
A P2P Overlay System for Network Anomaly
Detection in ISP Infrastructures

Miguel Silva, Ricardo Mendonça
Department of Informatics

University of Minho
Braga, Portugal

mikedvlp@gmail.com, zepmend@hotmail.com

Pedro Sousa
Centro Algoritmi, Department of Informatics

University of Minho
Braga, Portugal

pns@di.uminho.pt

Abstract — This paper presents a P2P Overlay system
for network anomaly detection, providing ISP network
administrators with a versatile, easily configurable and useful
tool to monitor the network infrastructures. In this context, this
document describes the system general architecture and the main
entities that integrate the proposed overlay system. Some
technical details of the system will be provided, along with
particular aspects of a real implementation of a system prototype,
which was made using the JAVA language. The robustness and
usefulness of the devised solution is proven resorting to the
CORE network emulator platform. Such platform allows
emulating a real ISP network infrastructure, over which a
prototype of the proposed overlay system and integrating entities
is tested and the corresponding results analysed. Some
illustrative use cases of the system operation will be also
presented and analysed.

Keywords - P2P and Overlay Networks, Network Anomaly

Detection, ISP, Monitoring.

I. INTRODUCTION
Internet Service Provider (ISP) networks are

sometimes faced with anomalies that affect the service
provided to the final users. Some of those anomalies are
related with temporary or permanent faults of physical
equipment of the network (e.g. links, routers, etc.), which lead
to a degradation of the level of service provided to end users.
Other anomalies come from situations of congestion
originated from excessive levels of traffic in some critical
points of the network. In such context, this article aims to
devise and develop a distributed P2P based overlay system
able to detect network anomalies and that can be easily
configured and used by ISP network administrators.

P2P overlay networks differ in the way they work,
and distinct benefits result from assuming centralized or
decentralized approaches, the distinct protocols chosen,
system parameters, and others related alternatives [4]. Overlay
systems and P2P networks are widely used in several and
heterogeneous scenarios. As simple examples, they can be
used to handle network malicious attacks [1], or to provide
solutions in the area of application level multicast [2,8], or
even in the construction of overlay network simulators [3]. In
the similar context of the research area here explored, and
despite constituting distinct approaches from the proposed
one, some other projects also take advantage of having a
distributed probing infrastructure to provide network related

measuring metrics, as the examples of the Ripe Atlas [9], the
perfSonar [10], the SameKnows [11] and the Nlnog Ring [12]
projects.

The system proposed in this paper is based on a
highly reconfigurable overlay network integrating several
peers, being able to perform real-time monitoring of the
network infrastructure, storing the results into a database and
providing an user-friendly interface with the ISP network
administrator. The system also encompasses a network
anomaly alarm module that can detect several network
anomalies related to temporary or permanent faults, which
may lead to a degradation of the Quality of Service (QoS)
provided by the ISP. The overlay network is composed by a
set of peers that establish P2P relations with other peers of the
overlay network and, after receiving appropriate commands
from the overlay coordinator, perform several measurements
of the network infrastructure (e.g. packet loss, RTT, jitter,
changes of routing paths, among many others).

This article is organised as follows: Section II
presents the overlay system architecture and the main
integrating entities. Section III focuses on the overlay internal
communication processes, highlighting the probing commands
generated by the overlay coordinator and the structure of some
of the exchanged packets. After that, Section IV will give
some details about the technologies used for the system
implementation. Section V presents some illustrative results
and use cases of the overlay system operation. Finally, in
Section VI some conclusions are presented along with
possible future work in this project.

II. SYSTEM GENERAL ARCHITECTURE AND ENTITIES
Figure 1 depicts in a simplified way the architecture

and the main entities integrating the proposed system. As
observed, the monitoring overlay system is composed by a
central node, which acts as the overlay coordinator and a set of
peers, distributed along the ISP infrastructure, responsible for
probing the network infrastructure. The overlay peers are
activated or deactivated by the coordinator, also receiving
control commands determining which type of P2P relations to
establish and which type of probing processes they should
perform, using a control communication port for that purpose.

In the simple illustrative example of Figure 1, the
monitoring overlay network is solely composed by two
probing processes, between peerA and peerB and between

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/344900593?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

peerA and peerC. The results of the probing processes are then
sent to the overlay coordinator through data transfer ports.

