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RESUMO 

A presente tese foca-se no desenvolvimento de ferramentas numéricas para a análise e 

dimensionamento de elementos estruturais em betão reforçado com fibras (BRF).  

Neste trabalho são abordadas as mais recentes regras e recomendações de projeto expostas nos 

regulamentos em vigor sendo, quando necessário, complementadas com modelos mais avançados 

resultantes de trabalhos de investigação sobre estruturas de BRF. Com base nas atuais regras de 

projeto foi desenvolvido um programa de cálculo automático dedicado à análise da secção transversal 

de elementos estruturais de BRF, com e sem armaduras convencionais de reforço, sujeitos a esforços 

axial, corte e flexão, de forma a realizar as verificações de segurança relativamente aos estados limite 

últimos e de serviço. 

Foi realizada, também, uma avaliação do desempenho dos modelos de resistência ao corte propostos 

no fib Model Code 2010 para elementos em BRF, através da comparação da capacidade preditiva 

dos modelos com os resultados experimentais de uma base de dados de ensaios de corte. 

A presente tese abrange, do mesmo modo, o desenvolvimento de uma ferramenta numérica para a 

análise de elementos estruturais de BRF que conjuga o efeito da orientação e segregação das fibras 

nos elementos estruturais de BRF, e a resistência ao arranque das fibras. A capacidade preditiva do 

novo modelo foi verificada através da simulação de vigas entalhadas de betão reforçado com fibras 

de aço submetidas ao ensaio de flexão de 3-pontos. 

Adicionalmente, foram abordados alguns aspetos particulares de elementos estruturais em BRF. 

Neste âmbito, um novo modelo de simulação da resposta viscoelástica em fluência de materiais de 

matriz cimentícia, desde as idades jovens, foi desenvolvido e implementado num programa baseado 

no método de elementos finitos – FEMIX – tendo sido acoplado aos modelos termo-mecânicos já aí 

implementados. Adicionalmente, foi desenvolvido um novo modelo constitutivo especialmente 

dedicado à simulação da interface entre lajes de BRF apoiadas no solo e as camadas granulares da 

fundação da laje, com o intuito de captar os mecanismos relevantes que induzem dano neste tipo de 

estruturas de BRF. 

Palavras chave: Betão reforçado com fibras; projeto; simulação numérica; modelos constitutivos; 
programa de cálculo. 
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ABSTRACT 

This thesis is devoted to the development of numerical tools for the analysis and design of fiber 

reinforced concrete (FRC) structural elements.  

This work focuses on the description of the most recent design guidelines and recommendations 

obtained from design codes, being complemented with more advanced models published in academic 

works on FRC structures. Based on these guidelines a software was developed for the analysis of FRC 

cross-sections with and without conventional reinforcements, submitted to bending and shear with or 

without axial force, to assess the ultimate and serviceability limit state safety verifications of structural 

members. 

An assessment of the shear resistance models for FRC members proposed in the fib Model Code 

2010 was conducted, by evaluating its predictive performance with the results of shear tests collected 

in a database. 

It was developed an innovative numerical tool for the analysis of FRC structures that couples the effects 

of fiber orientation and segregation in the FRC members, and fiber pullout resistance. The 

performance of the new model was assessed by simulating steel fiber reinforced concrete notched 

beams submitted to 3-point bending tests. 

Moreover, particular topics regarding some structural application of FRC were explored. In this scope, 

a new model capable of predicting the aging creep response of cement-based materials, since early 

ages, was proposed and implemented in a finite element method software – FEMIX – and was 

coupled with the already available thermo-mechanical models.  

Flooring is still the main application of FRC, and the simulation of the interface between the FRC slab 

and the soil supporting system is a relevant aspect for controlling crack formation and propagation, 

mainly due to shrinkage and thermal effects coupled with restriction to the membrane deformability 

of the FRC slab. A new constitutive model was developed and implemented in FEMIX, especially 

aimed to simulate the interface between FRC slabs supported on ground and the granular layers of 

the slab’s foundation, in attempt to capture relevant mechanisms that promote damage in this type 

of FRC structures. 

Keywords: Fiber reinforced concrete; design; numerical simulation; constitutive models; software. 



Advanced tools for design and analysis of fiber reinforced concrete structures 

vii 

TABLE OF CONTENTS 

Acknowledgements ........................................................................................................................ iii

Resumo .......................................................................................................................................... v

Abstract ......................................................................................................................................... vi

Table of Contents ......................................................................................................................... vii

List of Abbreviations and Symbols .................................................................................................. x

List of Figures ............................................................................................................................. xvii

List of Tables .............................................................................................................................. xxv

Introduction .................................................................................................................................... 1

1.1 Research significance ........................................................................................................... 2

1.2 Objectives ............................................................................................................................. 3

1.3 Thesis outline ....................................................................................................................... 4

2 Design of fiber reinforced concrete structural elements ............................................................... 5

2.1 Introduction .......................................................................................................................... 5

2.2 Material characterization and classification ............................................................................ 5

2.3 Constitutive laws for ULS and SLS ...................................................................................... 10

2.3.1 Concrete in compression ............................................................................................ 10

2.3.2 Steel in tension or compression................................................................................... 13

2.3.3 FRC in tension ............................................................................................................ 14

2.4 FRC design particularities ................................................................................................... 22

2.5 ULS and SLS analysis of FRC structural members .............................................................. 25

2.5.1 Members in bending ................................................................................................... 25

2.5.2 Members in shear ....................................................................................................... 27

2.5.3 Punching .................................................................................................................... 39

2.5.4 Stress limitation .......................................................................................................... 45

2.5.5 Crack control .............................................................................................................. 47

2.6 Concluding remarks ........................................................................................................... 56

3 Software for design of fiber reinforced concrete elements ........................................................ 58

3.1 Introduction ....................................................................................................................... 58

3.2 Plain section analysis of cross-sections ............................................................................... 58

3.3 Main user interface window ................................................................................................ 60

3.4 Software algorithm/flowcharts ............................................................................................ 63

3.4.1 Data input ................................................................................................................... 64

3.4.2 Calculation routine ...................................................................................................... 68

3.4.3 Results Output ............................................................................................................ 69



Advanced tools for design and analysis of fiber reinforced concrete structures 

viii 

3.5 Examples ........................................................................................................................... 69

3.5.1 Example 1 – Beam ..................................................................................................... 70

3.5.2 Example 2 – Slab........................................................................................................ 73

3.6 Concluding remarks ........................................................................................................... 77

4 Appraisal of MC2010 shear resistance prediction models ........................................................ 78

4.1 FRC beams shear tests database ....................................................................................... 78

4.2 Residual flexural strength prediction model ......................................................................... 81

4.3 Appraisal of MC2010 shear resistance prediction models ................................................... 83

4.4 Concluding remarks ........................................................................................................... 89

5 Analysis of FRC members considering fiber orientation, fiber segregation and fiber pullout 
resistance model ......................................................................................................................... 90

5.1 Introduction ....................................................................................................................... 90

5.2 New material model for FRC in tension ............................................................................... 90

5.2.1 Fiber orientation profile model ..................................................................................... 91

5.2.2 Fiber segregation model .............................................................................................. 95

5.2.3 Fiber pullout constitutive model ................................................................................... 96

5.2.4 Influence of the model parameters on the moment-rotation of SFRC members failing in 
bending .............................................................................................................................. 104

5.2.5 Assessment of the predictive performance of the new model ..................................... 112

5.3 Moment-rotation procedure for analysis of cross-sections .................................................. 125

5.3.1 Numerical simulation of FRC structural members ...................................................... 127

5.4 Concluding remarks ......................................................................................................... 134

6 Creep of Cement Based Materials ......................................................................................... 136

6.1 Introduction ..................................................................................................................... 136

6.2 Time-dependent deformation ............................................................................................ 136

6.3 Creep fundamentals ........................................................................................................ 137

6.4 Creep mechanisms and influencing factors in CBM .......................................................... 145

6.5 Creep compliance prediction models ................................................................................ 149

6.5.1 Existing models ......................................................................................................... 152

6.5.1.1 Double Power Law .......................................................................................... 153
6.5.1.2 Eurocode 2 ..................................................................................................... 156
6.5.1.3 Model Code 2010 ........................................................................................... 158
6.5.1.4 B3 model........................................................................................................ 161
6.5.1.5 B4 model........................................................................................................ 164

6.5.2 Proposed model ........................................................................................................ 167

6.6 Numerical implementation for structural analysis.............................................................. 171



Advanced tools for design and analysis of fiber reinforced concrete structures 

ix 

6.7 Coupling of creep and thermo-mechanical models ............................................................ 177

6.8 Implementation of ACC model in FEMIX ........................................................................... 180

6.8.1 Numerical examples ................................................................................................. 182

6.8.1.1 Concrete sample under compressive creep test ............................................... 182
6.8.1.2 Reinforced concrete beam under flexure creep test .......................................... 184

6.9 Concluding remarks ......................................................................................................... 192

7 Implementation of a cyclic-hysteretic constitutive model for simulating the contact between different 
materials ................................................................................................................................... 193

7.1 Numerical implementation ............................................................................................... 193

7.2 Numerical example .......................................................................................................... 207

7.2.1 Load combinations - set A ......................................................................................... 209

7.2.2 Load combinations - set B ......................................................................................... 210

7.2.3 Load combinations - set C ......................................................................................... 211

7.3 Numerical application ...................................................................................................... 212

7.4 Concluding remarks ......................................................................................................... 215

8 Conclusions .......................................................................................................................... 217

8.1 Main conclusions ............................................................................................................. 217

8.2 Possible future developments ........................................................................................... 219

References ................................................................................................................................ 221

Appendix A ................................................................................................................................ 229

Appendix B ................................................................................................................................ 230

Appendix C ................................................................................................................................ 234

Appendix D ................................................................................................................................ 262

D.3 Determination of structural characteristic length ............................................................... 262

D.4 Definition constitutive models ........................................................................................... 266

D.5 Calculate neutral axis position and curvature for cross-section under bending and axial force
 ....................................................................................................................................... 273

D.6 Determination of moment-curvature relationship ............................................................... 278

D.7 Determination of shear resistance .................................................................................... 283

D.8 Calculation of bond transfer length and crack spacing ...................................................... 295

D.9 Determination of design crack width at SLS ...................................................................... 297

D.10 Determination of moment-crack width relationship ...................................................... 300

D.11 Determination of bending moment corresponding to crack initiation ............................ 303

D.12 Verification of stress limitation criteria ......................................................................... 305

Appendix E ................................................................................................................................ 309

Appendix F ................................................................................................................................ 312
AppendixG .............................................................................................................................. ....314



Advanced tools for design and analysis of fiber reinforced concrete structures 

x 

LIST OF ABBREVIATIONS AND SYMBOLS 

3PNBBT – Three-point notched beam bending tests 
a  – Shear span 

,c efA – Effective area of concrete in tension

ctA – Area of the tensile part of the concrete cross-section

sA  – Area of steel reinforcement 

pA  – Area of prestress steel reinforcement 

slA  – Cross-sectional area of the longitudinal reinforcement 

,minslA – Minimum flexural reinforcement area

swA – Area of transverse reinforcement

pA  – Horizontally projected area of punching shear failure surface 

secA – Cross-section area

fA  – Fiber cross-section area 

ACC – Aging creep compliance 
1  – Parameter that controls shape of the pre-peak branch of the s −  relationship 

  – Transverse reinforcement inclination relative to structural element longitudinal 
axis 

2  – Parameter that controls shape of the post-peak branch of the s −  
relationship 

E  – Modular ratio 

0b  – Control perimeter for assessing punching shear resistance 

tb  – Width of tension zone 

sb  – Support strip width for punching analysis 

wb – Smallest width of the tensile zone of the cross-section

ub  – Diameter of the circle with equal area as the region inside the control perimeter 
  – Coefficient to assess mean steel strain over 

,maxsl

  – Ratio between maximum and residual friction coefficient 
c  – Concrete cover 
oc  – Cohesion 

( )0,C t t  – Specific creep.

( )iC  – Ratio between number of fibers with orientation angle 
i and the total number

of fibers in the cross-section
CSCT – Critical Shear Crack Theory 

CMOD – Crack mouth opening displacement 
CDC – Critical diagonal crack 
COV – Coefficient of variation 
CBM – Cement based material 

  – Curvature 
tD  – Tangential stiffness 

nD  – Normal stiffness 
d  – Effective depth to main tension reinforcement 



Advanced tools for design and analysis of fiber reinforced concrete structures 

xi 

1sd – Depth of tensile longitudinal steel reinforcement

2sd – Depth of compressive longitudinal steel reinforcement

pd – Depth of prestress reinforcement

cd – Depth of resultant compressive force of concrete

,t rd – Depth of tensile force of FRC inside the effective tensile zone

,t ud – Depth of tensile force of FRC outside the effective tensile zone

vd – Shear resisting effective depth

gd – Maximum size of the aggregate

fd – Diameter of fibers
jd – Distance of center of gravity of the thj  layer of the cross-section to the cross-

section top face
p

jD – Axial deformation of the thj  layer at the thp  rotation increment 

  – Midspan deflection; Slip 
cE  – Concrete Young’s modulus 

e

cE . – Effective modulus of concrete considering creep effects 

sE  – Reinforcing steel elastic modulus 

pE – Prestressing steel elastic modulus

shE – Reinforcing steel modulus of the hardening branch

( )0E t  – Elasticity modulus determined at time 
0t

0E  – Asymptotic modulus. 

( )0sE t  – Modulus of the isolated spring of the Dirichlet series, at the time 
0t . 

( )0E t  – Modulus of the th  chain of the Dirichlet series, at the time 
0t . 

uie – Eccentricity of shear forces with respect to the centroid of the basic control
perimeter in the direction ,i x y=

pe – Eccentricity of prestress steel reinforcement
  – Strain 
Fu – Ultimate tensile strain of FRC

ULS – Limit tensile strain of FRC for ULS verification

SLS – Limit tensile strain of FRC for SLS verification

x  – Longitudinal strain in the mid-depth of effective shear area 

ud – Design value of steel ultimate strain.

uk – Characteristic value of steel ultimate strain

3c – Concrete compressive strain at the limit of elasticity

3cu – Concrete ultimate compressive strain

sm – Average strain of steel bars in the introduction length zone

cm – Average strain of concrete in the introduction length zone

cs – Strain of concrete due to shrinkage

sh – Strain of the concrete due to free shrinkage

ins – Instantaneous strain.



Advanced tools for design and analysis of fiber reinforced concrete structures 

xii 

cr – Creep strain.

T  – Thermal strain at time t . 

0  – Stress independent strains (shrinkage and thermal) plus crack strain. 
,cr d – Delayed elastic strain.
,cr f – Flow strain.
,cr v – Viscoelastic aging and nonaging creep strain.
  – Fiber orientation factor 

r  – Coefficient to consider shrinkage contribution in the crack 
f  – Maximum frictional resistance of the fiber due to snubbing effect 

ckf – Characteristic value of the compressive strength of concrete, if not specified it
is considered at 28 days of age

cdf – Design value of concrete compressive strength, if not specified it is considered
at 28 days of age

ctmf – Mean value of the tensile strength of concrete, if not specified it is considered
at 28 days of age

ctkf – Characteristic value of the tensile strength of concrete, if not specified it is
considered at 28 days of age

,minctkf – Lower bound value of the characteristic tensile strength of concrete, if not
specified it is considered at 28 days of age

28

cf
– Mean compressive strength of concrete at 28 days of age.

cmf – Mean compressive strength of the concrete matrix

sykf – Characteristic value of yield strength of reinforcing steel

sydf – Design value of yield strength of reinforcing steel

stf – Tensile strength of reinforcing steel

Rjf – Residual flexural tensile strength

Lf – Limit of proportionality

Ftuf – Ultimate residual tensile strength

Ftsf – Serviceability residual tensile strength

ywdf – Design yield strength of the shear reinforcement

ywkf – Characteristic value of yield strength of the shear reinforcement

ctf – Concrete tensile strength

bdf – Bond strength of the steel reinforcement to concrete

( )if  – Frequency of fibers with orientation angle
i

1sF – Force of tensile longitudinal steel reinforcement

2sF – Force of compressive longitudinal steel reinforcement

cF  – Compressive force of concrete 

,t rF – Tensile force of FRC inside the effective tensile zone

,t uF – Tensile force of FRC outside the effective tensile zone

( )REF   – Coefficient to account to error resultant of adopting discrete ranges of fiber 
orientation angles rather than a continuous function 

( )F  – Cumulative distribution function of the standard Normal distribution 



Advanced tools for design and analysis of fiber reinforced concrete structures 

xiii 

FRC – Fiber reinforced concrete/cement composites 
FEM – Finite element method 
FBL – Finite bond length 

  – Friction angle 

s  – Diameter of reinforcement bars 

w  – Diameter of the punching reinforcement 

i  – Fiber orientation angle 

i  – Mean orientation angle of the fibers in a range of fiber orientation angles 
interval 

m  – Average orientation angle of the fibers in a cross-section 
  – Objective function of the NLSM. 

fG – Fracture energy of a plain concrete

c  – Partial safety factor for concrete; Concrete density 

F – Partial safety factor for FRC

s  – Partial safety factor for steel 

,u i – Angle between the fiber orientation and the load direction at failure conditions
h  – Cross-section height 

,c efh – Effective height of concrete in tension

sph – Distance between the tip of the notch and the top of the cross-section

HPFRCC – High performance fiber reinforced cement composites 
IR – Reinforcement index 
IP – Integration point 

IBL – Infinite bond length 
( )0,J t t – Creep compliance

( ), 0,,j i iJ t t – Experimental values of the creep compliance.

( ), 0,,j i iJ t t – Predicted values of the creep compliance.

