step comes from the realization that only the highest
bits of c actually matter in the determination of the exact key, while the rest are mainly just
noise. By carefully choosing only the highest bits to transmit, the amount of information
actually transmitted to Alice is reduced significantly, while still maintaining an acceptable
success rate in deriving the exact keys (in fact, the authors mention that they constraint the
size reduction only as long as the failure probability, i.e., the probability of different keys
being derived, does not exceed that of the original NewHope scheme). When Alice receives
the data sent by Bob, she applies the inverse functions (NHSDecode and NHSDecompress) to
obtain the exact shared key.

One important detail regarding both schemes is the use of the number-theoretic transform
(NTT) whenever possible to ensure fast polynomial multiplication. Furthermore, the
sampling of a can be done already in the NTT domain, increasing performance if needed.

The schemes in [Bos+14], [Alk+15] and [Bos+16] (BCNS, NewHope and Frodo) are secure
against passive adversaries, i.e., adversaries that can ”see” information exchanged between
parties but cannot actively modify it. The authors in [Alk+15] reason that it is more useful
to have unauthenticated key exchange schemes and consider advantageous to separate the
authentication component from the key exchange into two different algorithms that can
be used independently from one another. The authors in [Bos+14] and [Bos+16] integrate
their respective algorithms on the TLS protocol and, thus also adopt an unauthenticated
approach, closely resembling a Diffie-Hellman like approach.

Another key exchange scheme that was submitted to NIST in 2017, and that also passed
the second round, is CRYSTALS-Kyber [Bos+17]. This scheme is based on a generalized
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version of the R-LWE problem called Module - Learning With Errors (M-LWE), which will
be briefly presented in chapter 3. The authors Bos et al. created a scheme that is IND-CCA2

secure and is constructed from an IND-CPA secure PKE scheme using a variant of the
Fujisaki-Okamoto transform [FO99], and therefore is actively secure against adversaries
[Pei14].

The authors explain, in an updated version of the paper [Bos+19], why the scheme was
designed as IND-CCA2 secure only. Even though some use cases like the TLS protocol do
not require that key exchange protocols be actively secure, Bos et al. still believe that the
downsides of bringing an IND-CCA2 scheme aren’t severe enough to justify ”making the
scheme less robust”.

One interesting aspect of the proposed key exchange is the components used to generate
the shared key between the two parties. In the NewHope ”encryption-based scheme”, for
instance, the shared key, which is determined only by one party2, is derived by hashing the
randomly generated value v ∈ {0, 1}256. In Kyber, the final shared secret is dependant on
the public key, which is hashed to compute the first half of the key, and on the ciphertext
produced by the encapsulation function, effectively making the secret depend on the two
messages exchanged during the protocol (Bob uses Alice’s public key and Alice uses Bob’s
ciphertext).

The approach taken on the ”reconciliation-based” version of NewHope [Alk+15] still uses
the public key from Alice to generate a shared secret that isn’t fully dependent on Bob.
However, Bob doesn’t generate a random secret to be encapsulated into a ciphertext with
this approach.

NewHope and Kyber are based, respectively, on R-LWE and M-LWE. However, there
is another scheme called ThreeBears [Ham19], which also passed to the second round,
that is based on these two schemes, but with a different ring instantiation. The problem,
in this scheme, is a variant of M-LWE called Integer - Module Learning With Errors (I-
MLWE), where the ring elements are integers and not polynomials. In the paper introducing
the scheme, the author Hamburg also describes what seems to be a general framework
for key exchange schemes based on M-LWE , and further specifies the scheme’s concrete
instantiations. This general framework will be discussed in chapter 3.

2.2.2 Signatures Schemes

Following the logic of key exchange mechanisms, signature schemes based on the R-LWE
variant come as a sort of solution to the problem of having parameters that are just too high
to be practical in most use cases, yet necessary to achieve the necessary levels of security.

2 It is noteworthy, however, that on the ”encryption-based” variant [Alk+16], the authors do mention that parts of
Alice’s public key can be hashed into the final shared secret if desired, even though it isn’t part of the scheme
described in the paper.
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One of the first proposed R-LWE based signature schemes having provable security while
at the same time being practical in the sense that it can be used with similar reliability to
that of classical signature schemes like RSA or DSA (and its elliptic curve variants) was the
GLP scheme, named after its creators Güneysu, Lyubashevsky, and Pöppelmann, and first
introduced in [GLP12].

The scheme proposed is, according to the authors, an improvement from the schemes
described in [Lyu09] and [MP11], with an optimization that allows ”to reduce signature
length by a factor of two” [GLP12]. This optimization is possible via a function that can
correctly ”compress” the polynomial z2 from the signature. Figure 2 illustrates the original
signature algorithm combining the two schemes from [Lyu09] and [MP11], upon which the
optimization improvements take place.

Figure 2: Basic Signature Scheme as described in [GLP12]

The signature produced by the scheme is the triple (z1, z2, c). As is described in the paper,
where it not for the hash function used to verify the signature, sending only polynomials z1

and c would work in the verification algorithm, because az1 + z2 − tc ≈ az1 − tc. However,
since a hash functions must output different values for each different input, no matter how
close two different input values are, the verification would fail. The authors’ solution involves
hashing only the higher order bits of (ay1 + y2) and then calculate z′2. This polynomial
represents the changes in the higher order bits of az1 + z2− tc as opposed to az1− tc, and by
sending (z1, z′2, c) the actual information sent is much smaller, because z2 needs a lot more
bits to be represented. After sending the new signature, the verification process is similar to
that of the scheme in figure 2, except that the hash function produces the hash based on the
higher order bits of the received polynomial instead. Figure 3 shows the algorithm changes
in the visual representation of the scheme.

From a efficiency point of view, the authors remark that even though key and signature
length may be larger than on some number-theoretic schemes, the process of signing and
verifying scales much better. As is the case of most R-LWE schemes, the most costly operation
is polynomial multiplication, which as was mentioned before can be accomplished by using
FFT or NTT approaches with a O(n log n) complexity.
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Figure 3: Optimized Signature Scheme as described in [GLP12]

In 2013, a new signature scheme was proposed in [Duc+13]. This new scheme introduces
a new rejection sampling algorithm that samples from a bimodal Gaussian distribution,
effectively allowing for increased performance rivaling other classical schemes. In fact,
the authors present a benchmarking experience against the RSA and ECDSA schemes on
OpenSSL that compares performance both in the speed of signing and verifying signatures
and on the length of keys and signatures produced. The benchmarking is presented on table
1.

Implementation Security(bits) Sig. Size (kB) S. Key size (kB) P. Key size (kB) Sign/s Verify/s
BLISS-0 ≤ 60 3.3 1.5 3.3 4k 59k
BLISS-I 128 5.6 2 7 8k 33k
BLISS-II 128 5 2 7 2k 33k
BLISS-III 160 6 3 7 5k 32k
BLISS-IV 192 6.5 3 7 2.5k 31k
RSA-1024 72-80 1 1 1 6k 91k
RSA-2048 103-112 2 2 2 0.8k 27k
RSA-4096 ≥ 128 4 4 4 0.1k 7.5k

ECDSA-160 80 0.32 0.16 0.16 17k 5k
ECDSA-256 128 0.5 0.25 0.25 9.5k 2.5k
ECDSA-384 192 0.75 0.37 0.37 5k 1k

Table 1: Table showing the benchmarking of Bliss versus RSA and ECDSA for various levels of security
(some columns were omitted). The full table is presented in [Duc+13]).

As can be seen, results are relatively on par with the fastest classic algorithms
benchmarked, both in key and signature sizes as well as with speed [Akl+16a] [Esp+17].
The apparent downside of the algorithm, which otherwise seems to have the properties to
be a strong contender to being standardized, is the sampling over a Gaussian distribution,
something already mentioned in this paper. In fact, there exist several weaknesses which
can be exploited to recover part of the secret key or, in certain circumstances, even the whole
key. These exploits are known as side-channel attacks, which means they do not target the
algorithms mathematical basis, targeting instead the actual implementation. Details about
the attacks can be consulted in [Esp+17].
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In [Akl+16a], the authors propose a new scheme for a lattice-based digital signature, called
Ring-TESLA, that offers a stronger security proof. The authors mention that both the GLP
and the BLISS schemes offer high performance and provable security. However, the security
reductions in each scheme, while valid, are disconnected from the concrete instantiations.
When using parameters that are ”according to the security reductions” [Akl+16a], the
performance gets a significant negative impact, meaning the schemes cannot provide both
great performance and a provable security in the instantiation. the Ring-TESLA scheme
aims at providing comparable performance to the aforementioned schemes while remaining
provably secure in instantiation.

A flaw (independently found by Chris Peikert and Gus Gutoski) in the security reductions
present in the Ring-TESLA scheme, as well the follow up Ring-TESLA#, was discovered,
which hasn’t been addressed since and, while it doesn’t seem to be exploitable to create an
attack to the scheme, the concrete instantiations lack any formal security proof (as described
in [Akl+16b]).

Following the Ring-TESLA scheme, another proposal was made in [Bar+16] in which the
authors claim improves on all previous schemes in terms of performance and increased
security.

One modification the authors make is similar to that mentioned before when describing
the NewHope scheme described in [Alk+15], which consists on generating fresh instances of
two polynomials a1 and a2 for each key pair generation. By using new polynomials every
time a new key pair is created, the risk of the scheme being targeted with an all-for-the-
price-of-one attack is greatly reduced, as well as the presence of backdoors that can render
the entire scheme insecure.

The key generation scheme in Ring-TESLA has a constraint that rejects the polynomials e1

and e2 if at least one of them has a coefficient higher than a parameter L, in which case they
have to be sampled again (using a Gaussian distribution). The TESLA# variant completely
eliminates such constraints, greatly increasing key generation performance.

In the sign function, one constraint present on the Ring-TESLA scheme was also removed,
namely one that restricted the sent of the signature if polynomials w1 and w2 have coefficients
with absolute value larger than a certain value. Furthermore, as is explained in [Bar+16],
the constraint does not offer guaranties that a correct signature is verified as being genuine,
and such an event can be observed in practice. The authors provide specific cases where
this happens in [Bar+16], and change the constraint so that the rounded values of w1 and
w2 actually have to be the same as the values of v1 and v2, which, according to what the
authors say, is the purpose of the initial constraint to begin with. The new constraint also
significantly increases the signing success rate, almost doubling that of previous schemes.

It is also worth mentioning that the TESLA# scheme is proven in [Bar+16] to be safe
against chosen-message attacks.
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The authors also provide two concrete parameter sets, one for providing 128 bit security
against classical attacks and another for 128 bits of post-quantum security. Both sets are
benchmarked against other algorithms, including GLP and BLISS, as well as classical
algorithms. Table 2 shows the results obtained by the authors in [Bar+16].

Scheme Security (bits) Sign/s Verify/s
TESLA#-I 128:64 29.9k 42.1k
TESLA#-II 256:128 12.7k 16.8k

GLP 80:80 7.5k 100.0k
BLISS-0 60:33 4.2k 58.8k
BLISS-I 128:66 8.1k 33.3k
BLISS-II 128:66 2.1k 33.3k
BLISS-III 160:80 4.9k 32.3k
BLISS-IV 192:97 2.7k 31.3k
RSA-1024 80:0 6.0k 90.9k
RSA-2048 112:0 0.85k 26.3k
RSA-4096 144:0 0.11k 7.3k

ECDSA-160 80:0 17.24k 4.9k
ECDSA-256 128:0 9.43k 2.6k
ECDSA-384 192:0 5.13k 1.2k

Table 2: Table showing the benchmarking of Tesla# versus RSA, ECDSA, BLISS and GLP. The table is
presented in [Bar+16]).

The TESLA# scheme, as can be seen, while providing higher bits of post-quantum security
than every other scheme, also manages to be faster in signing operations, showing only
a decline in performance in the verification process when using the 128 bit post-quantum
security version.

Recently, a new scheme based on the GLP scheme was proposed by Arjun Chopra
in [Cho17], named GLYPH. In this paper the author briefly discusses the three schemes
described before, namely BLISS, Ring-Tesla (and variants) and GLP, where the different
advantages and disadvantages are discussed.

Essentially, the author’s remarks are that while the GLP protocol is more efficient than
Ring-TESLA, its security is not strong enough it today’s standards. The reason the GLP is
chosen against BLISS, even though this scheme also has high performance, is because of the
Gaussian sampling which is at the heart of the BLISS proposal. The GLP scheme does not
sample from a Gaussian distribution.

The GLP scheme got its high performance in part because of the ”compressing” of one of
the polynomials that would be part of the signature to be sent, which drastically reduced the
bit amount necessary to represent said signature. This compression mechanism is changed
in this scheme, since the new parameter sets proposed in [Cho17] that are necessary for
security nowadays are not compatible with the old compression mechanism, especially the
parameter q which is considerably lower than that which was proposed in [GLP12] for the
GLP scheme.

Since GLYPH is an ”updated” version of the GLP scheme, it makes sense to discriminate
the differences introduced in order to improve its security. As was the case with TESLA# in
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[Bar+16] and NewHope in [Alk+15], the GLYPH scheme avoids a static public polynomial
a, instead giving each certificate root authority the responsibility of choosing and then
sharing the public parameters with its users, preventing all-for-the-price-of-one-attacks and
backdoors.

The main changes to the scheme come from the new compressing function, which the
author calls compress2, and a new rounding mechanism (the mechanism that allows the
hashing of only the highest bits). The hashing function must, according to the author, output
a digest with length of at least 256 bits for 128 bit security, so the one used in the scheme
is simply SHA256. One interesting detail is that the GLP scheme fixes ω, a parameter
that describes how many non-zero coefficients a polynomial c outputted from an encoding
function F must have, at 32. GLYPH makes it possible to choose a different value, by using
AES in counter mode. By not fixing ω, more combinations of parameters are possible, further
increasing the flexibility of this scheme.

The compress2 function, for a careful choice of parameters, is actually better than the ”old”
compress, being more accurate while at the same time allowing for a wider range of values q
in the parameter set.

The scheme’s security analysis took into account the optimistic assumptions that the
authors of the NewHope scheme took when analyzing their scheme, assuming potential
developments in the future that could lead to significant improvements in solving lattice-
based problems.

Finally, performance measured by the author against other parameter sets proposed in
[GLP12] can be seen in table 3.

Set I Set II GLYPH
m 1024 2048 2048

n 512 1024 1024

q 8383489 16760833 59393

B 16383 32767 16383

ω 32 32 16

Signature size (kB) 0.9 1.9 1.8
Secret key size (kB) 0.1 0.3 0.3

Public key size 1.5 3.1 2.0
Expected number of repetitions 7 7 7

Hamming weight of q 13 11 5

Conservative security level (bits) < 80 91 137

Table 3: Table showing performance of the GLYPH scheme with two GLP proposed parameter set
and then the new set. The table can be seen in [Cho17].

While the GLYPH scheme does show some promise regarding performance and security
when compared to previous schemes, it wasn’t submitted to NIST, and therefore is not
a possible candidate to standardization. Two signature schemes that seem to show more
promise, regarding a possible standardization in the future, are qTesla, introduced in
[Alk+19] and CRYSTALS-Dilithium, introduced in [Duc+17a]. Both schemes were submitted
to NIST and passed the first round. The qTesla scheme is based on the standard R-LWE
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problem, while Dilithium is based, like CRYSTALS-Kyber, which was already mentioned in
2.2.1, on the more generic M-LWE problem.

The qTesla algorithm comes as a successor from Ring-Tesla with several modifications the
authors explain make the scheme more secure and efficient, such as preventing occasional
rejections of valid signatures, providing the scheme’s security proof in the Quantum Random
Oracle Model (QROM) and, perhaps more importantly, improving its resistance against
side-channel attacks, which target certain implementations of Ring-Tesla that do not run in
constant time.

Perhaps one of the most important aspects of this scheme is the fact that, while it does
use Gaussian sampling to sample polynomials in R, this sampler is constructed in such a
way that allows for it to be efficient and at the same time easily implemented to be executed
in constant time. Other schemes, such as GLYPH, Dilithium (signatures) or NewHope (key
exchange) have a different approach to offer protection against timing attacks, mainly by
avoiding Gaussian sampling altogether.

It is noteworthy to point out, however, that the Gaussian sampler is only used to generate
the keypair, not being necessary to create or verify signatures. As the authors pointed out,
because it is still one of the most, if not the most costly operation in the scheme, avoiding
its use in the signing and verification functions, which are the most used functions in a
signature scheme, improves significantly the performance of the scheme.

While both schemes were proposed to NIST and passed the same round, and both bear
similarities to previous schemes like GLP, there are some core differences that are important
to distinguish. First and foremost, Dilithium, as was said before, does not make use
of Gaussian sampling. The authors point out that, even though it may be the case that
secure instantiations that could be protected against side-channel attacks could be correctly
implemented, it is unreasonable to assume that, given its difficulty, every independent
implementation of the scheme would be done correctly in order to avoid said vulnerabilities.
Therefore, the scheme uses only uniform sampling to generate secret information.