Figure 1. General Architecture of the Overlay System

A. Monitor Overlay Coordinator
The monitor overlay coordinator architecture is further

detailed in Figure 2. As observed, it has multiple control
communication ports to allow it to send several commands to
the multiple existing peers in the overlay network, and it also
has multiple data transfer ports to allow it to receive several
measurement data reports collected by the overlay peers. Such
probing related information will be stored it in an internal
database module within the coordinator node. As also depicted
in Figure 2, the coordinator will also have an interface with the
administrator, allowing him to activate the overlay peers, to
issue probing commands, to receive alarm notifications and
several options to check the status of the ISP network, as will
be latter detailed in this document.

Figure 2. Monitor Overlay Coordinator Architecture

B. Overlay Peer
The overlay peer is the entity responsible for

performing the probing processes in the ISP network. As
visible in Figure 3, it has two distinct channels, one for control
commands, which is needed to receive commands from the
coordinator to be run on the peer, and send response packets

confirmation back to the coordinator, thus requiring a control
queue which works in both directions. The other channel is
used for data transfer communications with the coordinator,
being used for sending constant monitoring feedback to the
coordinator. A data buffer is required for large data transfers,
to temporarily store data while it is being transferred from the
peer to the overlay coordinator. Additionally, as observed in
Figure 3, each peer maintains a peer port list. This list has one
entry for each peer in the overlay network for which the peer
has established a probing process, previously triggered by the
overlay controller. The peers will also have a controller
module allowing the peer to know what measurements needs
to be made and compute some statistical data, when that
functionality is requested by the overlay coordinator.

Figure 3. Overlay Peer Architecture

III. OVERLAY COMMUNICATION PROCESSES, PROBING
COMMANDS AND PACKET FORMATS

This section highlights the overlay internal

communication processes, focusing on the probing commands
generated by the overlay coordinator node and the structure of
some of the exchanged packets.

A. Coordinator to Overlay Peer Communications
The transport layer chosen for the control commands

and the data transfer communications between the coordinator
node and the overlay peers is the TCP protocol, in order to
assure the reliability for the communications between these
two entities. The number of control and data communication
ports used by the overlay coordinator is the same as the
number of the peers active in the overlay network, i.e. there is
an independent communication port within the coordinator
node for exchanging commands and data reports with each
specific overlay node.

The coordinator can activate or deactivate several
peers of the overlay network. Also, the coordinator is able to
send several commands requiring the execution of specific
probing related processes between specific overlay peers that
are currently active. Such commands issued by the coordinator
have multiple parameters. Due to space constraints, only some
of the available commands allowed in the overlay operation
are described below, being the corresponding function
parameters further described in detail in Table 1.

PacketLoss Number of Packets, Size, Timeout, Loop,
Feedback(Feedback Time) or Statistic Options, Peer Y,
Alarm(Alarm Condition)

This command triggers the activation of packet loss
measurements along the path connecting the peer receiving
this command and PeerY. This measurement will be calculated
considering the total amount of packets sent and the number of
packets that effectively reached the destination.

Round Trip Time Number of Packets, Size, ICMP, Timeout,
Loop, Feedback(Feedback Time) or Statistic Options, Peer Y,
Alarm(Alarm Condition)

This command activates the measurement of the round trip
time between the peer receiving this command and PeerY. The
ICMP flag by default is activated (1), but the administrator can
deactivate it by setting it to 0. When activated, this
measurement will use an ICMP echo_request functionality to
measure the round trip time. If the ICMP flag is deactivated
(0), the peer will use a proprietary implementation of round
trip time estimation made in Java using UDP packets.

Jitter Number of Packets, Size, Loop, Timeout, ICMP,
Feedback(Feedback Time) or Statistic Options, Peer Y,
Alarm(Alarm Condition)

This command measures the variation of the latency between
successive data packets sent between the source peer and
PeerY. If the ICMP flag is activated (1), which is 1 by default,
it will be used an ICMP echo_request to obtain average values
of the RTT variation. If the flag is deactivated (0) the one-way
jitter will be measured with a proprietary implementation of
the jitter time estimation made in Java using UDP packets.

RoutePath Timeout, Loop, Feedback(Feedback Time) or
Statistic Options, PeerY, Alarm(Alarm Condition)

This command allows the coordinator node to obtain the
complete route path between the peer receiving this command
and PeerY. A system call is used to obtain the network path.
This makes possible to verify when changes in specific ISP
routing paths occur, and how much time such route changes
persist, which may indicate a possible network anomaly.

Activate/Deactivate PeerX

The activate command activates a peer, making it start
listening to various commands or return to the previous state
of measurements if it had any before. Conversely, the
deactivate command stops all peer functionalities and
communications taking place with the coordinator node.

Cancel Probe ID, Probe Type, Timeout, PeerY

This command allows the coordinator node to cancel a
measurement process that is running on a peer indefinitely.
After receiving this command, and when the information is
ready to be sent, the peer will send the corresponding
measurements results to the overlay coordinator node.