( )0,c t t – Creep coefficient

k  – Shear size effect factor. Empirical value to take the influence of the concrete 
cover. Coefficient to consider the non-uniform self-equilibrating cracking force 

ck  – Strength reduction factor. Coefficient that considers the stress distribution in 
the cross-section just before cracking occurs and the change of the inner lever 
arm. 

dgk – Aggregate interlock coefficient at critical shear crack

ek  – Coefficient of eccentricity 
L , l  – Member span 

bl  – Crack bandwidth 

csl – Structural characteristic length

pl – Development length

,maxsl – Bond transfer length or introduction length

fl – Length of fibers

,bf oL – Average bond length crossing the crack surface



Advanced tools for design and analysis of fiber reinforced concrete structures 

xiv 

,cru iL – Critical embedment length

trL – Transfer bond length

bL  – Bond length 

crL – Crack spacing

Edm – Design acting bending moment on support strip for punching analysis
M  – Bending moment 

sdM – Design acting bending moment

RdM – Design resisting bending moment

1sM – Moment of force of tensile longitudinal steel reinforcement

2sM – Moment of force of compressive longitudinal steel reinforcement

cM – Moment of compressive force of concrete

,t rM – Moment of tensile force of FRC inside the effective tensile zone

,t uM – Moment of tensile force of FRC outside the effective tensile zone

LM – Number of discrete points of each experimental creep compliance curve.
MC2010 – fib Model Code 2010 

  – Friction coefficient  
p  – Maximum friction coefficient 

EdN – Design acting axial force

fN – Number of fibers

, ifN  – Number of fibers with orientation angle
i

NLSM – Nonlinear least square method 
  – Poisson’s ratio 

i – Initial tangent slope of the 
as −  relationship 

,maxRdP – Maximum value of punching shear resistance

,Rd fP – Design value of punching shear resistance provided by fiber reinforcement

,Rd cP – Design value of punching shear resistance provided by concrete matrix

,Rd sP – Design value of punching shear resistance provided transverse reinforcements

EdP – Design acting punching shear force

( )P w  – Fiber pullout force 

( )
i

jP w  – Pullout force of the total number of fibers in the thj  layer of the cross-section 
with an orientation angle

i

PC – Plain concrete 
  – Matrix of the defining coefficients of the ACC model. 
  – Inclination of the compressive stress field 
,s ef – Effective reinforcement ratio

sl  – Longitudinal reinforcement ratio 
Q1 – 1st quartile 
Q3 – 3rd quartile 

sr  – Position where radial bending moment of slab is zero with respect to support 
axis 

ws – Spacing between shear reinforcement



Advanced tools for design and analysis of fiber reinforced concrete structures 

xv 

rms – Mean crack spacing

as  – Accumulated relative sliding displacement 

,a ps – Accumulated relative sliding displacement corresponding to the maximum
friction coefficient

SLS – Serviceability limit state 
SMCFT – Simplified Modified Compression Field Theory 

SFRC – Steel fiber reinforced concrete 
SD – Standard deviation 

0s  – Sliding displacement at the end of the linear branch of the s −  relationship 

ms – Sliding displacement corresponding to the peak shear stress of the s −

relationship
is  – Relative sliding displacement according to the local axis i

  – Stress vector 

sr – Maximum steel stress in a crack in the crack formation stage

s  – Steel reinforcement bars stress 

n  – Normal stress 

ct  – FRC tensile stress 

cp – Average axial stress acting in the cross-section

tf  – Tensile stress of the fiber reinforcements 

swd – Stress activated in the shear reinforcement
,SLS char

c – Compressive stress of concrete at characteristic load combination
,SLS qperm

c – Compressive stress of concrete at quasi-permanent load combination
,SLS char

t – Tensile stress of FRC at characteristic load combination
,SLS char

s
 – Tensile stress of longitudinal steel bars at characteristic load combination

( )m   – Standard deviation of the orientation angle of the fibers in a cross-section 

fu – effective tensile strength of the fibers

fu – Fiber tensile strength
t  – Thickness of slab; time 
0t – Loading age

0t t−  – Load duration 
  – Shear stress 
m  – Peak shear stress 

  – Retardation time of the th Kelvin chain 

  – Retardation time of the th Kelvin chain 

bms – Mean bond strength between steel and concrete

bu – Average bond strength
  – Member rotation 

U  – Perimeter of the reinforcement bars 
'u  – Vector of relative displacements of the interface element 

ULS – Ultimate limit states 
VEM – Variable Engadgement Model 



Advanced tools for design and analysis of fiber reinforced concrete structures 

xvi 

fV – Fiber volume dosage

RdV – Design value of shear resistance force

,Rd FV – Design value of shear resistance of FRC member with longitudinal
reinforcement and without shear reinforcement

,Rd cV – Design shear resistance provided by plain concrete

EdV – Design acting shear force

,Rd sV – Design value of shear resistance provided by shear reinforcement

,maxRdV – Maximum value of shear resistance
w  – Crack width 

uw  – Ultimate crack opening corresponding to the ULS criterion 

dw Design crack width 

limw – Nominal limiting value of crack opening
x  – Depth of the neutral axis 
  – Fibers segregation factor 
y  – Distance between the neutral axis and the tensile side of the cross-section 

  – Rotation of slab outside the column region 
z  – Internal lever arm 
sz  – Internal lever arm of passive reinforcement 

pz – Internal lever arm of prestress reinforcement



Advanced tools for design and analysis of fiber reinforced concrete structures 

xvii 

LIST OF FIGURES 

Figure 1 – Typical load ( P ) – deformation ( ) of FRC: a) Tensile strain-softening; b) Tensile strain-
hardening (extracted from [33]). .................................................................................... 6

Figure 2 – FRC composites softening and hardening characterization. 
fV  - volume of fibers; 

fcriV  - 

critical volume of fibers to obtain hardening response (extracted from [10, Ch. 3]). ......... 7

Figure 3 – Typical load-CMOD curve of FRC [30] (dimensions in mm). ............................................ 8

Figure 4 – The concept of toughness class for FRC based on the relationship between the flexural 
stress and CMOD [30]. .................................................................................................. 8

Figure 5 – Rectangular stress-strain relationship for concrete in compression [30]. ....................... 11

Figure 6 – Bilinear stress-strain relationship for concrete in compression [30]. ............................. 12

Figure 7 – Bilinear stress-strain relationship considering creep for concrete in compression. ......... 13

Figure 8 – Stress-strain diagrams for reinforcing steel in compression and tension [30]. ............... 13

Figure 9 – Tensile stress-strain relationship for plain concrete and FRC up to material tensile strength.
 .................................................................................................................................. 14

Figure 10 – Stress-crack opening constitutive laws for ULS analysis: a) rigid-plastic model; b) linear 
model [30]. ................................................................................................................ 15

Figure 11 – Example of determination of neutral axis position, x , and y for the evaluation of 
csl . 17

Figure 12 – Example of the analysis of a footbridge cross-section. a) Structural characteristic length; 
b) Crack pattern of the different components of the footbridge. .................................... 18

Figure 13 – Stress-strain relationship of a strain softening FRC, for ULS analysis: (a) complete diagram; 
(b) simplified diagram. ................................................................................................ 19

Figure 14 – Stress-strain relationship for SLS analysis: (a) Case I; (b) Case II; (c) Case III [30]. ..... 19

Figure 15 – SLS stress-strain case I model for situation where concrete matrix post-cracking 
contribution is disregarded. ........................................................................................ 21

Figure 16 – Example of SLS stress-strain Case I model where point C is disregarded. ................... 21

Figure 17 – Typical load-displacement curve of a FRC structural element (extracted from [30, Figs. 
7.7–1]. ...................................................................................................................... 24

Figure 18 – Stress-strain distribution for assessing flexural response of a rectangular cross-section 
with longitudinal steel reinforcement and FRC tension zone divided in two parts. ......... 26

Figure 19 – Stress-strain distribution for assessing flexural response of a rectangular cross-section 
without longitudinal steel reinforcement. ..................................................................... 26

Figure 20 – Simplified stress-strain distribution in the cross-section for slab design [30]................ 27

Figure 21 – Contribution of concrete matrix and fiber reinforcements for FRC shear resistance 
(extracted from [55]). ................................................................................................. 30

Figure 22 – Equilibrium at cross-section and corresponding strain profile [59]. ............................. 31

Figure 23 – Example of 
x  adjustment due to proximity of rebar curtailment. ............................... 33

Figure 24 – Approach to estimate 
2R kf  and 

4R kf  based on the toughness class of the FRC. ....... 36

Figure 25 – Ultimate crack width orthogonal to the CDC. .............................................................. 37



Advanced tools for design and analysis of fiber reinforced concrete structures 

xviii 

Figure 26 – Punching of slab. a) Development of critical shear crack; b) Slab’s rotation and concrete 
cover spalling (extracted from [67]). ............................................................................ 39

Figure 27 – Punching of FRC slabs: (a) behavior of FRC after cracking; (b) critical shear crack in slabs; 
(c) assumed distribution of crack widths along the failure surface; (d) profile of fibers’ stress 
along the failure surface; and (e) matrix (concrete) and fiber contributions for the punching 
shear strength (adapted from [67]). ............................................................................ 41

Figure 28 – Determination of eccentricity of the resultant of shear forces 
uie  (extracted from [30]).

 .................................................................................................................................. 44

Figure 29 – Shear reinforcement activated at failure (extracted from [30]). ................................... 44

Figure 30 – Load-strain relationship for a centrically loaded tensile reinforced concrete member [68].
 .................................................................................................................................. 48

Figure 31 – Simplified representation of steel, concrete and bond stresses in the disturbed area in the 
crack formation stage of a RC member (adapted from [30, Figs. 7.6–3]). .................... 49

Figure 32 – Load transmission from steel to concrete due to bond (extracted from [68]). .............. 50

Figure 33 – Simplified representation of steel, concrete and bond stresses in the disturbed area in the 
crack formation stage of a FRC member. .................................................................... 52

Figure 34 – Determination of effective area of concrete in tension, 
,c efA , for: a) beams; b) slabs; c) 

walls (extracted from [30]). ......................................................................................... 54

Figure 35 – Generic rectangular FRC cross-section for determination of moment-curvature 
relationship. ............................................................................................................... 59

Figure 36 – User interface window of the software. ...................................................................... 60

Figure 37 – User interface window: a) Cross-section geometry; b) FRC material properties. ........... 61

Figure 38 – User interface window: Conventional reinforcement data............................................ 61

Figure 39 – User interface window: Data for calculation of structural characteristic length. ............ 62

Figure 40 – User interface window: Selection of type of analysis to be performed. ......................... 62

Figure 41 – User interface window: Selection of shear capacity analysis. ...................................... 63

Figure 42 – Main flowchart of FRCcalc. ..................................................................................... 64

Figure 43 – Idealization of the geometry of the FRC cross-section. ................................................ 65

Figure 44 – Bending moment vs. curvature relationship for FRC and RC cross-section of Example no.1 
beam, determined from FRCcalc and DOCROS. ..................................................... 71

Figure 45 – Design crack width vs. resisting bending moment at SLS relationships for FRC and RC 
cross-section of Example no.1 beam. .......................................................................... 72

Figure 46 – Bending moment vs. curvature relationship for FRC and RC cross-section of Example no.2 
slab, determined from FRCcalc and DOCROS. ....................................................... 75

Figure 47 – Design crack width vs. resisting bending moment at SLS relationship for FRC and RC 
cross-section of Example no.2 slab. ............................................................................ 76

Figure 48 – Main properties of the experimental data of the database: a) Cross-section width and 
effective depth; b) Shear span to effective depth ratio; c) Conventional and fiber 
reinforcement ratio; d) Mean compressive strength. .................................................... 79

Figure 49 – Residual flexural strength of SFRC beams of the DBs. ............................................... 83



Advanced tools for design and analysis of fiber reinforced concrete structures 

xix 

Figure 50 – Statistical analysis of   for both MC2010 shear resistance models considering the use 
of experimental and estimated values of 

Rif . .............................................................. 84

Figure 51 - Comparison of experimental and shear strength determined from both MC2010 prediction 
models ....................................................................................................................... 85

Figure 52 - Statistical analysis of   for both MC2010 shear resistance models. ........................... 85

Figure 53 – Comparison of the value of   for each sample determined by the theoretical models. 86

Figure 54 – Predictive performance of the theoretical models, safe ( 1  ) and unsafe ( 1  ). ... 86

Figure 55 – Relationship between   and effective shear span ratio, a d ; the depth of longitudinal 

reinforcement, d ; the mean concrete compressive strength, 
cmf ; the mean value of the 

ultimate residual tensile strength, 
Ftumf ; the ultimate crack width, 

uw ; and the strain at 

mid-depth of the effective shear depth, x . ................................................................. 88

Figure 56 – Compressive stress vs. strain model adopted in NLMM107 constitutive model. .......... 91

Figure 57 – Fiber orientation profile. ............................................................................................ 92

Figure 58 – Zones of cross-section for the determination of the fiber orientation factor due to wall 
effect.......................................................................................................................... 94

Figure 59 – Fiber segregation model. ........................................................................................... 96

Figure 60 – Components of the fiber pullout response. ................................................................. 98

Figure 61 – Idealized bond stress vs. slip (
,0b − ) for the pullout response of an aligned fiber. .. 99

Figure 62 – Definition of fiber bending angle,  . .......................................................................... 99

Figure 63 – Idealized bond stress vs. slip (
,0b − ) of the pullout response of an aligned fiber, 

considering the engagement length of fibers. ............................................................ 100

Figure 64 – Pullout force of a fiber with the orientation 
i . ........................................................ 101

Figure 65 – Schematic representation of coupling of the fiber orientation profile, fiber segregation and 
fiber pullout resistance model: a) Lateral and section cut view of a cracked FRC member; 
b) Determination of total number of fibers in a cracked layer, based on segregation model;
c) Crack width of the thj  layer; d) Example to determine the fiber pullout force at the 

cracked thj  layer, considering 4; 22.5ºin   =  = . ............................................ 103

Figure 66 – Cross-section geometry and reference values of the SFRC material properties considered 
in the case study. ..................................................................................................... 104

Figure 67 – Moment vs. rotation relationship of cross-section considering 4, 9, 15, 30n  = . . 105

Figure 68 – Moment vs. rotation relationship of cross-section, considering different engagement 
models. .................................................................................................................... 106

Figure 69 – Bond stress vs. slip considering three engagement models. ..................................... 106

Figure 70 – Bond stress vs. slip (
,0b − ) of the pullout response of an aligned fiber considering 

,0, 2, 5, 10, 20b p MPa = . ...................................................................................... 107

Figure 71 – Moment vs. rotation relationship of cross-section considering 
,0, 2, 5, 10, 20b p MPa = .

 ................................................................................................................................ 108



Advanced tools for design and analysis of fiber reinforced concrete structures 

xx 

Figure 72 – Bond strength vs. slip (
,0b − ) of the pullout response of an aligned fiber considering 

0.1,0.5, 1.0, 5.0p mm = . ..................................................................................... 109

Figure 73 – Moment vs. rotation relationship of cross-section considering 0.1,0.5, 1.0, 5.0p mm =

. ............................................................................................................................... 109

Figure 74 – Bond strength vs. slip (
,0b − ) of the pullout response of an aligned fiber considering 

0.1,0.5, 1.0, 5.0p mm = . ..................................................................................... 110

Figure 75 – Moment vs. rotation relationship of cross-section considering 0.001, 0.01, 0.1, 1.0 =

. ............................................................................................................................... 110

Figure 76 – Bond strength vs. slip (
,0b − ) of the pullout response of an aligned fiber considering 

0.1,0.5, 1.0, 5.0 = . ............................................................................................. 111

Figure 77 – Moment vs. rotation relationship of cross-section considering 0.1,0.5, 1.0, 5.0 = .

 ................................................................................................................................ 112

Figure 78 – Division of cross-section for determination of fiber orientation factor due to the existence 
of notch: a) 2fl ND ; b) 2fl ND . ................................................................ 113

Figure 79 – Derived bond stress vs. slip (
,0b − ) of the pullout response of an aligned fiber for the 

numerical model of the FRC studied in :a) Pereira [110]; b) Lameiras [111]; c) Frazão et 
al. [112]; d) Valente et al. [113]; e) mixture c15_f45 of Salehian [49]; f) mixture c25_f60 
of Salehian [49]. ....................................................................................................... 117

Figure 80 – Derived bond stress vs. slip (
,0b − ) of the pullout response of an aligned fiber for the 

numerical model of the FRC studied in: a) mixture c45_f90 of Salehian [49]; b) mixture 
c30_f45 of Salehian [49]; c) Soltanzadeh et al. [114]; d) Frazão et al. [15]; e) Amin [41]; 
f) Pajak et al. [115]. ................................................................................................. 118

Figure 81 – Experimental and numerical model comparison of force vs. CTOD relationship of the FRC 
studied in: a) Pereira [110]; b) Lameiras [111]; c) Frazão et al. [112]; d) Valente et al. 
[113]; e) mixture c15_f45 of Salehian [49]; f) mixture c25_f60 of Salehian [49]. ...... 119

Figure 82 – Experimental and numerical model comparison of force vs. CTOD relationship of the FRC 
studied in: a) mixture c45_f90 of Salehian [49]; b) mixture c30_f45 of Salehian [49]; c) 
Soltanzadeh et al. [114]; d) Frazão et al. [15]; e) Amin [41]; f) Pajak et al. [115]. ...... 120

Figure 83 – Crack propagation in the cross-section of notched FRC prisms. ................................ 121

Figure 84 – Examples of crack tortuosity and branching of notched FRC prisms submitted to 3-point 
bending tests (extracted from [118], [119]). .............................................................. 122

Figure 85 – Schematic representation of methodology to derive the crack diffusivity factor,  . a) Fiber 
pullout tests; b) 3-point nothed beam bending tests; c) Direct tensile tests. ................ 123

Figure 86 – Experimental and numerical model comparison of force vs. CTOD relationship considering 
1.20 =  for the FRC studied in: a) mixture c30_f45 of Salehian [49]; b) Soltanzadeh et 

al. [114]. .................................................................................................................. 123

Figure 87 – Derived bond stress vs. slip (
,0b − ) of the pullout response of an aligned fiber for the 

numerical model considering 1.20 =  for the FRC studied in :a) mixture c30_f45 of 
Salehian [49]; b) Soltanzadeh et al. [114]. ................................................................ 124



Advanced tools for design and analysis of fiber reinforced concrete structures 

xxi 

Figure 88 – Derived bond strength vs. slip (
,0b − ) of the pullout response of an aligned fiber for 

the numerical model of all cases studies, according to type of fibers: a) hooked-end fibers; 
b) straight and recycled fibers. .................................................................................. 124

Figure 89 – Ratio between 
, , , ,b o ave b ave UVEM  . ........................................................................... 125

Figure 90 – R-FRC beams submitted to four-point bending tests (extracted from [120]). .............. 127

Figure 91 – Comparison between the experimental and numerical model force vs. midspan deflection 
for the R-FRC beams submitted to 4-point bending tests considering different FRC mixtures: 
a) c15_f45; b) c25_f60; and c) c45_f90 [114]. ........................................................ 129

Figure 92 – Experimental and numerical model comparison of moment vs. crack width at 
reinforcement level for the R-FRC beams submitted to 4-point bending tests considering 
different FRC mixtures: a) c15_f45; b) c25_f60; and c) c45_f90 [114]. .................... 130

Figure 93 – Steel profiles geometry. ........................................................................................... 131

Figure 94 – 3-point bending test setup and section cuts of composite beam (dimension in mm) [113].
 ................................................................................................................................ 131

Figure 95 – Composite beam ready for testing [113]. ................................................................. 132

Figure 96 – Experimental and numerically derived moment vs. curvature relationship at four section 
cuts of the composite beam studied in [113]. ........................................................... 133

Figure 97 – Comparison between the force vs. midspan deflection of the composite beam submitted 
to 3-point bending studied in [113]. .......................................................................... 133

Figure 98 – CBM strain under constant load and temperature. ................................................... 137

Figure 99 – Viscoelastic behavior: a) Creep; b) Relaxation. ......................................................... 138

Figure 100 – General form of creep deformation. ....................................................................... 138

Figure 101 – Recoverable and irrecoverable components of creep strain. ................................... 139

Figure 102 – Typical curves of creep compliance [128]. ............................................................. 140

Figure 103 – Superposition principle of creep strains (adapted from [123]). ............................... 141

Figure 104 – Decomposition of time varying stress history. ........................................................ 142

Figure 105 – Example of specific creep curves for a material loaded at different time instants. ... 144

Figure 106 – Example of the dependence of creep strain of concrete specimens with the loading age 
(extracted from [130]). ............................................................................................. 147

Figure 107 – Example of loading-unloading creep response of aging material (adapted from [146]).
 ................................................................................................................................ 148

Figure 108 – Dependence of creep compliance rate with loading age 
0t  in the ( )0log t t−  time scale 

(based on [128, Fig. 2.1]). ........................................................................................ 150

Figure 109 – Example of divergence of creep curves and nonmonotonic recovery of creep strain upon 
total unloading (

rt  - point of recovery reversal) (adapted from [151, Fig. 1]). ............. 151

Figure 110 – Creep curve in log-time scale (a - true elastic deformation; b - true creep; a’ - conventional 
elastic deformation; b’ – conventional creep) (adapted from [158, Fig. 1]). ................ 154

Figure 111 — Example of three creep functions ( 3L = ) to be fitted, where each function is defined 
by different number of points: M1=10; M2=8; M3=7. ............................................. 168



Advanced tools for design and analysis of fiber reinforced concrete structures 

xxii 

Figure 112 – Estimation of the creep function using the ACC model based on the experimental results 
of concrete samples (extracted from [179]). .............................................................. 169

Figure 113 – Estimation of the creep function using the ACC model based on the experimental results 
of epoxy samples (extracted from [179]). .................................................................. 169

Figure 114 – Estimation of the creep function using the ACC model based on the experimental results 
[181] of concrete samples. ....................................................................................... 170

Figure 115 – Estimation of the creep function using the ACC model based on the experimental results 
[182] of concrete samples. ....................................................................................... 170

Figure 116 – Comparison between ACC and B4 models creep curves. ....................................... 171

Figure 117 – Dirichlet series approximation of the creep function. a) curve of a single exponential in 
log-time; b) decomposition of the creep function (adapted from [128, Fig. 2.7]). ........ 172

Figure 118 – Kelvin generalized model. ..................................................................................... 173

Figure 119 – Displacement, stress components and local coordinate system of a crack. ............. 178

Figure 120 – Comparison between estimated and experimental creep compliance curves of concrete 
studied in [197]. ....................................................................................................... 183

Figure 121 – Load history of concrete specimen [197]. .............................................................. 183