Secondly, Dilithium is based on the more general M-LWE problem, making use of matrices
and vectors of polynomials. For example, the key generation process involves generating a
k× l matrix A, for which the authors recommend that k = 5 and l = 4. The two secret vectors
s1 and s2 that will be part of the secret key are also vectors of polynomials of, respectively,
size l and k. The public key calculated using both secret vectors will also be a vector of
polynomials of size k.

Another big difference between the two schemes is the deterministic nature of the
Dilithium signing process, while qTesla has a probabilistic signature algorithm 3. The
randomness introduced in a signature with Dilithium comes from part of the private key

3 Even though the deterministic nature of Dilithium was indeed present in the original paper [Duc+17a], a
new version [Duc+17b] was submitted after the round 2 results which adds the possibility to randomize the
algorithm’s signatures. The details will be discussed in 3.
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itself, i.e., is different for the same message if the signing keys are different, but is still the
same if the key also is the same. The component used from the private key is appended to
the message to be signed and serves as input to a collision resistant function (in this case,
SHAKE-256) that outputs a value that will be used to produce the signature. Because it
is possible that the algorithm must run several times before a valid signature is produced,
the authors mention that a counter must also be appended to the input of the SHAKE-256

function so that different outputs come for each iteration. They also mention that the
message itself, since it might need several iterations to be signed, is first used to calculate a
digest using another collision resistant hash function and then the digest is used instead of
the message itself.

Compared to previous schemes with a similar structure, the authors claim that Dilithium
manages to distinguish itself by reducing the public key size by a factor of around 2.5, while
adding only about 150 bytes to the signature produced as a result. In previous schemes,
the public key t = As1 + s2 was calculated and then used posteriorly to verify messages.
With Dilithium, t is split in two components, t1 and t0, which are, espectively, the higher
and lower bits of t. The public key then only contains t1, and the secret key contains t0. By
taking away the lower bits from t, then signature must contain additional information that
compensates the absence of those bits. That information is calculated in the signing process
and is called a ”hint”, and, if included in the signature, makes up for the absence of the
lower bits of t.

In [Alk+19], the authors provide a table comparing different algorithms in regards of
their key and signature sizes and cycle counts for performing their signing and verification
algorithms. With recommended parameters, to achieve a post-quantum security of around
160 bits, Dilithium manages to achieve similar results to qTesla for certain parameter sets.

2.3 related work

Post-quantum cryptography is of great importance for the future of cryptography, and secure
and efficient quantum-safe algorithms capable of ”replacing” classical number-theoretic
schemes are needed to ensure the transition to the post-quantum era can be accomplished
without compromising the future of communications.

Careful consideration of which algorithms actually fit this description, and then proceeding
to a good implementation of said algorithm is probably the best way to find out how exactly
the post-quantum cryptographic schemes fare against the more established cryptographic
algorithms. In this sense, several authors have already tried to implement algorithms of
their own, or algorithms described by other authors, and insert them into the TLS protocol,
usually via OpenSSL.
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The NewHope scheme [Alk+15] was actually implemented by Google on the TLS protocol
[Bra16; Lan16] in an experiment to check the viability of a new post-quantum scheme in the
real-world context, as well as to further gather attention to the importance of the subject.
The experiment was conducted on a small percentage of devices using Chrome Canary
and on top of the X25519 elliptic curve scheme (this hybrid variant was called ”CECPQ1”)
to safeguard against potential vulnerabilities with the NewHope scheme. The experiment
ended in November 2016 [Lan16], and NewHope wasn’t found to have any negative impact
aside from a slightly bigger latency in communications, which were considered to be almost
exclusively caused by bigger message sizes.

Bos et al. [Bos+14] implemented the scheme introduced in [DXL12] and mentioned in
2.2.1 on the TLS protocol via integration with the OpenSSL library. It is in this paper that
the importance of a scheme that shares a structure with the classical DH-like schemes
became evident, since it was mentioned by the authors that such a scheme is advantageous
for integration purposes. The integration comes with the main objective of testing a post-
quantum algorithm against other well established classical algorithms, in this case the ECDH
(Elliptic Curve Diffie-Hellman) schemes, so that it can be shown in real-world usage that
right now it is already possible to use post-quantum schemes in practice.

Butin, Wälde, and Buchmann [BWB18] implemented, in a similar endeavor, a hash-
based post-quantum signature scheme on TLS via OpenSSL to build trust on post-quantum
schemes by showing their performance in real-life usage. As a accompanying objective, the
authors also provide a basic understanding of how the OpenSSL library works. However, the
information provided is scarce when it comes to actual instructions on how to implement
new algorithms.

Specifically relating to the integration part now, the work done in [Jur12] sees the full
integration of a symmetric cipher called Indect Block Cipher, with a detailed analysis of
how to accomplish the integration part. There are, however, two aspects to take into account.
Firstly, while bearing similarities, there are some differences between integrating symmetric
and asymmetric ciphers, including the OpenSSL’s high level interface EVP that changes
for different types of cryptographic functionalities. Secondly, the implementation was
accomplished in 2012. Since then, several changes were made to the OpenSSL source code,
possibly changing the way certain components interconnect and thus requiring a deep code
analysis to understand what changed. A very succinct and compact version of this paper by
the same author is presented in [JN16].

Still focusing only on the TLS integration, Käsper [Käs12] introduces an optimized
implementation of the NIST P-224 elliptic curve on OpenSSL. The aspects to take into
account here, especially regarding the OpenSSL version at the time of inclusion, are similar
to those mentioned above about the work in [Jur12].
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Finally, in [SM16], as was already briefly mentioned, Stebila and Mosca introduce a new
framework inspired on a previous intermidiate API developed by them to simplify the
process of integrating new algorithms on OpenSSL. The project, called Open Quantum Safe
Project, aims at facilitating the test of post-quantum algorithms in an experimental fashion,
and includes a fork with the OpenSSL project where the authors have included all necessary
modification to allow for an easier integration of new algorithms, provided said algorithms
were added to the Open Quantum Safe library liboqs first.



3

P R E L I M I N A R I E S

This chapter aims at presenting some mathematical notations relevant to better understand
the schemes to be implemented. In chapter 2, the LWE, and consequently, the R-LWE
problems were repeatedly mentioned, yet no definitions were provided that explain what
exactly these problems are, as well as definitions of some important mathematical notions
that the problems involve. Furthermore, and even though the previous chapter briefly
introduced the NewHope key exchange, the GLYPH digital signature and the Dilithium
digital signature, the algorithms themselves were not properly described, nor were its main
components, such as functions that are necessary for their implementation. This chapter
aims at defining said algorithms as they are defined by the authors that created them.

3.1 notation

This section aims at fixing some mathematical notations used throughout the paper.
For any prime number q, Zq denotes the finite field of integers modulo q. The dot product

between two vectors is represented by 〈a, b〉.
Every uni-variate polynomial presented is of the form

a0X0 + a1X1 + a2X2 + ... + an−1Xn−1

for a certain value n.
Each element of the ring Rq ≡ Zq[X]/(Xn + 1) is uniquely represented by a polynomial

with coefficients ai ∈ Zq and degree less than n.

Whenever some variable a is sampled using the notation a $←− Zx
y , it means it is uniformly

sampled from Zx
y (following the notation present in most papers).

3.2 the learning with errors problem

The Learning With Errors problem is the problem of finding a secret vector s uniformly
sampled from Zn

q , for integer values n and q, given multiple pairs (a, b) = (a, 〈a, s〉+ e),

28
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where a is a uniformly sampled vector in Zn
q and e a noise value in Z sampled according to

a Gaussian distribution N(µ, σ2), with σ = α ∗ q and µ = 0.
The problem can be seen as an adversary requesting an oracle (the LWE oracle) for x

different and independent samples (a, b) and then being capable of determining the secret
s from those samples. This problem has been shown to be at least as hard to solve as
worst-case lattice problems. As is stated in [Reg05], each sample represents a random linear
equation in the form

a0s0 + a1s1 + a2s2 + ... + an−1sn−1 ≈ y mod q (2)

, where ai and si are the components of the vectors a and s, respectively (this equation
represents the dot product of these two vectors). The value y is an approximation because
the result of the dot product is perturbed by the small value e sampled from the Gaussian
distribution N(µ, σ2). Regev further explains that the noise value e is crucial for the hardness
of the problem, since without it the problem could easily be solved by using Gaussian
elimination given a sufficient number of different linear equations. By attempting to solve the
equations using this technique, the small noise values in each sample are greatly amplified,
rendering the resulting information basically useless. Reducing noise amplification when
applying row elimination is the focus of an attack algorithm to the LWE problem, called
BKW, which essentially tries to apply multiple eliminations with a single row addition
[Alb+12], thus avoiding amplifying noise with more additions than necessary. Another,
more efficient variant, inspired by the former, can be consulted in [DTV15].

3.3 the ring - learning with errors problem

The R-LWE is a variant from the LWE problem where instead of sampling vectors in a
finite field Zn

q for positive integers n, q, the sampling is usually done from a polynomial
ring Rq = Zq[X]/(Xd + 1), where usually q ≡ 1 mod 2d and d is of the form d = 2k, for
k > 0 (although d can also be a prime, polynomial multiplication using the number-theoretic
transform is significantly more efficient if d is a power of 2).

Similarly to the LWE problem, there is a Gaussian distribution N(µ, σ2) with µ = 0 on
{−(q−1)

2 , ..., (q−1)
2 } used to sample polynomials with ”small” coefficients.

An adversary then asks the oracle for samples of the form (a(x), b(x)) = (a(x), a(x) ∗
s(x) + e(x)), where a(x) is a polynomial uniformly sampled from Rq (each coefficient has the
same probability of being sampled) and s(x), e(x) have ”small” coefficients sampled from the
Gaussian distribution. The multiplication between a(x) and s(x) is the standard polynomial
multiplication. The problem is then to be able to recover s(x) given the samples requested
from the oracle. The problem has been proven to be as hard as worst-case problems in ideal
lattices in [LPR10].
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3.4 the module - learning with errors problem

The M-LWE problem, which was introduced by Brakerski, Gentry, and Vaikuntanathan in
[BGV11] (and was initially called General - Learning With Errors Problem) is, in essence, a
generalized version for both R-LWE and LWE.

As is described in [BGV11], it is the problem of finding a secret vector s uniformly sampled
from Rn

q given multiple tuples (a, b) = (a, 〈a, s〉+ e), where a is uniformly sampled from
Rn

q , e is sampled from a distribution χ over Z[X]/(Xd + 1) and Rq = Zq[X]/(Xd + 1), for a
given dimension n, prime q and degree d.

As is pointed out in [BGV11], the LWE problem is the M-LWE problem with d = 1, i.e.,
where Rq = Zq[X]/(X + 1). Similarly, the R-LWE problem is a specific case of M-LWE
where n = 1, and s and a are sampled from R1

q.
In [AD17], Albrecht and Deo regard the M-LWE problem as a sort of compromise between

the efficiency of R-LWE and the added confidence in the security of the LWE problem. In
fact, as was mentioned before in 2.1.2, and as is said in [AD17; Bos+16], general lattices
and, subsequently, hard problems on general lattices have been more thoroughly studied
than those in ideal lattices, and it is not known if the extra algebraic structure present in
the R-LWE problem makes the problem easier to solve. It could be the case, according
to the authors, that the M-LWE problem can offer a better level security than R-LWE and
better performance than LWE. Furthermore, security in schemes based on this problem, like
Dilithium, can vary by changing the dimension n used in the scheme, as opposed to varying
the polynomial degree (because in most cases the degree is a power of two, there are limited
degree values that can be used to tweak the scheme’s security). In fact, Dilithium offers
different dimensions for different security levels, while maintaining the polynomial degree
contant for all parameter sets.

3.5 general r-lwe key exchange framework

Most key exchange schemes proposed based on the LWE problem have three main
components in common: a ring instantiation, an error probability distribution and a way
to encode and decode information to achieve the same shared secret for both parties (like
the reconciliation approaches already mentioned in chapter 2). Most schemes based on
R-LWE and M-LWE use a polynomial ring to sample public parameters, errors and the
secret key, although it isn’t strictly necessary to use such a ring; in fact, some authors, like
Mike Hamburg [Ham19] and Gu Chunsheng [Chu17] have proposed schemes that are based
on different rings, and Chunsheng proved that R-LWE schemes based on integer rings, as
opposed to polynomials ones, can offer similar security.
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In [Ham19], the author has proposed a key exchange scheme called ThreeBears where
the underlying problem is instantiated with a ring of integers modulo a Mersenne number
N = P(q), for q and P(x) a polynomial of degree D. The scheme, which is based on
NewHope and Kyber, was submitted to NIST and passed to the second round.

In general, to instantiate a R-LWE key exchange scheme, it’s necessary to instantiate the
three components described above. Specifically, it’s necessary to instantiate a ring R with
dimension d and an error distribution on R. Most schemes described either use a Gaussian
[Bos+16; Bos+14] or binomial [Alk+15; Bos+17] distribution over R. Finally, the scheme must
also propose a concrete way to encode and decode the information to create a shared key.
Figure 4, presented in [Ham19], illustrates the general M-LWE key exchange scheme.

Figure 4: Image showing a general framework for M-LWE key exchange. The image was taken from
[Ham19].

The scheme presented in the image is generalized for a value d, ring R, distribution χ

and functions encode and round. When using a polynomial ring Rq = Zq[X]/(XD + 1) with
dimension d = 1 and degree D, matrix M becomes a 1× 1 matrix, i.e., M is essentially a
polynomial in Rq, and so are values a and ea, sampled from ring Rq with a certain probability
distribution. Therefore, when d = 1 and R is the described ring of polynomials, A = Ma + ea

is a polynomial, which in the proposed schemes usually represents Alice’s public key. Bob’s
B follows the same logic.

Each algorithm can describe its own strategy to derive an exact shared secret k from
the approximate values both Alice and Bob obtain using each other’s public keys. As an
example, in the NewHope scheme variant proposed in [Alk+16], Bob encodes the random
value m represented in the image by encoding each of its bits into coefficients of a polynomial
with 1024 coefficients (mapping 1 bit into four coefficients), and the round function Alice
uses is the decoding function that recovers the secret m from the ciphertext by recovering
each bit previously encoded.
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3.6 the newhope key exchange

Of all key exchange schemes mentioned in chapter 2, the NewHope scheme (and its simple
variant) is arguably one of the best suited for integration. It checks most conditions for a
good algorithm to effectively ”replace” a classical algorithm on TLS, except, in some extent,
for the simplicity of the algorithm. In fact, the authors themselves created a simplified
version with no cost on security exactly to provide a variant that is simpler to implement,
because it no longer uses the reconciliation mechanism of the NewHope scheme.

There is also the fact that it was already integrated by Google on its post-quantum
experiment, and that its precursor, the BCNS scheme from [Bos+14], was already successfully
integrated on TLS by its authors to test its viability. Furthermore, it is quite simple to describe
when compared with other algorithms like Kyber.

Alkim et al. propose a concrete set of parameters for instantiation, making use of a
polynomial ring Rq as defined in section 3.3, where q = 12289 and n = 1024.

The error distribution from where ”small” polynomial are sampled, as was pointed out
before, is not Gaussian, but instead a centered binomial distribution with parameter k = 16
and variance σ2 = k

2 . The authors prove in [Alk+15] that for the same standard deviation
(
√

16/2), the effect on security from using a binomial distribution instead of a rounded
Gaussian is negligible.

Table 4 shows the whole key exchange scheme as described by the authors in [Alk+15].

Parameters: q = 12289 < 214, n = 1024
Error distribution: ψ16

Alice Bob

seed $←− {0, 1}256

a← Parse(SHAKE128(seed))

s,e $←− ψn
16 s′, e′, e′′ $←− ψn

16

b← as + e
(b,seed)−−−−→ a← Parse(SHAKE128(seed))

u← as′ + e′

v← bs′ + e′′

v′ ← us
(u,r)←−− r $←− HelpRec(v)

v← Rec(v′, r) v← Rec(v, r)
µ← SHA3-256(v) µ← SHA3-256(v)

Table 4: The proposed NewHope key exchange scheme in [Alk+15].

Every variable in bold notation denotes a polynomial, so as to follow the notation used in
[Alk+16].