All the commands generated by the overlay coordinator
have a set of additional parameters, which assigned values
may influence the way that the probing processes are made,
and the way that the results are transmitted to the overlay
coordinator. Table I summarizes some of the supported
commands parameters and their general description.

Parameter Command Description

Number of
Packets

A numeric value indicating the number of data packets
that should be generated by the peer receiving a
specific command, the default value is 4.

Size The packet size that should be used (only useful for
some commands).

Loop

A value that indicates if the measurement will be run
for an indefinite period or at an instant time, which by
default is set at instant time (0). If the measurement is
set to run at indefinite time, the administrator may
choose between: Time Feedback (1), where the
administrator sets the time between the peer responses
to the coordinator; or Statistical Feedback (2), which
permits the administrator to choose a set of statistic
options to be evaluated when the administrator cancels
a measurement command being processed by the peers.

Timeout
A numeric value indicating when the peers should
discard an issued command in the presence of
problems, the default value is 5 seconds.

Probe ID +
Probe Type

The coordinator identifies the command that he wants
to cancel. Only possible in Cancel command.

Statistic
Options

With this parameter the administrator defines the types
of statistics he wants to analyse within a given
measured metric (e.g. average, mean, maximum value,
minimum value, mode, median). This option is only
effective when using the cancel command on a given
command that used the flag Loop (2), otherwise the
result will be instantly committed to the coordinator

ICMP

This flag value by default is activated (1). With this
flag the ICMP protocol is used on specific
measurement commands. If the coordinator deactivates
this flag, proprietary implementations to execute the
commands without the ICMP protocol are then used.

Feedback

If the administrator wants to observe the probe results
that are sent by peers, he can define the time interval
that the probes are done and sent to the administrator in
the Feedback Time parameter (in milliseconds). By
default this option is activated. This is only possible
with the Time Feedback Loop flag activated, otherwise
the result will be instantly committed to the coordinator
if the Loop is atomic, or the result will be committed
only if the probing is cancelled if the Loop is Statistical
Feedback

Alarm
Condition

If the Alarm flag is activated (1), the administrator
needs to choose a logical condition (e.g. bigger, lower,
equal than <value>) to trigger and alarm when a given
measurement is taking place in the network and such
condition occurs.

Table 1 – Parameters of the commands sent by the coordinator

B. Overlay Peer to Peer Communications
The communications processes between active peers

in the overlay network are a consequence of the commands
received from the overlay coordinator, requiring that specific
measurements be made in the underlying ISP network.

Depending on the received commands, distinct UDP packets
with distinct formats and contents are generated from the
sending peers, which, in turn, trigger some response UDP
packets from the receiving peers. Based on the exchanged
packets, and corresponding contents, several measurement
based data is stored in the peers for subsequently transmission
to the overlay coordinator and to be stored in the database.

C. Packets Structure
There are several packet formats associated with the

operation of the proposed P2P overlay system. Due to space
constraints, this section only briefly refers to two types of
packets exchanged between the overlay coordinator and the
overlay peers entities: i) the control packets sent by the
overlay coordinator to the overlay nodes, containing the
probing commands that the coordinator intends to trigger in
the peers and ii) the data packets sent by the overlay nodes to
the coordinator, containing measurement related information
that will be stored, analysed and presented to the ISP network
administrator using appropriate interfaces. The packet format
of the control messages sent by the overlay coordinator is
presented in Figure 4. The packet has some fields allowing the
identification of the packet and corresponding measurement
process (pid and pckid packet fields), followed by an
identification of the commands described in the previous
section (the type packet field with values “A” Activate, “D”
Deactivate, “P” Packet Loss, “R” Round Trip Time, “r”
Route Path, “C” Cancel, “J” Jitter, “I” Packet Injection,
etc.). After the identification of the peers that should
participate in the probing process (source and destination
peer), the following fields included in the packet format of
Figure 4 are related with the function parameters presented in
Table 1, which vary depending on the considered command
issued by the overlay coordinator.

Figure 4. Control Communication packet format (sent by overlay coordinator
to the overlay peer)

Similarly to the control communication packet
format, Figure 5 shows the packet format associated with the
data transfer processes between the overlay peers and the
coordinator node. As visible, the monitoring results (or the
statistical related data) are transmitted in the results/statistical
data field, whereas the alarm message packet field carries the
alarm related information that may be triggered during a
probing process. Such alarm information will have a high
processing priority, and should be presented to the ISP
network administrator as soon as possible. As explained
before, some of the information transmitted in these packets
will be stored in an internal database at the coordinator node.