Figure 122 – Experimental and numerical model comparison of the longitudinal strain of the concrete 
specimen submitted to the creep test. ...................................................................... 184

Figure 123 – Beam geometry, reinforcement, support and loading configuration (dimensions in mm) 
[198]. ...................................................................................................................... 185

Figure 124 – Finite element mesh: line elements in blue line; solid elements in black line; supports in 
red circles (dimensions in mm). ................................................................................ 186

Figure 125 – Comparison between the creep compliance curves obtained by the B4 model and by the 
NLMM174 model for the concrete studied in [198]. .................................................. 187

Figure 126 – Trilinear tensile-softening diagram. ........................................................................ 188

Figure 127 – Displacement along x3 obtained in the static analysis (displacements in mm, deformed 
mesh with 50x magnification factor). ......................................................................... 189

Figure 128 – Crack pattern obtained in the static analysis (only displayed cracks with computed crack 
width higher than 0.005mm). ................................................................................... 190

Figure 129 – Displacement along x3 obtained in the transient analysis (displacements in mm, 
deformed meshes with 50x magnification factor). ...................................................... 190

Figure 130 – Evolution of midspan deflection of the reinforced concrete beam. .......................... 191

Figure 131 – Crack pattern obtained in the transient analysis for 750t days=  (only displayed cracks 

with computed crack width higher than 0.005mm). .................................................. 191

Figure 132 – Isoparametric zero-thickness finite elements available in FEMIX: a) linear 4-node; b) 
quadratic 6-node; c) Lagrangian 8-node; d) Serendipity 16-node (extracted from [199]).
 ................................................................................................................................ 193

Figure 133 – Shear stress vs. relative sliding displacement ( )s −  monotonic response of the 

constitutive model. ................................................................................................... 195

Figure 134 – Schematic representation of the influence of the value of parameters 
1  and 

2  in the 

shape of the s −  relationship. ................................................................................ 196



Advanced tools for design and analysis of fiber reinforced concrete structures 

xxiii 

Figure 135 –Relationship between friction coefficient and accumulated relative sliding displacement 
 of the interface. .......................................................................................... 197

Figure 136 – Representation of the types of curves considered in the cyclic hysteretic model. ..... 198

Figure 137 – Representation of parameters of reversal curve 3. ................................................. 199

Figure 138 – Representation of parameters of reversal curve 4. ................................................. 200

Figure 139 – Representation of parameters of returning curve 5................................................. 201

Figure 140 – Representation of parameters of returning curve 6................................................. 202

Figure 141 – Representation of parameters of first transition curve 7. ........................................ 203

Figure 142 – Representation of parameters of first transition curve 8. ........................................ 204

Figure 143 – Representation of parameters of second transition curve 9. ................................... 205

Figure 144 – Representation of parameters of second transition curve 10. ................................. 206

Figure 145 – Representation of reversal from second transition curves of: a) Rule 9; b) Rule 10. 207

Figure 146 – Geometry, load and support conditions considered in the numerical model (dimensions 
in mm). .................................................................................................................... 208

Figure 147 – Evolution of friction coefficient with the accumulated sliding displacement.............. 209

Figure 148 – a) Prescribed horizontal displacement at node 9, 10 and 11 for the set A of load 
combinations. b) Shear stress vs sliding displacement at the IP2 of the interface element.
 ................................................................................................................................ 210

Figure 149 – Tangential stiffness at the IP2 of the interface element up to load combination 100.
 ................................................................................................................................ 210

Figure 150 – a) Prescribed horizontal displacement at node 9, 10 and 11 for the set B of load 
combinations; b) Shear stress vs sliding displacement at the IP2 of the interface element.
 ................................................................................................................................ 211

Figure 151 – a) Prescribed horizontal displacement at node 9, 10 and 11 for the set C of load 
combinations; b) Shear stress vs sliding displacement at the IP2 of the interface element.
 ................................................................................................................................ 212

Figure 152 – Test setup of slab tested in [201] (dimensions in mm). .......................................... 213

Figure 153 – Finite element mesh. ............................................................................................ 214

Figure 154 – Horizontal load vs. displacement in the 
1x  direction relationship of the slab........... 215

Figure 155 – Stress-strain distribution in 3PNBBT critical cross-section at ULS considering the rigid-
plastic model for FRC. .............................................................................................. 230

Figure 156 – Stress-strain distribution in 3PNBBT critical cross-section at SLS for determination of 
Ftsf . ........................................................................................................................ 231

Figure 157 – Values of  for the linear model and considering 
cs spl h=  (extracted from [39]). . 232

Figure 158 – Stress-strain distribution in 3PNBBT critical cross-section at SLS for determination of

Ftuf . ........................................................................................................................ 233

Figure 159 – Stress, strain, compressive forces and forces depth for the compressive zone of the 
cross-section applying the bilinear model, for positive curvature and neutral axis position 
inside the cross-section. ........................................................................................... 236

( )as −

ak



Advanced tools for design and analysis of fiber reinforced concrete structures 

xxiv 

Figure 160 – Stress, strain, compressive forces and forces depth for the compressive zone of the 
cross-section applying the bilinear model, for negative curvature and neutral axis position 
inside the cross-section. ........................................................................................... 237

Figure 161 – Stress, strain, compressive forces and forces depth for the compressive zone of the 
cross-section applying the bilinear model, for positive curvature and neutral axis position 
outside the cross-section. ......................................................................................... 240

Figure 162 – Stress, strain, compressive forces and forces depth for the compressive zone of the 
cross-section applying the bilinear model, for negative curvature and neutral axis position 
outside the cross-section. ......................................................................................... 242

Figure 163 – Generalized multi-linear model for FRC in tension. ................................................. 245

Figure 164 – Possible distribution of stresses, strains, tensile forces and forces levers for the 
unreinforced tensile zone of a FRC cross-section with longitudinal conventional 
reinforcement, adopting quadrilinear stress-strain diagram, for positive curvature and 
neutral axis position inside the cross-section. ............................................................ 248

Figure 165 – Possible distribution of stresses, strains, tensile forces and forces levers for the 
unreinforced tensile zone of a FRC cross-section with longitudinal conventional 
reinforcement, adopting quadrilinear stress-strain diagram, for negative curvature and 
neutral axis position inside the cross-section. ............................................................ 250

Figure 166 – Possible distribution of stresses, strains, tensile forces and forces levers for the 
unreinforced tensile zone of a FRC cross-section with longitudinal conventional 
reinforcement, adopting quadrilinear stress-strain diagram, for positive curvature and 
neutral axis position outside the cross-section. .......................................................... 253

Figure 167 – Possible distribution of stresses, strains, tensile forces and forces levers for the 
unreinforced tensile zone of a FRC cross-section with longitudinal conventional 
reinforcement, adopting quadrilinear stress-strain diagram, for negative curvature and 
neutral axis position outside the cross-section. .......................................................... 256

Figure 168 – Possible distribution of stresses, strains, tensile forces and forces levers for the reinforced 
tensile zone of a FRC cross-section with longitudinal conventional reinforcement, adopting 
quadrilinear stress-strain diagram. ............................................................................ 258

Figure 169 – Menegotto-Pinto curve. .......................................................................................... 314

Figure 170 – Algorithm to determine the parameters that control the shape of the Menegotto-Pinto 
curve. ....................................................................................................................... 315



Advanced tools for design and analysis of fiber reinforced concrete structures 

xxv 

LIST OF TABLES 

Table 1 – Relationship between CMOD and  [34]. ......................................................................... 9

Table 2 – Value of 
Gk and   depending on prism bending test standard [60]. ............................ 34

Table 3 – Values of 
bms ,   and 

r  for deformed reinforcing bars (extracted from [30]).............. 54

Table 4 – Verification of stress limitation criteria for Example no.1 beam. ..................................... 73

Table 5 – Verification of stress limitation criteria for Example no.2 slab. ........................................ 76

Table 6 – Prism bending test standards adopted for the evaluation of the residual flexural strength, 

Rif  , considering the different SFRC mixes present in the DBs. .................................. 80

Table 7 – Statistical results of the residual flexural strength prediction model [66]. ....................... 81

Table 8 – Statistical analysis of the ratio between the experimental and estimated values of the residual 
flexural strength, 

Rif . ................................................................................................. 82

Table 9 – Adapted version of the Demerit Points Classification. .................................................... 87

Table 10 – Algorithm to determine number of fibers within each orientation angle interval. ........... 95

Table 11 – Material properties of the FRC mixtures considered in the assessment of the predictive 
performance of the new model. ................................................................................ 116

Table 12 – Basic creep compliance evolution of DPL model. ...................................................... 154

Table 13 - Creep coefficient function based on EC2 model [37]. ................................................. 157

Table 14 – Creep coefficient function based on MC2010 model [30]. ......................................... 159

Table 15 – Creep compliance function based on B3 model [170]. .............................................. 162

Table 16 – Creep compliance function based on B4 model [175]. .............................................. 165

Table 17 – Properties of the steel reinforcements [198]. ............................................................ 185

Table 18 – Maximum stress level of the steel reinforcements obtained in the static analysis. ...... 189

Table 19 – Maximum stress level of the steel reinforcements obtained in the transient analysis for 
750t days= . .......................................................................................................... 191

Table 20 – Material properties of the constitutive model of the interface. .................................... 208

Table 21 - Material properties of the constitutive model of the interface. ..................................... 214

Table 22 – Reference values of concrete mechanical properties for each strength class [30]. ..... 229

Table 23 – Algorithm for determination of structural characteristic length of FRC member. ......... 262

Table 24 – Algorithm to set the formulas for effective height of tensile zone of cross-section. ...... 264

Table 25 – Algorithm for definition of constitutive model for concrete in compression.................. 266

Table 26 – Algorithm for definition of constitutive model for steel in compression or tension. ...... 267

Table 27 – Algorithm for definition of constitutive model for FRC in tension at ULS. .................... 268

Table 28 – Algorithm for definition of constitutive model for FRC in tension at SLS. ..................... 270

Table 29 – Algorithm to determine neutral axis and curvature of a FRC or RC cross-section. ....... 273

Table 30 – Algorithm to set the formulas for forces in a FRC cross-section. ................................. 275

Table 31 – Algorithm to set the formulas for forces depth and moments in a FRC cross-section. . 276

Table 32 – Algorithm to set the formulas compatibility equations. ............................................... 277



Advanced tools for design and analysis of fiber reinforced concrete structures 

xxvi 

Table 33 – Algorithm to resolve the equilibrium equations and find solution for neutral axis position 
and cross-section curvature. ..................................................................................... 277

Table 34 – Algorithm to determine the moment-curvature relationship of a FRC or RC cross-section.
 ................................................................................................................................ 279

Table 35 – Algorithm to resolve the equilibrium equations and find solution for neutral axis position 
and bending moment. .............................................................................................. 282

Table 36 – Algorithm to check if tensile failure of FRC is reached. .............................................. 283

Table 37 – Algorithm to determine shear resistance of FRC cross-section. .................................. 284

Table 38 – Algorithm to determine shear resistance of FRC cross-section without longitudinal and 
shear reinforcements. ............................................................................................... 285

Table 39 – Algorithm to determine shear resistance of FRC cross-section with longitudinal 
reinforcement, based on empirical model. ................................................................ 285

Table 40 – Algorithm to determine shear resistance of FRC cross-section with longitudinal 
reinforcement and with or without transversal reinforcements, based on VEM/SMCFT 
model. ..................................................................................................................... 288

Table 41 – Algorithm to determine shear resistance of RC cross-section. .................................... 291

Table 42 – Algorithm to determine shear resistance of RC cross-section with longitudinal 
reinforcement. .......................................................................................................... 292

Table 43 – Algorithm to determine shear resistance of RC cross-section with longitudinal and 
transverse reinforcements. ....................................................................................... 293

Table 44 – Algorithm to determine the bond transfer length in a FRC and RC cross-section. ........ 296

Table 45 – Main algorithm to determine the design crack width of a FRC and RC cross-section at SLS.
 ................................................................................................................................ 297

Table 46 – Algorithm to determine the design crack width of a FRC and RC cross-section. .......... 298

Table 47 – Algorithm to determine moment-crack width relationship of FRC and RC cross-section.
 ................................................................................................................................ 300

Table 48 – Algorithm to determine the moment at crack initiation. ............................................. 304

Table 49 – Algorithm of routine of stress limitation serviceability verifications. ............................. 305

Table 50 – Database of beams shear tests and results of theoretical models. ............................. 309

Table 51 – B4 model creep parameters dependent on cement type [175]. ................................. 312

Table 52 – B4 model shrinkage parameter dependent on aggregate type [175]. ......................... 313 



Advanced tools for design and analysis of fiber reinforced concrete structures 

1 

INTRODUCTION 

Concrete is a cement-based material that can exhibit a high compressive strength. Its main 

disadvantage consists in its brittleness, i.e. relatively low tensile strength and low tensile deformability. 

The use of tensile reinforcements in concrete structural elements improves their tensile and flexural 

response, limits the crack opening to acceptable values, and increases the stiffness of the structural 

elements after crack initiation. These reinforcements can be incorporated in a discrete manner, e.g. 

conventional steel or fiber reinforced polymer (FRP) in the form of bars or grids, or by dispersing fibers 

into the concrete matrix. In the market exist fibers of several types of materials (metallic, synthetic, 

vegetable, etc.) and geometric configurations (longitudinal and transversal shape). Although the 

employment of natural fiber reinforcements in concrete is dated to the beginning of the 1900’s [1], it 

was majorly since its modern age development, in the 1960’s [2], that fiber reinforced concrete (FRC) 

has being showing enormous potentialities for use in structural elements. 

The use of fiber reinforced concrete in the construction of structural systems has being progressively 

increasing in the last decades for new construction and repair operations of building’s structural 

elements (slabs, beams, columns and foundations), shell type structures, pre-fabrication elements, 

pavements, roads, tunnel linings, decks of bridges, marine structures, etc.[1], [3]. 

The use of short and randomly distributed fibers increases concrete post-cracking tensile capacity, its 

ductility, energy absorption capacity and impact resistance when compared to plain concrete (PC) [4], 

[5]. Additionally, the restrain to crack propagation, provided by the different fiber reinforcement 

mechanisms enhances the durability and integrity of cement based materials. The fundamental 

reinforcement mechanism of fibers consists in the capacity of ensuring relatively high stress transfer 

between the faces of cracks, by restraining the degeneration of micro-cracks in meso- and macro-

cracks, which increases the stiffness and load carrying capacity of concrete structures in their cracking 

stage, as well as their durability [6]–[9]. For FRC’s with regular content of dispersed fibers, which 

generally ranges from 0.2 to 2.0% in volume of FRC, the pre-cracking response and tensile strength 

of concrete remain unaltered [3], [6]. Conversely, fiber contribution after cracking depends mainly on 

the content of fibers, their orientation and distribution towards the potential cracks, the material and 

geometric characteristics of the fibers, and the mechanical properties of the concrete, which are 

designated as the variables that mainly affect the fiber reinforcement mechanisms. Likewise, the 

compressive strength of FRC’s is similar to plain concrete, while the post-peak load and deformation 
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capacity increase with the variables that have a favorable influence on the fiber reinforcement 

mechanisms [10]–[12]. 

When used in structural elements, fiber reinforcement can: improve the tensile and flexural response 

[13]–[15]; increase the shear and punching resistance of concrete [16]–[19]; restrain the crack 

opening [20], [21]; reduce the deformation of members [22]–[24]; decrease the tensile stress in 

conventional reinforcement [24]; improve the bond performance of conventional reinforcement to 

surrounding concrete [25], [26] and improve concrete fire resistance [27], [28]. From the design point 

of view, the use of FRC can benefit the ultimate and serviceability limit states verifications. Additionally, 

fiber reinforcement can replace partially or even totally conventional steel bars, mainly in statically 

indeterminate structures. Fiber reinforcement is being also explored with appreciable success on the 

partial or integral replacement of transverse reinforcement, such in the shear reinforcement of beams 

[29] and in the punching reinforcement of slabs [19]; decreasing the construction time; and reducing 

construction and maintenance costs. 

Different types of fibers can be used in the production of FRCs, namely [1], [6]: 

- Steel fibers, with different shapes, aspect ratio (length to diameter ratio) and tensile strength; 

- Glass fibers, namely alkali-resistant glass fibers; 

- Synthetic fibers, like polypropylene (PP), polyvinyl alcohol (PVA), aramid, etc.; 

- Carbon fibers, namely pitch and polyacrylonitrile (PAN); 

- Natural fibers, like sisal, cellulose, asbestos, etc. 

Generally, fibers with high modulus of elasticity and tensile strength can improve significantly the post-

cracking strength of cement based materials, like steel, carbon and PVA fibers, while low-modulus 

fibers are mostly used to control cracking shrinkage at early ages [1]. Polypropylene fibers can also 

be used to avoid concrete spalling in a fire scenario, as they melt when submitted to high 

temperatures, creating channels that can relieve water pressure in concrete pores [10]. 

1.1 Research significance 

Although several research activities have been carried out, including the description of fiber 

reinforcements potentialities and development of design rules and codes [30]–[32], in the designer’s 
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community there is still a lack of knowledge in the dimensioning of FRC structures. Furthermore, the 

available analysis and design numerical tools dedicated to FRC structural members is scarce or even 

inexistent in some design aspects. These circumstances are avoiding a faster use of this material, with 

economic and technical detrimental impact in the construction sector.  

This work aims to contribute for the design process of structural elements with FRC using the 

recommendations of one of the most recent and comprehensive design codes, the fib Model Code 

2010 (MC2010), while complementing the design guidelines with the findings of the most recent 

academic works. In addition, are developed numerical tools that consider the relevant specificities of 

this FRC and improve the simulation capabilities of some particularities of structural members where 

this material is adopted. 

It is expected that this work constitutes a valuable contribute to the dissemination of knowledge related 

to the design and analysis of FRC structures. The developed numerical tools will be readily used in the 

analysis and design of fiber reinforced concrete members, which can ultimately contribute to the 

increase of the use of FRC in structural elements. 

1.2 Objectives 

This thesis is focused on the development and implementation of numerical tools to be used in the 

analysis and design of fiber reinforced concrete structural elements. The main objectives are: 

- Development of software for the evaluation of the flexural and shear behavior of FRC members 
according to MC2010 design guidelines and recommendations; 

- Appraisal of the MC2010 FRC shear resistance models considering an extensive shear test 
database; 

- Implementation of an integrated approach coupling the effect of fiber orientation profile, fiber 
segregation, and fiber pullout resistance on a numerical tool for the evaluation of the flexural 
response of FRC members. 

- Development and implementation in FEM-based software of an aging creep model for the 
simulation of the nonlinear behavior of cement based materials since early ages, coupling the 
creep model to the other thermo-mechanical constitutive model, by considering the concrete 
maturation, shrinkage and cracking; 

- Development of a cyclic-hysteretic constitutive model for the simulation of the contact between 
different materials, which is a relevant modeling aspect on FRC slabs supported on soil. 
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1.3 Thesis outline 

The thesis is divided in eight chapters. This chapter corresponds to the introduction, while the last 

chapter is dedicated to the conclusions and possible recommendations for future research. 

In the second chapter is presented the design guidelines and recommendations for FRC structures 

provided in the fib Model Code 2010, which, when applicable, are complemented with the more 

advanced models published in academic works. 

The third chapter is dedicated to present a new software – FRCcalc – developed for the analysis and 

design of FRC member considering the design rules provided in the second chapter. 

In the fourth chapter is appraised the performance of the shear resistance prediction models 

considering an extended version of a database of results of experimental tests of FRC elements. 

The fifth chapter is devoted to the development of a novel model for predicting the flexural capacity of 

FRC members failing in bending, capable of considering the relevant fiber reinforcement mechanism, 

namely: fiber orientation profile, fiber segregation and fiber pull-out resistance. This model was 

implemented in a software for the prediction of the moment-rotation response of this type FRC 

members, and its predictive performance was assessed by simulating FRC notched beams submitted 

to 3 points bending tests  

Chapter sixth is dedicated to the development of a creep model for cement based materials and its 

implementation into the FEMIX computer program in order to increase the potentialities of this 

software for modeling the time dependent phenomena and cracking of these materials since their 

early age. In this context the developed creep model was coupled with a thermo, maturation, shrinkage 

and cracking model components available in FEMIX. 

