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A B S T R A C T

Since Listeria monocytogenes has a high case-fatality rate, substantial research has been devoted to estimate its
growth rate under different conditions of temperature, pH and water activity (aw). In this study, published
findings on L. monocytogenes growth in broth were extracted and unified by constructing meta-regression models
based on cardinal models for (i) temperature (CM[T]), (ii) temperature and pH (CM[T][pH]), and (iii) tem-
perature, pH and aw (CM[T][pH][aw]). After assessing all the sources retrieved between 1988 until 2017, forty-
nine primary studies were considered appropriate for inclusion. Apart from the modelling variables, study
characteristics such as: type of broth (BHI, TSB, TPB), reading method (colony-forming-units, CFU; or binary-
dilution optical density methods, OD), inoculum concentration and strain serotype, were also extracted. Meta-
regressions based on CM[T] and CM[T][pH] were fitted on subsets of the 2009 growth rate measures and
revealed that type of broth and reading method significantly modulated the cardinal parameter estimates. In the
most parsimonious CM[T][pH][aw] meta-regression model, whereby the variability due to type of broth was
extracted in a nested random-effects structure, the optimum growth rate μopt of L. monocytogenes was found to be
lower when measured as CFU (0.947 log CFU/h; SE = 0.094 log CFU/h) than when measured as OD (1.289 log
CFU/h; SE = 0.092 log CFU/h). Such a model produced the following cardinal estimates: Tmin = -1.273 °C
(SE = 0.179 °C), Topt = 37.26 °C (SE = 0.688 °C), Tmax = 45.12 °C (SE = 0.013 °C), pHmin = 4.303
(SE = 0.014), pHopt = 7.085 (SE = 0.080), pHmax = 9.483 (SE = 0.080), aw min = 0.894 (SE = 0.002) and aw
opt = 0.995 (SE = 0.001). Integrating the outcomes from numerous L. monocytogenes growth experiments, this
meta-analysis has estimated pooled cardinal parameters that can be used as reference values in quantitative risk
assessment studies.

1. Introduction

Listeria monocytogenes is an infectious pathogen that has high ability
to survive various environmental stresses and continue to grow at re-
frigeration temperatures during the shelf-life of some food product
categories. The consumption of food contaminated with this bacterium
can lead to listeriosis, an infection with high morbidity, hospitalisation,
and mortality rates (Schlech & Acheson, 2000). In 2018, in the Eur-
opean Union (EU), the case fatality was 15.6%, making listeriosis one of
the most serious foodborne illnesses under EU surveillance (EFSA &
ECDC, 2019). Moreover, among the cases with information on hospi-
talisation status, 97% were hospitalised (EFSA & ECDC, 2019).

Occurrence data in ready-to-eat (RTE) food samples has revealed

that, in the EU, in 2017, L. monocytogenes occurrence was highest in fish
and fishery products (6%), RTE salads (4.2%), RTE meat and meat
products (1.8%), soft and semi-soft cheeses (0.9%), fruits and vege-
tables (0.6%) and hard cheeses (0.1%) (EFSA & ECDC, 2018), while in
2018, the occurrence of L. monocytogenes ranged from 0.09% for “hard
cheeses made from pasteurised milk” up to 3.1% for RTE bovine meat
(EFSA & ECDC, 2019). Even though general, healthy population can be
susceptible to listeriosis infection, the main groups of risk are people
over 65 years-old, women aged 25–44 and children below 1 year of age
(believed to be mainly pregnancy-related), and immunocompromised
patients or patients with a higher number of severe comorbidities (EFSA
BIOHAZ Panel, 2018).

Since one of the main goals and responsibilities of the food industry
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is to provide safe products to the consumers (Regulation (EU) No.
2073/2005), and considering the recently reported prevalence values
and the occurrence of several outbreaks every year – fourteen in 2018
(EFSA & ECDC, 2019), ten in 2017 (EFSA & ECDC, 2018) – it can be
suggested that the food industry would benefit from specific tools that
can help perform safety assessments, and reduce the contamination of
food products by L. monocytogenes. In this sense, predictive micro-
biology modelling is a tool that can be used to produce safe foods by
evaluating if the control measures in place are able to prevent the
proliferation of the pathogens to levels that might compromise con-
sumers’ health. The interest in this area has increased, and several
models, based on the gamma concept proposed by Zwietering, Wijtzes,
De Wit, and Riet (1992), have been devised to predict microbial be-
haviour considering extrinsic and intrinsic factors (such as temperature,
pH, water activity, etc.): Lambert and Bidlas (2007), Baka, Van
Derlinden, Boon, Mertens, and Van Impe (2013) and Nyhan, Begley,
Mutel, Qu, Johnson, and Callanan (2018), to mention some. The
gamma concept is based on the assumptions that: (i) the factors af-
fecting microbial growth are independent and can be represented by a
discrete term that is multiplied by other terms describing the effect of
additional growth rate affecting factors; and (ii) each factor can be
expressed as a fraction of the maximum growth rate, μmax, and therefore
each factor is normalised between 0 and 1 (Zwietering, Wijtzes, De Wit,
& Riet, 1992).