Figure 5. Data Transfer packet format (sent by the overlay peer to the overlay
coordinator)

IV. SYSTEM IMPLEMENTATION TECHNOLOGIES
In this section some implementation details will be

explained, related to the developed system entities, the used
graphical user interface and the database used to store probing
information collected from the ISP network.

A. Overlay Entities and Communication Processes
All the entities of the proposed overlay system

(Figures 1-3) were implemented in Java. The communication
processes between such entities were implemented using
TCP/UDP Java sockets, over which all the mentioned control
messages, data transfer packets and general probing related
processes take place. Moreover, in order to enrich the ISP
administrator user experience and improve the overall system
performance, specific graphical and database technologies
were used, being discussed in the following sections.

B. System Graphical User Interface
A graphical user interface for the ISP administrator

was developed, using the GUI library JavaFX [5] that helps
the administrator to monitor the network and setup the overlay
P2P network using an intuitive interface. Figure 6 presents the
interface provided to the network administrator. As observed,
the interface integrates a view of the network topology, over
which the overlay network operates, and the links and routers
which compose it. At the bottom of the interface two text
display areas are available for the probing reports, one for
results and another for the generated alarm messages. To
check the results of the measurements in real time, the
administrator may choose some filters to reduce the
information being displayed and target the specific probing
that he wants. A text area on the right side of the interface
displays all the current measurements being made.

Figure 6. The interface developed for the P2P overlay monitoring system

The interface of Figure 6 allows the administrator to mouse
over the links to see the respective probing processes that they
are being subject to. The interface also highlights all the links
associated with those probes with a bloom effect to help to
visualize the probing path. Each link can have multiple
colours to help the administrator to associate the probes with
their type. The information about all the possible colours and
some other helps for the administrator is displayed when the
’?’ button is pressed. Using the interface depicted in Figure 6,

T
Y

P
E

Destination

Peer
NrPackets PacketSize Timeout

L
O

O
P

Feedback

Time

IC
M

P

A
L

A
R

M

Alarm

Condition

P
ID

P
C

K
ID

Source

Peer

T
Y

P
E

Destination

Peer
w

L
O

O
P

Result / Statistical Alarm

Message

A
L

A
R

M

P
ID s

Data

s

P
C

K
ID

to start a probing process the administrator needs to left click a
peer and then select the destination interface, specifying
afterwards other information (e.g. the type of measurement,
alarms, type of loop, ICMP flag, etc.) as observed in Figure 7.
The administrator also has the ability to cancel the probing, by
left clicking a peer, choosing cancel and selecting the
respective probe from the current running probes.

Figure 7. Probing creation interface

The developed interface also allows the administrator
to check the probing history of the ISP network, as depicted in
Figure 8. Using such interface, the administrator can filter the
results by probing type, peer destination, data that the probe
was created, display only results or alarms that were triggered,
among many other options.

C. Graph Database of the P2P Overlay System
The developed monitoring system can be used in ISP

networks with a large number of routers and links. Moreover,
it is also possible to configure a large number of probing
processes, collecting a huge amount of related data that is
stored at the overlay coordinator. Thus, the database
technology should be carefully selected.

In this context, the Neo4j, a graph database
management system [6], was used because it allows highly
performing read and write scalable operations, also allowing
performing reliably fast transactions with ultra-high
parallelized throughput even as if the data grows. It also uses a
very powerful and productive graph query language, Cypher.
In Neo4j, everything is stored in the form of an edge, node, or
attribute. Each node and edge can have any number of
attributes. Additionally, nodes and edges can be labeled,
allowing to narrow searches. A very simple example is
provided in Figure 9, showing the node and edge visualization
of the storage of two probing processes (probing 1 and
probing 2) made from peer1 to the destination peer2.

Figure 9. Neo4J probing example storage

V. ILLUSTRATIVE RESULTS OF THE SYSTEM OPERATION
The test of the developed was made using the CORE

network emulator [7], where is possible to create ISP network
topologies and run applications. Using this emulator real
applications can run in the network nodes and hosts, which are
Linux based systems. In this case, after creating an illustrative
ISP network, the implemented overlay coordinator and several
overlay peers were setup in the topology and the interface with
the administrator was activated. Figure 10 (left side) shows an
illustrative ISP network topology with routers and links
created in the CORE emulator, and Figure 10 (right side)
depicts the previously explained interface where the ISP
administrator visualizes the ISP network and is able to
command and interact with the P2P overlay monitor network.