In the seventh chapter, a new cyclic-hysteretic constitutive model is described and implemented into 

the FEMIX for the simulation of contact between different materials, namely FRC slabs supported on 

ground and the foundation granular layers. 
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2 DESIGN OF FIBER REINFORCED CONCRETE STRUCTURAL ELEMENTS 

2.1 Introduction 

In the last decades, an extensive research has been conducted on FRC structures, mainly concerning 

the description of fiber reinforcement potentialities and experimental characterization from the 

material to the structural level. Although some design rules and codes have been developed, as is the 

case of the fib Model Code 2010 [30], the ACI 544.4R-88 [32] and the RILEM TC 162-TDF [31], in 

the designer’s community there is still a lack of knowledge in the analysis of FRC structures, which 

avoids a faster use of this material, with economic and technical detrimental impact in the construction 

sector. 

The present chapter aims to present a comprehensive analysis of the design process of structural 

elements with FRC using the recommendations of one of the most recent and comprehensive design 

codes, the fib Model Code 2010 (MC2010) [30]. 

2.2 Material characterization and classification 

When assessing the uniaxial tensile behavior of a FRC, two types of responses can be obtained: (i) 

strain-softening or (ii) strain-hardening. A FRC has a tensile strain-softening behavior when a reduction 

of load carrying capacity with the increase of crack width opening occurs after the formation of the 

first crack (Figure 1a). Conversely, in a strain-hardening material the load carrying capacity increases 

with the material deformation (Figure 1b), up to a strain of 1.0%Fu = . In strain-softening FRC a 

major failure crack is formed, while in strain-hardening a diffuse crack pattern is observed. Commonly, 

for usual volume contents of fibers, FRC’s exhibit a tensile strain-softening behavior, while for high 

performance matrix and high fiber contents (>1.5% in volume of FRC) is possible to attain a strain-

hardening behavior [33].  
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(a) (b) 

Figure 1 – Typical load ( P ) – deformation ( ) of FRC: a) Tensile strain-softening; b) Tensile strain-
hardening (extracted from [33]). 

The tensile behavior of a specific composition of a FRC can be determined by performing uniaxial 

tensile tests. Nevertheless, the execution of these tests is quite cumbersome, namely direct tensile 

tests. Therefore, for material characterization, 3-point notched beam bending tests (3PNBBT) are 

executed according to EN 14651 [34] or RILEM 162-TDF [35]. However, due to the strain variation 

profile obtained during bending tests and stress redistribution provided by the fiber reinforcements, it 

can be observed that in 3PNBBT the peak load arises after the first crack load. This response 

characterizes a material as deflection-hardening and cannot be confused with the tensile strain-

hardening behavior that can only by assessed in uniaxial tensile tests. While tensile strain-hardening 

materials always exhibit a deflection-hardening behavior, strain-softening materials can present a 

deflection-hardening or softening response in 3PNBBT. In Figure 2 is presented a summary of the 

possible softening and hardening characterization of FRC’s. In this figure is also provided additional 

information regarding the critical volume of fibers needed to achieve a strain-hardening or deflection-

hardening response. 
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Figure 2 – FRC composites softening and hardening characterization. 

fV  - volume of fibers; 
fcriV  - 

critical volume of fibers to obtain hardening response (extracted from [10, Ch. 3]). 

From the execution of 3PNBBT, it is possible to evaluate the post-cracking tensile strength of a FRC. 

The test setup and typical load vs. crack mouth opening displacement (CMOD) relationship are 

presented in Figure 3. Based on the force values, ( )1, 2, 3, 4jF j =  corresponding to specific values 

of CMOD, the residual flexural tensile strength, 
Rjf , is determined from the following expression: 

 
2

3

2

j

Rj

sp

F l
f

b h

 
=

 
 Eq. (2.1) 

where l  is the span length of the test beam; b  is the width of the specimen’s cross section; and 
sph  

is the distance between the notch tip and the beam top face. By specifying the values of the residual 

flexural strength, it is possible to compare the post-cracking behavior of different FRC’s compositions. 
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Figure 3 – Typical load-CMOD curve of FRC [30] (dimensions in mm). 

In fact, the MC2010 resorts to the residual flexural strength concept to classify the post-cracking 

performance of a FRC, by adopting a toughness class. The toughness class is determined from the 

characteristic values of the residual flexural tensile strength of FRC for serviceability, 
1R kf , and 

ultimate state conditions, 
3R kf . The value of 

1R kf  corresponds to 
1 0.5CMOD mm=  and 

3R kf  to 

3 2.5CMOD mm= . The toughness class is defined by a value associated to an interval of 
1R kf , and 

a letter corresponding to the residual strength ratio, 
3 1R k R kf f . The 

1R kf  can be selected from the 

series: 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 5.0, 6.0, 7.0, 8.0, … [MPa], while the letter corresponding to 

3 1R k R kf f  is determined from the following intervals  0.5;0.7a = ;  0.7;0.9b = ;  0.9;1.1c = ; 

 1.1;1.3d = ;  1.3,e = + . For example, after the execution of six 3PNBBT (Figure 4), the tested 

FRC presents a characteristic residual strength 
1 7.2R kf MPa=  and a residual strength ratio of 

3 1 0.72R k R kf f = . According to MC2010 classification, this FRC has a toughness class “7b”. 

 
Figure 4 – The concept of toughness class for FRC based on the relationship between the flexural 

stress and CMOD [30]. 
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In the execution of 3PNBBT the midspan deflection ( )  of the beams is, usually, also recorded, and 

the following average relationship between   and CMOD can be used in the post-peak region of the 

load-CMOD curve [34]: 

    0.85 CMOD 0.04mm mm =  +  Eq. (2.2) 

In Table 1 is presented the conversion of the ( )CMOD 1,2,3,4j j =  to  . 

Table 1 – Relationship between CMOD and  [34]. 

j  CMOD 
[mm] 



[mm] 
1 0.50 0.47 
2 1.50 1.32 
3 2.50 2.17 
4 3.50 3.02 

For structural applications, MC2010 specifies that a minimum ratio between the residual tensile 

strength at CMOD 2.5mm=  and CMOD 0.5mm=  (Eq. (2.3)) should be verified in order to 

consider the tensile contribution of FRC in the ultimate limit state (ULS) resistance of a structural 

element [30].  

 
3 1 0.50R k R kf f   Eq. (2.3) 

An additional condition is also specified in MC2010, related with the ratio between the characteristic 

value of the limit of proportionality, 
Lkf , and the residual strength, 

1R kf  (Eq. (2.4)) [30]. The value of 

Lkf  is given by Eq. (2.1), considering the maximum load value, 
LF , registered on the 3PNBBT up to 

CMOD 0.05mm=  [34], [35].  

 
1 0.40R k Lkf f   Eq. (2.4) 

For structural applications, when designers prescribe an FRC based on its performance, the toughness 

class should be defined and coupled with the existing performance based grades applicable to plain 

and reinforced concrete according to EN 206 [36], namely the compressive strength class, the 

exposure class, the chloride content class and the consistence class, among others. These grading 

classes are universally adopted by designers and producers. On the other hand, the concrete 

manufacturer and construction supplier must define the concrete composition, specifications, type 



Advanced tools for design and analysis of fiber reinforced concrete structures 
 

10 

and amount of fibers, and also provide validation of the FRC’s mechanical and rheological properties 

considering the prescribed performance based classes. 

In the dimensioning process, a conservative approach should be adopted by considering the lower 

value of the residual flexural strength interval of the FRC toughness class. For example, when 

prescribing a FRC of the 4d toughness class (  1 4.0;5.0R kf =  and  3 1 1.1;1.3R k R kf f = ), the post-

cracking response should be defined by the following residual strength values:
1 4.0R kf MPa= and

3 1.1 4.0 4.4R kf MPa=  = . Additionally, the clauses for structural application of FRC must be 

verified. At the design process, the value of the limit of proportionality is unknown. Therefore, for the 

verification of the 2nd structural application clause (Eq. (2.4)), it can be considered that the limit of 

proportionality is equal to the characteristic value of the tensile strength of concrete (
Lk ctkf f= ). For 

example, if the compressive strength class of the FRC is C30/37, the upper bound of the characteristic 

tensile strength of concrete is 
,max 3.8ctkf MPa=  [30], and, therefore, the residual tensile strength, 

1R kf , shall be 
1 1.52R kf MPa  to comply with the 2nd structural application clause (Eq. (2.4)). 

2.3 Constitutive laws for ULS and SLS 

2.3.1 Concrete in compression 

For the usual fiber concentrations used in FRC’s, its compressive behavior is similar to the one 

observed in PC. Accordingly, the stress-strain relationships defined in MC2010 or Eurocode 2 [37] for 

PC can also be used for characterizing the compressive behavior of FRC. The rectangular and bilinear 

stress-strain relationships are usually used in the dimensioning process of concrete in compression. 

The rectangular stress-strain distribution, presented in Figure 5, is defined by the following equation: 

 3

3

; 0

0 ; 

cd cu

cu

f   

  

=   

= 
 Eq. (2.5) 
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Figure 5 – Rectangular stress-strain relationship for concrete in compression [30]. 

The value of the ultimate compressive strain, 
3cu , is defined according to the concrete compressive 

strength and can be obtained from Table 7.2-1 of MC2010 and Appendix A, based on the concrete 

strength class. The factor   is determined according to Eq. (2.6), and the parameter   that affects 

the height of the compression zone is determined from Eq. (2.7) [30]. If the width of the compression 

zone decreases in the direction of the extreme compression fiber, the value of the effective strength, 

cdf  , must be reduced in 10% [30]. 
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The bilinear stress-strain relationship, presented in Figure 6, is defined according to the following 

equations: 
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Figure 6 – Bilinear stress-strain relationship for concrete in compression [30]. 

In Eq. (2.5) and Eq. (2.8), both compressive stresses and strains adopt negative values. 

In both types of relationships for concrete in compression, the design compressive strength, 
cdf , is 

obtained from the following expression: 

 ck
cd cc

c

f
f 


=   Eq. (2.9) 

where: 
cc  is a coefficient to take into account long term effects on the compressive strength of 

concrete and of unfavorable effects from the way loads are applied; and 
c  is the partial safety factor 

for concrete, taking the value of 1.5c =  for ULS design situations and 1.0c =  for serviceability 

limit state (SLS) [30]. For normal design situations, where the first variable loads of the structure are 

applied only after few months after casting, and the long-term compressive strength increase provided 

by continuous hydration of cement compensates the unfavorable effect of sustained loading, is 

appropriate to consider 1.0cc = . Otherwise, 0.85cc = is more suitable [30]. 

When concrete creep effects need to be considered in the analysis of a member cross-section, the 

stress-strain relationship previously presented can be modified in order to take into account the 

increased deformation of concrete under creep. Therefore, in the analysis the strains values of the 

points defining the stress-strain diagram are multiplied by the factor ( )( )01 ,c t t+ . ( )0,c t t  is the 

creep coefficient defined as the relation between the creep strain ( )cr t  evaluated at the instant t

and the instantaneous strain ( )0ins t  at the instant 
0t  when the load is applied. However, during 

analysis the compressive strain in the cross-section cannot exceed the ultimate compressive strain, 

3cu . The model is illustrated in Figure 7 and formulated in Eq. (2.10). 

fck

cdf

c3cu3 0




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Figure 7 – Bilinear stress-strain relationship considering creep for concrete in compression. 
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 Eq. (2.10) 

2.3.2 Steel in tension or compression 

When conventional steel bars are provided for flexural reinforcement, the stress-strain laws defined in 

MC2010 or Eurocode 2 are adopted. In Figure 8 are presented the stress-strain relationship for steel 

in tension and compression. When analyzing a cross-section, it is possible to consider one of two 

models: (i) an elastic-perfectly plastic model; and (ii) an elastic branch followed by a hardening branch. 

The elastic-perfectly plastic model is presented in Eq. (2.11). When using this model, it is considered 

that reinforcing steel has an unlimited deformation capacity. The model with the hardening branch is 

presented in Eq. (2.12) and in this case is considered that steel fails when ultimate design strain, 

ud  , is reached. The modulus of the hardening branch, 
shE , is determined according to Eq. (2.13). 

 
Figure 8 – Stress-strain diagrams for reinforcing steel in compression and tension [30]. 
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2.3.3 FRC in tension 

Contrarily to PC where the tensile strength is usually disregarded in the design process of structural 

elements, FRC can exhibit a significant post-cracking tensile capacity. In the pre-peak stage it is 

possible to assume that FRC and PC have similar response, and the existing stress-strain relationship 

used for PC is also applicable to FRC until this stage [30], see Figure 9: 
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Figure 9 – Tensile stress-strain relationship for plain concrete and FRC up to material tensile 

strength. 
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As the formation of cracks in concrete is a discrete phenomenon, a stress-crack opening relationship 

is the most suitable formulation to describe FRC post-cracking behavior, mainly in FRC of tensile-

softening nature, which is the most current in structural applications. In MC2010 different approaches 

are used to characterize the post-cracking tensile behavior of FRC, depending on the type of limit state 

verification. 

For the ULS analysis two models can be used: the (i) rigid-plastic model; and the (ii) linear model. 

Both models are schematically presented in Figure 10, where: 
uw  is the ultimate crack opening 

corresponding to the ULS criterion; 
Ftuf  is the ultimate residual tensile strength; and 

Ftsf  is the 

serviceability residual tensile strength. For FRC with a softening post-cracking behavior (solid lines in 

Figure 10) the value 
Ftuf  is lower than 

Ftsf , while for a hardening post-cracking response (dashed 

lines in Figure 10) the value 
Ftuf  is higher than 

Ftsf . 

 
(a) 

 
(b) 

Figure 10 – Stress-crack opening constitutive laws for ULS analysis: a) rigid-plastic model; b) linear 
model [30]. 

For the rigid-plastic model, the ultimate residual tensile strength is determined from [30]: 

 3
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f
f =  Eq. (2.15) 

For the linear model, the serviceability and ultimate residual tensile strength are obtained from [30]: 

 
10.45Fts Rf f=   Eq. (2.16) 
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In appendix B are presented the derivation of Eq. (2.15), Eq. (2.16) and Eq. (2.17) for the rigid-plastic 

and linear models. 

For the rigid-plastic model the value of the ultimate crack opening is equal to 

3CMOD 2.5uw mm= =  , while for the linear model it depends on the ductility required, namely [30]: 

 ( )min 2.5 ;u cs Fuw mm l =   Eq. (2.18) 

where, 
Fu  is the ultimate tensile strain of FRC; and 

csl  is the structural characteristic length.  

According to the MC2010, the ultimate tensile strain, 
Fu , depends on the strain distribution along 

the cross-section. For a constant tensile strain (section under pure normal tensile force), 1%Fu = . 

For variable strain distribution in the cross-section (section under pure bending or combined axial-

bending load), 2%Fu = [30]. 

In structural elements with steel bars reinforcement, the structural characteristic length is determined 

from [30]: 

 ( )min ,cs rml y s=  Eq. (2.19) 

where, y is the distance between the neutral axis position (whose depth from the top surface is 

represented by x ) and the tensile side of the cross-section (see Figure 11); and 
rms  is the mean crack 

spacing. In the calculation of the neutral axis position, x , a loading situation corresponding to the 

cracking serviceability criteria is assumed, generally the quasi-permanent load combination; and the 

tensile contribution of FRC can be disregarded [30]. An example of stress-strain distribution in a cross-

section for the calculation of the neutral axis is presented in Figure 11. For sections without traditional 

reinforcements, the value of the structural characteristic length, 
csl , is considered equal to the cross-

section height, h  [30]. When necessary, the creep effect of concrete in compression can be 

considered following the methodology presented in Figure 7 and Eq. (2.10). 
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Figure 11 – Example of determination of neutral axis position, x , and y for the evaluation of 

csl . 

For conventionally reinforced cross-sections, the mean crack spacing, 
rms , can be estimated from the 

bond transfer length, 
,maxsl . The determination of mean crack spacing and bond transfer length are 

presented in section 2.5. 

When analyzing a FRC member with conventional steel reinforcement, the cross-section must be 

divided due to the different structural characteristic lengths of each zone (the effective tensile zone 

and the remaining area of the cross-section), which requires different post-cracking constitutive laws 

for each zone (due to different ultimate crack opening, 
uw , which has a direct influence on the 

structural characteristic length, 
csl ).  

As an example, in Figure 12 is presented the analysis of a U-shape cross-section of a FRC footbridge, 

being formed with two longitudinal hybrid reinforced beams (conventional steel bars plus fiber 

reinforcement) connected with a deck of a thin FRC layer. In Figure 12a) is illustrated the division of 

the cross-section based on the structural characteristic length of each part, where three 
csl  are 

considered, one for the FRC deck, D

csl  , and two for the hybrid reinforced beams, 1R

csl  and 2R

csl . The 

two 
csl  values adopted for the hybrid reinforced beams aims to better simulate the different cracking 

process formed in these beams due to the presence of the conventional reinforcement in the bottom 

part of the beam (of a depth defined by 
,c efh ), and the exclusive use of FRC in the zone out of the 

area under the influence of this reinforcement. In Figure 12b is schematically presented the crack 

pattern of the different components of the footbridge. 
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(a) 

 
(b) 

Figure 12 – Example of the analysis of a footbridge cross-section. a) Structural characteristic length; 
b) Crack pattern of the different components of the footbridge. 

Although the stress-crack opening relationship is the most suitable model to describe the FRC post-

cracking tensile response [38], the stress-strain diagram is the most used in engineering practice. 

Consequently, to transform the stress-crack opening relationship in a stress-strain diagram, the 

MC2010 [30] proposes to convert the concept of crack opening, w , in tensile strain,  , by using the 

structural length parameter: 

 
cs

w

l
 =  Eq. (2.20) 

In Figure 13a is presented the complete stress-strain diagram for a strain softening FRC, assuming 

that 
Fts ctf f  and the FRC’s post-cracking linear model (Figure 10b). However, for the usual cases 

where 
ULS p  , and for manual calculation of the cross-section flexural capacity, the pre-cracking 

contribution of FRC can be disregarded and the simplified stress-strain diagram presented in Figure 

13b can be adopted without a significant loss of precision. During the analysis of a cross-section, if 

ULS   a stress cut-off is assumed. The complete tensile stress-strain diagram presented in Figure 

13a is mathematical described by Eq. (2.21), while in Eq. (2.22) is presented the simplified model. 
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 Eq. (2.21) 
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(a) 

 
(b) 

Figure 13 – Stress-strain relationship of a strain softening FRC, for ULS analysis: (a) complete 
diagram; (b) simplified diagram. 

For the verification of the serviceability limit states (SLS), one of the three stress-strain models 

presented in MC2010 (Figure 14) is applicable. The residual tensile strength 
Ftsf  and 

Ftuf  are 

determined from Eq. (2.16) and Eq. (2.17), respectively.  

 
(a) 

 
(b) 

 
(c) 

Figure 14 – Stress-strain relationship for SLS analysis: (a) Case I; (b) Case II; (c) Case III [30]. 

The constitutive models presented in Figure 14 have common defining points, namely points A, B, D 

and E. Points A and B correspond to the stress and strain values defined for un-macro-cracked plain 

concrete (Figure 9). Point D and E correspond, respectively, to the serviceability and ultimate 

deformation criteria of the material, which are determined by [30]: 

h
Ftuf

s

0.9 ctf

Ftuf

Ftsf

ctf

0.9 ctf

cE

0
=0.15‰p

csl
uw

ULS

Ec

hardening

softening

=





softening

hardening

Ftuf

s
Ftuf

Ftsf

0

h


ULS

wu

lcs
=





p

fct

fct0.9



0 A

A

B

Q

C
D

E

C
fFts

fFtu

CQ SLS ULS

Plain Concrete

Ec

fct0.2

p

fct

fct0.9



0 A

A

B

D
fFts

SLS ULS

E

E'

Plain Concrete

Ec



fct

fct0.9



0 A

A

A'
D

fFts

SLS ULS

E

E'

Plain Concrete

Ec

fFts0.9



B

A'



Advanced tools for design and analysis of fiber reinforced concrete structures 
 

20 

 

1
SLS

cs

u
ULS

cs

CMOD
l

w
l





 =


 =


 Eq. (2.23) 

where 
1CMOD 0.5mm=  and 

csl  is determined as previously described. The corresponding stress 

of points D and E, 
Ftsf and

Ftuf , are determined according to Eq. (2.16) and Eq. (2.17), respectively.  