Introduced by Rosso, Lobry, Bajard, and Flandrois (1995), the car-
dinal parameter models (CPM) were developed according to the gamma
concept, and have been widely used, as their advantage is the biological
interpretation of the parameters (McKellar & Lu, 2004), named cardinal
values, which are linked to the minimum, optimal and maximum values
that enable bacterial growth for each factor. The following equation
displays a CPM that includes the effect of temperature (T), water ac-
tivity (aw) and pH, that modifies the optimum growth rate μopt,

=μ μ CM T CM a CM pH· ( )· ( )· ( )max opt w2 2 1 (1)

CMn describes the relative effects of the factor X on microbial
growth rates (McKellar & Lu, 2004), as follows,
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where Xmin and Xmax are, respectively, the values of Xi below and
above which no growth occurs; Xopt is the value at which bacterial
growth is optimum (all terms are equal to 1 and therefore μmax = μopt);
and n is a shape parameter (n = 2 for temperature and water activity;
and n = 1 for pH; according to Augustin and Carlier (2000a) and
McKellar and Lu (2004).

Cardinal values to be used in further analysis and risk assessment
simulations must be accurate and representative. In conventional car-
dinal values studies, cardinal parameters are determined in-
dependently. In this study, however, cardinal values are extracted at
once by a meta-analysis of the outcomes from microbial growth ex-
periments taken from the literature. In fact, meta-analysis is a powerful
statistical tool that enables the integration and summarisation of results
from distinct sources by assigning weighted values to each study's effect
size (Xavier, Gonzales-Barron, Paula, Estevinho, & Cadavez, 2014). In
this sense, the objective of this study was to extract all published data
on L. monocytogenes growth in broth and unify them in order to: (i)
understand the variability in cardinal parameter estimates due to
moderators such as broth type and reading method; and (ii) obtain
representative and comprehensive cardinal parameters for temperature,
pH and aw that can be useful as reference values. This was accom-
plished by constructing meta-regression models based on cardinal
models for (i) temperature, (ii) temperature and pH, and (iii)

temperature, pH and aw.

2. Methodology

Electronic, systematic literature search was carried out in Web of
Science, PubMed and Scopus databases, as well as Google Scholar, to
find suitable scientific articles, written in English, describing maximum
growth rates of L. monocytogenes in broth. The search aimed to find
quality studies validated by the scientific community.

The bibliographic searches were conducted by properly applying
the AND and OR logical connectors to combine terms regarding L.
monocytogenes growth, intrinsic/extrinsic factors, and growth models.
The combination of keywords used in Web of Science, PubMed and
Scopus databases were the following: (Listeria monocytogenes) AND
(challenge OR fate OR inocul*) AND (growth) AND (“square-root” OR
cardinal OR “secondary model” OR gamma) AND (minimum OR max-
imum OR optimal OR “growth rate” OR MIC OR isotherm* OR tem-
perature OR storage OR pH OR “water activity” OR “organic acid”). In
Google Scholar the keywords used were: (Listeria monocytogenes) AND
(pH OR temperature OR water activity OR organic acid) AND (growth).

When studies referenced in the collected articles were not present in
the results of the literature search, said references were added. In ad-
dition, growth experiments data from ComBase and Nestlé Challenge
Test Database were also included. From these two sources, growth rate
data from several organisations and/or companies were obtained. Other
meta-analysis studies and systematic reviews were excluded, to avoid
data duplication. The criteria for inclusion of data were: minimum of 4
data points (preferentially in the exponential phase); only experiments
performed under aerobic conditions (or modified atmosphere where O2

is estimated to be around 16–20%); absence of antimicrobial substances
(essential oil and plant extracts, for instance), nitrates, or any other
additive, and no treatments (such as irradiation); absence of competi-
tive bacteria (no studies where several bacteria were inoculated si-
multaneously); dataset where t0 (first sampling) is less than or equal to
10 h; growth data reported as OD/h included only if a calibration curve
was provided to allow transformation to log CFU/h; and growth rates
obtained at temperature greater than or equal to −2 °C.

In order to obtain precise estimates of the cardinal parameters and
reflect the quality of research design, specific weights were assigned to
each primary study (j) as a proportion between the number of time
points (n) sampled along the experiment to calculate the growth rate,
and the maximum number of times points sampled described in the
database (n = 45). When a source did not present the number of time
points sampled to calculate the growth rate, the lowest weight value
from the data set (i.e., n = 4) was assigned. Furthermore, for a primary
study to be included in the meta-analysis, it had to report growth rate
estimates from at least three different environmental conditions, or
alternatively, to provide the data from at least three growth experi-
ments so that the growth rate estimates could be computed thereof.
This requisite was established to reduce imbalance in data structure,
and to extract more accurately the random effects since their subject of
variation is primarily the study in all meta-regressions.