The polynomial a, which is generated for each session, results from the parsing of the
output of the extendable output function (XOF) SHAKE128 mentioned before. The function
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Parameters: q = 12289 < 214, n = 1024
Error distribution: ψ16

Alice Bob

seed $←− {0, 1}256

â← Parse(SHAKE128(seed))

s,e $←− ψn
16 s, e′, e′′ $←− ψn

16
ŝ← NTT(s)

b̂← â ◦ ŝ + NTT(e)
ma=encodeA(seed,b̂)−−−−−−−−−−−→ (b̂, seed)← decodeA(ma)

â← Parse(SHAKE128(seed))
t̂← NTT(s′)
û← â ◦ t̂ + NTT(e′)
v← NTT−1(b̂ ◦ t̂) + e′′

(û, r)← decodeB(mb)
mb=encodeB(û,r)←−−−−−−−−− r $←− HelpRec(v)

v′ ← NTT−1(û ◦ ŝ)
v← Rec(v′, r) v← Rec(v, r)

µ← SHA3-256(v) µ← SHA3-256(v)

Table 5: A more complete description of the NewHope scheme with NTT and encoding functions
(also presented in [Alk+15])

.

outputs 16-bit integers which are then either accepted as a valid number for a coefficient of
a, if the value is smaller then 5q, or rejected otherwise.

The public key b = a ∗ s + e, where s, e were sampled according to the binomial
distribution, is sent to the other peer (Bob), as well as the seed used to generate polynomial
a.

The other peer (Bob) then calculates u = as′ + e′, its public key, and v = bs′ + e′′, its
approximate shared key, where s′, e′, e′ are also sampled in the binomial distribution. The
exact shared key is calculated by using the reconciliation mechanism aforementioned, first
by calculating the reconciliation information r and sending both u and r back to Alice.
Alice then computes v′ = us and then retrieves v by using r and v′ as parameters for the
reconciliation function. Bob uses his approximate key v and the same value r to derive the
same exact value v. The shared key is finally calculated by hashing v with SHA-256.

A more complete and implementation oriented description of the protocol is presented
in table 5. Whenever possible, polynomials are kept in their NTT format, so as to increase
the overall efficiency of the scheme. The polynomial a can also be sampled directly in the
NTT format, increasing performance by skipping the need to compute the transform after
sampling.

The NewHope-Simple scheme is identical in most ways, but has a different mechanism
for deriving an exact key, greatly simplified in this variant. Instead of using functions
Rec and HelpRec to achieve a shared key, it relies on 4 functions: NHSEncode, NHSDecode,
NHSCompress and NHSDecompress. Definitions of these functions as presented in [Alk+16]
can be seen in algorithms 1, 2, 3 and 4, respectively.
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Algorithm 1 NHSEncode

Input: v ∈ {0, 1}256

Output: k ∈ Rq
1: k← 0
2: for i = 0, i < 256 do
3: ki ← vi.b q

2c
4: ki+256 ← vi.b q

2c
5: ki+512 ← vi.b q

2c
6: ki+768 ← vi.b q

2c
7: end for
8: return k

Algorithm 2 NHSDecode

Input: k′ ∈ Rq
Output: v ∈ {0, 1}256

1: v← 0
2: for i = 0, i < 256 do
3: t← ∑3

j=0 |vi+256.j − b q
2c|

4: if t < q then
5: vi ← 1
6: else
7: vi ← 0
8: end if
9: end for

10: return v

Algorithm 3 NHSCompress

Input: c ∈ Rq
Output: c̄ ∈ {0, ..., 7}1024

1: for i = 0, i < 1024 do
2: c̄i ← b(c′i.8)/qe mod 8
3: end for
4: return c̄

Algorithm 4 NHSDecompress

Input: c̄ ∈ {0, ..., 7}1024

Output: c̄ ∈ Rq
1: for i = 0, i < 1024 do
2: c′i ← b(c̄i.q)/8e
3: end for
4: return c′
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While the essential information about the purpose of these functions was mostly given in
chapter 2, it is provided again here for convenience.

The NHSEncode function encodes a single bit into 4 polynomial coefficients, effectively
”transforming” a 256-bit value in a polynomial in Rq. The opposite function NHSDecode
takes the same four coefficients and maps them into a single bit again.

The NHSCompress function takes as input a polynomial in Rq and outputs another
polynomial with coefficients modulo 8, and its counterpart NHSDecompress does the exact
opposite, outputting a polynomial in Rq using a polynomial with coefficients modulo 8 as
input.

3.7 the glyph signature scheme

The GLYPH scheme proposed in [Cho17] is an improvement on the older GLP scheme from
[GLP12]. The improvements come from a new set of parameters that provide 128 bits of
security, and a new compressing and rounding function.

Parameter choice for the GLYPH scheme is as follows: n = 1024, q = 59393, B = 16383
and ω = 16.

As with most signature schemes, GLP/GLYPH is composed of three main functions:
Key Generation, Sign and Verify. The pseudo-code, as described in [Cho17], is presented
respectively in algorithms 5, 6 and 7.

Algorithm 5 Key Generation

Input: a ∈ Rq
Output: Key pair (r, t) (r is private and t is public)

1: s, e $←− Rq,1
2: t← a ∗ s + e
3: r ← (s, e)
4: return (r, t)

The polynomials s, e are uniformly sampled from Rq,1, which means the absolute value
of each coefficient must not exceed, in this case, 1, when considering the coefficients in the
form of [− (q−1)

2 , (q−1)
2 ] mod q.

All other operations, such as polynomial multiplication, are the same as with the NewHope
scheme.

Functions F and H are essential to ensure the scheme behaves correctly. H represents a
hash function which must output a string of a fixed length for any arbitrary output, while
being capable of securing at least 128 bits of security. The authors use SHA-256 for this
purpose, since it matches these requirements. F is an encoding function that maps the result
from the hash function to a polynomial which has at most ω coefficients different than zero,



3.7. The GLYPH signature scheme 36

Algorithm 6 Sign

Input: Message µ, private key (s, e), public a, public key t
Output: Signature (z1, z2, c)

1: y1, y2
$←− Rq,B

2: c′ ← H(ba ∗ y1 + y2cB−ω|µ)
3: c← F(c′)
4: z1 ← s ∗ c + y1
5: z2 ← e ∗ c + y2
6: if (‖z1‖∞ or ‖z2‖∞) > (B−ω) then
7: Start over from step 1

8: end if
9: z2 ← Compress2((a ∗ z1 − t ∗ c), z2)

10: return (z1, z2, c)

with values either -1 or 1. As was mentioned in chapter 2, in the original scheme [GLP12] the
authors used a fixed value ω = 32 and outputted the resulting polynomial using a specific
function F for the purpose. The authors in [Cho17] used a different approach (using AES in
counter mode) that allowed them to use a variable ω, making the scheme more flexible.

Algorithm 7 Verify

Input: Message µ, signature (z1, z2, c), public a, public key t
Output: v ∈ {0, 1}

1: if (‖z1‖∞ or ‖z2‖∞) > (B−ω) then
2: return 0

3: end if
4: d′ ← H(ba ∗ z1 + z2 − t ∗ ccB−ω|µ)
5: d← F(d′)
6: if (d = c) then
7: return 1

8: else
9: return 0

10: end if

The pseudo-code from the compressing function, called compress2 by the authors so as
to distinguish it from the compress function from the GLP scheme, as well as for auxiliary
function CompressCoefficient, can be seen respctively in algorithms 8 and 9. Both algorithms
are present in [Cho17].

The function b.cK (K-floor function), as is defined by the authors, is to be used instead of any
rounding in K present in the GLP scheme. For any integer x, bxcK = (x mod q)/(2K + 1).
Using the K-floor function on a polynomial is equivalent to using it on each coefficient
individually.
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Algorithm 8 Compress2

Input: y ∈ Rq, z ∈ Rq,K
Output: z′ ∈ Rq,K

1: for i = 0, i < n do
2: z′i = CompressCoe f f icient(yi, zi)
3: end for
4: return z’

Algorithm 9 CompressCoefficient

Input: y ∈ [0, q[, z ∈ [−K, K]
Output: z′ ∈ {−K, 0, K}

1: if (by + zcK) = byck then
2: return 0

3: end if
4: if (y ∈ [0, K[) then
5: return -K
6: end if
7: if (y ∈ [q− K, q[) and (z > 0) then
8: return K
9: end if

10: if (by + zcK) < byck then
11: return -K
12: end if
13: return K
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3.8 the dilithium signature scheme

When it comes to integrating signature algorithms that were submitted to NIST, and therefore
are viable candidates for future standardization, there are two schemes based on the LWE
problem that currently pose as good options: qTesla and Dilithium. The reason Dilithium
was chosen instead of qTesla as the algorithm to integrate on OpenSSL is simply because
qTesla was already implemented in the master branch of the Open Quantum Safe Project. By
adding Dilithium, these two LWE based schemes currently on the second round of the NIST
post-quantum project can be used and tested on TLS using the Open Quantum Safe Project.

Dilithium is defined by a set of parameters that vary depending on the security level. The
recommended set, as is said in the Dilithium web page, provides around 128 bits of security
for all known classical and quantum attacks. The authors point out in [Duc+17a] that some
elements, such as the ring from which every polynomial is sampled, are always the same for
each level of security. The parameter q = 223 − 213 + 1 = 8380417, as well as parameters that
directly depend only on q, are also constant for every security level.

The recommended parameter set to be used with Dilithium, in order to achieve about 128

bits of security, is represented in table 6:

Parameter Value Description
n 256 Degree of polynomial ring
q 8380417 Ring modulus
d 14 Parameter used to divide public key t into t1 and t0

weight of c 60 Number of non-zero coefficients (±1) in polynomial c
γ1 = (q− 1)/16 523776 Upper-bound for coefficients of polynomials in v

γ2 = γ1/2 261888 Upper-bound used when calculating w1
(k,l) (5,4) Dimensions for public matrix A

η 5 Upper-bound for the every polynomial coefficient in s1 and s2

β 275 Upper-bound for the coefficient of csi, with i ∈ 1, 2
ω 96 Upper-bound for the number of 1’s in the hint

Public key 1472 Public key size in bytes
Secret key 3504 Secret key size in bytes
Signature 2701 Signature size in bytes

Table 6: Table showing the values for Dilithium’s recommended parameter set, as well as key and
signature sizes. A more complete table, showing parameters for each security level, as well
as information regarding performance and bit security, can be consulted in [Duc+17a].

The main functions in Dilithium, namely Key Generation, Sign and Verify, can be seen in
algorithms 10, 11 and 12 respectively.

Key generation involves, essentially, generating a random matrix A with dimensions k× l,
two vectors s1 and s2 and using those elements to produce public key t. As was mentioned
previously in 2.2.2, each of these elements has polynomials in Rq as coefficients, instead of
elements of Zq.

Matrix A is generated as the output of the ExpandA function, which takes a 256-bit seed ρ

and generates polynomials in their NTT domain.
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Algorithm 10 Key Generation

Input:
Output: Keypair (pk, sk)

1: ρ
$←− {0, 1}256

2: K $←− {0, 1}256

3: (s1, s2)
$←− Sl

η × Sk
η

4: A ∈ Rk×l
q := ExpandA(ρ)

5: t := As1 + s2
6: (t1, t0) := Power2Roundq(t, d)
7: tr ∈ {0, 1}384 := CRH(ρ||t1)
8: return (pk = (ρ, t1), sk = (ρ, K, tr, s1, s2, t0))

The Power2Round function is responsible for dividing vector t into its high order and low
order bits, producing, respectively, t1 and t0. Using t1 and ρ, a new pseudo-random 384-bit
value tr is produced, as the output of a collision-resistant hash function CRH. That value
partially responsible for the randomness of the signature scheme, for a certain pair of keys.
The is also another pseudo-random seed K generated in the key generation process, which
will be used as another source of randomness for the signing process.

The signature algorithm (11) receives the message to be signed and the secret key and
outputs a signature σ = (z, h, c).

As is the case for every function, matrix A is generated from the seed ρ, which comes as a
part of the secret key (but also the public key). The message is then concatenated to tr that is
part of the secret key, and the result serves as input for the collision-resistant hash function
CRH, which outputs a 384-bit value µ. This value is dependent on the message itself, and is
always the same for the same secret key and message.

After obtaining µ, the next step is generating vector v, from which every coefficient is an
element of Sγ1−1. The function ExpandMask receives as input the 256-bit pseudo-random
value K, which is part of the secret key, concatenated with µ and a counter, incremented
with each unsuccessful signature, to produce the vector v. Internally, it uses SHAKE-256 to
generate coefficients for each polynomial in v. Because the counter value is never takes the
same value twice, signatures produced by different iterations will also be different, until
one is considered valid. In the updated version of the paper [Duc+17b], the possibility to
produce randomized signatures was introduced. In this variant, the only modification to
the algorithm is in the signing procedure, which, instead of having the concatenation of
K and µ as input to ExpandMask, the function receives either the result of first passing the
concatenation through a collision-resistant hash function (non-randomized version, since
it still depends on the key and message) or a completely random string of bits 384 bits
(randomized version). The altered parts can be seen in algorithm 13.
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Algorithm 11 Sign

Input: Secret key sk, message M
Output: Signature σ = (z, h, c)

1: A ∈ Rk×l
q := ExpandA(ρ)

2: µ ∈ {0, 1}384 := CRH(tr||M)
3: κ := 0, (z, h) := ⊥
4: while (z, h) = ⊥ do
5: y ∈ Sl

γ1−1 := ExpandMask(K||µ||κ)
6: w := Ay
7: w1 := HighBitsq(w, 2γ2)

8: c ∈ B60 := H(µ||w1)
9: z := y + cs1

10: (r1, r0) := Decomposeq(w− cs2, 2γ2)

11: if ‖z‖∞ ≥ γ1 − β or ‖r0‖∞ ≥ γ2 − β or r1 6= w1 then
12: (z, h) := ⊥
13: else
14: h := MakeHintq(−ct0, w− cs2 + ct0, 2γ2)
15: if ‖ct0‖∞ ≥ γ2 or # of 1’s in h > ω then
16: (z, h) := ⊥
17: end if
18: end if
19: κ = κ + 1
20: end while
21: return σ = (z, h, c)
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The Decompose function is another function used to generate the higher and lower order
bits of a given element in Zq, and it’s used in, for example, the HighBits and LowBits
functions. It is also used to generate the high and low order bits of w− cs2. The high order
bits must be equal to the high order bits of w, calculated by the HighBits function.

The MakeHint and, as a counterpart, UseHint, respectively generate the hint vector h from
w− cs2 and use the hint to recover the higher bits of Az− ct1. As is pointed out by the
authors, w− cs2 = Az− ct, and so the higher bits of w must be the same as the higher bits
of Az− ct. Since in this scheme t is no longer present, the hint allows to recover the missing
lower bits t0 and calculate the high bits of Az− ct1.

Algorithm 12 Verify

Input: Public key pk, message M, signature σ = (z, h, c)
Output: Accept or Reject

1: A ∈ Rk×l
q := ExpandA(ρ)

2: µ ∈ {0, 1}384 := CRH(CRH(ρ||t1)||M)
3: w′1 := UseHintq(h, Az− ct1 · 2d, 2γ2)
4: return ‖z‖∞ < γ1 − β and c = H(µ||w′1) and # of 1’s in h ≤ ω

Algorithm 13 Sign (changes from new version)

Input: Secret key sk, message M
Output: Signature σ = (z, h, c)

1: ...
2: κ := 0, (z, h) := ⊥
3: if randomize then
4: ρ′

$←− {0, 1}384

5: else
6: ρ′ ∈ {0, 1}384 := CRH(K||µ)
7: end if
8: while (z, h) = ⊥ do
9: y ∈ Sl

γ1−1 := ExpandMask(ρ′||κ)
10: ...
11: end while
12: ...

The verification function (12) simply generates matrix A and µ from the public key (which
contains ρ and t1) and the message, and then tries to calculate w′1 as the higher bits of
Az− ct1, using the hint received in the signature as was mentioned above. The signature is
accepted if no coefficient in z is larger than the specified bound γ1 − β, the number of 1’s in
h doesn’t exceed a certain bound as well and if the has used to calculate c in the signature
function outputs the same c when given w′1 concatenated with µ as input.
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I N T E G R AT I O N O N T H E O P E N Q UA N T U M S A F E P R O J E C T

The Open Quantum Safe Project [SM16] is an open source project that aims at testing
different post-quantum key exchange and signature algorithms, by providing a library that
can be used in general applications and integrated in the TLS protocol to test its usability.

The project is divided in essentially two distinct parts: the general purpose cryptographic
library liboqs, which contains a consistent API for every implemented post-quantum
algorithm, and can be used as a regular C library in most applications, and the integration
of this library in other projects, such as OpenSSL and OpenSSH. In order to integrate a
new post-quantum algorithm on OpenSSL using the Open Quantum Safe liboqs library, it’s
necessary to first add the new algorithm to liboqs and then modify the OpenSSL source
code with the necessary changes. It is noteworthy that the OpenSSL source code used
for the implementation is not the original, unmodified source code from the OpenSSL
project’s master fork, instead being a different fork with several modifications from the Open
Quantum Safe Project authors. However, these modifications do not alter any of the already
established OpenSSL core functionalities, adding instead new ones from the liboqs library.