Figure 10. Network topology emulated in CORE (left side) and the graphical
user interface of the developed P2P overlay system (right side)

In the following subsections, three different test cases
are presented, using distinct loop flags and distinct
measurement probes types (round trip time, jitter and route
path). That commands were activated by the administrator
using the mentioned application interface (as in Figure 11).

Figure 11. Activation of all the test cases in the administrator interface

A. Test Case 1: Atomic Probing
This test case shows an atomic round trip time

probing activated by the administrator between the peer1 and
peer2 and with an alarm condition of ">40" ms. In Figure 12

Figure 8. Peer probing history interface

it can be observed the output displayed in the interface text
display, denoting the measured round trip time, and the
triggered alarm when the RTT surpasses 40 milliseconds.

Figure 12. Atomic probing of RTT between peer1 and peer2

B. Test Case 2: Feedback Loop Probing
The second test case shows the case of a loop probe

with constant feedback to the administrator (feedback time of
5sec), and with the measurement type of route path. This
probing was setup in the link between peer3 and peer4, and
with the alarm configured to be triggered when a route path
change occurs. To force this scenario, in the CORE emulator
the link between the peers will be shutdown forcing a new
route between the peers. Figure 13 clearly shows that the route
path change has been detected by the triggered alarms,
indicating the change of the path generated by the link that
was shutdown in the network topology.

Figure 13. Feedback loop probing of route path between peer3 and peer4

C. Test Case 3: Statistical Loop Probing
In this third test case it is presented the statistical

loop probing with the jitter metric. As mentioned, this type of
loop probing does not provide constant results to the
administrator and if the administrator wants to actually see the
statistics of the probing being made, he needs to finish the
probing process with a cancel command. This probing runs
between peer5 and peer8 and the alarm was set to be triggered
with the condition "<=0", which in this case means when a
decrease in the delay is detected. As in the previous examples,
Figure 14 shows the generated outputs for this test case.

Figure 14. Statistical loop probing of jitter between peer5 and peer6

VI. CONCLUSIONS
This article presented an overlay P2P system for

network anomaly detection, being able to assist ISP network
administrators. The developed system provides the
administrator with different types of probing and alarms able
to be triggered in real-time, for monitoring, congestion
control, fault detection, or other network related purposes.
After presenting the overall architecture and entities of the
system, some details were given regarding the communication
processes, commands and packets associated with the internal
operation of the devised system. The development
technologies were also focused, mentioning the
implementation language, the database and the developed
interface to interact with the ISP administrator. Finally, some
illustrative system use cases were also presented.

As possible future work topics, more types of probing
processes could be added to the prototype. Also, it is also
interesting to study the expansion and test of the developed
system for scenarios involving multi-ISP environments where
several administrators may cooperate in the network
management operations and anomaly detection efforts. The
interface can be also enriched with a graphical visualization of
the measured metrics and also an improved highlight of the
alarms triggered during the overlay operation.

ACKNOWLEDGMENT
This work has been supported by FCT – Fundação

para a Ciência e Tecnologia within the Project Scope:
UID/CEC/00319/2019.

REFERENCES
[1] Stone, R. (2000). CenterTrack: An IP Overlay Network for Tracking

DoS Floods. Proc. 9th Conference on USENIX Security Symposium
Vol. 9.

[2] Jannotti, J., et al. (2000). Overcast: Reliable Multicasting with an
Overlay Network. 4th conference on Symposium on Operating System
Design & Implementation - Volume 4. pp. 197-212.

[3] Baumgart, I., Heep, B., & Krause, S. (2007). OverSim: A Flexible
Overlay Network Simulation Framework. 2007 IEEE Global Internet
Symposium, pp. 79-84.

[4] Lua, E.K., Crowcroft, J.A., Pias, M., Sharma, R., & Lim, S. (2005). A
Survey and Comparison of Peer-to-Peer Overlay Network
Schemes. IEEE Communications Surveys & Tutorials, 7, 72-93.

[5] JavaFX, https://docs.oracle.com/javafx/2/overview/jfxpub-overview.htm
[6] Neo4J , https://neo4j.com/
[7] CORE Emulator, https://www.nrl.navy.mil/itd/ncs/products/core
[8] Sampaio, A., Sousa, P. (2018). An adaptable and ISP-friendly multicast

overlay network. Peer-to-Peer Networking and Applications, Springer.
https://doi.org/10.1007/s12083-018-0680-y

[9] RIPE Atlas. https://atlas.ripe.net/
[10] perfSONAR. https://www.perfsonar.net/
[11] Sam Knows. https://www.samknows.com/
[12] NLNOG RING. https://ring.nlnog.net/