Thus, after assessing all the information from the 279 recovered
publications, forty-nine primary studies (see Supplementary File 1)
published from 1988 until 2017 were considered appropriate for in-
clusion: they were comprised of forty published scientific articles; one
unpublished article; and data from eight organisations/companies that
had no reference regarding the year of data collection. From each of the
forty-nine primary studies, the following data were extracted: max-
imum growth rate, standard error of the growth rate, temperature (°C),
pH, aw, type of broth (brain heart infusion [BHI], tryptic soy broth
[TSB], tryptose phosphate broth [TPB] or undefined [UND]), reading
method (colony-forming-units [CFU] or binary-dilution optical density
methods [OD]), inoculum concentration (log CFU/g or CFU/mL), strain
serotype, number of time points for the growth experiment, and pri-
mary model used for growth rate determination. Growth data reported
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as OD/h was not included if a calibration curve was not provided. In
cases where growth rate was not directly reported in the study, it was
computed from the growth data by fitting the Baranyi and Roberts
model (Baranyi & Roberts, 1994) using the Online DMFit tool from
ComBase web interface. All the maximum growth rates (μmax), retrieved
or calculated, were standardised to log base 10 CFU/h, to make sure
that when fitting the cardinal models on this response variable, the
optimum growth rate (μopt) could be also obtained in this intuitive unit.

2.1. Fitting exploratory meta-regressions based on CM[temperature] and
CM[temperature][pH]

Overall, the meta-analytical dataset comprised 2009 growth rate
measures. Before fitting the overarching meta-regression based on the
full CPM (CM[temperature][pH][aw]) to the full data set, two simpler
models were adjusted, with the purpose of conducting exploratory
analysis: the CPM for temperature (CM[temperature]) and the CPM for
temperature and pH (CM[temperature][pH]). The CM[temperature]
model

=μ μ CM T· ( )max opt 2 (3)

was built to estimate the cardinal values for temperature, restricting the
meta-analytical data to the optimal conditions of pH (6.5 ≤ pH ≤ 8)
and of aw (aw ≥ 0.95). The hypothesis about the “optimal conditions”
of pH and aw is that some sets of conditions, as the ones defined, are
closer to optimal growth than others. The optimal range of pH was
defined with such values as the meta-analytical CM[temperature][pH]
model showed that the variation in pH from 6.5 to 7.5 did not cause
large variability in μmax (see Supplementary File 2, Figure S2). Selecting
optimal conditions of the factors that are not explanatory variables in
the meta-regression model reduced the data set from 2009 to 1185
entries, and it was done to obtain representative and meaningful kinetic
parameters. The CM[temperature] model (Eq. (3)) was fitted placing
uncorrelated random effects due to primary study on the parameters
Tmin, μopt and Topt, assuming that these follow normal distributions with
mean zero and standard deviations su, sv and sw, respectively.

The second model built, CM[temperature][pH],

=μ μ CM T CM pH· ( )· ( )max opt 2 1 (4)

included terms for temperature and pH, allowing the estimation of
cardinal values for both factors. This model was adjusted to growth
rates obtained at optimal conditions of aw (aw ≥ 0.95); this is, using a
data subset consisting of 1880 entries. In the CM[temperature][pH]
model, the non-correlated random effects with primary study as subject
of variation were placed on the parameters μopt, Topt and pHopt, as-
suming that these follow normal distributions with mean zero and and
standard deviations su, sv and sw, respectively.

Models from Eqs. (3) and (4) will be referred to as null models since
they do not accommodate any study characteristics, also called mod-
erators or descriptors. Moderators are variables that can be selected to
be studied in depth according to the topic under investigation (Xavier,
Gonzales-Barron, Paula, Estevinho, & Cadavez, 2014). From each null
model, the between-study variance τ2 was obtained.

The purpose behind increasing the complexity of the null models
presented in Eqs. (3) and (4) was to ascertain the proportion of be-
tween-study variability in the optimum growth and cardinal parameters
that could be explained by the most important moderators (Borenstein,
Hedges, Higgins, & Rothstein, 2009). Table 1 compiles the study
characteristics extracted from the primary studies as well as the dis-
tribution of growth rate data among their categories. Nonetheless, not
all of them could be evaluated in the meta-regressions. The effects of
moderators such as strain serotype and primary model on the model
parameters could not be tested due to the uneven distribution of the
data. On the other hand, the effect of inoculum level was not studied
because this variable and reading method were highly confounded,

meaning that all growth rates originating from binary-dilution OD
reading methods presented inoculum levels higher than 4 log CFU/g
(or/ml), whereas growth rates from CFU reading methods showed the
majority of inoculum levels between 2 and 3 log CFU/g (or/ml).
Moreover, information regarding inoculum concentration was available
for only ~20% of the entries. Thus, heterogeneity analysis could only
be carried out for three moderators: type of broth, reading method and
inoculum level.