Open Quantum Safe already integrates several post-quantum algorithms in its current
version, both key exchange schemes and digital signatures (depending on the fork). As a
requisite to add a new algorithm, it must have been submitted to the NIST Post-Quantum
Cryptography Standardization Process, as well as have passed to the current round, which
means that every algorithm already integrated in the current version meets these criteria.

Currently, two different branches of the same project are maintained: the master branch
and the nist branch. Both implement several algorithms submitted to NIST, but only the
master branch can be used to use digital signatures on TLS. Thus, all the focus in this
thesis is given to the master branch, since the other cannot be used to integrate the added
algorithms on TLS via the authors’ OpenSSL fork.

As of this writing, both CRYSTALS-Dilithium and NewHope have made it to the second
round of the NIST Post-Quantum Cryptography Standardization Process, which means both
are eligible to be included in liboqs.

While Dilithium was still not included on the master branch of the Open Quantum
Safe Project, the same was not true for NewHope. Before considering using this project

42
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to add post-quantum algorithms to OpenSSL, NewHope was selected as the best key
exchange algorithm to integrate for the reasons described in chapter 2. However, this project
already included an integration of NewHope (more precisely, NewHope-Simple), making it
unnecessary to add this scheme in order to test it. Therefore, in order to allow for the testing
of a new algorithm, based on M-LWE (and actually based on NewHope and Kyber, which
was also present in liboqs), the new key exchange algorithm that was added was ThreeBears
[Ham19], which also passed to the second round of the NIST Post-Quantum Cryptography
Standardization Process. The integration process is similar, since it mostly requires adding a
wrapper to existing code (preferably, the code submitted to NIST).

Because of the unexpected circumstances, the algorithms actually integrated on Open
Quantum Safe were Dilithium and ThreeBears. However, the process of integration is mostly
independent from the algorithm itself, especially if the code already comes supporting the
NIST API.

Since the source code for Dilithium and ThreeBears submitted to NIST already has an API
consistent to some of the other algorithms implemented in liboqs, as was mentioned before,
the integration consists mainly on creating a wrapper around the existing code (created by
the authors that submitted the algorithm) to make the core functionalities accessible through
the liboqs general interface. The objective in this approach is to allow any application already
using liboqs to also be able to use Dilithium or ThreeBears with the same interface without
having to do anything else other than recompiling the library.

This chapter aims at describing every step taken to integrate the standalone source code for
Dilithium and ThreeBears submitted to NIST into liboqs. After completing the integration,
any C program compiled with the liboqs library that includes the main header file for liboqs
(oqs.h) should be able to use any one of the algorithms implemented, including the new,
recently added ones.

All integrations, both in the liboqs library and on the OpenSSL fork, were added and
compiled on Ubuntu 18.04.

4.1 the open quantum safe api

As was mentioned before, liboqs provides a general interface to use several algorithms.
Whether the algorithm is a key exchange or a digital signature, the first step when starting

a new context is creating a structure that holds that context throughout the entire process.
Depending on the type of algorithm, that structure can be either an oqs sig or an oqs kem.
Both structures contain several algorithm specific variables like key and ciphertext lengths,
as well as the algorithm that is currently being implemented, its version and NIST claimed
security level. Both structures also contain three pointers to functions which are specific to
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the algorithm being used. oqs sig contains pointers to keypair, sign and verify functions,
and oqs kem has pointers to keypair, encaps and decaps functions.

After initializing a context oqs sig or oqs kem with the oqs sig new or oqs kem new
functions respectively, both the private and public keys can be created by calling the keypair
function inside the structure, or by using the oqs sig keypair or oqs kem keypair functions
passing the corresponding structure as a parameter. The sign, verify, encaps and decaps
functions can be used in very much the same way. Each function returns a value that informs
of its success: 0 for successful, -1 for unsuccessful and 50 for error related to external libraries
like OpenSSL. All values are part of an enum structure called oqs status.

When trying to use liboqs to experiment with cryptographic functions, the interface
described above is sufficient to try different algorithms and test their overall performance
and viability. There are other functions that are important to consider, especially when
trying to use this library to add post-quantum cryptography to existing applications, such
as oqs mem secure free and oqs mem insecure free, to free secret and non-secret data
respectively, so that secret information doesn’t stay in memory any longer than it needs to,
and to prevent memory leaking. There are also standalone implementations of both AES and
SHA3 algorithms, that can be used by an external application or by the schemes implemented
in the library, instead of using external libraries, such as OpenSSL, to implement the same
functionalities.

4.2 source code

Source code for any algorithm implemented in liboqs can be found under the src folder in
the root directory of the project (which can be downloaded from the author’s repository1).
Inside this folder there are four other folders, each containing implementations for a specific
type of algorithm. The common folder contains memory freeing functions and random
generators, while the crypto folder contains the AES and SHA3 implementations (SHA3

includes general fixed length output functions like SHA3-256 but also the SHAKE functions
that produce variable length outputs). While worthy of mention, simply because these
functions can be used without needing to use the post-quantum functionalities from this
library, no modifications needed to be made to these two folders, since the post-quantum
algorithms are implemented in the other two, namely sig and kem. Finally, src also contains
a header file oqs.h which includes every main header file needed to use the library. When
an application uses the liboqs library, this is the only file that needs to be included with the
include directive, since every other header will be included as well.

The sig directory, as the name itself hints, is where every post-quantum digital signature
algorithm is implemented. Therefore, the source code for any new signature scheme must

1 https://github.com/open-quantum-safe/liboqs
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be added under this directory, as well as the wrapper that provides a common interface
with every algorithm already present.

Similarly, the kem directory contains the code for every key exchange scheme. To add a
new one, the source code and wrapper must be included under this directory.

Initially, each of these folders contained multiple sub-folders, one for each algorithm
implemented. Since this integration was accomplished in the master branch of the Open
Quantum Safe Project, there were two algorithms implemented in sig and five in kem.
Besides these sub-folders, there are also two source code files under both sig and kem: sig.c,
sig.h, kem.c and kem.h. The sig.h header file contains a number of very important API
definitions, such as the struct oqs sig, already briefly introduced in section 4.1, the function
oqs sig new which initializes the structure with the given algorithm (and also oqs sig free,
which frees memory allocated for oqs sig), the general functions for key generation, signing
and verifying messages and also definitions of constants containing every algorithm’s name,
as well as the number of algorithms supported and which algorithm should be used by
default, in case none is specified. The sig.c file implements the functions declared in sig.h.
The source files kem.c and kem.h are analogous.

The source files described contain general functions and variable declarations that serve as
a wrapper to the individual implementation of each algorithm. The actual implementation
code for each algorithm is organized under a dedicated folder. For instance, the folder qtesla
under src/sig contains all code related to the actual implementation of the qTesla algorithm.
So, in order to add a new algorithm, the standard procedure would be to create a new folder
for that algorithm and include all source code inside. After having the source code correctly
implemented, some changes would have to be made in sig.c and sig.h (or kem.c and kem.h)
to include the new algorithm in the general API functions, allowing its use in an external
application to be the exactly the same as with any other algorithm in the library.

4.3 algorithm integration

To integrate an external algorithm, implemented in C, in liboqs, as was mentioned in the
previous section, it is first necessary to create a new folder under its respective sub-folder.
For a digital signature, the sub-folder would be /src/sig.

Because the general structure of the liboqs API is very similar between signatures and key
exchange schemes, this section will describe the integration process for Dilithium. Adding
the new key exchange mechanism is quite similar to adding a signature, and thus most of
the steps will be identical.

For Dilithium, the sub-folder created under src/sig was simply named dilithium. Following
the examples already present in liboqs, namely the qTesla integration, the dilithium folder
contains 3 files, sig dilithium.c, sig dilithium.h and Makefile.am, and a sub-folder, named
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external, which contains the low level code implementation. The Makefile.am file contains
information about the files needed to build the project with Dilithium, and is used to create
a Makefile using automake.

When invoking the oqs sig new function to create a new oqs sig context, internally the
function is comparing the name of the algorithm provided as a parameter to any known
algorithm in the library. If it finds a match, it will then invoke a function specific to that
algorithm that creates an oqs sig context with all variables initialized, such as the name, the
specific key and signature lengths and the keypair, sign and verify function pointers. For
Dilithium, the function’s name is oqs sig dilithium new, and is defined in sig dilithium.c,
analogously to other signature algorithms. It allocates an oqs sig structure and initializes
it with Dilithium’s parameters, returning it in the end to the invoking function (usually
oqs sig new).

The sig dilithium.h file, which is included by sig dilithium.c, contains macro definitions
for the length of both keys and the signature, values that are needed to create the oqs sig

struct. It also contains the declaration of oqs sig dilithium new and the Dilithium keypair,
sign and verify functions, which follow the naming convention (in liboqs) oqs sig x y, where
x is the name of the algorithm and y the function’s name (keypair, sign and verify). So, for
example, in case the implemented algorithm is Dilithium, the key generation function is
oqs sig dilithium keypair.

As was previously mentioned, the algorithm’s three core functionalities (key generation,
signing and verifying), as well as every auxiliary function, are implemented inside the
external folder. The source code inside can be arranged in multiple ways, since there isn’t
a mandatory structure as to how functions need to be named or how variables need to
be declared, except when dealing with the return values and parameters of the three core
functions already defined in sig dilithium.h. Generally, when trying to import an already
existing algorithm, as was the case with Dilithium, there shouldn’t be too many alterations
that need to take place in order to correctly integrate the algorithm on liboqs, as long as the
keypair, sign and verify functions follow the correct structure.

With the Dilithium integration, since the implementation used was that which was
submitted by the authors to NIST, the three functions already had an interface very similar
to the interface from other signature algorithms in liboqs, which use the interface from NIST
submissions2.

Inside the external folder, there are three main files that implement the core functionalities:
dilithium.c, dilithium.h and dilithium api.c (names follow the naming process of other
algorithms, such as qTesla). The dilithium.h file declares the same three functions declared
in sig dilithium.h, and is included by dilithium.c, which then implements said functions. It

2 There was only one difference, structurally, that had to be changed to allow the inclusion of Dilithium on TLS,
which was the fact that the signature variable also contained the concatenated message, therefore always needing
to be allocated with the static signature length parameter and an increased size for the message.
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is worth mentioning that these three functions, which are the functions that will be called
when using the oqs sig structure, still follow the naming convention from liboqs, possess the
same parameters, and return the same values, no matter which algorithm is implemented.

Any one of these functions serve only as a sort of wrapper to the actual algorithm-specific
code. The dilithium.c file then serves as a connection between this interface and the
actual functions that implement the algorithm. Figure 5 shows how this connection was
implemented in liboqs, following the example from the qTesla implementation.

Figure 5: Wrapper code for Dilithium core functionalities.

The crypto sign keypair, crypto sign and crypto verify functions contain the actual
code implementation for each core functionality. Thus, they are algorithm-specific. The
implementation for these three functions is located in dilithium api.c.

For the integration of an algorithm to work properly with the established interface in
liboqs, it is only necessary to follow the interface up to the point shown in picture 5, i.e., to
the point where the bridge between the low level implementation and the interface for a
certain algorithm is established. Ways to organize the low level code may vary (assuming the
organization is properly done and doesn’t impact security), since any programmer using the
liboqs API will probably not have to worry about low level implementations at all, similarly
to what happens with any programmer that uses the OpenSSL libcrypto library to access
cryptographic primitives.

For Dilithium specifically, the core functions are implemented in dilithium api.c, and
auxiliary functions, such as polynomial multiplication, random generators and other variable
definitions (such as the definition of a polynomial type) all are implemented in specific,
separate source files. Almost all of the source code’s structure was maintained when
integrating Dilithium’s standalone implementation, with only a few modifications needed to
properly connect it with the liboqs interface and with OpenSSL. One important modification
was changing the return values from crypto sign keypair, crypto sign and crypto verify. As
was mentioned in 4.1, even though in practical terms all keypair, sign and verify functions
on liboqs return integer values of 0 or -1 (and exceptionally 50 when an external library
error occurs), these belong to an enum type called oqs status that maps them, respectively,
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to the names oqs success, oqs error and oqs external lib error openssl. To maintain
consistency, the low level functions return values are all of type oqs status, which means
the possible return values are 0, -1 or 50. This return value is carried through all functions
in the API and can be obtained by the programmer to check for the success or failure
of the signature process. Another main modification applied to the source code from the
standalone implementation was making the three core functions static, as is done in the other
signature algorithms in liboqs, which is a necessary step to avoid conflicting function names,
since each signature algorithm implementation can, and in fact contains, functions with
the same names. The function crypto sign, for example, exists in both dilithium api.c and
qteslai api.c. Making these functions static avoids conflicts between them, while allowing
for the same name to be used for consistency of implementation.

As was mentioned, there is no practical opposition to organizing auxiliary code in different
manners, but it is important to note that if functions or declarations in general are not static,
then it becomes necessary to assure that declarations and function names do not conflict
with any other that exists in liboqs that is also not static.

The last file in the dilithium directory, briefly mentioned before, is Makefile.am, which is a
file used to automatically generate the Makefile to compile the added source code into the
liboqs library. This file specifies the source code files necessary to build the new algorithm
into the liboqs library, as well as some flags that are to be used. In this concrete case, the
Dilithium Makefile.am file is extremely simple, following the example from qTesla. Figure 6

shows the Dilithium Makefile.am file.

Figure 6: Contents from Makefile.am under src/sig/dilithium.

This file will be used by automake to generate Makefile.in, which in turn will be used by
configure to generate a Makefile. The process is automatic, and thus adding a new algorithm
only involves creating the Makefile.am file.

One important aspect to note is that there are only two source files represented in
Makefile.am, the reason being that dilithium.c includes the source file dilithium api.c and
all auxiliary files directly. This approach allows the use of static auxiliary functions, and
closely follows the approach with qTesla3.

3 With certain key exchange schemes on liboqs, the authors employ a different way of having functions with the
same name without being static, by renaming them for each algorithm using macros. That approach, however, is
not mandatory, and thus the ThreeBears integration also uses static functions to avoid function naming conflicts.
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Right up to this point, every modification or addition documented has been related to
files specific to Dilithium, inside the dilithium folder. However, as was mentioned before in
4.2, there are still some files outside of the actual implementation that need to be modified,
such as sig.c and sig.h.

The sig.h file defines a macro for the name of each algorithm implemented in liboqs (a
set including Dilithium now). So, to give Dilithium a name to be recognized inside the
library, a new macro needs to be defined for this algorithm. There is also a macro that
defines how many signature algorithms there are, which is important, for instance, for the
function oqs sig alg identifier, which returns the name of a signature algorithm given an
integer number. Therefore, that number should be incremented for each signature scheme
added to liboqs. The last modification needed is adding the include directive to include the
sig dilithium.h file.

Modifications to sig.c follow the same line. First of all, it is necessary to add Dilithium to
oqs sig alg identifier, since there is now a new unique algorithm. It is also necessary to alter
the oqs sig new function. When receiving a certain algorithm name, the function will try to
compare that name with every macro defined in sig.h (non-case sensitive), trying to find a
match. If a match is found, then that algorithm’s specific function for initializing oqs sig

will be invoked. For Dilithium, that function is defined in sig dilithium.h and implemented
in sig dilithium.c. So, in order to be able to initialize an oqs sig context with oqs sig new,
there needs to be a new condition trying to match the name provided as a parameter and
Dilithium’s macro defined in sig.h. In case of success, the proper function to initialize
oqs sig with Dilithium will be called and the structure will be returned.

As far as modifications to the source code to include Dilithium go, there isn’t anything
else that needs to be done. However, for the purpose of this project, there were other small
modifications to the source code that were implemented, to aid the integration with Python’s
cryptography package. Those will be addressed in more detail in section 4.4.

The final changes to Open Quantum Safe that need to be made to add Dilithium take
place outside the src folder that, so far, has been the only folder described in more detail.
However, there are other files that need to be altered to complete the integration.

In no particular order, the first file is features.m4, under the config directory. This file is
responsible for defining which algorithms will be activated at compile time. To activate
Dilithium, there are a couple of alterations that need to take place. Figure 7 shows the first
modification that must be added.
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Figure 9: Line added to configure.ac.

Figure 7: First modification in features.m4.

The second modification is presented in figure 8.

Figure 8: Second modification in features.m4.

As can be seen, the necessary changes closely follow the example of previous schemes
already present in liboqs.