The first model, Case I (Figure 14a), is applicable for softening materials with 
Fts ctf f . The stress 

of point Q is equal to 0.2Q ctf =  , and its corresponding strain is determined from the following 

equation [30]: 

 
0.8 ctF

Q P

ct cs c

fG

f l E
 

 
= + − 

  
 Eq. (2.24) 

where 
fG  represents the fracture energy of a plain concrete of the same strength class of the FRC, 

which can be estimated from the following expression [30]: 

 
0.1873

1000

cm
F

f NG
mm

  =
 

 Eq. (2.25) 

where 
cmf  is the mean compressive strength of concrete, in MPa, that can be determined from the 

following expression [30]: 

 8cm ckf f MPa= +  Eq. (2.26) 

Point C coordinates are determined from the intersection of lines BQ  and DE , which represents 

the intersection of the concrete matrix post-cracking strength with the post-cracking residual strength 

of FRC. Due to the dependence of 
Q  on the values of 

ctf  and 
csl , the application of Eq. (2.24) can 

result a value of strain lower than that for the tensile strength, 
Q P  , which has no physical 

meaning. In this situation, the concrete matrix post-cracking contribution is discarded, and it is 

assumed that 0.15‰Q P = = , as presented in Figure 15. 
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Figure 15 – SLS stress-strain case I model for situation where concrete matrix post-cracking 

contribution is disregarded. 

Additionally, the present formulation can also result in a situation where the intersection of both lines 

yields 
C P   (see Figure 16). In this circumstance, point C is disregarded, and point D is connected 

to point B. 

 
Figure 16 – Example of SLS stress-strain Case I model where point C is disregarded. 

Cases II and III are applicable for materials exhibiting a stable crack propagation up to 
SLS , with

Fts ctf f . Case II is applicable when: 
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be chosen. Case III has an additional point, A’, which stress value is 
' 0.9A Ftsf =   and 

corresponding strain is 
' 0.9A Fts cf E =  .  

In the safety assessment of a member at SLS, the principal tensile strain cannot exceed 
SLS , where 

a stress cut-off is admitted. 

Similarly to the consideration adopted for the ULS stress-strain diagram, in the common situation 

where 
SLS p  , for manual calculation of the cross-section flexural capacity, the pre-cracking 

contribution of FRC can be disregarded without a significant loss of precision.  

Likewise to concrete in compression, for ULS and SLS analysis of a structure are used design values 

of the material tensile strength parameters, 
dX , by adopting a partial safety factor 

F , namely: 

 k
d

F

X
X


=  Eq. (2.28) 

For converting the characteristic values of the tensile strength parameters, 
kX , in design values, 

dX  , 

partial safety factor, 
F , equal to 1.0 and 1.5 are adopted for SLS and ULS, respectively. 

Regarding the suitability of the MC2010 constitutive model to describe the tensile response of FRC, in 

[39], [40] was verified a satisfactory agreement between the measured experimental response and 

the numerical response obtained from a plain-section analysis of the cross-section and from numerical 

simulations of four-point bending tests of steel fiber reinforced concrete beams without conventional 

reinforcement. A has been found out However, recently carried out research pointed that the MC2010 

model results in the overestimation of the residual tensile strength of steel fiber reinforced concrete 

when compared to experimental data obtained from uniaxial tensile tests [41]. 

2.4 FRC design particularities 

For certain FRC applications, namely for thin walled members and for casting operations that resort 

to vibration, the fiber dispersion can be strongly influenced during casting procedure [39], [42]–[47]. 

In MC2010 these situations can be considered in the design process, by applying the orientation 

factor, K . The orientation factor influence is considered by modifying the serviceability and ultimate 

residual tensile strength of FRC, namely: 

 ,mod ,mod;Ftsd Ftud
Ftsd Ftud

f f
f f

K K
= =  Eq. (2.29) 
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In general, it is assumed an isotropic fiber distribution in the element and the orientation factor takes 

the value 1.0K = . For situations where the fiber distribution has been experimentally proven to have 

a favorable effect on the element performance, the orientation factor assumes a value lower than 1.0, 

while for unfavorable effect it assumes a value higher than 1.0 [30]. A scientific approach for the 

determination of the orientation factor, and its influence on the behavior of FRC elements is proposed 

in [42], [48], [49]. In chapter 5 is explored a model to consider the fibers orientation profile and fiber 

segregation in the analysis of FRC structural members.  

The fiber dispersion on FRC elements promotes the occurrence of stress redistribution, which is quite 

favorable effect in statically indeterminate structures in terms of ultimate load carrying capacity and 

deformation performance. During the material characterization of FRC in 3PNBBT, a small volume of 

the material is involved in the crack propagation process at failure, leading to relatively high scatter 

for the 
Rjf  values. For structural applications where the volume of the material involved in the crack 

propagation process increases and the degree of support redundancy allows a significant stress 

redistribution, an increase of the ultimate load capacity of the structure, 
RdP , is obtained. In MC2010 

this effect is given by the coefficient 
RdK , namely [30]: 

 ( )Rd Rd FdP K P f=   Eq. (2.30) 

where ( )FdP f  is the ultimate load that is computed considering the design strength of FRC, 

considering the FRC residual tensile strength derived from standard material characterization tests. 

The determination of the coefficient 
RdK  can be experimentally derived and, among other methods, 

by performing a statistical analysis on the variation of the ultimate load capacity, 
maxP , of a structure 

considering a standard deviation of the mechanical constitutive law of the FRC, namely [30]: 

 max,

max,

1.4
k Ftum

Rd

m Ftuk

P f
K

P f
=    Eq. (2.31) 

where 
max,kP  and 

max,mP  are, respectively, the characteristic and mean value of the maximum load; 

Ftumf  and 
Ftukf  are, respectively, the mean and characteristic value of the ultimate residual tensile 

strength of FRC. 

Due to the increased post-cracking tensile strength, FRC’s are capable of replacing conventional rebars 

for flexural reinforcement. However, an assessment of the ductility capacity of the structural element 
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should be performed. According to MC2010, if the conventional flexural reinforcement area is higher 

than the minimum required area for the member, 
,minslA , which is determined by Eq. (2.32), it is 

possible to consider the ductility requirement satisfied.  

 
,min 0.26 ctm

sl t

yk

f
A b d

f
=     Eq. (2.32) 

If the element reinforcement area is lower than 
,minslA , MC2010 specifies the need to verify if the 

ultimate displacement, 
u , of the structural element is higher than 20 times the displacement at 

maximum service load, 
SLS . Alternatively, if the displacement corresponding to the maximum load, 

peak , is higher to 5 times the displacement at maximum service load 
SLS , the ductility requirement 

of the member is satisfied. The ultimate displacement is related with the maximum allowable 

deformation of the structure or structural element. These ductility requirement conditions are 

presented in Eq. (2.33) and Eq. (2.34), respectively, and the variables are illustrated in Figure 17 [30]. 

For the estimation of the FRC’s elements deformation, MC2010 suggests the execution of linear elastic 

analysis of the structure, assuming uncracked concrete and initial elastic Young’s modulus of 

concrete. The ultimate load 
uP  should always be higher than load at crack initiation, 

crP , and higher 

than the maximum service load 
SLSP . In the case of beam or column types of elements, subjected to 

a tensile-only strain distribution in the cross-section, MC2010 denotes the need to prescribe an FRC 

with tensile-hardening behavior, in order to avoid a fragile collapse of structures. 

 20u SLS    Eq. (2.33) 

 5peak SLS    Eq. (2.34) 

 
Figure 17 – Typical load-displacement curve of a FRC structural element (extracted from [30, Figs. 

7.7–1]. 
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2.5 ULS and SLS analysis of FRC structural members 

2.5.1 Members in bending 

The improvement provided by the use of FRC in the flexural capacity of structural elements is granted 

by the post-cracking residual tensile strength contribution of the FRC in the tensile region. In order to 

assess the flexural response of a FRC member (beams, slabs or columns) it is necessary to define the 

constitutive models of the involving materials, namely the stress-strain models presented in section 

2.3. To express the stress-strain law for FRC in tension it is necessary to previously determine the 

structural characteristic length, 
csl , of the cross-section and the ultimate crack width of the FRC, 

uw  . 

In Figure 18 is presented the stress-strain distribution that can be used to determine the flexural 

capacity at ULS of a generic rectangular cross-section, considering the bilinear compressive stress-

strain law for concrete in compression and the linear model for post-cracking response of tensile-

softening FRC. Considering the existence of conventional steel reinforcements, the tension zone of the 

section is divided in two. The reinforced zone is limited by the extreme fiber in tension and the height 

of the effective tension zone, 
,c efh , while the unreinforced zone is limited by 

,c efh  and the neutral axis 

position. In order to establish the tensile stress-strain relationship of FRC in the section, is necessary 

to determine the corresponding structural characteristic length of each zone. The procedure to 

determine the structural characteristic length for the reinforced zone, r

csl , is presented in section 2.3, 

namely Eq. (2.19). The structural characteristic length of the unreinforced zone, u

csl , is equal to the 

element height, h , minus the height of the effective tension zone of the section, 
,c efh , namely: 

 ,

u

cs c efl h h= −  Eq. (2.35) 

Since the structural characteristic length of both zones are different, it is possible that the ultimate 

crack width, 
uw , for each tensile zone present distinct values. Since the ultimate tensile strain for ULS 

verification, 
ULS , and the design value of the ultimate residual tensile strength, 

Ftudf , are dependent 

of 
uw , the post-cracking tensile stress-strain model is different for both tensile zone of the cross-

section, as it is illustrated in Figure 18.  
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Figure 18 – Stress-strain distribution for assessing flexural response of a rectangular cross-section 

with longitudinal steel reinforcement and FRC tension zone divided in two parts. 

On the other hand, if the longitudinal steel bars are discarded, a unique model would be used to 

describe the FRC post-cracking tensile stress-strain relationship, as is illustrated in Figure 19. 

 
Figure 19 – Stress-strain distribution for assessing flexural response of a rectangular cross-section 

without longitudinal steel reinforcement. 

A similar approach is used when analyzing the flexural response of a FRC cross-section for 

serviceability safety verifications. In this case, the tensile stress-strain model would be one of the three 

models presented in Figure 14.  
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After the definition of the constitutive models of the FRC and steel rebars, and assuming the 

appropriate stress-strain distribution in the cross-section, the flexural response of the structural 

member can be determined by considering the force and moment equilibrium in the cross-section. 

The resisting moment-curvature relationship of the section can be obtained by adopting an iterative 

approach. In each iteration, a strain increment is applied to the upper or lower fiber of section, and 

resorting to the resolution of the equilibrium system of equations, it is possible to determine the 

position of the neutral axis, and, therefore, the moment and curvature corresponding to the strain 

profile for the adopted strain increment. Performing this approach up to a certain strain limit in the 

selected control fiber of the section it is obtained the corresponding moment-curvature diagram. 

For ULS analysis of slabs without conventional reinforcements and predominantly submitted to the 

action of bending moments, MC2010 allows the use of a simplified stress-strain distribution in the 

slab’s cross-section (Figure 20) to evaluate the resisting moment of the slab cross-section. The FRC 

stress-strain distribution is based on the rigid-plastic model (Figure 10a). When performing a linear-

elastic analysis of the structure, the safety verification can be easily performed by comparing the 

maximum principal moment with the resisting bending moment, 
Rdm , determined from [30]: 

 
2

[ . ]
2

Ftud
Rd

f t
m kN m m


=  Eq. (2.36) 

where t  is the thickness of the slab and 
Ftudf  is determined according to Eq. (2.15) and Eq. (2.28). 

 
Figure 20 – Simplified stress-strain distribution in the cross-section for slab design [30]. 
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Fiber reinforcement enhances the shear capacity of concrete, and allows a partial or total replacement 

of steel stirrups in structural elements [18], [50]–[54]. According to MC2010, the design value of the 
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shear resistance of an FRC structural element with longitudinal steel rebars and without shear 

reinforcement, 
,Rd FV , can be evaluated by employing the expression [30]: 

 
1/3

,

0.18
100 1 7.5 0.15Ftuk

Rd F sl ck cp w

c ctk

f
V k f b d

f
 



   
 =     +   +          

 Eq. (2.37) 

where 1.5c =  is the partial safety factor for concrete without fibers; 1 200 2.0k d= +   is a 

factor that takes into account the size effect; d  is the effective depth of the cross section [mm]; 

( )sl sl wA b d =   is the longitudinal reinforcement ratio; 
slA  is the cross-sectional area of the 

longitudinal reinforcement [mm2]; 
Ftukf  is the characteristic value of the ultimate residual tensile 

strength of the FRC that is computed from Eq. (2.17) considering the characteristic values of the 

residual flexural strength of FRC and 1.5uw mm=  [MPa]; 
ctkf  is the characteristic tensile strength 

for the concrete without fibers [MPa]; 
ckf  is the characteristic compressive strength [MPa]; 

0.2cp Ed c cdN A f =    is the average axial stress acting in the cross-section [MPa] (considered 

positive in compression); and 
wb  is the smallest width of the tensile zone of the cross-section [mm].  

The previous equation is based on the one proposed by Eurocode 2 [37] for shear contribution of plain 

concrete members without transverse reinforcements, by adding the contribution of FRC residual 

flexural strength. The effect of the dispersed fibers to shear resistance provided by the increased post-

cracking toughness and crack-opening restriction is empirically considered by multiplying the 

longitudinal reinforcement ratio by the factor ( )1 7.5 Ftuk ctkf f+ . Therefore, the contribution of fiber 

reinforcement is regarded as an extra flexural reinforcement, whose favorable mechanism for the 

shear capacity derives from the dowel effect. 

It should be noticed that in Eurocode 2 is considered an upper limit of to the value of the longitudinal 

reinforcement ratio 0.02sl   to be used in the calculation of the shear resistance of plain concrete 

members. Although this condition is not established in MC2010 for FRC members, a similar limit 

should be applied in Eq. (2.37) [55]. 

According to fib Bulletin 57 [56], the applicability of Eq. (2.37) is limited to elements where shear 

diagonal failure is expected and arch action is insignificant, namely for elements with ratio 2.5a d   , 

being a  the shear span. 
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The shear resistance, 
,Rd FV , is assumed to be not smaller than the minimum value, 

, ,minRd FV , 

obtained from: 

 ( ), ,min min 0.15Rd F cp wV b d = +     Eq. (2.38) 

 
3 1

2 2
min 0.035 ckk f =    Eq. (2.39) 

In MC2010, for structural members with transverse reinforcements is considered the following 

relation: 

 
, , ,maxRd Rd F Rd s RdV V V V= +   Eq. (2.40) 

where, 
,Rd sV  is the shear resistance provided by the web reinforcement and 

,maxRdV  is the maximum 

shear capacity without concrete crushing. According to MC2010, 
,Rd sV  is determined according to the 

model proposed for RC elements, where is only possible to consider the added contribution of 
,Rd sV  

and 
,Rd FV  for the level of approximation III (based on the simplified modified compression field theory) 

and IV, and the same principle must be applicable to FRC. However, the use of the same model to 

determine 
,Rd sV  for FRC and RC cross-sections is dubious, due to the expected difference in the 

rotation of the critical diagonal crack between RC and FRC elements. Due to this, the added 

contribution of 
,Rd sV  and 

,Rd FV  is not recommended when adopting this shear model to determine 

the shear resistance of a FRC structural element. 

Although Eq. (2.37) generally returns reasonably good estimates when compared with available 

experimental data, its empirical based formulation, when compared to the physical approach to 

describe shear of reinforced plain concrete members, can be seen as a drawback [55]. Therefore, the 

combination of both models, as considered, can be questionable.  

A more recent model describing fiber reinforcement contribution to shear resistance based on the 

Variable Engadgement Model (VEM) [57] and on the Simplified Modified Compression Field Theory 

(SMCFT) [58] is also presented in MC2010. Based on this model, the design value of shear resistance 

of FRC members with longitudinal and transverse reinforcements is equal to: 

 
, , ,maxRd Rd F Rd s RdV V V V= +   Eq. (2.41) 

The FRC shear resistance, 
,Rd FV , is the result of the added shear resistance of the concrete matrix, 

,Rd cV , and fiber reinforcements bridging the shear cracks, 
,Rd fV , and is determined from [30]: 
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 ( ), , , , ,

1
Rd F Rd c Rd f Rd c Rd f w

F

V V V v v z b


= + =  +    Eq. (2.42) 

where, z  is the internal lever arm, that can be estimated as 0.9z d=  [mm] [30]. 

 
Figure 21 – Contribution of concrete matrix and fiber reinforcements for FRC shear resistance 

(extracted from [55]). 

The concrete matrix shear strength is provided by the aggregate interlock, which is dependent on the 

concrete compressive strength, size of aggregate particles and on the shear crack width, namely [30]: 

 ,Rd c v ckv k f=   Eq. (2.43) 

where 
vk  is the parameter that determines the contribution of the aggregate interlock mechanism for 

the shear strength of the cross section (Eq. (2.44)). The parameter 
vk  is function of the parameter 

that considers the aggregate size influence (Eq. (2.45)), 
dgk , and of the longitudinal strain at the mid 

depth of the effective shear area, 
x . Although in MC2010 is not specified a limit for the value of 

ckf , a limiting value of 8ckf MPa  should be implemented in Eq. (2.43), similarly to the 

expression used to determine the concrete matrix contribution for plain concrete.  
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
 

+= 
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 Eq. (2.45) 

In Eq. (2.44), the term 
w  represents the transverse reinforcement ratio of the cross-section, that is 

given by [30]: 
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sin

sw
w

w w

A

b s



=

 
 Eq. (2.46) 

where, 
swA  is the shear reinforcement area [mm2]; 

ws  is the longitudinal spacing between shear 

reinforcement bars [mm]; and   is the inclination of the transverse reinforcements with the element 

longitudinal axis. 

In Eq. (2.45) the term 
gd  is the maximum aggregate dimension in the concrete matrix [mm]. 

In Figure 22 is illustrated the simple truss model of a beam subjected to bending, shear and axial load 

that, by conducting a plane section analysis ignoring the tension stiffening effect, allows the 

determination of the “representative” longitudinal strain, 
x , at the mid-depth of the effective shear 

area, which is required in the analysis of shear reinforced members [30], [59]. Considering the 

equilibrium of forces and 0pA = , it is possible to obtain the tension chord force, as [59]: 

 
1

cot
2 2

Ed Ed
t Ed

M V e
F N

z z


 
= + +   

 
 Eq. (2.47) 

where: 

- 
EdM  and 

EdV  assume positive values and 
EdN  value is positive for tension and negative for 

compression; 

- e  is the eccentricity of the beam axis with respect to its mid-depth of the shear height. 

 
Figure 22 – Equilibrium at cross-section and corresponding strain profile [59]. 

Assuming the simplification that the strain in the compressive chord is equal to zero, the strain, 
x , 

at mid-depth of the effective shear depth is defined as half the tension chord strain, 
s , namely [30], 

[59]:  
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x

Ed Ed
x Ed
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M V e
N

E A z z




 

=   

   
=   + +     

    

 Eq. (2.48) 

In order to avoid an iterative process to calculate 
x , the second term of Eq. (2.47) can be 

approximated by 2cotEd EdV V  [59]. 

 
1 1

0 0.003
2 2

Ed
x Ed Ed

s sl

M e
V N

E A z z


   
=   + +     

    
 Eq. (2.49) 

MC2010 presents the following conditions for application of Eq. (2.49): 

- 
slA  comprises the main longitudinal reinforcement in the tensile chord, while any other 

distributed longitudinal reinforcement must be disregarded; 

- If longitudinal reinforcement bars do not respect the required development length, 
pl , 

(§6.1.8.6 MC2010) from the section under consideration, the value of 
slA  must be reduced 

proportionally to the lack of development length; 

- The strain 
x  must not exceed 3.0‰ ; 

- If the strain 
x  is negative (compression), it must be taken as zero; 

- When analyzing sections within a distance 2z  of a significant rebar curtailment (see Figure 

23), the calculated value of 
x  must be multiplied by 1.5; 

- If the axial tension is large enough to crack the flexural compression face of the section, the 

value of 
x  must be multiplied by 2.0.  
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Figure 23 – Example of 

x  adjustment due to proximity of rebar curtailment. 