The influence of a moderator was tested by setting it to affect each
of the model parameters in separate mixed-effects regressions. For in-
stance, to assess the effect of broth type as a moderator in the CM
[temperature] model, four separate mixed-effects models had to be
adjusted since such a model is defined by four parameters. Thus, the
separate mixed-effects models would test broth type as a predictor of
μopt, as a predictor of Tmin, as a predictor of Topt and as a predictor of
Tmax. These models will be referred to as models with moderator.

The influence of moderators was tested by introducing them one by
one in the null model. Type of broth and reading method were tested as
moderators, thereby producing a total of 8 separate models with
moderator when using CM[temperature] as the basis equation (2
moderators by 4 parameters), and 14 models with moderator when
using CM[temperature][pH] as the basis equation (2 moderators by 7
parameters). For every model with moderator, the proportion R2 of
between-study variance explained by the moderator was calculated by
comparing the residual between-study variance of the model with
moderator (τ2res) with that of the null model (τ2) (Gonzales-Barron &
Butler, 2011).

2.2. Fitting the final CM[temperature][pH][aw] meta-regression model

The overarching or final meta-regression model was based on the
CM[temperature][pH][aw] equation,

=μ μ CM T CM pH CM a· ( )· ( )· ( )wmax opt 2 1 2 (5)

and contained terms for temperature, pH and aw, in order to allow for
the determination of cardinal values for all three factors. This model
was adjusted to the full meta-analytical data set (N = 2009) since now
there was no restriction imposed to the values of temperature, pH or aw.

The most parsimonious CPM-based meta-regression model fitted to

Table 1
Number of growth rates per level of moderator available in the constructed
database.

Moderator Data available for each moderator's
level

Reading method CFU: 1232
OD: 777

Strain serotype 1/2a: 154
1/2b: 89
1/2c: 56
4ab: 80
4b: 1089
Undefined: 541

Medium subcategory TSB: 529
TPB: 283
BHI: 530
Undefined: 667

Inoculum level (log CFU/g or CFU/mL) [2, 3[: 15
[3, 4[: 88
[4, 5[: 30
[5, 6.5]: 300

Primary model Baranyi: 133
Gompertz: 4
Unstated: 1872
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the data was of the form,
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where μopt rm(j), Topt m(j), pHopt m(j) and awopt m(j) were allowed to take in
the random shifts um + um(j), vm + vm(j), wm + wm(j) and zm + zm(j),
respectively, as realisations of the primary study j nested in broth type
m; while, in addition, the type of reading r was presumed to modulate

Table 2
Estimates of the meta-analytical CM[temperature] null model predicting the square root of the maximum growth rate [log CFU/h] of L. monocytogenes in broth of
aw ≥ 0.95 and 6.5 ≤ pH ≤ 8 (N = 1185), and the influence of moderators on the cardinal parameters when introduced one by one in the null model. Heterogeneity
analysis comprises between-study variance (τ2), residual between-study variance (τ2res) and explained between-study variance (R2).

Null model Mean Standard error Pr > |t| Heterogeneity analysis

T
T
T

T

T

With moderators Mean Standard error Pr>|t|/F* 2
res R2

T
T
T
T
T

T
T
T
T
T

T
T
T
T
T

T
T
T

T
T
T

T
T
T

* Values of Pr > F shown in shaded rows represent the effect of the moderator (type of broth or reading) on the cardinal parameter, as assessed by analysis of
variance.
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μopt rm(j) as a fixed effect. The random effects um, vm, wm and zm were
assumed to distribute independently as normal distributions with mean
zero and standard deviations su m, sv m, sw m and sz m, respectively.
Likewise, the random effects um(j), vm(j), wm(j) and zm(j) were assumed to
follow normal distributions with mean zero and standard deviations su
m(j), sv m(j), sw m(j) and sz m(j), respectively. The residuals εrm(j) followed a
normal distribution with mean zero and standard deviation s. The
parameters extracted from this model were: μopt r=1, μopt r=2, Topt,
pHopt, awopt, Tmin, pHmin, awmin, Tmax and pHmax. Nested random effects
were fitted as uncorrelated, because the models tested with correlated
random effects structure did not improve the fitting quality. As with the
simpler CM[temperature] and CM[temperature][pH] models, the CM
[temperature][pH][aw] equation was fitted in its null form (without
moderators) in order to extract τ2 to perform heterogeneity analysis.
The proportion R2 of between-study variance explained by the mod-
erators was calculated after fitting the full model of Eq. (6).