The second file that needs to be altered is configure.ac, which can be found in the root
directory of the project. There is only one line that must be added here, which also closely
follows all other algorithms, and which specifies where the Makefile for Dilithium can be
found. Figure 9 shows the added line.
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The final modification needed to compile the library is in the Makefile.am file, located in
the root of the project. There are three changes to be applied here. The first one is adding
the location of the libdilithium.la, inside the dilithium directory. The second is adding the
sig dilithium.h header file to the list of headers to install and the third and last change is
adding an instruction to copy the sig dilithium.h header file to include/oqs (the directory
from where header files will be included when using the API). Figures 10, 11 and 12 show
these alterations.

Figure 10: Alteration to add libdilithium.la location.

Figure 11: Alteration to add header file.
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Figure 12: Alteration to copy header file to include directory.

After applying every modification needed to integrate Dilithium, the last step is simply
to build the project using the commands from the README.md file included in the root
directory of the project.

After building the project, any C program which included oqs.h and is compiled with the
-loqs flag should be able to use the API from liboqs, including any new algorithm that was
correctly integrated.

By following the build commands from README.md, the liboqs library is installed as
a general library to be used in various applications. However, the authors provide in the
README.md file in the separate OpenSSL fork project a slightly different list of commands
that aim at installing the liboqs in a sub-directory inside the OpenSSL source code diretory.
Both commands are shown in figures 13 and 14.

Figure 13: Standard commands to build liboqs library.

Figure 14: Commands to build liboqs library as a sub-folder in OpenSSL.

Since the main purpose of integrating Dilithium in liboqs is to use it on OpenSSL, the
commands to use would be those of figure 14.
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Because of the way the liboqs works, each algorithm integrated has a fixed parameter
set, i.e., fixed key and signature lengths, fixed polynomial degrees and other parameters
that describe the scheme. The Dilithium ”version” that was first integrated was the
recommended4 version. However, in order to test how different different parameters
affect the scheme’s efficiency, the version with the strongest parameter set was also included.
Including a new version with different parameters is similar to including a new algorithm,
except that the file implementing the low level code (dilithium api.c) can be the same, since
it essentially contains the algorithm specific implementation of the keypair, sign and verify
functions, which doesn’t change for each parameter set.

4.4 integration on python’s cryptography package

Integrating a new algorithm on liboqs means it will from then on be available for usage as
part of the liboqs API, provided the addition was accomplished correctly.

Just as a C program can make use of OpenSSL’s libcrypto to use a number of different
cryptographic primitives by including the -lcrypto flag when compiling the source code, the
same can be done using the -loqs flag, which links the library to the program that uses the
API. Because Python’s cryptography package uses external libraries to implement its own
functionalities, using what is called as a ”backend”, it is entirely possible to include in the
package new functionalities that come from a new external library.

While in previous versions there was support for multiple backends, currently the
cryptography package only supports the OpenSSL backend. Essentially, it means that
every cryptographic algorithm supported on cryptography is actually implemented in the
libcrypto library.

Because the main purpose of integrating the liboqs algorithms on cryptography is testing
whether or not it’s possible to use post-quantum algorithms with comparable simplicity
and consistency to the already implemented classical algorithms, the integration of liboqs
with cryptography was accomplished by including the liboqs functionalities in the OpenSSL
backend, even though they come from a different library which, by itself, does not belong
to OpenSSL. Should support for multiple backends still exist, a new backend for liboqs
functionalities could be created, but in practice, to include basic signature and key agreement
mechanisms, not much diference would result from it.

More complex functionalities, like certificate generation, were not integrated, because
there would have to be several modifications to the OpenSSL source code (since the
certificate generation code comes from OpenSSL), modifications that were not added by the
authors of the Open Quantum Safe Project, even with all the modifications already added
that are necessary to use liboqs with OpenSSL. Therefore, only public key cryptography

4 In the original paper [Duc+17a]
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functionalities contained within liboqs alone were added, namely, generating private and
public keys, signing and verifying functions for each algorithm and conducting a key
agreement mechanism, although there was some effort to maintain the interface as consistent
as possible with the interface present in other algorithms, such as DSA.

When using DSA to sign a message, the module must first be imported from cryptography,
and then it’s used to generate a private key object dependent on the chosen parameter set.
The private key then is used to obtain the public key and to sign the message. Finally, the
public key verifies the signature produced. Figure 15 shows a simple example of a signature
process using cryptography.

Figure 15: Simple example of a signature process using DSA on cryptography.

To sign a message using Dilithium, for instance, the only necessary changes in the
example above are in the imported module, which in this case is oqs sig, and the parameter
for the generate private key function, which instead of receiving the key size must receive the
algorithm to be used. The same example, but now using the new liboqs algorithm Dilithium,
can be seen in figure 16.
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Figure 16: Simple example of a signature process using Dilithium from liboqs on cryptography.

The cryptography package uses an interface called CFFI (C Foreign Language Interface),
which essentially allows a Python program to call C functions in a given library. It is
therefore essential that every algorithm added to cryptography then is ”added” to this
interface.

Without entering into too much detail, a Python program can include a module FFI which
will then allow the creation of an ffi object. That object contains some functions to add C
definitions of functions, types and includes that are needed to use the defined functions. For
liboqs, for instance, it’s necessary to create a file with the declarations of every C function
that must be used to create keys, sign and verify, and the analogous functions for key
agreement mechanisms. The contents of this file will be used, combined with the contents of
all other files describing the C functions for other algorithms (like DSA), to ”register” which
C functions and types are available for calling in the future, using the function cdef in the ffi
object and, afterwards, the set source function (also from ffi), which makes the actual code
accessible.

Because the code to include libraries and C definitions on cryptography is already
included, adding a new library only requires modifying a function that determines which
libraries will be used and creating a file with declarations for every function needed, as
well as new variable types and header files that need to be included. The ffi object that
bridges communications between Python and the C code is already included in the OpenSSL
backend, and thus if added correctly, every liboqs function becomes available to be called
inside the OpenSSL backend.
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Because the integration itself involves multiple steps, appendix A contains a full guide on
how to accomplish the integration of liboqs on cryptography, which allows the usage of the
oqs sig or oqs kem modules as shown in figure 16.
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I N T E G R AT I O N O N T H E T L S P R O T O C O L

The Open Quantum Safe Project , as is mentioned in [SM16], was created to allow
experimentation with post-quantum cryptographic algorithms and examine their real-life
usage by including them in various applications and protocols that are widely used and well
established. The OpenSSL project is one of those applications, which implements the TLS
protocol, where the authors created a fork from the original project to include functionalities
from liboqs. The ”new” project includes every functionality from the original OpenSSL (for
the same version) but also includes additional code to be able to use the liboqs API and,
through that API, access a number of different algorithms that aren’t directly integrated on
OpenSSL.

In fact, the standard approach to include new algorithms involves first adding the low level
code for a specific algorithm to the sub-directory crypto in the OpenSSL project root directory
(and ideally to the EVP layer, a high level interface for cryptographic algorithms) and then
to the TLS/SSL layer [SM16][Bos+14][BWB18]. By using the Open Quantum Safe fork from
OpenSSL, algorithms do not have to be added to the crypto folder, since their implementation
comes from an external library (liboqs). There are still some modifications that take place in
this folder, but nothing comparable to adding the whole low level implementation that was
integrated in liboqs.

The modifications created by the authors also make it easier to add new algorithms to
OpenSSL, provided those same algorithms were already integrated in the liboqs library. In
fact, adding a new algorithm once implemented is fairly straightforward, since it basically
involves adding new lines to existing files and functions following the example of previously
added algorithms. The authors marked every spot where new code should be added to
include new algorithms, both in respect to key exchange schemes and digital signatures. A
simple grep search for the keywords add more oqs sig here outputs every location where
new addition need to take place to correctly add a new digital signature, and doing the same
for add more oqs kem here outputs the locations to add new key exchange mechanisms.

Since the Open Quantum Safe Project is meant to test and experiment new proposed
post-quantum algorithms, which are fairly new compared to classical, more scrutinized
ones, the authors in [SM16] recommend that these new algorithms be used in a hybrid
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form1, i.e., in conjunction with a classical algorithm (similarly to what Google conducted
with its post-quantum experiment [Bra16; Lan16]) to offer post-quantum security and at the
same time relying on a classical algorithm in case eventual vulnerabilities are found in the
post-quantum scheme used. Therefore, the OpenSSL fork also contains the option to use
algorithms in this hybrid state, by using, for example, RSA or ECDSA signature schemes
with qTesla or Dilithium. Furthermore, there is no need to add any new code to the liboqs
library in order to be able to use the new post-quantum algorithm in a hybrid form, since
the only alterations necessary are all on the OpenSSL side.

Using this modified version of OpenSSL, as was mentioned before, allows the usage
of every function available in the original project for the same version. Provided that
two systems communicating with TLS via OpenSSL both possess the new libraries, there
shouldn’t be any problem establishing communications using any new algorithm added
through liboqs. Creating certificates for signature mechanisms is also possible, and can be
done using the same methods used for any other classical algorithm, as well as the hybrid
formats.

5.1 adding algorithm in configuration files

As was mentioned before, adding a new algorithm involves, for the most part, adding code
following the example from other post-quantum algorithms in the project. The simpler
addition of new algorithms to this modified version of OpenSSL, as opposed to the complex
task of adding the same algorithms to the original project, which requires modifying possibly
thousands of lines and more than 20 files, is one of the great advantages introduced with
the Open Quantum Safe Project , and one of its core goals [SM16].

Following the instructions in the readme file in the project’s root directory, the first step
to add a new signature algorithm from liboqs is altering two files in crypto/objects: objects.txt
and obj mac.num. Figures 17 and 18 show the added lines for both files necessary to include
Dilithium.

1 In hybrid form, a message is signed by both algorithms and then the signatures are concatenated. To verify the
resulting concatenated signature successfully, the verification process must be successful with both signatures.
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Figure 17: Modifications to objects.txt to add Dilithium.

Figure 18: Modifications to obj mac.num to add Dilithium and define its NID.

As can be seen in these examples, the hybrid formats are treated as independent algorithms
with their own NIDs. Therefore, each combination must be added to these files as an
algorithm on its own. These files are used to automatically generate object related files using
the command make generate crypto objects. The generated files (obj dat.h, obj mac.num,
obj mac.h and obj xref.h) do not need to be altered after being generated.

Every further modification will take place in the source code directly. Following the
indications from the authors, the files needed to be altered to add a new signature scheme
are as follows:

. apps/s cb.c

. crypto/asn1/standard methods.h

. crypto/ec/oqs meth.c

. crypto/evp/pmeth lib.c

. crypto/include/internal/asn1 int.h

. crypto/include/internal/evp int.h

. crypto/objects/obj xref.txt

. crypto/x509/x509type.c

. include/openssl/evp.h

. ssl/ssl cert table.h

. ssl/ssl locl.h

. ssl/t1 lib.c

. ssl/t1 trce.c

To add new key agreement mechanisms, the list is significantly shorter:

. apps/s cb.c
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. ssl/ssl oqs extra.h

. ssl/ssl locl.h

. ssl/t1 lib.c

. ssl/t1 trce.c

If every modification for each new algorithm is applied correctly, and liboqs was compiled
properly, following the instructions presented in chapter 4, then compiling the project should
be as easy as following the instructions supplied by the authors in the readme file.

5.2 adding a digital signature

This section will delve deeper into each file mentioned in the subsection 5.1, separating them
by folders. By default, every file or sub-folder will always be found under the directory is
question, unless a full path is provided.

5.2.1 Apps

The only file that needs to be altered in this directory is s cb.c. For signature schemes, the
only place that needs to be modified is in the function get sigtype, which return the name of
an algorithm given its NID.

5.2.2 Crypto

The crypto directory contains files that need to be modified only if adding a new signature
scheme, since as is mentioned by the authors in the readme file, it was not possible to
integrate key agreement in the EVP layer. Therefore, any addition to include key agreement
mechanisms takes place in the TLS/SSL layer.

Under the asn1 folder, the file standard methods.h defines an array of variables of type
evp pkey asn1 method, called standard methods. For every new algorithm added (counting
hybrid formats as individual algorithms), the address for the evp pkey asn1 method

variable of that algorithm needs to be added. Declarations for evp pkey asn1 method

variables can be found in include/internal/asn1 int.h, where the struct itself is defined. For
each new algorithm there must be declared a new variable of type evp pkey asn1 method,
following the existing examples. The defined variable’s address must then be added to the
standard methods table in ascending order of NID.

The file oqs meth.c, under the ec folder, contains a number of functions and definitions
related to the liboqs, such as the definitions of a struct oqs key, which contains an oqs sig

struct (defined in the liboqs library), the public and private keys, an optional evp pkey
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Figure 19: Example of a function modified to include Dilithium.

variable for a classical algorithm in case the scheme to be used is hybrid and other
informations like the NID of the scheme being used and its security bits.

Most modifications in oqs meth.c have to do with functions that retrieve some information
about an algorithm based on its NID. Modifications in these functions are essentially all the
same, because most of them merely receive an NID from OpenSSL and then compare it with
the NID of every liboqs algorithm added to OpenSSL. As an example, the Dilithium NID is
1207, defined as NID dilithium. Every one of these functions will receive an integer number
representing an NID and will then compare it to every NID defined for liboqs algorithms.
To add Dilithium, its new NID must also be added to every case where it must be compared
to the NID received as a parameter.

Figure 19 shows an example of a function in oqs meth.c that receives an NID and returns
the name of a post-quantum algorithm, defined in liboqs, if there is one.

As can be seen, the only addition needed is including the NID of the new algorithms
added (post-quantum and hybrid) for comparison with the NID value received. Other
functions where modifications are similar to this one are is oqs hybrid, get classical nid and
get oqs nid, which respectively return the NID of the classical and post-quantum algorithms
of a hybrid scheme, and get oqs security bits.

Another function that needs to be modified is oqs item verify, which return 0 if the NID
provided is not from a post-quantum or hybrid scheme, simply by comparing the NID
received with the NID of every added scheme from liboqs, same as the other functions.

Finally, there are some function-like macros defined in this file that create new structures
and functions that are algorithm-specific. Therefore, it is necessary to invoke these functions
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Figure 20: Using function-like macros to create several algorithm-specific structures and functions,
including Dilithium.

for each algorithm added. Figure 20 shows the usage of these macros for Dilithium. The
process is exactly the same for the hybrid variations.

The define oqs evp methods macro invokes four other macros, one of which is
define oqs evp pkey method, and its definition can be seen in figure 20. The other macros
follow a similar logic. The only alteration needed to include Dilithium is adding the
invocation of define oqs evp methods for Dilithium, and for each hybrid variant included.

In a similar fashion to what happened with the standard methods.h file under asn1,
altering the pmeth lib.c file involves adding new elements to a similar table also named
standard methods. The difference lies, however, in the type of the variables included in the
array. In standard methods.h, every element was of type evp pkey asn1 method, while in
pmeth lib.c the array standard methods holds elements of type evp pkey method, which are
declared in evp int.h under include/internal. The modifications needed in these two files are
practically identical to those that were discussed with standard methods.h and asn1 int.h.
There is also a need to add algorithms in ascending order of their NID values.

Under the objects sub-folder there is a file that needs to be altered as well, called obj xref.txt,
which essentially maps an object ID (OID) to its corresponding cryptographic scheme. Figure
21 shows the additions for Dilithium and its hybrid variants.

The last file to be modified in the crypto folder is x509type.c. As is the case with most
modifications, these are also straightforward, and take place in the x509 certificate type
function. This function returns, among other things, information about whether or not the
certificate’s public key can be used for signing. To allow signing with Dilithium and its
hybrid variants, they have to be added to the algorithms allowed to sign. Figure 22 shows
what must be added to the code.
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Figure 21: Adding Dilithium and its hybrid variants to obj xref.txt.

Figure 22: Adding Dilithium and its hybrid variants to x509 certificate type, defined in x509type.c.
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Figure 23: Adding the definition of evp pkey dilithium and the hybrid variants to evp.h.

5.2.3 Include

There is only one file in this folder worthy of mention, and that is evp.h. This file defines
a lot of evp layer functions and variables, but there is only one definition that needs to be
added for each algorithm, which is the evp pkey x variable, where x is the algorithm. In
any case, this value is just defined as being the same as the NID for that algorithm. Figure
23 shows the example for liboqs schemes.

5.2.4 SSL

The file ssl locl.h defines a large amount of variables and functions. Yet, like with the
previous examples, modifications are only necessary in very few places throughout the
file. The first place to add new information is where the SSL bitmasks are defined. For
every algorithm added, there should be new values defined, and so for Dilithium and its
hybrid variants new definitions must be created, following the example from other liboqs
algorithms. The macros defined have names like ssl adiithium.

The second place to be altered is where the ssl pkey x are defined, where x is the
signature algorithm. These are defined in ascending numbers, with ssl pkey rsa being 0

and ssl pkey ed448 being 8, making a total of 9 algorithms defined. Every addition from
liboqs then increments the value by one. Before adding Dilithium there were 19 definitions.
Because Dilithium and its variants account for 3 more, the final number is 22. This value
is present in the definition of ssl pkey num, which works as a ”counter” for how many
ssl pkey algorithms there are. These values in these definitions will be extremely important
when altering the file ssl cert table.h.