For a prestressed FRC member ( 0pA  ), the longitudinal strain 
x , can be obtained from [30]: 

 

cot
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p pEd
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z z
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z z
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  =  
 

   +   
 

 Eq. (2.50) 

with 
sz  and 

pz  represent the internal lever arm of the passive and prestress reinforcements, 

respectively, 
pe  is the prestress eccentricity and z  is considered as the effective shear depth, that 

can be taken as [30]: 

 
2 2

s sl p p

s sl p p

z A z A
z

z A z A

 + 
=

 + 
 Eq. (2.51) 

According to MC2010, the value of   can be freely chose in the interval of 
min 45º   , while the 

value of 
min  is related with the longitudinal strain level in the mid-depth of the cross-section, 

x , 

which can be obtained from [30]: 

 ( )min 29 7000 x = +   Eq. (2.52) 

The shear strength provided by the fiber reinforcements bridging the shear diagonal cracks is obtained 

from [30]: 

 ( ), cotRd f fd Tk uv k f w =    Eq. (2.53) 
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where, 
fdk  is a fiber dispersion reduction factor [55], assuming the value of 0.8fdk =  [30]; ( )Tk uf w  

is the characteristic value of the post-cracking tensile capacity of FRC, evaluated at the ultimate crack 

width, 
uw , that can be determined from direct tensile tests. As the execution of direct tensile tests is 

quite cumbersome, alternatively, ( )Tk uf w  can be estimated according to Eq. (2.54), considering 

uw w= [60]: 

 ( )( )
2 4 2 ,min

( ) min 0.4 1.2 ( ),
GTk R k R k R k ctk

f w k f f f w f= + −  Eq. (2.54) 

 ( ) 0.25w w =  −  Eq. (2.55) 

Eq. (2.54) is based on the work of [61] that derived the  −  relationship of FRC from inverse 

analysis using the results of prism bending tests. The factor 
Gk  considers the fiber alignment due to 

casting bias and wall influences that occur in the prism bending test. In Table 2 is presented the value 

of 
Gk  considering the different prism bending test standards. The value of factor   also depends on 

the prism bending test configuration and is presented in Table 2. 

Table 2 – Value of 
Gk and   depending on prism bending test standard [60]. 

Prism bending test normative Gk    

ASTM 1609 [62] 0.70 1/3 
EN 14651 [34] 0.60 5/12 

RILEM TC 162-TDF [35] 0.60 5/12 
UNI 11039 [63] 0.60 43/84 

For design situations, where it may only be prescribed the toughness and strength class of the FRC, 

it is possible to estimate the characteristic values of the residual flexural strength 
2R kf  and 

4R kf , 

based on the work of Moraes Neto, et al. [64], [65], that derived relationships between the 

reinforcement index (
f f fIR V l d=  ) and the post peak residual flexural strength of hooked end steel 

fiber reinforced concrete based on inverse analysis of the results of 3PNBBT, namely: 
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f
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l
f V

d
=  

 
 
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 Eq. (2.56) 
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f

R k f

f

l
f V

d
=  
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 Eq. (2.57) 
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 Eq. (2.58) 
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f
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l
f V

d
=  

 
 
 

 Eq. (2.59) 

Alternatively, in the work developed by Moussa [66] it was also derived a relationship (Eq. (2.61)) 

between the residual flexural strength and the reinforcement index, IR , and the concrete average 

tensile strength, 
ctmf , based on the analysis of 89 samples of hooked end steel fiber reinforced 

concrete notched beams submitted to 3-point bending tests according to EN 14651 [34].  

 
( ) 2, 1

1, 1

1

Rk

R ctm

R

F

k f IR
f



 
=  Eq. (2.60) 

Additionally, it was also derived a relationship between the residual flexural strength 
Rif  , 2,3, 4i =  

and 
1Rf , namely: 

 ( ) 2,1,

1 2,3,4RikRi

Ri R

F

k
f f i


=  =  Eq. (2.61) 

In Eq. (2.60) and Eq. (2.61) 
F  is the partial safety factor, that assumes the value of 1.5F =  for 

design situations; 
1,Rik  and ( )2, , 1,2,3,4Rik i =  are obtained from Eq. (2.62) to Eq. (2.69), 

considering the intervals of the FRC mean compressive strength, 
cmf . The use of Eq. (2.61), and 

Eq. (2.62) to Eq. (2.69) is restricted for 70cmf MPa , as the formulation tends to overestimate the 

residual flexural strength of SFRC for 70cmf MPa  (few data existed in this interval when deriving 

the expressions). 

3 2
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k f f MPa f MPa
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

=   −  +  
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 Eq. (2.62) 
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0.85 , 65

cm

R cm cm
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f MPa

k f MPa f MPa

f MPa

−




=   +  
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 Eq. (2.63) 

4 2 2
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k f f MPa f MPa

f MPa

− −
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

= −   +   +  
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 Eq. (2.64) 
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 Eq. (2.65) 



Advanced tools for design and analysis of fiber reinforced concrete structures 
 

36 

4 2 2
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k f f MPa f MPa
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 Eq. (2.66) 
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 Eq. (2.67) 
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 Eq. (2.69) 

Considering the value of 
1R kf  and 

3R kf  defined by the toughness, it is possible to estimate 
2R kf  and 

4R kf  following the one of the two approaches defined in Figure 24. For the approach using the 

expressions derived by Moussa [66] it is also necessary to consider the mean compressive and tensile 

strength of concrete.  

 
Figure 24 – Approach to estimate 

2R kf  and 
4R kf  based on the toughness class of the FRC. 

According to MC2010, the ultimate crack width orthogonal to the critical diagonal crack (CDC), 
uw , 

is determined according to Eq. (2.70). In Figure 25 is presented the definition of 
uw . 

 ( )0.2 1000 0.125u xw mm= +    Eq. (2.70) 
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Figure 25 – Ultimate crack width orthogonal to the CDC. 

The shear reinforcement resistance, 
,Rd sV , is determined according to the following expression [30]: 

 ( ), cot cot sinsw
Rd s ywd

w

A
V z f

s
  =    +   Eq. (2.71) 

where, 
swA  is the shear reinforcement area [mm2]; and 

ywdf  is design value of the yield strength of 

the shear reinforcement. 

The design shear resistance cannot exceed the crushing capacity of concrete in the web, determined 

as [30]: 

 
,max 2

cot cot

1 cot

ck
Rd c w

c

f
V k b z

 

 

+
=    

+
 Eq. (2.72) 

where, 
ck  is a strength reduction factor, defined by 

c fck k =  ; k  is a factor that takes into account 

the strain in the web of the structural element, and is determined according to the level of 

approximation defined in MC2010 (level of approximation I : 0.55k = ; level of approximation II and 

III : Eq. (2.73)); 
fc  is a factor to consider the effect of more brittle failure for high strength concrete 

compositions, and is determined from Eq. (2.75); and   is the inclination of the principal compressive 

stress in the web, relative to the longitudinal axis of the member. 
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 Eq. (2.73) 

 ( ) 2
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
 

=  
 

 Eq. (2.75) 

The shear model that combines VEM and SMCFT prediction capacity was assessed in [55] and [56] 

by comparison with experimental results of steel fiber reinforced concrete beams failing in shear, and 

was observed good agreement between the model and the experimental results. In chapter4 is 

presented a comparison of the results of the shear resistance prediction models, whose formulation 

was applied to a database of shear tests of FRC beams. 

The exclusive use of fibers for shear reinforcement, i.e. members without shear or longitudinal 

reinforcements, is limited to tensile-hardening FRC’s. In this situation, the principal tensile stress, 
1  , 

in the member must accomplish the following condition [30]: 

 
1

Ftuk

F

f



  Eq. (2.76) 

where, 
Ftukf  is the characteristic ultimate residual tensile strength of FRC computed according to 

Eq. (2.17) considering 1.5uw mm= . 

Additionally, for FRC slabs without conventional reinforcements or prestressing, it can be considered 

that shear failure is not dominant as flexural failure, unless significant concentrated loads are applied 

near supports [30].  

Due to the crack-opening resistance provided by FRC, the minimum shear reinforcement for beams 

can be disregarded if an appropriate value of ultimate residual tensile strength of FRC is guaranteed 

in order to assure sufficient ductility. According to MC2010, this condition if verified if: 

 0.08Ftuk ckf f   Eq. (2.77) 

where, 
Ftukf  is the characteristic value of the residual tensile strength of FRC determined according 

to Eq. (2.17), considering 1.5uw mm= . 

When Eq. (2.77) is not fulfilled, a minimum reinforcement area, 
,minswA  must be adopted. According 

to MC2010, the value of 
,minswA  for beams is determined from Eq. (2.78). 
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2.5.3 Punching 

The punching shear analysis of FRC slabs can be conducted according to the Critical Shear Crack 

Theory (CSCT) [67]. The CSCT is based on the assumption that shear strength in members without 

shear reinforcement is governed by the tensile stresses and aggregate interlocking that develop along 

the critical shear crack [67]. With the formation of the critical shear crack (Figure 26a), the associated 

failure mode is characterized by the rotation of the slab ( )  and spalling of concrete cover of the 

flexural reinforcement (Figure 26b). 

For plain concrete, with the increase of slab’s rotation, the favorable effects of aggregate interlock and 

tensile strength of concrete decrease [67]. Due to the enhanced post-cracking behavior and crack-

opening restriction provided by fiber reinforcements, the punching shear resistance of FRC’s slabs 

can be significantly improved. 

 
(a) 

 
(b) 

Figure 26 – Punching of slab. a) Development of critical shear crack; b) Slab’s rotation and concrete 
cover spalling (extracted from [67]). 

The FRC can be considered as a composite material, whose behavior after cracking depends on the 

matrix strength, 
,Rd cP , and fiber post-cracking strength, 

,Rd fP . According to MC2010, the punching 

shear resistance of a FRC slab,
RdP  can be taken as: 

 
, ,Rd Rd F Rd sP P P= +  Eq. (2.79) 

 
, , ,Rd F Rd c Rd fP P P= +  Eq. (2.80) 

where 
,Rd sP  is the design punching shear resistance ensured by transverse reinforcement. 
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The punching shear resistance provided by the fiber reinforcements is a consequence of the improved 

post-cracking strength of FRC, which is dependent on the crack width opening of the critical shear 

crack. The crack width can be estimated by the following relationship (Figure 27b,c) [67]: 

 w   =    Eq. (2.81) 

where   is the slab rotation,   is the distance from the soffit of the slab and   is a coefficient 

relating total rotation and critical crack width opening, which for design purposes can take the value 

of 0.5 = . In this manner, the tensile stress of the fibers can be related with the slab’s rotation and 

position of the fibers, ( ),tf   . By integration of this law to the failure surface, the punching shear-

carrying capacity of the fiber reinforcements is [67]: 

 ( ), ,

p

Rd f tf p

A

P dA  =   Eq. (2.82) 

where 
pA  is the horizontally projected area of the failure surface (Figure 27d). 

The punching shear strength of the FRC slab can be determined by the intersection of the load-rotation 

relationship of the slab with the similar relation of the added contribution of the matrix and fiber shear 

resistance (Figure 27e) [67]  
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Figure 27 – Punching of FRC slabs: (a) behavior of FRC after cracking; (b) critical shear crack in 

slabs; (c) assumed distribution of crack widths along the failure surface; (d) profile of fibers’ stress 
along the failure surface; and (e) matrix (concrete) and fiber contributions for the punching shear 

strength (adapted from [67]). 

A simplified method has been implemented in MC2010, also based in the CSCT theory, which consists 

on the consideration of an average value of the fiber’s stress. The full integral is converted to a 

multiplication of the average fiber’s stress with the projected area of the failure surface, namely: 

 ( ) ( ), , ,

p

Rd f tf p p tf c

A

P dA A h    =  =   Eq. (2.83) 

where 
ch  is the control distance from the soffit of the slab at which the average stress is considered. 

According to [67], the value of 3ch d=  leads to results in agreement with experimental evidence. 

According to Eq. (2.81), the estimated crack width opening takes the value: 

 0.5
3 6

u

d d
w





=   =  Eq. (2.84) 

For design purposes, in MC2010 is presented a simplified methodology to compute the punching 

shear contribution provided by the fiber reinforcement, 
,Rd fP , that overcomes the need to determine 
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the slab’s rotation  . The formulation is based in Eq. (2.83) and Eq. (2.84). The projected area of 

the failure surface is taken as: 

 
0p vA b d=   Eq. (2.85) 

where, 
0b  is the punching shear resistance control perimeter; 

vd  is the shear resisting effective depth, 

considered as the mean value of longitudinal reinforcement depth applied in the x and y directions of 

the slab. 

Additionally, it is considered that the average tensile stress of fibers 
tf  is equal to:  

 ( )1.5
6

tf u Ftu u

d
w f w mm




 
= = = 

 
 Eq. (2.86) 

The design value of the punching shear contribution provided by the fiber reinforcement proposed by 

MC2010 results in: 

 
, 0

Ftuk
Rd f v

F

f
P b d


=    Eq. (2.87) 

where, 1.5F =  is the partial safety factor for FRC for ULS analysis; 
Ftukf  is the characteristic value 

of the ultimate residual tensile strength of the FRC that is computed from Eq. (2.17) considering the 

characteristic value of the residual flexural strength parameters of FRC, in MPa; and 1.5uw mm= ;  

The FRC punching resistance contribution should be added to the matrix shear strength, 
,Rd cV  and 

conventional transverse reinforcement contribution.  

According to MC2010, the concrete matrix punching shear strength is determined as follows: 

 ,

ck

Rd c o v

c

f
V k b d


=     Eq. (2.88) 

where, k
 is a factor accounting for opening and roughness of cracks, and is dependent on the slab’s 

rotation (Eq. (2.89)). 

 
1

1.5 0.9 dg v

k
k d




=
+   

 Eq. (2.89) 
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In Eq. (2.89) the variable 
dgk  represents an aggregate’s size effect coefficient that influences the 

aggregate interlocking in the critical shear crack, and is determined according to Eq. (2.90), where 

gd  is the maximum aggregate dimension in the concrete matrix [mm]. For high strength and 

lightweight concrete, due to possibility of aggregate breaking, this variable assumes the value of 

0gd =  [30].  

 

1.0 if 16

32
0.75 if 16

16

dg g

dg g

g

k d mm

k d mm
d

= 

=  
+

 Eq. (2.90) 

For the determination of the slab rotation,  , MC2010 presents four levels of approximation. The 

lower levels of approximation imply lower computational costs, but leads to more conservative results. 

By adopting higher levels of approximation, the calculation effort and precision increase. 

In level of approximation I, the rotation of the slabs is determined from [30]: 

 1.5
yds

v s

fr

d E
 =    Eq. (2.91) 

where 
sr  represents the position where the radial bending moment is zero with respect to the support 

axis. For regular flat slabs where the ratio between the spans in both slab’s direction ( )x yL L  is 

between 0.5 and 2.0, the value of 
sr  can be approximated to the maximum value of 

, 0.22s x xr L=   

or 
, 0.22s y yr L=  . 

For the level of approximation II the rotation of slab is estimated from the following expression [30]: 

 
1.5

1.5
yds Ed

v s Rd

fr m

d E m


 
=    

 
 Eq. (2.92) 

where 
Edm  is the average acting bending moment per unit length for the calculation of the flexural 

reinforcement in the support strip; 
Rdm  is the design average flexural strength per unit length in the 

support strip. The width of the mentioned support strip, 
sb  is equal to: 

 
, , min1.5s s x s yb r r L=     Eq. (2.93) 

where 
minL  is the minimum span for x and y directions of the slab. 
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MC2010 also presents several methods for estimating the acting bending moment 
Edm  in the support 

strip, depending on the shear force and eccentricity of shear forces with respect to the centroid of the 

basic control perimeter, 
uie . The determination of 

uie  is illustrated in Figure 28. 

  
Figure 28 – Determination of eccentricity of the resultant of shear forces 

uie  (extracted from [30]). 

The level III of approximation is based on a more detailed analysis of the structure. If a linear elastic 

analysis is performed, considering an uncracked constitutive model for concrete, to determine the 

value of 
sr  and 

Edm , the coefficient 1.5  in Eq. (2.92) can be replaced by 1.2 . 

The level IV of approximation resorts to the performance of nonlinear numerical simulations, 

considering the phenomenon of cracking, tension-stiffening, yielding of reinforcements and other 

nonlinear effects that can be considered relevant to determine the rotation of slabs.  

The design punching shear resistance provided by transverse reinforcement is calculated as: 

 
,Rd s sw e swdP A k =    Eq. (2.94) 

where, 
swA  is the sum of the cross-section area of all shear reinforcement that intersect the potential 

failure surface within the zone bounded by 0.35 vd  and 
vd  from the edge of the supported area 

(Figure 29); 
swd  is the stress that is activated in the shear reinforcement, determined by Eq. (2.95) ; 

and 
ek  is the coefficient of eccentricity that is determined from Eq. (2.96). 

 
Figure 29 – Shear reinforcement activated at failure (extracted from [30]). 

 1
6

s bd v
swd ywd

ywd w

E f d
f

f






 
=  +    

 

 Eq. (2.95) 
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1

1
e

u

u

k
e

b

=

+

 Eq. (2.96) 

In Eq. (2.95) the variable 
w  represents the diameter of the punching shear reinforcement and 

bdf  

represents the bond strength of the steel reinforcement to concrete. 

In Eq. (2.96) 2 2

, ,u u x u ye e e= +  is the norm of the eccentricity of resultant of shear forces (Figure 

28), and 
ub  is the diameter of the circle with equal area as the region inside the basic control 

perimeter.  

In order to prevent crushing of concrete struts in the supported zone, the design punching shear 

resistance determined according to Eq. (2.79) is limited to a maximum value, 
,maxRdP , namely [30]: 

 ,max 0 0

ck ck

Rd sys v v

c c

f f
P k k b d b d

 
=         Eq. (2.97) 

where 
sysk  is a coefficient that considers the performance of punching shear reinforcing systems to 

control cracking and to suitably confine compression struts at the soffit of the slab. The standard value 

for 
sysk  is 2.0. However, if enhanced detailing rules are adopted, the value of 

sysk  can be increased. 

When transverse reinforcement is needed to guarantee sufficient punching resistance, a minimum 

amount of fibers is required to ensure sufficient deformation capacity at failure. According to MC2010 

is possible to assume this condition if: 

 
, , 0.5Rd s Rd f EdP P P+    Eq. (2.98) 

where 
EdP  is the acting punching shear force. 

2.5.4 Stress limitation 

Under service loads conditions the stress on FRC and steel reinforcements shall be limited in order to 

reduce the probability of concrete cracking and avoid excessive member deformation. 

According to MC2010, for members of FRC with tension-hardening behavior, the tensile stress at the 

SLS must be limited to: 

 , 0.6SLS char

t Ftskf    Eq. (2.99) 
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where ,SLS char

t  is the principal tensile stress in the member determined for the characteristic load 

combination, and 
Ftskf  is the characteristic value of the serviceability residual tensile strength, given 

in Eq. (2.16).  

For FRC members having a tensile-softening behavior after cracking, the tensile stress limitation of 

Eq. (2.99) is not necessary [30]. 

Similarly to reinforced plain concrete elements, MC2010 provides conditions regarding compressive 

stress limitation of concrete and tensile stress of flexural reinforcements. 

The compressive stress limitation of concrete is divided in two clauses. For the characteristic 

combination of actions, the following condition applies [30]: 

 ( ) ( ), 0.6SLS char

c ckt f t    Eq. (2.100) 

For the quasi-permanent combination of actions, the following condition applies [30]: 

 ( ) ( ), 0.4SLS qperm

c ckt f t    Eq. (2.101) 

If Eq. (2.100) is verified, it indicates that longitudinal cracking of the member is unlikely to occur. In 

other hand, if Eq. (2.101) is accomplished it represents that creep linearity is ensured, and nonlinear 

creep deformation is avoided. 

In order to prevent inelastic deformations of the steel longitudinal reinforcements, MC2010 introduces 

a steel stress limitation: 

 ( ), 0.8SLS char

s ykf t    Eq. (2.102) 

where, ,SLS char

s  is the steel stress determined for the characteristic load combination of actions. 