All the meta-regression models were fitted as weighted nonlinear
mixed-effects models using the nlme function from the nlme package
(v3.1–142; Pinheiro et al., 2019) implemented in R Studio version
1.0.136 (R Core Team, 2019). Model parameters, as affected by mod-
erators, were calculated from the fitted meta-regressions, and the sig-
nificance of moderators was evaluated by analysis of variance
(α = 0.05).

3. Results and discussion

3.1. CM[temperature] meta-regression model

The results of the first meta-regression model, CM[temperature], are
presented in Table 2. Analysing the τ2res values of the models with
moderators (for example, τ2res = 3.450 for broth type in μopt), a decrease
can be observed when comparing to the τ2 values of the null model
(τ2 = 11.22). This means the moderator is responsible for some of the
observed between-study heterogeneity, even if there is some remaining
unexplained variability. This can also be seen by the R2 value, where for
example the broth type explains 25% of the variability in Tmax esti-
mates, but there is still 75% of heterogeneity that cannot be accounted
for by this moderator alone.

The present meta-regression showed that the reading method was a
source of between-study variability to some extent (R2 = 0.8 – 7.5%),
however not as important as the type of broth, which was responsible
for 25 – 70% of the heterogeneity. The highest R2 was obtained when
the broth type was set to affect the optimum growth rate. Fig. 1, con-
structed with basis on this model, depicts the influence of type of broth

(BHI, TPB and TSB) on the maximum growth rate; the UND (undefined)
category was not displayed as it represents a collection of unnamed
broths for comparison purposes only. TSB shows a particular impact on
the maximum growth rate when compared to the other two broths, BHI
and TPB. In fact, from Table 2, it is noticeable that all cardinal para-
meters estimates from TSB revealed fairly different means in compar-
ison to estimates for BHI, TPB and UND growth rates: Tmax and μopt
were clearly lower, while Tmin and Topt were higher. For additional
insight, a plot of the growth rates of L. monocytogenes retrieved from
literature in distinct types of broth (BHI, TPB and TSB) of optimum aw
(≥0.95) and pH (6.5 ≤ pH ≤ 8) as a function of temperature is
available in the Supplementary File 2 (Fig. S1).

From the meta-analytical data set, the effect of inoculum level on
the estimated cardinal parameters could not be elucidated because the
variables inoculum level and reading method were highly confounded,
as previously referred. Although available literature suggests that the
inoculum concentration has no effect on the cardinal parameters de-
termined (Gnanou Besse et al., 2006), this hypothesis may be difficult
to confirm through meta-analysis, since, generally, higher inoculum
levels are associated with optical density reading methods, while lower
inoculum concentrations are commonly used when CFU reading
methods are chosen, as our meta-analysis study reveals.

In terms of standard errors (SE), cardinal values estimated from TPB
broth growth rates revealed generally higher values than standard er-
rors of cardinal values from other media. The only exception was the SE
of Topt from TSB (0.988), that was higher than the SE of the same
cardinal value from TPB (0.832). Overall, it is likely that the increased
standard errors in cardinal values estimated from TPB broth were
caused by the lower amount of growth rate data originating from this
medium (N = 283), when compared to data from BHI (N = 530) or
TSB (N = 529) broths.

The mixed-effects models incorporating reading method as a mod-
erator revealed significant differences between CFU and OD meth-
odologies when estimating Tmax, Topt and μopt. On the other hand, Tmin

estimates did not appear to be statistically different when using CFU or
OD reading methods (p = 0.803).

3.2. CM[temperature][pH] meta-regression model

Considering the outcomes of the first meta-regression model, spe-
cifically that reading method and broth type should be included as
moderators to account for the existing variability between growth rates
extracted from literature, the CM[temperature][pH] meta-regression
was built, and the results are shown in Table 3. In this model, the
variances of the random effects were significant only for μopt, Topt and
pHopt. Thus, the random effects for the other parameters (Tmin, pHmin,
Tmax and pHmax) were dropped from the model and are not presented in
Table 3.

The main noticeable difference is the large reduction in hetero-
geneity. In the CM[temperature], the data was taken from broth of a
wide range of pH (6.5 ≤ pH ≤ 8), whose value was not accounted for
in the model. In the CM[temperature][pH] model, the between-study
variance (τ2 = 3.949) and the residual between-study variance (τ2res)
both decreased considerably, which means that including the pH term
was a substantial contribution to reducing the variability previously
observed in the CM[temperature] meta-regression. If the pH range
defining “optimal conditions” had been restricted for the CM[tem-
perature] analysis, the number of observations of the data set would
have decreased, and very likely the τ2 (between-study heterogeneity in
growth rate) of the null model would have been even smaller.
Nonetheless, the selection of the pH interval only aimed at conducting
an exploratory analysis of the data to assess the relative importance of
the moderating variables in explaining the between-study variability in
growth rate.