The last alteration in ssl locl.h is in the definitions of tlsext sigalg macros, which also
appoint a unique number for each algorithm. These definitions are used in t1 lib.c. As with
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many modifications before, new additions can just follow the example from other already
added schemes.

The t1 lib.c file implements a lot of functionalities for the actual TLS/SSL protocol. There
are a total of three modifications, for each new algorithm, that need to take place in this
file. First an foremost, the new algorithms need to be added to the tls12 sigalgs array,
holding the default signature algorithms. Adding Dilithium to this table means adding
the tlsext sigalg dilithium macro defined in ssl locl.h, and doing the same for the hybrid
formats.

The array sigalg lookup tbl contains elements of type sigalg lookup, which is essentially a
struct containing relevant values, such as the name, NID and extension value (tlsext sigalg)
associated with a specific algorithm. Functions like tls1 lookup sigalg use this structure to be
able to find a specific algorithm, and are used in other functions like tls12 check peer sigalg,
which checks if a signature algorithm from the other peer is consistent with the supported
signature schemes. Therefore, entries for each new algorithm must be added as well,
following the example of other algorithms.

Finally, in the tls1 set cert validity function, which validates certificates received, new
code has to be added to account for any new algorithm.

Figures 24, 25 and 26 show all modifications in t1 lib.c to add Dilithium and its variants.

Figure 24: Adding Dilithium to the tls12 sigalg table.
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Figure 25: Adding Dilithium to the tls1 lookup tbl array.

Figure 26: Adding Dilithium to the tls1 set cert validity function.

The last file that needs to be altered in the SSL folder is t1 trce.c, and the only modification
needed is adding the new algorithm to the ssl sigalg tbl array, similarly to what happens
with the tls12 sigalg array from t1 lib.c. Figure 27 shows the additions of Dilithium and the
hybrid variants.
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Figure 27: Adding Dilithium to the tls1 set cert validity function.

5.3 adding a key agreement mechanism

Adding a key agreement mechanism from liboqs, as shown above, involves altering many
fewer files than adding a signature mechanism, mainly because it doesn’t involve modifying
anything in the crypto folder.

5.3.1 Apps

As is the case with the addition of a digital signature, when it comes to altering the apps
folder, adding a new key agreement only requires modifying s cb.c, more precisely, the
function oqs curve id name str, which receives an ID and returns the scheme’s name. The
function simply analyses the ID received and compares it to specific values to see if it matches
any. The name returned, in case of success, will just be used to print information about
which algorithm was used to establish the server temporary key. Adding a new scheme
requires the addition of a new, unique value to match the ID value received, following the
example from previously added algorithms.

5.3.2 SSL

There are four files in the ssl folder which require modifications, three of which also need to
be altered to add a digital signature.

The file ssl oqs extra.h has only one function, which is oqs nid from string, a function
that returns the key agreement scheme’s NID given its name. Adding a new scheme is as
simple as adding a new condition that tries to match the received name with the algorithm’s
and, in case of success, returning that new algorithm’s NID.
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The first modification in ssl locl.h has to do with defining the schemes’ NID values. The
authors comment that the NID values were added here because otherwise the crypto layer
would have to be altered. As was the case with digital signatures, adding a new value must
take into account that it must be unique and, preferably, incremental to previous schemes’
NID values as well.

The new scheme must also be added to the function-like macro oqs kem curveid, in case
the algorithm was added to the liboqs master branch or oqs kem curve id nist branch,
in case the scheme was added to the liboqs nist branch. In any case, the functions return
the curve ID (the same ID that is received as a parameter in oqs curve id name str from
s cb.c) given an NID of a key agreement scheme. If none is found, it returns 0. The exact
same process must be followed if the scheme added is a hybrid scheme, in which case it
must be added to oqs kem hybrid curveid or oqs kem hybrid curveid nist branch.

The opposite function-like macros, that is, functions that return curve IDs given an NID,
are also defined. oqs kem nid and oqs kem nid nist branch follow the same logic from
their counterparts, and adding an algorithm means comparing the curve IDs received and
returning the corresponding NID. However, unlike their counterparts, these functions do
not have a hybrid variant, since the NID returned for a post-quantum scheme and its hybrid
variant is the same, i.e., the NID of the post-quantum scheme.

There also function-like macros that check if a given curve ID is from a liboqs scheme. For
example, is oqs kem curveid and is oqs kem hybrid curveid simply check if the ID is
between a certain range of curve IDs. If a new algorithm is added, hybrid or not, the range
needs to be altered to make sure the new algorithm gets correctly categorized.

Finally, the function-like macros oqs alg name and oqs alg name nist branch return
the key agreement scheme’s name given its NID. The name returned is the name defined in
liboqs. The logic between the NIST branch variation is the same from the other examples
above.

All modifications in t1 lib.c, regarding key agreement mechanisms, occur in three distinct
arrays: oqs nid list, oqs hybrid nid list and eccurves default. The first two arrays have
elements of type tls group info, which contains the NID of the scheme, the security bits
and a flag value to identify its type. Adding a new algorithm is as simple as adding a new
element using its NID and bits of security, since the flag used for every element is the same.

The array eccurves default contains all curve IDs to be used, and therefore any new
scheme must have its own curve ID added as well.

Finally, the t1 trce.c file has but one modification necessary, in the array ssl groups tbl,
which is an array that maps a curve ID to a scheme’s name, so it naturally follows that
adding a new algorithm means adding a new entry to this table following the example from
other schemes.
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R E S U LT S

The classical algorithms that have now seen extensive use throughout the years have been
thoroughly put to test in real-world scenarios, allowing to establish secure communications
through the internet and other mediums. However, since they might eventually become
insecure, it’s important that the post-quantum algorithms that could replace them be as
efficient as possible, and allow for a transition as seamless as possible.

Certain cryptographic operations, such as certificate generation (which involves generating
key pairs and signatures) and establishing TLS connections between clients and server are
crucial to safely communicate through the internet, and so are some of the most important
aspects to take into account when replacing classical algorithms.

All tests using the algorithms included in the liboqs library were conducted on Ubuntu
18.04. Certificate generation was accomplished on a virtual machine with 6GB of RAM and
with an Intel Core i7-4790 processor. For TLS connections, tests took place on the same
virtual machine, for the server, and on a machine with a Core i5-7200U processor, with 8GB
of RAM, for the client.

6.1 openssl toolkit

OpenSSL, as was previously mentioned, is a cryptographic toolkit, which implements a
general purpose library libcrypto, composed of several cryptographic functions, and a library
libssl implementing the SSL/TLS protocol, using the algorithms in libcrypto. Using these
libraries, it is possible to write client and server applications which communicate using
the TLS protocol. However, OpenSSL already offers two server and client applications that
contain some functionalities aiming at testing connections with different algorithms. Even
though there are some limitations to the algorithms integrated in the Open Quantum Safe
Project, such as not adding the key exchange algorithms to the EVP layer, the modifications
are compatible with these two test applications, making it easier to test and compare
post-quantum algorithms with their classical counterparts.

69
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The two applications, s server and s client implement, respectively, a test server and a
test client application that can be tweaked using command line parameters. Using these
applications, it’s possible to create a TLS connection between two distinct computers and test
different algorithm combinations (post-quantum, classical and hybrid variations) to analyse
how they compare against each other.

Certificate generation, which is accomplished using the req application also available
directly on OpenSSL, is compatible with the Open Quantum Safe modifications too, allowing
to create certificates for post-quantum algorithms and its hybrid variants.

After building OpenSSL, it is straightforward to start these two applications, using the
command openssl s server or openssl s client followed by whichever flags are needed to tweak
parameters about the connection to establish.

Provided a private key and a certificate have already been generated, the server must load
them using the -cert and -key flags. Other flags might also be important, depending on the
actual usage. Figure 28 shows the command that was used to start s server. Likewise, figure
29 shows the corresponding command used to launch s client.

Figure 28: Command used to start OpenSSL’s s server application.

Figure 29: Command used to start OpenSSL’s s client application.

The s server flags -cert and -key are, as mentioned above, used to load the certificate (for
the signature algorithm to be used) and its corresponding private key. The -WWW flag
makes s server work as a simple web server that responds to HTTP commands, the -tls1 3
flag instructs the server to use the TLS 1.3 protocol and the -accept flag instructs the server in
which IP address and port connections must be accepted. By default, the port number is
4433.

On the s client side, the -curves flag specifies which algorithm will be used for key
exchange. To ”force” the usage of a specific algorithm, given that ultimately it is the server
that chooses which one will be used, only one algorithm is specified in the command. The
root CA certificate to validate the server certificate can be included with the -CAfile flag,
which in this case uses the same certificate used by the server (another certificate can be
used, with the condition that it is signed by the CA). Finally, the -connect flag instructs to
connect to a specific IP address and port, defaulting to localhost and the 4433 port if nothing
is specified.
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Running the two applications with the commands above in two terminals, assuming
everything is setup properly, initiates a TLS handshake with the signature and key exchange
algorithms specified, producing the output shown in figure 30.

Figure 30: Part of the resulting output from established connections between s server and s client
using the parameters shown in figures 28 and 29.

The next two sections showcase, respectively, measurements regarding certificate
generations and TLS connections. In both cases, time was measured using the Ubuntu
bash command time, using the elapsed real time (wall clock time as described by the man
page for the time command).

6.2 certificate generation

Because certificate generation involves generating key pairs and producing signatures, the
time it takes to produce one can vary significantly depending on the algorithm itself. On top
of that, because different algorithms have different key and signature sizes, certificates in
the end can also vary in size, which is an important element to consider when using them to
establish communications between a client and a server.
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It is usually the case that when dealing with LWE and R-LWE based schemes, while the
general speed of a scheme is on par with the most used classical algorithms, sometimes
even surpassing them, the key and signature sizes are also significantly larger, raising
some concerns about how much the increased size might influence the scheme’s viability.
Therefore, it’s useful to consider the trade-off between speed and size when evaluating
different algorithms, to gain a better understanding of how big the impact of a possible
replacement would actually be.

Using the req application, it’s possible to generate a certificate for a given signature
algorithm with the command in figure 31.

Figure 31: Command used to generate a root CA certificate using the chosen signature algorithm.

The command contains several important flags. The -x509 option makes the command
output a self signed certificate, instead of a certificate request, while the -new starts the
certificate request generation process. Flags -newkey and -keyout are, respectively, related
to the private key generation for a specific signature algorithm and its output to a key file.
The -out option specifies the output file for the certificate (which for simplicity, in this case,
is named after the algorithm used). Finally, the -subj flag selects the subject name in the
request/certificate.

Additionally, there is some useful information that might be added to specify certain
aspects in the output files. Using the -nodes flag makes the application output the private key
without encrypting it, using -days specifies the validity of the output certificate, assuming
the -x509 flag was also used. By default, the validity is 30 days. If an external configuration
file for certificate generation is needed, it can be included with the -config option.

To generate an ECDSA certificate, the command changes on the -newkey option (figure 32),
but the rest remains the same.

Figure 32: Command used to generate a root CA certificate using ECDSA.

To check Dilithium’s viability on the post-quantum scene, as well as other algorithms
already present on OpenSSL, the time spent to generate a certificate for each algorithm was
measured. In order to compare the post-quantum algorithms with their classical counterparts,
certificate generation was also timed for ECDSA and RSA signature algorithms, with varying
parameter sizes. Table 7 shows how much time it took to generate each certificate, on
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average, for each algorithm and the size of each certificate. Every generated certificate was
generated using the command from figure 32, which only generates a self-signed root CA
certificate.

Algorithm Bit Security Security level Generation time (ms) Size (bytes)
Classical Algorithms

RSA-2048 112/0 - 86.754± 53.882 1115

RSA-3072 128/0 - 313.918± 213.775 1464

RSA-4096 150/0 - 754.214± 475.708 1809

ECDSA p256 128/0 - 5.072± 0.362 570

ECDSA secp384 192/0 - 7.074± 0.702 652

ECDSA secp521 256/0 - 10.05± 0.485 753

Post-Quantum Algorithms
Picnic-L1-FS 128/64 1 8.202± 0.917 45140

qTesla-I 103/96 1 5.342± 0.627 4304

Dilithium 141/128 2 4.902± 0.751 6055

Dilithium-Max 174/158 3 4.844± 0.986 7347

qTesla-III-speed 178/164 3 7.25± 12.835 8464

qTesla-III-size 180/166 3 8.426± 2.259 8119

Hybrid Algorithms (Classical and Post-Quantum)
P256 Dilithium 128/128 2 5.132± 0.532 6250

RSA3072 Dilithium 128/128 2 319.714± 206.572 7123

P256 qTesla-I 103/96 1 6.354± 18.932 4499

RSA3072 qTesla-I 103/96 1 309.982± 191.058 5372

Table 7: Table showcasing time spent to generate a certificate for each signature algorithm, as well
as their respective sizes in bytes. Bit security represents the classical and post-quantum
security for each scheme, respectively. Generation time corresponds to the average time (and
standard deviation) spent to generate a certificate, from a total of 500. Time is represented in
milliseconds, rounded to 3 decimal places.

The algorithms in the table are divided into 3 categories: classical algorithms, which are
the standard algorithms currently used for digital signatures, post-quantum algorithms, and
hybrid variants, which contains both classical and post-quantum algorithms.

NIST describes, in its call for proposals [ST16], 5 levels of security for each scheme to be
categorized with:

• L1: An attack that breaks an L1 scheme must require computational resources similar to or greater than
the resources needed to accomplish a 128-bit key search on a block cipher, like AES-128.

• L2: An attack that breaks an L2 scheme must require computational resources similar to or greater than
the resources needed to search for a collision on a 256-bit hash function, like SHA-256.

• L3: An attack that breaks an L3 scheme must require computational resources similar to or greater than
the resources needed to accomplish a 192-bit key search on a block cipher, like AES-192.

• L4: An attack that breaks an L4 scheme must require computational resources similar to or greater than
the resources needed to search for a collision on a 384-bit hash function, like SHA-384.

• L5: An attack that breaks an L5 scheme must require computational resources similar to or greater than
the resources needed to accomplish a 256-bit key search on a block cipher, like AES-256.
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Comparing different algorithms (for a fixed set of parameters) becomes easier and perhaps
more meaningful if said algorithms have similar security , i.e., share the same security levels
proposed by NIST.

From the same document, it is also recommended that the submitters focus on schemes
targeting the first 3 levels of security, those ”likely to provide sufficient security for the
foreseeable future” [ST16]. Dilithium, according to the authors in [Duc+17b], achieves level 3

when using the largest set of parameters (identified as ”Dilithium-Max”, the other ”version”
of Dilithium included in liboqs). Algorithms targeting levels 4 and 5, while present in some
submissions, are not presented in table 7.

Looking at the results, there are some observations about certain scheme’s apparent
viability that are relevant to point out.

As was expected, there is a clear difference between the size of certificates from classic
and post-quantum algorithms, the former being significantly shorter that the latter. For
instance, for a similar classical security level of around 128 bits, a Dilithium certificate has a
size approximately 4 times larger than a 3072-bit RSA certificate, and over 10 times larger
than a 256-bit ECDSA certificate. The qTesla-I scheme, having around 100 bits of classical
security, is still nearly 3 times larger than the 3072-bit RSA certificate, and 7.5 times larger
the corresponding ECDSA certificate. For its more secure variants, the differences grow even
higher.

When comparing the R-LWE based post-quantum algorithms with each other, it is
noteworthy that the Dilithium-Max scheme, which is level 3, compares rather favourably to
both variants of the level 3 qTesla scheme. In fact, generation times were identical between
both versions of Dilithium (which differ only on the parameter sets), and between these
versions and qTesla-I. Generation times for qTesla-III-speed and qTesla-III-size were slightly
worse, although still relatively low. Furthermore, certificates produced with Dilithium-Max
are smaller than the qTesla counterparts, for the same security level.

The Picnic signature scheme, which is not LWE based scheme, was included in the testing
because its signatures are significantly larger than that of any other scheme. A certificate for
the L1 variant produces signatures of at most 34020 bytes, resulting in certificates around 31

times bigger than a 3072-bit RSA certificate for the same 128 bits of classical security, and
72.2 times larger than ECDSA-P256 certificates. Generation times also seem to be slightly
bigger, on average, than those of the other post-quantum algorithms, all based on some
variant of the LWE problem.