However, if the stress is due to imposed deformations, is acceptable that the steel stress can reach 

1.0 ykf .  

When more than 50% of the stresses arise from quasi-permanent actions, the concrete creep effects 

on the member should be considered when evaluating the steel stress. The methodology considered 

in section 2.3.1 can be adopted for considering concrete creep effects when performing plain-section 

analysis of a cross-section. 
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The stresses in FRC members can be determined by evaluating the acting moments and forces by 

performing a linear elastic analysis of the structure and conducting a plain-section analysis, 

considering the stress-strain relationships presented in section 2.3. Alternatively, more advanced 

analysis procedures can be conducted regarding the nonlinear behavior of the involving materials, 

e.g., finite element models. 

2.5.5 Crack control 

The limit state of cracking for any concrete member should be verified to assure that the requirements 

concerning functionality, durability and appearance are met. The MC2010 adopts a cracking 

serviceability criterion in the form of limiting a calculated crack width, 
dw , to a nominal limiting value,  

limw : 

 
limdw w  Eq. (2.103) 

The variable 
dw  represents the design value of crack width at the concrete member surface and is 

determined for the appropriate combination of actions. The nominal limit value of crack width at the 

concrete surface, 
limw , must be chosen according to the design situation, or is a project stipulated 

value. 

The method proposed in MC2010 for the calculation of the design crack width of a concrete member 

is based on the basic case of a prismatic reinforced concrete member subjected to axial tension. As 

illustrated in Figure 30, when a RC member is subjected to a steadily increasing elongation it develops 

an approximately regular crack pattern. In Figure 30 it is also represented the relationship between 

the load and mean strain of the member, where it is possible to detect the following stages: 

1. Uncracked stage; 

2. Crack formation stage; 

3. Stabilized crack stage; 

4. Reinforcement steel yielding. 
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Figure 30 – Load-strain relationship for a centrically loaded tensile reinforced concrete member [68]. 

In stage 1 (uncracked stage) concrete has not been cracked yet, and the stiffness of the member is 

at the maximum level. At this stage, the axial load applied to the member can be determined from: 

 ( )1 1c c E slN E A  =    +   Eq. (2.104) 

where e

E s cE E =  is the modular ratio and 
sl sl cA A =  is the ratio of longitudinal reinforcement, 

being e

cE  the effective modulus of concrete taking into consideration creep effects, 

(1 )e

c c cE E = +  , where 
c  is the concrete creep coefficient. 

The stage 2 corresponds to the formation of the cracks, which occurs when the tensile strength of 

concrete is reached, 
ct ctmf = . When the first crack takes place the axial tensile load in the member 

is equal to: 

 ( )2 1R ctm c E slN f A  =   +   Eq. (2.105) 

As illustrated in Figure 31, when cracking occurs the stress in concrete decreases almost to zero at 

crack location (depending on the fracture energy and crack width of the material, but to simplify it can 

be considered a null value), 0ct = , and the axial tensile load is carried by the steel. At this stage 

the steel stress is [68]: 

 ( )
2

1ctm c ctmR
sr E sl ctm E

s s

f A fN
f

A A
   




= =  +  = +   Eq. (2.106) 
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Figure 31 – Simplified representation of steel, concrete and bond stresses in the disturbed area in 

the crack formation stage of a RC member (adapted from [30, Figs. 7.6–3]). 

Due to bond strength between steel and concrete, stress is transferred from steel to concrete along 

both sides of the crack, corresponding to the discontinuity zone illustrated in Figure 31. In a simplified 

assumption, it is considered a constant value for the bond-slip relationship between concrete and steel 

(Figure 32). Nevertheless, several authors have proposed different models [69], [70]. 

To the length needed for concrete to reach again its tensile strength, 
ct ctmf = , due to bond action, 

is called the transmission length or bond transfer length, ,max

RC

sl . Therefore, new cracks cannot occur 

within the distance 
,max

RC

sl  from the existing cracks, as stress on concrete does not reach its tensile 

strength within this transition zone. At a distance 
,max

RC

sl  from the crack, steel stress at the undisturbed 

zone takes the value of: 

 
sE ctm Ef =   Eq. (2.107) 
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Figure 32 – Load transmission from steel to concrete due to bond (extracted from [68]). 

At the end of 
,maxsl , the force carried by concrete is equal to: 

 
c c ctmN A f=   Eq. (2.108) 

This force, 
cN , must be transferred by the steel reinforcement by bond over the length 

,maxsl . 

Considering that the generated action due to bond capacity is equal to [68]: 

 
,max

RC

bond bms sN l U=    Eq. (2.109) 

where 
bms  is the mean bond strength between steel and concrete (Figure 32) and U  is the total 

perimeter of the reinforcement bars, the theoretical value of the transmission length for reinforced 

concrete members, 
,max

RC

sl , can be determined from equating Eq. (2.108) and Eq. (2.109), namely 

[68]: 

 
,max

4

RC ctm s
c bond s

bms

f
N N l



 
=  = 


 Eq. (2.110) 

Regarding the load-strain response at the crack formation stage presented in Figure 30, since the 

member is under an imposed deformation action, when a crack arises the axial load drops due to the 

reduction of stiffness of the member. The axial tensile load return to increase with the deformation in 

the member, but it cannot exceed the value of 2

RN  because the concrete tensile strength is reached 

again outside the discontinuity zone, and a new crack is formed [68]. This behavior, illustrated in 

Figure 30 by the saw-tooth line, is simplified in MC2010 by assuming a constant load-strain 

relationship in the crack formation stage. 

The stabilized crack stage starts when the entire RC member is constituted by discontinuity zones, 

and no more cracks can be formed due to impossibility of concrete stress attains again its tensile 
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strength in between the already formed cracks. In this stage the distance between cracks varies 

between 
,maxsl  and 

,max2 sl , having a mean value 
,max1.5rm ss l=  [68].  

The stabilized crack stage is characterized by the widening of existing cracks. Due to the deterioration 

of bond, the contribution of concrete between cracks (tension-stiffening effect) decreases with the 

applied deformation up to the attainment of the yield of the steel reinforcement, after which the 

tension-stiffening effect is null. To model this effect in a simply approach, the load-strain response is 

assumed parallel to the line of the unembedded steel response (dashed line in Figure 30), where the 

difference between the two lines represents the tension-stiffening effect, 
ts .  

According to MC2010, the tension-stiffening effect takes the value of: 

 sr
ts

sE

 



=  Eq. (2.111) 

where   is a coefficient to assess the mean steel strain over 
,maxsl , and depends on the type of 

loading. 

Considering the analogous situation for a FRC member with longitudinal reinforcement, subjected to 

axial tension, the main differences rely on the fibers capacity to transfer tensile stresses between the 

faces of the cracks they are bridging. At stage 2, when cracking is processing, this stress transfer 

capacity of the fibers is considered 
ct Ftsmf = , thereby the steel stress at crack location is reduced 

when compared to the analogous RC member, namely: 

 
( )

( )1
ctm Ftsm

sr E sl

f f
  



−
=  +   Eq. (2.112) 

where, 
Ftsmf  is the mean value of the serviceability residual tensile strength of FRC, and can be 

determined according to: 

 
0.7

Ftsk
Ftsm

f
f =  Eq. (2.113) 

where 
Ftskf  is determined according to Eq. (2.16).  

Due to the reduced steel stress, the force transmitted from steel to concrete due to bond (analogous 

to Eq. (2.108)) is also reduced due to the effect of the post-cracking residual strength of FRC, by: 
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 ( )bond c ctm FtsmN A f f=  −  Eq. (2.114) 

and, therefore, the transmission length for a FRC member, 
,max

FRC

sl , takes the value of: 

 
,max

4

FRC ctm Ftsm s
s

bms

f f
l



 

−
= 


 Eq. (2.115) 

 
Figure 33 – Simplified representation of steel, concrete and bond stresses in the disturbed area in 

the crack formation stage of a FRC member. 

The expressions to calculate the introduction length of a RC and FRC member, Eq. (2.110) and 

Eq. (2.115), respectively, do not fully describe the expressions presented in MC2010, which considers 

the concrete cover influence in the length of 
,maxsl , namely: 
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,max

,

1

4

ctm s
s

bm s ef

f
l k c



 
=  +     (RC) Eq. (2.116) 

 
( )

,max

,

1

4

ctm Ftsm s
s

bms s ef

f f
l k c



 

−
=  +     (FRC) Eq. (2.117) 

where k  is an empirical value to take the influence of the concrete cover, and as a simplification can 

be assumed equal to 1.0k = ; c  is the concrete cover; 
s  corresponds to flexural reinforcement bar 

diameter; 
bms  is the mean bond strength between steel and concrete; and 

,s ef  is the effective 

reinforcement ratio. MC2010 indicates that the validity of previous expressions is limited for member 

with cover thickness lesser than 75mm. In Eq. (2.116) and Eq. (2.117) is used the definition of 

effective reinforcement ratio, 
,s ef , instead of the regular reinforcement ratio,  . In fact, 

,s ef  is 

used to generalize the presented formulation to the crack analysis for other types of member different 

than axially reinforced prisms [71]. Due to this, in the previous expressions presented in this section, 

the variable   should be replaced by 
,s ef . According to MC2010, the variable 

,s ef  can be 

determined by the following expression: 

 
,

,

s
s ef

c ef

A

A
 =  Eq. (2.118) 

where 
,c efA  is the effective area of concrete in tension and 

sA  is the reinforcement area inside 
,c efA  . 

The effective area of concrete in tension can be approximated by the methodology presented in [30], 

considering the type of structural element in analysis. 
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Figure 34 – Determination of effective area of concrete in tension, 

,c efA , for: a) beams; b) slabs; c) 

walls (extracted from [30]). 

As previously presented, in MC2010 is considered a simplified bond-slip relationship. The bond 

strength, 
bms , assumes a constant value that is proportional to the concrete tensile strength and is 

also dependent on the cracking stage and type of loading. The expressions to determine 
bms  are 

presented in Table 3. 

Table 3 – Values of 
bms ,   and 

r  for deformed reinforcing bars (extracted from [30]). 

Type of loading Crack formation stage Stabilized cracking stage 

Long term, 
repeated loading 

( )1.35

0.60

0

bms ctm

r

f t





= 

=

=

 

( )1.8

0.40

1

bms ctm

r

f t





= 

=

=

 

Short term, 
instantaneous 

loading 

( )1.8

0.60

0

bms ctm

r

f t





= 

=

=

 

Due to crack formation, the compatibility of strains of concrete and steel is not maintained. The sum 

of strain differences results in the development of relative slip between concrete and steel. The crack 

width is the result of the sum of the two slip values at both sides of the crack [72]. The relative slip 

between concrete and steel at each side of the crack can be estimated by the difference between the 

average strain of concrete and steel over the introduction length, 
,maxsl . Considering the effect of 

concrete shrinkage, the crack width at the steel reinforcement level can be determined from: 

c,efh

c,efA

c,efh

c,efA

c,efA

c,efh

h

b

d

=min(2.5(h-d);(h-x)/3)

h

c

=min(2.5(c+Ø/2);(h-x)/3)

c
t

=min(2.5(c+Ø/2);(t-x)/3)

(a)

(b)

(c)
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 ( ),max2 0d s sm cm csw l   =   − −   Eq. (2.119) 

where, 
sm  is the average strain of the steel bars; 

cm  is the average strain of concrete; and 
cs  is 

the concrete shrinkage strain.  

According to MC2010, the relative mean strain ( )sm cm cs  − −  can be determined by: 

 s sr
sm cm cs r sh

sE

  
    

− 
− − = +   Eq. (2.120) 

where 
sh  is the strain of the concrete due to free shrinkage; 

s  is the stress in the conventional 

steel rebars in a crack; 
sr  is the maximum steel stress in a crack in the crack formation stage;   

is a coefficient to assess the mean steel strain over 
,maxsl ; 

r  is a coefficient for considering the 

shrinkage contribution in the crack; 
sE  is the modulus of elasticity of steel. The values of   and 

r  

can be obtained in Table 7.6-2 of the MC2010. 

Combining Eq. (2.119) and Eq. (2.120), the crack width of a FRC member can be determined from 

[30]: 

 ( ),max

1
2 0d s s sr R sh s

s

w l E
E

    =    −  −     Eq. (2.121) 

where 
sr  can be determined from the Eq. (2.106) and Eq. (2.112), respectively, for RC and FRC 

members, and considering the variable 
,s ef . 

As expressed in Eq. (2.116) and Eq. (2.117), due to post-cracking residual strength of FRC, the 

necessary length for concrete reaches the tensile strength is smaller than for a RC member, which 

means that crack spacing and crack width of a FRC member is smaller than for RC members. This 

fact has already been proved in carried out experimental investigations [20], [73]. It is also possible 

to state that the steel stress at crack location, 
s , is reduced for FRC members (Eq. (2.112)). 

As stated in Eq. (2.121) for evaluation of the design value of crack width of a FRC member, it is 

necessary to determine the steel stress, 
s , considering the acting forces and moments 

corresponding to the serviceability criteria load combination. The steel rebars stress can be calculated 

by conducting a plain-section analysis and considering the appropriate stress-strain relationship for 

SLS analysis presented in section 2.3. For long-term evaluation of the member crack width, the 
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influence of concrete creep in the increase of the rebars stress should be considered. In section 2.3.1 

is presented a methodology to consider creep effect on the concrete compression stress-strain 

relationship. 

The MC2010 formulation to determine the design value of crack width is only valid for conventionally 

reinforced FRC members.  

For crack control of members in bending, MC2010 provides a design rule regarding the definition of 

a minimum required area of conventional reinforcement to withstand the tensile forces gradient 

resulting from concrete tensile stress reduction at cracking initiation, namely: 

 ( ),min
ct

s c ctm Ftsm

s

A
A k k f f


=   −   Eq. (2.122) 

where, 
ck  is a coefficient taking into account the stress distribution in the cross-section just before 

cracking occurs and the change of the inner lever arm, taking the value 1.0ck =  for rectangular cross-

sections; 
ctA  is the area of the tensile part of the concrete cross-section, evaluated at the limit of the 

elastic stress distribution; 
s  is the maximum tensile stress in the reinforcement in the cracked state, 

which can be considered equal to the yielding stress of the steel; and k  is a coefficient to take into 

account the non-uniform self-equilibrating cracking force, taking the value 1.0k =  for webs with 

300h mm  or flanges with width lesser than 300mm, and the value 0.65k =  for webs with 

800h mm  or flanges with width greater than 800mm. 

2.6 Concluding remarks 

This chapter presents an overview of the design guidelines and recommendations presented in 

MC2010 for the design of FRC structures. The main topics focused were related to the classification 

of FRC, namely the meaning and determination of the mechanical properties related to the toughness 

class, the calculation of the post-cracking residual tensile strength; and the definition of constitutive 

relationship of FRC, namely the stress-crack width and stress-strain diagrams. 

It is also presented the methodology of MC2010 to account the increase of ultimate load capacity due 

to stress redistribution and the ductility requirements for FRC structures.  
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The approach proposed in MC2010 to consider the influence of the fiber distribution in the behavior 

of the FRC members is also presented. In this scope, and taking into account the absence of a 

generalized formulation to determine the fiber orientation factor, this topic is further developed in 

chapter 5. 

The models proposed by MC2010 to perform the ULS and SLS verifications were thoroughly 

described, with special focus to some particular topics for FRC members, namely the determination 

of the structural characteristic length of members with and without conventional longitudinal 

reinforcements, the background and outline of the available shear models and the description of the 

model to determine the FRC crack width and spacing. Additionally, the shear and punching models 

presented in MC2010 are complemented with the more advanced models published in academic 

works. 
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3 SOFTWARE FOR DESIGN OF FIBER REINFORCED CONCRETE ELEMENTS 

3.1 Introduction 

This chapter is dedicated to present a new software, denominated FRCcalc, that, in the context of 

this thesis, was developed for the analysis and design of FRC members based on the 

recommendations and design guidelines presented in chapter 2. The software is guided for the 

analysis of FRC cross-sections with and without conventional reinforcements, submitted to bending 

and shear with or without axial force, in order to assess the ultimate and serviceability limit state safety 

verifications of structural members.  

A main feature of the software is the possibility to run a comparative analysis between FRC and RC 

cross-sections, which was implemented to assess the improvement provided by the addition of fiber 

reinforcement to concrete and to assess the potentialities of replacing conventional reinforcement by 

fibers.  

The software allows to perform the following analysis, for FRC and RC members: 

- Ultimate flexural capacity; 

- Evaluation of the moment vs. curvature relationship at ULS; 

- Ultimate shear capacity; 

- Evaluation of design crack width; 

- Determination of moment vs. design crack width relationship at SLS; 

- Evaluation of stress limitation criteria at SLS. 

3.2 Plain section analysis of cross-sections 

An essential requirement of an analysis and design software of FRC and RC members is the 

development of a versatile calculation module to perform plain-section analysis of cross-sections. In 

the present section is presented the methodology adopted in FRCcalc to conduct plain-section 

analysis of cross-sections submitted to bending with or without axial force. 
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Assuming that the cross-section of a structural element remains plane after bending and shear 

deformation can be ignored, the set of equilibrium and compatibility equations of a generic rectangular 

cross section, composed of FRC with longitudinal conventional reinforcements, can be obtained in 

accordance to Figure 35. Due to the presence of conventional steel reinforcements, the tensile zone 

of the cross-section is divided in two parts: one with a height equal to the effective tensile depth, 
,c efh  ; 

and, the other, corresponding to the depth 
,c efy h− . If no conventional tensile reinforcement is 

applied, the division of the cross-section is discarded.  

 
Figure 35 – Generic rectangular FRC cross-section for determination of moment-curvature 

relationship. 

Based on Figure 35 the forces and moment equilibrium equations in the cross-section are: 

 
, ,

, ,
2

s t u t r c

i i s t u t r c

F F F F N
F N

h
F d M M M M M N M

+ + + =
 = 

 
 = + + + +  = 






 Eq. (3.1) 

The further development of the compatibility and equilibrium equation in the cross-section are 

presented in Appendix C. 

For FRC cross-sections without conventional steel reinforcements, the tensile zone is not divided and 

a unique stress-strain relationship is applied in the plain section analysis. For this situation the value 

of 
, 0c efh = , turning 

, 0t rF =  and 
, 0t rM = . 

In FRCcalc the resolution of the set of equilibrium equations (presented in Eq. (C.1)) can be used to 

determine two sets of solutions: 

a) The neutral axis position, x , and bending moment of the cross-section, M ; 

b) The neutral axis position, x , and curvature,  . 
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In situation a), it is necessary to consider the application of a strain in the cross-section in order to 

obtain the resisting bending moment of the cross-section, M , and neutral axis position, x . In 

situation b), it is necessary to consider the application of the acting bending moment, M , in order to 

obtain the neutral axis position, x , and curvature,  . 

The resolution of forces and moment equilibrium equations in a cross-section is obtained by 

considering an iterative approach for the determination of the set of variables a) or b) and adopting 

the compatibility and constitutive models equations (Eq. (C.2) to Eq. (C.39)). The iterative approach 

resorts to Microsoft Office Excel Solver algorithm [74]. 

3.3 Main user interface window 

In Figure 36 is presented the user interface window of the software. In this window, the geometry of 

the cross-section and material properties data are inputted, and the user can select the type of ULS 

and/or SLS analysis to be conducted. 

 
Figure 36 – User interface window of the software. 

The available cross-section geometry to be adopted is limited to rectangular shapes. The cross-section 

general data for user to input corresponds to the element width and height, as well as the type of 

member: beam, slab or walls (Figure 37a). 
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The material properties can be manually defined or can be chosen according to the reference values 

of the existing strength classes defined in MC2010 and Eurocode 2, except for the characteristic 

residual flexural strength of FRC and the maximum size of the aggregate, whose values must be 

manually inputted (Figure 37b). The software also has a built-in function that estimates the value of 

2R kf  and 
4R kf  based on the work of Moraes Neto et al. [64], [65] or Moussa [66]. 

 
(a) 

 
(b) 

Figure 37 – User interface window: a) Cross-section geometry; b) FRC material properties. 