In this second model, the type of broth was, once again, able to
explain a large percentage of the heterogeneity between studies

Fig. 1. Overall influence of type of broth as moderator affecting the optimum
growth rate on the CM[temperature] meta-analytical model of L. monocytogenes
in broth of optimum aw (≥0.95) and pH (6.5 ≤ pH ≤ 8).
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Table 3
Estimates of the meta-analytical CM[temperature][pH] null model predicting the square root of the maximum growth rate [log CFU/h] of L. monocytogenes in broth
of aw ≥ 0.95 (N = 1880), and the influence of moderators on the cardinal parameters when introduced one by one in the null model. Heterogeneity analysis
comprises between-study variance (τ2), residual between-study variance (τ2res) and explained between-study variance (R2).

* Values of Pr > F shown in shaded rows represent the effect of the moderator (type of broth or reading) on the cardinal parameter, as assessed by analysis of
variance.
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(R2 = 2.40–98.1%), even more than in the first null model (25–70%).
This was caused by the inclusion of the pH term, which allowed to
absorb some of the variability caused by broths of different pH values.
This means that some variability that was only being attributed to the

broth type in the CM[temperature] meta-regression model, was in fact
also linked to the distinct pH values that each medium can present.
Different types of media (either general all-purpose media, such as TSB,
BHI and TPB, or selective) may present distinct initial pH values and

Fig. 2. Predicted μ of L. monocytogenes in broth of optimum aw (≥0.95) at fixed values of pH (left) and temperature (right), solved from the meta-analytical CM
[temperature][pH] null model.

Fig. 3. Predicted μ of L. monocytogenes as a function of temperature in broth of pH 5.5 and aw 0.94 (top), as a function of pH in broth of aw 0.94 at 30 °C (bottom
left), and as a function of aw in broth of pH 5.5 at 30 °C (bottom right); as affected by the reading method (OD vs. CFU) and solved from the meta-analytical CM
[temperature][pH][aw] final model.
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buffering capacities. Moreover, the evolution of the pH has also shown
to be dependent on the carbon source used (Sánchez-Clemente, Igeño,
Población, Guijo, Merchán, & Blasco, 2018), which may vary depending
on the selected medium. These factors may be able to cause changes in
extracellular pH, and thus are likely to influence bacterial cell growth
(Sánchez-Clemente, Igeño, Población, Guijo, Merchán, & Blasco, 2018).
In this sense, further investigation on the effect of different types of
media in L. monocytogenes growth and enumeration should be under-
taken. Nevertheless, bacterial physiology (such as nutritional type,
bacterial metabolism, bacterial viability, etc.) may also affect growth
and should not be dismissed (Barer, 2012).

Regarding the influence of the reading method on the parameters,
the inclusion of the pH term caused a considerable increase of the ex-
plained between-study variability in Topt (R2 = 93.5%), while reducing
the R2 of other models with moderators estimating different para-
meters. This means that the reading method influences Topt estimation
the most, leading to greater variability, in comparison to other cardinal
values for temperature (Tmax, Tmin and μopt) and pH (pHmax, pHmin and
pHopt).

The results of the null model in Table 3 were used to produce the
graphs presented in Fig. 2, that show the predicted square-roots of L.
monocytogenes growth rates in broth of optimum aw (≥0.95) at fixed
values of pH and temperature. The aim of this figure is to demonstrate
the great impact of sub-optimal conditions of pH and temperature on
the optimum growth rate, which decreases as the conditions move
further away from the optimum. Additional simulations for the optimal
pH range selected (6.5 ≤ pH ≤ 8) are available in the Supplementary
File 2 (Fig. S2) and demonstrate the reduced impact of pH values within
the optimum range selected on the optimum growth rate.

3.3. Final CM[temperature][pH][aw] meta-regression model

After evaluating the outcomes of the previous models, it became
clear that the type of broth, having a strong influence on the cardinal
parameters, was able to explain a substantial proportion of the total
between-study variability. With this in mind, type of broth was

included in the final CM[temperature][pH][aw] meta-regression model
in a random-effects structure of primary studies nested within type of
broth.

On the other hand, even though the reading method has some effect
on the cardinal parameters, as shown by the results of the CM[tem-
perature] and CM[temperature][pH] models (see Table 2 and 3, re-
spectively), in the final model, this moderator was only introduced as a
predictor of μopt, since no enhancement in goodness of fit was achieved
if reading method was introduced to other cardinal parameters.
Nonetheless, this moderator was indeed essential as a predictor of μopt
to absorb the variability caused by the two distinct reading methods.
Thus, the optimum growth rate μopt of L. monocytogenes was found to be
lower when measured as CFU (0.967 log CFU/h; SE = 0.094 log CFU/
h) than when measured as OD (1.324 log CFU/h; SE = 0.101 log CFU/
h). The influence of the distinct reading methods on μopt can be seen in
Fig. 3.