In order to reflect on the viability of replacing, for instance, RSA with a Dilithium or qTesla
scheme, it’s important to consider just how much the added certificate size will influence
communications on protocols like TLS, which is essential in securing communications on
the internet.
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There is, however, another important aspect to consider when comparing certificates
between algorithms, and that is the time it takes to generate a new certificate. Depending
on the algorithm, producing a key pair for a given security parameter might become too
time consuming to be viable in real-world usage, even more when considering that security
parameters might increase with time, as computers become faster. Looking again at table
7, the difference between the average time necessary to generate an RSA certificate and a
certificate for any of the other algorithms is clear, as it is one or two orders of magnitude
slower. Furthermore, as the bit security increases from one RSA parameter set to another,
time consumption seems to increase exponentially.

Certificate generation for ECDSA is much faster when compared to RSA, for every level
of security, and the same is true when comparing post-quantum schemes. In fact, when
comparing generation times, ECDSA seems to have a similar generation time, on average,
to that of each post-quantum algorithm, for a given security level, with ECDSA certificates
being slightly faster to generate. Both kinds seem to also scale relatively well with the
increase of their security parameters, as opposed to RSA.

Finally, when looking at the hybrid variants, which combine two signature algorithms,
it can be seen that certificate sizes are predominantly determined by the post-quantum
algorithm. For example, RSA3072 with Dilithium is only approximately 1.17 times bigger
than the Dilithium certificate. The same comparison between ECDSA P256 with Dilithium
shows only an increased size of approximately 1.03 times the size of the Dilithium certificate.
When comparing generation times, generating a hybrid certificate with these two algorithm
cost almost as much time as generating a certificate just for the ECDSA part.

Given the results obtained, it seems reasonable to assess that , when it comes to generating
certificates, should a post-quantum algorithm be used, the hybrid version seems to have a
small additional cost on both size and generation times. Because post-quantum schemes
haven’t yet been scrutinized to the extent of classical, standardized algorithms, it might be an
acceptable choice to use a hybrid scheme (which was in fact recommended by the authors in
[SM16]), which offers the security from classical schemes and the potential security against
quantum computers from the post-quantum algorithms.

6.3 tls connections

While it is important to benchmark certificate generations when testing the performance
of different signature algorithms, it is also important to test how efficient each scheme can
be when being used to establish TLS communications between parties. On top of that,
certificate generation only involves signature schemes, and not key exchange mechanisms.
The latter can be tested by establishing communications with different combinations of
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signature schemes and key exchange mechanisms, and measuring how much time each
communication takes, on average.

To maintain consistency throughout the whole process, the commands used for
establishing a communication, both with the s server and s client applications, were always
the same, and were shown, respectively, in figures 28 and 29. There is, however, a small
difference in the s server command, since the certificate and private key files used were
not the self-signed, CA versions. Instead, new keys and corresponding certificates were
generated and then signed by the CA private key. The CA certificates were then used by
the s client application to verify the certificates generated for the server. Replacing the
certificate to be used in the s server application involves only replacing the CA certificate
and private key files by the new files that were signed by the CA. Because the s client
application must still use the CA certificate to validate the server certificate, the command
remained unchanged (aside from the localhost:4433 part, which must be changed on both
commands to match the server’s IP address and listening port).

The main reason to use a different, CA signed certificate for the server is to have a
certificate chain (albeit a very small one) that must be verified by the client, instead of just
having to verify the root CA certificate.

Table 8 shows measurements for 6 different signature algorithms, combined with 6 key
exchange schemes, with a combined total of 36 types of connections.
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Signature Key Exchange Handshake data Time (1kB) Time (100kB)

RSA-3072

NewHope512 CCA 2799(r)/1287(w) 74.726± 28.715 170.866± 48.989
ECDHE P256 1744(r)/424(w) 75.178± 55.906 181.604± 52.083
P256 - NewHope512 CCA 2872(r)/1360(w) 77.788± 57.507 183.236± 57.913
Frodo640 w/ cSHAKE 11415(r)/9975(w) 118.16± 59.549 241.272± 100.481
SIKE P503 2081(r)/737(w) 252.806± 115.91 366.18± 134.209
ThreeBears Baby 2600(r)/1167(w) 67.688± 25.329 178.07± 36.738

ECDSA P256

NewHope512 CCA 1831(r)/1287(w) 66.076± 39.793 169.204± 48.196
ECDHE P256 776(r)/424(w) 62.876± 18.166 160.9± 45.577
P256 - NewHope512 CCA 1904(r)/1360(w) 67.728± 22.154 165.078± 61.718
Frodo640 w/ cSHAKE 10446(r)/9975(w) 113.314± 32.879 207.3± 73.738
SIKE P503 1112(r)/737(w) 268.46± 206.782 390.4± 150.427
ThreeBears Baby 1631(r)/1167(w) 65.836± 61.752 174.6± 22.338

Dilithium

NewHope512 CCA 8507(r)/1287(w) 72.232± 23.174 161.746± 31.075
ECDHE P256 7452(r)/424(w) 75.174± 24.433 163.46± 38.119
P256 - NewHope512 CCA 8580(r)/1360(w) 71.396± 11.244 165.974± 61.794
Frodo640 w/ cSHAKE 17123(r)/9975(w) 110.44± 15.744 221.07± 52.673
SIKE P503 7789(r)/737(w) 289.814± 165.361 384.848± 106.55
ThreeBears Baby 8308(r)/1167(w) 73.126± 28.204 182.996± 62.314

qTeslaI

NewHope512 CCA 5889(r)/1287(w) 69.732± 16.763 178.918± 143.372
ECDHE P256 4834(r)/424(w) 67.788± 13.262 169.688± 45.981
P256 - NewHope512 CCA 5962(r)/1360(w) 68.606± 16.534 180.078± 70.935
Frodo640 w/ cSHAKE 14505(r)/9975(w) 114.556± 30.692 237.712± 78.621
SIKE P503 5171(r)/737(w) 244.722± 80.138 364.742± 167.781
ThreeBears Baby 5690(r)/1167(w) 77.092± 38.303 175.804± 27.318

P256-Dilithium

NewHope512 CCA 8725(r)/1287(w) 72.872± 13.837 163.12± 57.314
ECDHE P256 7671(r)/424(w) 77.652± 19.735 170.042± 60.083
P256 - NewHope512 CCA 8799(r)/1360(w) 79.268± 21.614 171.898± 54.951
Frodo640 w/ cSHAKE 17341(r)/9975(w) 114.58± 32.949 248.164± 165.166
SIKE P503 8007(r)/737(w) 264.636± 132.241 355.48± 84.775
ThreeBears Baby 8527(r)/1167(w) 80.132± 66.447 170.428± 23.353

P256-qTeslaI

NewHope512 CCA 6109(r)/1287(w) 70.69± 12.105 182.306± 64.11
ECDHE P256 5055(r)/424(w) 73.878± 20.675 156.762± 38.161
P256 - NewHope512 CCA 6182(r)/1360(w) 77.02± 32.617 170.496± 53.923
Frodo640 w/ cSHAKE 14724(r)/9975(w) 113.08± 19.322 221.652± 69.046
SIKE P503 5391(r)/737(w) 237.956± 155.233 368.644± 93.932
ThreeBears Baby 5911(r)/1167(w) 76.612± 34.43 177.718± 41.995

Table 8: Table showcasing time spent to establish a TLS 1.3 connection between s client and s server,
as well as amount of data exchanged during the handshake, for different signature algorithms
and key agreement mechanisms. Time is represented in milliseconds, rounded to 3 decimal
places. For each combination, it was first measured how much time it took to get a 1kB file
from the server, and then the same procedure was followed for a 100kB file. Every value
corresponds to the average time calculated from 500 connections, for both files.

Every key exchange and the signature scheme showcased in the table provides,
approximately, the same amount of security bits. Specifically, every post-quantum algorithm
is a level 1 or 2 scheme (already shown in table 7), including NewHope, Frodo and ThreeBears
(the Baby version is a level 1 scheme), and every classical algorithm offers around 128 bits of
classical security.

Even though there was an effort in trying to compare different schemes with similar
security properties, there were some exceptions. SIKE [sJA19], for instance, which is not
an LWE or R-LWE based scheme, and was included just to compare the gains or losses in
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efficiency with algorithms that are based on these problems (which is also the reason Picnic
was included in the testing showcased in 6.2) is a level 2 scheme, while every other key
exchange mechanism is level 1. In this case, the reason is that Open Quantum Safe does not
include the level 1 version of SIKE in the OpenSSL integration, and thus the level 2 version
was the lowest that could be used.

Dilithium is also a level 2 scheme (as is claimed by the authors in [Duc+17b]), which
is being compared to level 1 schemes such as qTeslaI. However, the reason behind this
comparison is that Dilithium was purposefully used with its recommended parameters
(recommended in the same paper), to achieve around 128 bit security, both classical and
post-quantum, which is especially useful when comparing Dilithium to classical schemes
like ECDSA-P256 or RSA-3072.

The authors of the Open Quantum Safe Project, when defining the hybrid variants for
the OpenSSL integration, joined schemes based on the NIST security level and security bits
the schemes offered. For instance, the NewHope512 variant, which is a level 1 scheme, was
grouped with ECDHE with curve P-256, which gives a security of around 128 bits. Level 3

signature schemes, such as the qTesla-III variants for example, were grouped with ECDSA
with curve P-384, which provides around 192 bits of security.

As can be seen in the table, the average time for each connection type varies slightly with
different signature schemes, with ECDSA P256 and qTeslaI seemingly having slightly better
times, for 1kB file transfers, than the rest of the signature algorithms. When considering
100kB, Dilithium achieves average times similar to ECDSA P256, and so does the hybrid
variant, P256-Dilithium. It is worthy of mention, however, that some standard deviation
values are quite big, especially when comparing times for 100kB files.

When comparing key exchange mechanisms, however, clear differences between some
algorithms start to emerge. Specifically, regardless of the signature algorithm used, the
Frodo640 with cSHAKE scheme seems to take a significant amount of time more than every
other scheme, with the exception of SIKE, which is consistently slower than Frodo640 (and
with a larger difference than Frodo640’s difference to any other algorithm tested). The
difference is especially noteworthy when comparing times for 1kB files, while still being
present with 100kB files. Because 1kB files are shorter that the 100kB counterparts, the
percentage of time spent in the handshake process is larger for the former and thus, times
measured with 1kB files appear to be more indicative of how much impact a certain key
exchange scheme has on the overall connections.

The handshake data in each combination corresponds to the read and written bytes,
respectively, shown in the output of using the s server and s client applications with the
commands shows above. The output itself was already shown in figure 30. As expected,
given the increased sizes for public keys and signatures, post-quantum schemes reveal
a substantial increase in bytes read during the handshake process, with RSA-3072 and
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especially ECDSA-P256 having a significantly lower amount, for the same key exchange
scheme. Dilithium has the largest amount of bytes read during handshakes, with the only
exception being the P256-Dilithium hybrid, which has approximately 200 bytes more. When
comparing handshake bytes, it is clear that, once again, the Frodo scheme has a significantly
more read and written bytes than every other scheme.

6.4 considerations

Overall, all signature schemes seem to have more or less the same performance when only
taking into account connection times. However, given that certificate generation varies
a great deal depending on the algorithm, the ECDSA-P256 signature scheme seems to
consistently perform better than every other algorithm, both with certificate generation
times, certificate sizes, connection times and handshake data transfers.

Dilithium and qTeslaI (and the hybrid variants) have significantly larger certificate sizes,
although generation times are comparable to those of ECDSA-P256. Furthermore, connection
times seem to be similar, even when using the ECDSA-P256 hybrid variants. Handshake
data increases significantly when using these algorithms, given the increased certificate sizes.

RSA variants don’t seem to be the best options when using digital signatures, according to
the metrics evaluated, since certificate generation is considerably slower than other schemes
for the same security bits, and is all but impractical when trying to achieve higher security
bits (to achieve 256 bits, RSA modulus would have to be around 15360 bits long). When
comparing connections, RSA-3072 also doesn’t provide any major advantage in connection
times, and while it does have less data being exchanged during the handshake than post-
quantum algorithms, it still has more than ECDSA-P256.

It seems to be the case that, if post-quantum signature algorithms are to be used on
TLS, the impact is larger on the actual data being transferred during the TLS handshake,
given the larger key sizes and signatures. However, if it is the case that these algorithms
must be included on TLS communications, using a hybrid variant until there is a standard
post-quantum algorithm which bears enough trust to actually replace classical algorithm
seems to be an acceptable option, given the small amount of impact that hybrid signatures
schemes seem to have both in connections times and data transferred, as well as certificate
generation and size.

Classical and post-quantum key exchange schemes also seem to bear some differences
in performance, although not as much in connection times, with the exception of the LWE
based scheme Frodo (LWE schemes usually use larger keys) and SIKEp503. NewHope512

and ECDHE-P256 seem to have similar connection times, but NewHope, being a R-LWE
scheme, again, involves a larger amount of bytes being exchanged during the TLS handshake.
Its hybrid variant also exchanges more bytes than ECDHE-P256. ThreeBears, being based
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on a variant of the M-LWE problem, involves a slightly shorter amount of bytes exchanged
than NewHope, but still significantly higher than ECDHE-P256.

The impact of including a post-quantum key exchange scheme on TLS seems to bear
similarities to that of including a digital signature, in which the negative impacts are clearly
present in the amount of data being exchanged through the parties in the connection, and
not so much on the actual connection times. While ECDHE-P256 clearly needs less data
exchanged to establish a key exchange, if post-quantum security is to be included on TLS,
hybrid key exchange schemes also seem to be an acceptable option, since the impact of using,
for example, NewHope512 with ECDHE-P256 seems to be rather small when comparing to
the impact of only including NewHope512.



7

C O N C L U S I O N S A N D F U T U R E W O R K

Post-quantum cryptography is getting closer everyday to a possible standardization that
might change the way most traffic on the internet gets secured. Initiatives like the NIST
Post-Quantum Cryptography Standardization Process have already started the long process
of determining which proposed algorithms are more suitable to eventually replace the
classical schemes used today, some of which have been used for decades.

Because projects like Open Quantum Safe are currently accessible to anyone willing to
experiment with post-quantum algorithms, and because they allow a somewhat simple
integration with protocols like OpenSSL, companies and other entities can start protecting
their traffic using quantum-safe alternatives, even if the trade-off is having to use hybrid
schemes until a standard which bears enough confidence is released and deployed world-
wide. The Open Quantum Safe Project, even though it still is described as a way to prototype
post-quantum algorithms, makes these algorithms more accessible to be used and tested
with a consistent API that can be used in very much the same way as the OpenSSL API has
been used for years in multiple applications.

As was shown in chapter 6, the R-LWE quantum-safe algorithms that are currently in the
”race” for standardization all bear similar results when compared to each other. The increased
sizes for keys and signatures might have a significant impact on certain applications, but
are at least compatible, as of now, with TLS, the most used protocol to safely transmit
data over the internet, seemingly without any significant negative impact on the time each
connection takes to establish. Furthermore, that conclusion had already been achieved in
Google’s post-quantum experiment [Bra16; Lan16], where it was deemed that any latency
caused was mostly due to the increased message sizes. Albeit in a very small and somewhat
controlled environment, the results obtained in this work seem to hold with the results from
the NewHope post-quantum experiment held by Google, extended to more post-quantum
algorithms, including digital signature schemes. If one of the algorithms tested ever becomes
standardized by NIST, then it seems the biggest trade-off is in fact the increased sizes in
certificates and message sizes in key exchange protocols, and thus if a certain entity decides
to employ quantum-safe algorithms in its communications, the impact would most likely
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be seen on the increased sizes in messages and certificates, and not so much on the time a
connection takes.

Even when comparing quantum-safe algorithms outside of TLS, it seems that producing
key pairs and signing messages is on the level of ECDSA schemes, given the fact that
certificate generation times are approximately the same. Using RSA, however, seems to incur
on a penalty in performance that only tends to increase as time progresses, since time for
generating keys of higher bit security tends to increase exponentially.

The integration of post-quantum cryptography on other projects, like Python’s
cryptography, is also helpful by allowing the access to quantum-safe primitives in an
even simpler and more accessible way, by abstracting from the low level C implementations
and offering a simple, consistent interface that has also been used for years with classical
algorithms. One possible future improvement on the integration accomplished in this
thesis is the addition of other functionalities, like certificate generation, to cryptography, to
complete the set of post-quantum functionalities offered by this package.

Throughout the literature, some authors, like Bos et al. [Bos+16] and Albrecht and Deo
[AD17], raised some concerns about the extra algebraic structure present in schemes based
on the R-LWE problem. Specifically, this problem, given the added algebraic complexity,
might be more vulnerable to attacks that haven’t yet been discovered that can exploit the
added structure and render any cryptosystem based on R-LWE unsafe. It seems that there
are some trade-offs to take notice when developing public key cryptography schemes. On
one hand, having rich algebraic structures that have interesting properties to be explored
when developing cryptosystems may lead to schemes that are efficient and practical to use,
such as R-LWE when opposed to LWE. On the other, it might also make the scheme more
prone to attacks, simply because the extra complexity introduce new ways of attack not
present in simpler schemes.

It seems to be the case that R-LWE schemes (and to some extent, LWE schemes as well)
are quite efficient, even when compared to other quantum-safe schemes. It may be the
case that these problems are in fact hard, and that hardness might me strong enough to
offer confidence in the schemes when it comes to protecting communications in the future.
However, should that not be the case, it could be useful to have other schemes based on
completely different problems (not based on lattices) that possess a much simpler algebraic
structure. Schemes like Picnic [Cha+17] and Sphincs+ [Ber+17], for instance, could be a good
alternative to LWE based schemes, should the latter be proven to be insecure somewhere
in the future. Investigating schemes with simpler algebraic structures and their real-world
viability might be a good follow-up to this work.

Overall, it seems that whether or not quantum computers powerful enough to run Shor’s
algorithm ever get built, there are some promising proposals based on the LWE problem
and its variants, both for key exchange schemes and digital signatures, that aim to resist this
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algorithm, and that, if maintaining the current increase in key and signature sizes, might
still be viable to effectively protect communications between parties and thus maintain
communications on the internet secure.



A
I N T E G R AT I O N O N P Y T H O N ’ S C RY P T O G R A P H Y PA C K A G E

a.1 introduction

This guide aims at providing help on how to add new functionalities, such as new algorithms,
to Python’s cryptography package. Cryptography offers a lot of functionalities, such as
symmetric and asymmetric encryption, digital signatures, key exchange schemes and a lot
of operations using certificates both in PEM and DER formats. This guide will go through
the process of integrating two of these classes of algorithms: digital signatures and key
exchange schemes.

Without entering into too much detail, cryptography acts like a higher level interface
for a general purpose library of cryptographic functions. The low-level implementations
themselves are coded in a C library, which is then called by the interface. The ”bridge”
between the high-level interface and the C implementation of the algorithms used is
the backend. The backend does most of the heavy-lifting, while abstracting from any
implementation details that not necessary for using the package.

Originally, cryptography used to support the use of multiple backends, meaning that
users could choose which algorithm implementations they preferred. However, in the most
recent versions, support for multiple backends ceased, and thus the only backend currently
supported is the OpenSSL backend. What this means is that every cryptographic algorithm
used will be executed using the OpenSSL library.

Usually, adding new algorithms would require that the new code be integrated on
OpenSSL, and then the interface to call it added to cryptography. However, it is not actually
mandatory for the new code to belong to the OpenSSL library. In fact, cryptography allows
for the inclusion of more C libraries when compiling. By default, it includes the libssl and
libcrypto libraries, but other libraries, independent from OpenSSL and compiled from a
different source, can be included as well. By adding new libraries, it’s can avoid changing
the OpenSSL source code altogether, provided the implementation of the new algorithm is
coded elsewhere. However, if the objective is other than to just test algorithms locally, it
could be the case that this approach would not be acceptable, since technically the OpenSSL
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backend is no longer only using code from the OpenSSL libraries. Whether the C source
code is implemented on OpenSSL or not, the process of integrating it on cryptography is
fairly the same, and so it shouldn’t be relevant where the actual source code comes from, as
long as it is compiled into a library first.

The example used in this guide is the inclusion of a generic signature scheme implemented
in the OpenQuantumSafe project. By building the source code, the necessary library will be
created and added to /usr/local/lib. The generic scheme can be seen as a wrapper for different
algorithms, which can be called using the generic functions’ parameters. The inclusion of a
key exchange scheme is identical, except for the specific functions that need to be included
in each case.

a.2 including c library and new module

Assuming the new algorithm to introduce is in a separate library (as was mentioned above),
there is a file that needs to be altered to include the extra library when compiling. The root
of the cryptography package contains a folder called src. Every alteration needed to add a
new algorithm is made inside the src folder.

To add a new library, one must modify the file src/ cffi src/build openssl.py by adding the
library to the function get openssl libraries, just like is shown in figure 33. The alteration is
meant to work on Linux. If the objective is compiling on Windows, the alteration must be
done in the code related to the Windows system.

Figure 33: Inclusion of liboqs library in cryptography

There is on more modification that must be done in this file, and it’s related to the new
module that will be created. Each module, such as the dsa module for example, needs to
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be registered in this file. For the new example module, which will be called oqs sig, it’s
necessary to add it to the list of modules to be compiled, just as is shown in 34.

Figure 34: Inclusion of oqs sig module in cryptography.

After applying these modifications, no further action is required in this file.

a.3 including the c functions

After modifying build openssl.py, the next step to do with including the C library is creating
a file that will register every C function from the new library that will be included on
cryptography. The file must be created in the src/ cffi src/openssl directory, which contains a
file for most algorithms and other functionalities implemented in OpenSSL. For example,
there is a file for DSA, called dsa.py, and the same goes for Diffie-Hellman, RSA and all the
elliptic curve variants. Each file registers the C structures, functions and other variables, as
well as the include files where those elements are declared.

Following the naming of the already present files, it makes sense to create a new file
named oqs sig.py. Regardless of what the module is called, it must match the name of the
module added in build openssl.py.

Inside the file, there is a structure that must be followed for declarations. The easiest way
to understand how the file should be structured is by following the example of an already
present algorithm, such as DSA. Nevertheless, figure 35 shows how the declarations should
be done in order for the integration to be properly accomplished.
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Figure 35: Variable and function declarations on the oqs sig module.

Most C types used in OQS are already declared in other files, such as the uint8 t type,
which means that the only additional types needed for this declaration are the OQS SIG
struct and the OQS STATUS variable, which is an enum type (using only integers). These
types need to be declared because most added functions involve the use of a OQS SIG struct.
The functions themselves should be declared as is seen in 35, where parameters do not have
names, only their types. Every function declared will later be usable in Python directly using
the CFFI interface [RF18] (the modifications so far are all related to adding the C library to
the CFFI interface that is implemented on cryptography). So, even though these steps add
the new functionalities to CFFI, there is no need to actually delve deep into how the whole
interface works.

With the modifications made to build openssl.py and the new oqs sig.py files, it is actually
possible to use the new functions in cryptography already, by using the CFFI interface
directly. That involves including the binding module and then creating a new binding
object that will include a variable called lib, which contains every C function registered
under the src/ cffi src/openssl directory. However, this approach, while sufficient to use the
new algorithms from Python, doesn’t provide a high-level interface to the programmer,
since it still requires that the necessary variables be allocated using, for example, malloc, the
same way it would be done directly in C, while possibly being even more confusing, since
variables casts, for example, are accomplished in a different way when using CFFI.
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a.4 creating the interface for oqs sig

At this point, no other modifications under src/ cffi src are needed, the rest of them taking
place under src/cryptography.

When a programmer needs to use the DSA module from cryptography, it needs to import
the correcct module from the package. Usually, it will look like this:

from cryptography.hazmat.primitives.asymmetric import dsa

The path shown in the line above corresponds to the folder path
src/cryptography/hazmat/primitives/asymmetric.

The dsa.py file includes, essentially, definitions of classes related to the DSA algorithm,
such as DSAParameters, DSAPrivateKey and DSAPublicKey, among others. These are,
however, merely definitions, not actually the real implementations of those classes, working
instead as interfaces for the real implementations. Besides the class definitions, dsa.py
also has several functions that correspond to the functions the programmer can call when
importing the DSA module. For example, the programmer can call the generate private key
function from the dsa module directly, which means that this function is defined in this file.

So, in order to add the module oqs sig, it is necessary to create a file oqs sig.py implementing
a similar interface and necessary functions to correctly implement the algorithm. For the
most part, the structure in dsa.py can be followed without too many alterations, but it is
worth to keep in mind, however, that the classes to create for each algorithm depend on the
algorithm itself. It doesn’t make sense to create a whole OQS SIGParameters class if the
parameters are fixed in the C implementation, for example.

To follow the dsa.py example, the only really important function needed in this file is the
generate private key, which, in this concrete example, receives as parameters the algorithm
name and the backend itself (as opposed to the DSA variant which receives the key size and
backend). The key size is fixed for each algorithm passed as parameter to the oqs sig module
(the liboqs C library implements algorithms with fixed parameters), which means it is not
necessary to be passed as a parameter in this case.

Following the most basic example possible, the oqs sig.py file created must contain:

• Class definition for PrivateKey (name could be OQS SIGPrivateKey)

• Class definition for PublicKey (name could be OQS SIGPublicKey)

• Function to generate a private key (can be called just generate private key)

Figure 36 shows the interface for OQS SIGPublicKey and the definition of the
generate private key function, the function that will be called directly from the oqs sig module.
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Figure 36: Example showing the interface defined in oqs sig.py.

After creating the file, the next place to make modifications will be the backend itself.

a.5 modifying the backend class

When using the generate private key function, one of the parameters received is the backend
where the algorithms are implemented. Since the only supported backend is OpenSSL, the
user usually passes the backend object as the return value from the function default backend.

Internally, the only thing the generate private key function does is call the function for
generating the private key of a specific algorithm defined in the backend. Because the
oqs sig algorithm is new, every specific function the backend must implement for this specific
algorithm will need to be created from scratch. This means that, for example, the backend
function generate oqs sig private key (which can be seen being called in figure 36) needs to be
implemented on the backend class.

The path where every modification needs to be made from now on is
src/cryptography/hazmat/backends. First of all, the file interfaces.py needs to be modified, by
adding a new interface for the backend class. Every algorithm specific function implemented
by the backend is defined here, similarly to what happens with oqs sig.py, mentioned in A.4.
In this case, the only function implemented is the generate oqs sig private key. The added
interface must look like what is shown in figure 37.
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Figure 37: Example showing the interface for OQS SIGBackend.

It’s important to note that the backend class will implement this new interface as well, so
the function naming, as well as the parameters in the actual implementation, should match
the interface.

After adding the new interface, the next step is to alter the backend class itself, to include
the new function to generate a private key for the new algorithm. The file containing the
implementation of the class is located under the backends/openssl, and is called backend.py.

There are some lines that need to be edited or added in this file. First and foremost, the
new interface needs to be imported in the beginning of the file, following the example from
the other interfaces. The new interface must also be registered, following the example from
other interfaces as well (figure 38).

Figure 38: Figure showing the interface registration for various interfaces in the backend.py file.

After these two additions, the actual function must be implemented in the class itself.
The function generate oqs sig private key, at this point, only receives the algorithm string
as a parameter. The whole code that makes use of the CFFI interface to make C function
calls and allocate variables will be implemented here. The specific implementation will
differ between algorithms, but the logic itself is essentially the same. Since the objective
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is to return a PrivateKey object (which was declared before in oqs sig.py), the operations
needed will involve generating a private key from the C implementation and then creating a
PrivateKey object that contains the private key within itself. Figure 39 shows the example
for the oqs sig generic algorithm. The logic is similar to what one would expect when coding
in C, allocating variables using malloc and then initializing a PrivateKey object with these
variables.

Figure 39: Implementation of generate oqs sig private key in the backend class.

The final step to complete the basic integration of the new algorithm is implementing the
classes defined before in the interface.

a.6 defining the oqs sig specific classes

The generate oqs sig private key return an object that represents the private key used to create
signatures. This object’s class must be defined somewhere, which in this case is a file on
the same directory of backend.py, which will also be named oqs sig.py. To check which
modules are necessary to import, the easiest way is, again, to check the example of the DSA
implementation in dsa.py on the same directory. The most important module to include is
the module corresponding to the algorithm to be implemented, which was already created
(it’s the file oqs sig.py created in src/cryptography/hazmat/primitives/asymmetric).

The next step is to implement every class previously defined in the interface, which in
this case is just the OQS SIGPrivateKey and OQS SIGPublicKey. The implementation must
include the functions as defined in the interface. Figures 40 and 41 show, respectively,
the implementations of OQS SIGPrivateKey and OQS SIGPublicKey. The oqs sig sign and
oqs sig verify functions must also be defined in the same file.
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Figure 40: Implementation of the OQS SIGPrivateKey class.

Figure 41: Implementation of the OQS SIGPublicKey class.

When using the DSA module on cryptography, the user first generates a DSAPrivateKey,
which is then used to generate the corresponding DSAPublicKey. The private key generated
is then used to sign a message by invoking the sign function from the DSAPrivateKey
object. The verification, analogously, is accomplished by using the verify function associated
with the DSAPublicKey object. To follow this strucuture, the new algorithm’s keys must
also implement the methods in the same way. This will give the programmer a consistent
interface that is more or less independent from the algorithm used. Regardless of the
algorithm in question, the programmer always generates a private key, then a public key,
and then signs the message with the private key and verifies with the public.

Depending on the algorithm implemented, the sign and verify functions defined in these
classes will naturally differ. However, no matter the algorithm, it is in these functions that the
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C code will be called to respectively sign and verify the message, similarly to what was done
with the key generation in the backend class. The sign function (which calls oqs sig sign)
must return a signature and the verify function (which calls oqs sig verify) must receive the
signature and verify its validity. The actual type of the signature isn’t really important, as
long as the data is treated properly in both functions.

To finalize, it’s important to make a final modification in the backend.py, which is importing
the class implementations from oqs sig.py. Figure 42 shows how to add this modification.

Figure 42: Example of importing OQS SIG classes in the backend.py file.

a.7 summary

To sum up, the files that need to be altered (with the full path) are:

• src/ cffi src/build openssl.py

• src/ cffi src/openssl/new algorithm.py

• src/cryptography/hazmat/primitives/asymmetric/new algorithm.py

• src/cryptography/backends/interfaces.py

• src/cryptography/backends/openssl/backend.py

• src/cryptography/backends/openssl/new algorithm.py

When all modifications are in place, the final step is to install the package. To install, it’s
necessary to run the following command in the root of the cryptography package’s source
code (the directory where the folder src is located):

sudo python setup.py install

To install the package successfully, besides having Python installed, it is also needed to
have the CFFI package installed. To check if it’s installed, one can just type pip freeze in the
terminal. If it’s not, it can be installed by typing pip install cffi.

Installing the cryptography package with the command above results in the same effect
as installing it with pip install cryptography, so the package should appear when typing pip
freeze no matter how it was installed.

When successfully installed, the package will now allow the programmer to sign and
verify messages in the same way as with the DSA algorithm, by first importing the oqs sig
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module, generating a private key and then using the key to generate a public key. The
private key will then be used to sign an arbitrary message and the public key to verify it.

Even though the examples shown were to integrate a very basic generic signature
algorithm, the process to include different kinds of algorithms, like KEMs, is very similar.

a.8 usage example

After the integration is completed successfully, one can quickly test if it’s working properly
by creating a simple Python script to sign and verify a message, for example.

To use any OQS signatures, the imports that need to be made are identical to those
of the DSA algorithm, sufficing it to replace the dsa module that is imported from
cryptography.hazmat.primitives.asymmetric with oqs sig. Other imports needed are, as usual,
the default backend, hashes and InvalidSignature modules.

The only difference worth noting from using an OQS algorithm, like Dilithium for instance,
and using DSA, is the parameters passed to the generate private key function. When using
OQS, the only parameter needed, other than the backend, is the name of the algorithm to
be used, contrarily to what happens with DSA, which receives the key size as a parameter.
This difference exists because the oqs sig module does not implement a specific algorithm,
but instead a number of different algorithms. Parameters are fixed in the C implementation
of the liboqs library. For different parameters, like key sizes, there needs to be a different
algorithm name. For instance, qTesla I and qTesla IIIsize are two distinct algorithms that
can be used in the oqs sig module, yet they represent the same scheme, qTesla, only with
different parameters.

Figure 43 shows a very simple example of how the oqs sig module can be used to sign a
string using cryptography.
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Figure 43: Signature example using the oqs sig module.

The variable sys.argv[1] is the name of the algorithm to be used, which is not case sensitive.
The process is quite similar when using the KEM algorithms in OQS. One must first import

the oqs kem module (integrated in the same way as the oqs sig module) and other necessary
modules. Right after, the private and public keys can be generated in the exact same way
as with any signature algorithm (the keys belong to Alice). The oqs kem module has a new
function that does not exist in the DH-like functions already present on cryptography, which
is called generate ciphertext, and which objective is to generate the message that Bob will
send to Alice. This message will contain Bob’s public key, to achieve an approximate shared
key, and some additional information that Bob needs to send to achieve an exact shared key
between the two entities.

The function only needs to return the ciphertext necessary to achieve a shared secret, but
for purposes of confirming that the algorithm is working properly, the shared key produced
by Bob is also outputted.

The final step is invoking the exchange method from the private key giving the ciphertext
as a parameter to output the shared key that Alice will end up with.

Figure 44 shows an example of a key agreement using oqs kem.
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Figure 44: Key agreement example using the oqs kem module.

The last lines where there is a binding.Binding() exists only to compare the shared secrets
for testing purposes, and do not need to be present for the algorithm to work.
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