The cardinal parameters, applicable to both reading types, were:
Tmin = −1.273 °C (SE = 0.179 °C), Topt = 37.26 °C (SE = 0.688 °C),
Tmax = 45.12 °C (SE = 0.013 °C), pHmin = 4.303 (SE = 0.014),
pHopt = 7.085 (SE = 0.080), pHmax = 9.483 (SE = 0.111), aw
min = 0.894 (SE = 0.002) and aw opt = 0.995 (SE = 0.001) (Table 4).
The aforementioned cardinal parameters can be considered as pooled
cardinal parameters since they represent the synthesis of 2009 micro-
bial growth experiments.

Adjusting the CM[temperature][pH][aw] null model to the full data
set (N = 2009) produced a meta-analytical model of high intra-class
variability (I2 = 94.4%). Nevertheless, the introduction of reading
method as a moderator of μopt explained 15.5% of such between-study
variability (Table 4 and Fig. 3). The s values for broth and for study in
broth shown in Table 4 correspond to the standard deviations of the
nested random effects placed on μopt, Topt, pHopt and aw opt. With higher
values of su m (μopt) and sv m (Topt), as well as su m(j) (μopt) and sv m(j)

(Topt), this model shows that the type of broth produced more varia-
bility in the estimates of μopt and Topt than in pHopt and aw opt. However,
since sv m(j) (Topt) is considerably superior than sv m (Topt), it is clear that
the different studies introduced greater variability into Topt than the
medium type per se (3.369 vs. 0.026, respectively).

To demonstrate the usefulness of the multilevel final model in the
estimation of μmax, aw or pH, Figs. 4 and 5 were constructed. The graphs
from these figures show the predicted μ of L. monocytogenes, solved
from the CM[temperature][pH][aw] meta-regression model, as a func-
tion of temperature (Fig. 4) and water activity (Fig. 5) in broth of dif-
ferent pH values (4.5, 5.5, 6.5) and at different water activities or
temperatures, respectively, as measured by the CFU reading method.
Additional simulations of the CM[temperature][pH][aw] meta-regres-
sion model considering optimal pH values (7, 7.5, 8) are available in the
Supplementary File 2 (Figs. S3 and S4). These simulations show the
predicted μ of L. monocytogenes as a function of temperature (Fig. S3)
and water activity (Fig. S4) in broth of different pH values and at dif-
ferent water activities or temperatures, respectively, as measured by the
CFU reading method. Fig. S3 shows that, in the optimum range of pH
(> 6.5), differences in aw (also in the “optimum” range, from 0.95
onwards) cause considerable variation in the optimum growth rate. On
the other hand, in the optimum range of aw (> 0.95), differences in pH
(also in the “optimum” range, from 6.5 onwards) cause less variability
in the optimum growth rate, as shown by Fig. S4 (note that μmax cor-
responding to each of the three pH values are similar at a given tem-
perature). The final model has been made available online to perform
simulations of L. monocytogenes growth: https://vcadavez.shinyapps.io/
ListeriaCardinalModel.

In order to evaluate the quality of the CM[temperature][pH][aw]
meta-regression, the histogram of Pearson’s residuals was built, and the
goodness-of-fit was assessed, as shown in Fig. 6. Since the residuals are
symmetrically distributed around zero in the histogram, and the R of
the goodness-of-fit is particularly high for a meta-analysis study
(R = 0.974), it can be stated that the model is robust, and that the

Table 4
Estimates of the meta-analytical CM[temperature][pH][aw] model predicting
the square root of the maximum growth rate [log CFU/h] of L. monocytogenes in
broth (N = 2009). Heterogeneity analysis of the final model comprises be-
tween-study variance (τ2), intra-class correlation (I2), residual between-study
variance (τ2res) and explained between-study variance (R2).

Final model Mean Standard error Pr > |t| Heterogeneity

Fixed effects
μopt

CFU 0.947 0.085 < 0.0001
OD 1.289 0.092 < 0.0001

Tmin −1.273 0.179 < 0.0001
Tmax 45.12 0.013 < 0.0001
Topt 37.26 0.688 < 0.0001
pHmin 4.303 0.014 < 0.0001 Null model:
pHmax 9.483 0.111 < 0.0001 τ2 = 13.60
pHopt 7.085 0.080 < 0.0001 I2 = 94.4%
aw min 0.894 0.002 < 0.0001
aw opt 0.995 0.001 < 0.0001

Nested random effects
Broth m

su m (μopt) 0.093 τ2res = 11.49
sv m (Topt) 0.026 R2 = 15.5%
sw m (pHopt) 0.001
sz m (aw opt) 0.001

Study j in Broth m
su m(j) (μopt) 0.409
sv m(j) (Topt) 3.369
sw m(j) (pHopt) 0.161
sz m(j) (aw opt) 0.002

s (residual) 0.061
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estimates produced by this final model are accurate and comprehensive
values that may be used as reference when using cardinal parameter
models. These results also validate the value of meta-analysis meta-
regression models in estimating cardinal parameters.

The models were also assessed in terms of any possible random-
effects correlation by estimating the terms of the covariance matrix
from the null models (not shown). In the first model, CM[temperature],
no significant correlation was found between any parameters, with the
exception of the shifts in Topt and μopt (R = 0.492), which was expected
and can be explained by the high variability of μ at distinct tempera-
tures. In the second meta-regression model, CM[temperature][pH], no
correlation was found between the random shifts in the cardinal para-
meters; only the random effects of Topt and μopt showed some associa-
tion (R = 0.458), unlike pHopt and μopt (R = 0.110), which once again
demonstrated the anticipated high variability of μ caused by tempera-
ture, in comparison to pH. Lastly, in the final model, CM[temperature]
[pH][aw], the random-effects correlations between μopt and Topt, pHopt

and aw opt were R = 0.867, 0.285 and −0.357, respectively. All these
values support the previous statements made for the first and second
models; that shifts in μopt due to primary study are correlated with shifts
in Topt. Furthermore, the correlation coefficient, which was positive in
all cases, suggests that in a cardinal model, when Topt is estimated at a
higher value, μopt also tends to be estimated at a higher value, and vice
versa. Although in the three models, study-specific deviations in μopt
were found to be positively associated with study-specific deviations in
Topt, a correlated random-effects solution was not opted for in the final

model because it did not further improve the fitting quality of the un-
correlated random-effects meta-regression.

To benchmark our findings with the literature, a list of references
regarding L. monocytogenes cardinal values was examined and the in-
formation was summarised in Table 5. From such table, it is possible to
observe variability in the reported values. Among other causes, this
may be the result of different authors using distinct strains in their
experiments, reason why integrating strain variability into predictive
models is crucial to achieve more accurate predictions, as emphasized
by Aryani, den Besten, Hazeleger, and Zwietering (2015). In our study,
the inclusion of strain as a moderator was not possible due to uneven
distribution of the data, as referred before. Overall, the estimates ob-
tained from the developed CM[temperature][pH][aw] meta-regression
model are in agreement with those from literature, considering the
variability. Furthermore, they are within the range of variation of the
cardinal values for temperature and pH referenced by Ellouze et al.
(2010); aw min was the only parameter whose estimated value did not fit
within the referenced range. Nonetheless, all the estimates from our
model, including that for aw min, are aligned with the distributions de-
scribed by Couvert et al. (2010).

The dispersion of the values reported in literature (in particular, for
temperature) and the reduced amount of information for some factors
(pH and aw) support the novelty and usefulness of our meta-regression
model and its estimated cardinal parameters to be used as reference
values in quantitative risk assessment studies.

Fig. 4. Predicted μ of L. monocytogenes as a function of temperature in broth of pH 4.5 (top left), pH 5.5 (top right) and pH 6.5 (bottom) at aw values of 0.93, 0.96
and 0.99 as measured by the CFU reading method, solved from the meta-analytical CM[temperature][pH][aw] final model.
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4. Conclusions

This study shows that the assessment of cardinal values using
published growth experiments is possible, and valuable to provide an

insight into the sources of variability. With this study, it was possible to
observe the strong influence that the type of broth chosen for growing
L. monocytogenes can exert on the kinetic parameters extracted by the
cardinal parameter model. Reading method has also an important

Fig. 5. Predicted μ of L. monocytogenes as a function of aw in broth of pH 4.5 (top left), pH 5.5 (top right) and pH 6.5 (bottom) at temperatures of 10, 20 and 30 °C as
measured by the CFU reading method, solved from the meta-analytical CM[temperature][pH][aw] final model.

Fig. 6. Robustness of the meta-analytical final CM[temperature][pH][aw] of L. monocytogenes in broth: histogram of Pearson’s residuals (left) and goodness-of-fit
(right).
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effect, but mainly on the optimum growth rate. Referring to the in-
oculum concentration as moderator, no conclusions could be drawn as
this variable was highly confounded with the reading method. This
study also revealed the challenge to estimate cardinal values when few
data is available. To increase the precision of experimentally estimated
cardinal values, the authors advise to perform a high number of ex-
periments (especially close to the growth boundaries), as their esti-
mation is more challenging than the estimation of parameters at op-
timum conditions.

By integrating the outcomes from numerous L. monocytogenes
growth experiments gathered from 49 sources, the cardinal parameters
for temperature, pH and aw were obtained through a meta-regression
approach. As such, these cardinal parameters are accurate estimates
that can be used as reference values in process risk models and/or risk
assessments. Nonetheless, as the model built uses data from experi-
ments in broth, predictions in liquid and solid foods will require vali-
dation.
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