The software also allows the definition of two sets of bottom and top conventional reinforcement 

positioning (Figure 38) to be considered in the analysis of the FRC and RC cross-sections. The 

conventional reinforcement area can be manually inputted or a distribution can be defined according 

to the number and diameter of bars or diameter and spacing of bars. The top and bottom bars cover 

can be individually defined and the strength class of steel can be chosen according to pre-existing 

strength classes. 

 
Figure 38 – User interface window: Conventional reinforcement data. 

In order to determine the FRC tensile stress-strain relationship defined according to MC2010, it is 

necessary to specify the essential data to determine the structural characteristic length of the member 
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(Figure 39), namely: type of loading, cracking stage, the bending moment corresponding to the 

cracking serviceability criteria load combination (generally is assumed the quasi-permanent load 

combination). Additionally, is also possible to specify the creep coefficient for concrete in compression 

to be adopted in the determination of the structural characteristic length and in the SLS safety 

verifications. 

 
Figure 39 – User interface window: Data for calculation of structural characteristic length. 

FRCcalc was developed to determine the flexural and shear performance, with or without axial load, 

of FRC and RC cross-sections at ULS, and to assist in the assessment of the SLS safety verifications, 

namely crack control and stress limitation (Figure 40). 

 
Figure 40 – User interface window: Selection of type of analysis to be performed. 

The flexural response of the FRC cross-section is evaluated by determining the moment-curvature 

relationship and the ultimate design resisting moment at ULS, considering the value of the axial load 

acting in the cross-section for the ULS combination, with optional consideration of conventional 

longitudinal reinforcement bars. 

The shear resistance of the FRC cross-section at ULS can be determined considering the fiber 

contribution, the longitudinal rebars contribution and conventional shear reinforcements (Figure 41). 

The conventional shear reinforcements are defined by selecting the steel strength class, inclination of 

the stirrups, and manually defining the value of the shear reinforcement area per meter or by providing 

the number of stirrups legs, diameter and longitudinal spacing of the stirrups. To determine the 

longitudinal strain in the mid-depth of effective shear area, 
x , the axial and shear forces and bending 
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moment acting in the cross-section at ULS load combination must be inputted. In addition, for the 

evaluation of the shear resistance of the FRC cross-section is required the input of the concrete 

maximum aggregate size and the values of the residual flexural strength 
2R kf  and 

4R kf . 

 
Figure 41 – User interface window: Selection of shear capacity analysis. 

The software allows the determination of the design crack width of FRC and RC cross-sections, 

according to MC2010 formulation (presented in section 2.5). In addition, the moment-crack width 

response at SLS analysis for cross-sections considering the value of the axial force for the quasi-

permanent load combination is also outputted. In the analysis is possible to consider the concrete 

creep effect, by inputting the creep coefficient of concrete, and is also necessary to specify the free 

shrinkage strain of the member (Figure 40). 

Using FRCcalc is also possible to easily analyze the verification of the serviceability criteria of stress 

limitation for FRC and RC cross-sections, presented in section 2.5.4. For conducting this analysis, it 

is necessary to input the quasi-permanent and characteristic load combinations results (axial load and 

bending moment) - Figure 40. 

3.4 Software algorithm/flowcharts 

FRCcalc was developed in Visual Basic for Application programming language and can be used in 

Microsoft Office Excel. 

The main flowchart of FRCcalc is presented in Figure 42. 
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Figure 42 – Main flowchart of FRCcalc. 

3.4.1 Data input 

The idealization of the cross-section geometry is presented in Figure 43. The rectangular section 

geometry is defined by its width, b  [mm], and its height, h  [mm]. It is possible to consider two sets 

of bottom and two sets of top conventional steel reinforcements, that are characterized by its area, 

_1 _ 2/si siA A  [mm2], cover, 
_1 _ 2/i ic c  [mm], diameter, 

_1 _ 2/i i   [mm], and strength class, with 1i =  

for bottom reinforcement and 2i =  for top reinforcements. 

The FRC cross-section is divided in two zones, a reinforced zone delimited by the effective tensile zone 

height, 
,c efh  [mm], and the unreinforced zone. 

All the variables that define the geometry of the cross-section must be greater than zero.  

Start 
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Figure 43 – Idealization of the geometry of the FRC cross-section. 

The software adopts the bilinear stress-strain relationship for concrete in compression presented in 

Figure 6. The model input variables are: 

- 
ckf , the characteristic compressive strength of concrete, in MPa. This value must be positive; 

- 
3c , the concrete compressive strain at the limit of elasticity (see Figure 6). This value must 

be positive; 

- 
3cu , the concrete ultimate compressive strain (see Figure 6). This value must be positive; 

- 
cE , the concrete modulus of elasticity (Young’s modulus), in GPa. This value must be positive; 

-  , the concrete creep coefficient. This value must assume a positive value. If concrete 

creep effect is disregard, it must assume the value zero. 

During the calculation procedure, the values of the variables, 
ckf , 

3c  and 
3cu  are converted to its 

opposite values. 

For FRC in tension the stress-strain relationships presented in section 2.3.3 are used. The input 

variables to define these models are: 

- 
ctmf , the mean tensile strength of concrete, in MPa. This value must be positive; 

- 
1R kf , the characteristic value of the residual flexural strength of FRC corresponding to 

1CMOD 0.5mm= , in MPa. This value must be positive;  

- 
3R kf , the characteristic value of the residual flexural strength of FRC corresponding to 

3CMOD 2.5mm= , in MPa. This value must be positive. 
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The partial safety factor for concrete and FRC are defined within the calculation routines. 

In Appendix A are presented the reference values that characterize the concrete matrix mechanical 

properties based on the existing strength classes. 

For the reinforcement steel bars is considered the elastic-perfectly plastic model presented in section 

2.3.2. The input variable of the model is: 

- 
sykf , the characteristic yield strength of reinforcing steel bars, in MPa. This value must be 

positive; 

For steel rebars is considered that the elastic modulus takes the value of 200sE GPa= . The partial 

safety factor for steel reinforcement is defined within the calculation routines.  

All the input fields that define the constitutive models of the materials must be greater than zero. 

The additional input variables for the calculation of the structural characteristic length are: 

- Loading type, which can take the following options: 

o Short term, instantaneous loading; 

o Long term, repeated loading. 

- Cracking stage, which can take the following options: 

o Crack formation stage; 

o Stabilized cracking stage. 

- 
,Ed crackM , acting bending moment for the combination of actions corresponding to the 

cracking serviceability criteria, in kN.m. This value must be greater than zero; 

- 
,Ed crackN , acting axial force for the combination of actions corresponding to the cracking 

serviceability criteria, in kN. Compressive forces must be inputted as negative values and 

tensile forces must assume positive values. 

The additional variable used for the determination of flexural resistance of the cross-section is: 

- 
,Ed ULSN , axial force for the ULS load combination, in kN. Compressive forces must be 

inputted as negative values and tensile forces must assume positive values. 
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The additional variables used for the definition of the FRC shear resistance are: 

- Maximum size of the aggregates, 
gd  , in mm; 

- 
2R kf , the characteristic value of the residual flexural strength of FRC corresponding to 

2CMOD 1.5mm= , in MPa. This value must be positive; 

- 
4R kf , the characteristic value of the residual flexural strength of FRC corresponding to 

4CMOD 3.5mm= , in MPa. This value must be positive; 

- 
, ,Ed Shear ULSN , axial force for the ULS load combination for shear resistance assessment, in 

kN. Compressive forces must be inputted as negative values and tensile forces must assume 

positive values; 

- 
, ,Ed Shear ULSV , shear force for the ULS load combination for shear resistance assessment, in 

kN. This value must be positive; 

- 
, ,Ed Shear ULSM , bending moment for the ULS load combination for shear resistance 

assessment, in kN.m. This value must be positive. 

The additional input variables for the definition of the shear reinforcement properties are: 

- 
ywkf , the characteristic yield strength of transverse reinforcement steel bars, in MPa; 

- sw

w

A
s

, the transverse reinforcement area, in mm2/m; 

-  , the inclination of the shear reinforcements relative to member axis, in degrees. 

For the SLS stress limit verification is necessary to input the following variables: 

- 
,Ed charM , acting bending moment for the characteristic combination of actions, in kN.m. This 

value must be greater than zero; 

- 
,Ed qpermM , acting bending moment for the quasi-permanent combination of actions, in kN.m. 

This value must be greater than zero. 

For the SLS crack control verification is necessary to input the following variables: 

- 
,Ed crackM , acting bending moment for the combination of actions corresponding to the 

cracking serviceability criteria, in kN.m. This value must be greater than zero; 
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- 
,Ed crackN , acting axial force for the combination of actions corresponding to the cracking 

serviceability criteria, in kN. Compressive forces must be inputted as negative values and 

tensile forces must assume positive values; 

- 
sh , is the shrinkage strain. The input value must assume a positive value. 

In FRCcalc all the data regarding geometry, material and loads are stored in the class cData, that 

is called during the calculation routines. 

3.4.2 Calculation routine 

The core of the software calculation routine resides in the performance of the cross-section analysis. 

In Appendix D are presented all algorithms that perform the following calculation subroutines: 

- Calculation of the structural characteristic length, 
csl ; 

- Definition of constitutive models: 

o Concrete in compression; 

o Steel in compression or tension; 

o FRC in tension. 

- Calculation neutral axis position and curvature for cross-section under bending; 

- Determination of moment vs. curvature relationship; 

- Determination of shear resistance: 

o FRC shear resistance without longitudinal reinforcement; 

o FRC shear resistance with longitudinal reinforcements; 

o RC shear resistance without transverse reinforcement; 

o Shear resistance contribution of transverse reinforcements; 

- Calculation of bond transfer length, 
,maxsl ; 

- Determination of design crack width; 

- Determination of moment vs. crack width relationship; 

- Determination of bending moment corresponding to crack initiation; 
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- Verification of stress limitation criteria: 

o Compressive stress in compression; 

o Tensile stress in FRC; 

o Tensile stress in steel rebars. 

3.4.3 Results Output 

The outputs of FRCcalc are presented in the form of a datasheet and graphs, namely: 

- Structural characteristic length of the FRC cross-section, r

csl  and u

csl ; 

- Maximum resisting bending moment of the FRC and RC cross-sections; 

- Ultimate shear resistance of the FRC and RC cross-sections; 

- Plot of the resisting moment vs. curvature of the FRC and RC cross-sections; 

- Design crack width and mean crack spacing of the FRC and RC cross-sections; 

- Plot of the moment vs. design crack width of the FRC and RC cross-sections; 

- Assessment of stress limitation at SLS for FRC and RC cross-sections. 

3.5 Examples 

In the present section are presented some examples of the analysis of FRC and RC cross-section using 

FRCcalc, which allow to demonstrate the benefits provided using fiber reinforcements in the 

performance of concrete structural elements and the possibility of fiber reinforcements to partially 

replace the conventional steel bar reinforcements. 

Additionally, to appraise FRCcalc accuracy to evaluate the flexural response of FRC and RC cross-

sections, a comparison with the results obtained with DOCROS software [75] is presented. 

DOCROS is a software used in the analysis of cross-sections subjected to axial load and increasing 

curvature and it was developed by the Structural Composites research group of the Department of 

Civil Engineering of University of Minho. In DOCROS a cross-section is discretized in layers, for which 

is assigned a specific constitutive law to describe the material behavior of the layer. A detailed 

description of DOCROS can be found in [75]. 
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3.5.1 Example 1 – Beam 

The first example corresponds to FRC/RC cross-section of a beam. The main objective of this example 

is to demonstrate the increase of structural performance provided by the use of fiber reinforcements 

when compared to a RC cross-section. The cross-section has the following properties: 

− Geometry: 200b mm= | 500h mm= ; 

− Concrete strength class: C25/30 | toughness class: 2.5c | 
1 2.678R kf MPa= | 

2 2.508R kf MPa=  | 
3 2.941R kf MPa=  | 

4 2.950R kf MPa=  | 0.0c =  | 

16gd mm=  ; 

− Conventional reinforcement for FRC and RC cross-section: 

o Tensile steel reinforcement: A500NR  | ( )2

1 314.16 4 10sA mm =  | 
1 30c mm= ; 

o Compressive steel reinforcement: A500NR | ( )2

2 157.08 2 10sA mm = |

2 30c mm= ; 

o Transverse reinforcement: A500NR | ( )2502.6 / /26 8 00swA mm mm m=  | 

90º = . 

− Data for determination of structural characteristic length: 

o Type of loading: Long term, repeated loading; 

o State of cracking: Stabilized cracking stage; 

o Load combination corresponding to cracking serviceability criteria: 

, 40.0 .Ed crackM kN m=  | 
, 50.0Ed crackN kN= − . 

− Axial force at ULS load combination for determination of flexural resistance: 

, 100.0 /Ed ULSN kN m= −  

− ULS load combination for determination of shear resistance: 
, , 100.0Ed Shear ULSN kN= −  |

, , 75Ed Shear ULSV kN=  | 
, , 12.5 .Ed Shear ULSM kN m= ; 

− Characteristic combination of actions: 
, 50.0 .Ed charM kN m=  | 

, 80.0 .Ed charN kN m= − ; 

− Quasi-permanent combination of actions:
, 40.0 .Ed qpermM kN m=  | 

, 50.0 .Ed qpermN kN m= −  ; 



Advanced tools for design and analysis of fiber reinforced concrete structures 
 

71 

− Shrinkage strain: 41.5 10sh −=  . 

In Figure 44 is presented the moment vs. curvature relationship for the FRC and RC cross-sections 

determined by FRCcalc and DOCROS. It is possible to observe that the accuracy of FRCcalc to 

describe the flexural response of the cross-sections is similar to DOCROS. For this example, the 

effective tensile zone height is mainly limited to 
, 75c efh mm=  due to the geometry of the cross-

section, with exception of the initial cases where the 3 12.3 10 m − −   where 
, 75c efh mm . It is 

noted that in analysis performed in DOCROS it is not possible to consider the variation of the effective 

tensile zone height due to the changes of the neutral axis position, and a fixed value of 
, 75c efh mm=  

was assumed. 

 
Figure 44 – Bending moment vs. curvature relationship for FRC and RC cross-section of Example 

no.1 beam, determined from FRCcalc and DOCROS. 

The structural characteristic length of the FRC cross-section presents the following values: 

78.61r

csl mm=  and 425u

csl mm= . 

The maximum resisting bending moment of the FRC cross-section is , 94.802 .FRC

Rd ULSM kN m=  and of 

the RC cross-section is , 82.602 .RC

Rd ULSM kN m= . As can be seen, the post-cracking residual strength 

of the FRC provided a flexural capacity improvement of the beam in 14.8% when compared to the RC 

cross-section. 

The design shear resistance of the FRC and RC cross-sections are, respectively, 232.341FRC

RdV kN=  

and 203.243RC

RdV kN= , which represents a 14.3% improvement of the shear strength provided by 
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the fiber reinforcements. The FRC shear resistance was determined according to the model based on 

the VEM/SMCFT theory. 

In Figure 45 is presented the relationship between the design crack width and the acting moment in 

the cross-section evaluated at SLS conditions. For the load combination corresponding to cracking 

serviceability criteria, the design crack width in the FRC and RC cross-section are, respectively, 

0.047FRC

dw mm=  and 0.191RC

dw mm= , which represent a decrease of crack opening of 4.06x 

provided by the fiber reinforcements. In addition, the mean crack spacing of the FRC and RC beams 

are, respectively, 78.607FRC

rms mm=  and 144.472RC

rms mm=  . 

 
Figure 45 – Design crack width vs. resisting bending moment at SLS relationships for FRC and RC 

cross-section of Example no.1 beam. 

Regarding the verification of the stress limitation criteria defined in MC2010, in Table 4 is presented 

a summary of the verification check. As can be seen, the use of fiber reinforcements provides a 

decrease of the stress in the cross-section when compared to the performance of a RC cross-section, 

particularly of the steel bars stress (54.1%). 
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Table 4 – Verification of stress limitation criteria for Example no.1 beam. 
Concrete compressive stress 

Stress  Limit Result 
,

, 7.765SLS char

c FRC MPa =    ( )0.6 28 15ckf t MPa = =  Verified 
,

, 9.218SLS char

c RC MPa =    ( )0.6 28 15ckf t MPa = =  Verified 
,

, 5.729SLS qperm

c FRC MPa =    ( )0.4 28 10ckf t MPa = =  Verified 
,

, 7.320SLS qperm

c RC MPa =    ( )0.4 28 10ckf t MPa = =  Verified 

Steel tensile stress 
Stress  Limit Result 

,

,
118.304SLS char

s FRC
MPa =    .80 400

yk
f MPa =  Verified 

,

,
257.690SLS char

s RC
MPa =    .80 400

yk
f MPa =  Verified 

FRC tensile stress 
Stress  Limit Result 

Not applicable: 
Ftsk ctkf f  Verified 

3.5.2 Example 2 – Slab 

The second example corresponds to FRC/RC cross-section of a slab. The purpose of this example is 

to demonstrate the possibility of partial replacement of conventional steel reinforcement by the 

addition of fibers to concrete. The cross-section has the following properties: 

− Geometry: 1000b mm=  | 200h mm= ; 

− Concrete strength class: C25/30 | toughness class: 3b | 
1 3.0R kf MPa=  |

2 2.552R kf MPa=  | 
3 2.1R kf MPa=  | 

4 2.352R kf MPa=  | 0.0c =  | 16gd mm= ; 

− Conventional reinforcement for FRC cross-section: 

o Tensile steel reinforcement: A500NR | ( )2

1 251.3 / /202 07 8sA m mm m=  |

1 25c mm= ; 

o Compressive steel reinforcement: none; 

o Transverse reinforcement: none; 

− Conventional reinforcement for RC cross-section: 

o Tensile steel reinforcement: A500NR | ( )2

1 392.69 0 29 / / 001sA mm mm=  | 

1 25c mm= ; 
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o Compressive steel reinforcement: none;

o Transverse reinforcement: none;

− Data for determination of structural characteristic length: 

o Type of loading: Long term, repeated loading;

o State of cracking: Stabilized cracking stage;

o Load combination corresponding to cracking serviceability criteria: 
, 0 /Ed crackN kN m=

| 
, 18.0 .Ed crackM kN m m= ; 

− ULS load combination: 
, 0.0 /Ed ULSN kN m= |

, 35 /Ed ULSV kN m= |

, 10.0 . /Ed ULSM kN m m= ; 

− Characteristic combination of actions: 
, 0Ed charN kN m= |

, 28.0 .Ed charM kN m m= ; 

− Quasi-permanent combination of actions: 
, 0 /Ed qpermN kN m=  | 

, 18.0 . /Ed qpermM kN m m=  ; 

− Shrinkage strain: 42.1 10sh −=  . 

In Figure 46 is presented the moment vs. curvature relationship for a FRC and RC cross-sections 

determined by FRCcalc and DOCROS. For this example, the effective tensile zone height varies 

between 
,23.5 62.8c efmm h mm  . Due to the restriction to use a fixed value of effective tensile 

zone height in the analysis performed in DOCROS, it was assumed a constant value of 

, 60c efh mm=  . Although this limitation, it is also possible to observe that the flexural response of the 

cross-section is similar between FRCcalc and DOCROS. 
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Figure 46 – Bending moment vs. curvature relationship for FRC and RC cross-section of Example 

no.2 slab, determined from FRCcalc and DOCROS. 

The structural characteristic length of the FRC cross-section presents the following values: 

133.544r

csl mm=  and 143.917u

csl mm= . 

The maximum resisting bending moment of the FRC cross-section is 
, 31.337 .FRC

Rd ULSM kN m=  and of 

the RC cross-section is 
, 28.971 .RC

Rd ULSM kN m= . Although the area of tensile reinforcement of the 

FRC is about 65% of the RC cross-section, the ultimate flexural capacity of the FRC slab is slightly 

higher than the RC counterpart due to the post-cracking tensile strength improvement provided by the 

fiber reinforcements. 

The design shear resistance of the FRC and RC cross-sections are, respectively, 171.375FRC

RdV kN=  

and 121.541RC

RdV kN= , which represents a 41.0% increase of the shear strength of the cross-section 

provided by fiber reinforcement. The presented FRC shear resistance was determined according to 

the model based on the VEM/SMCFT theory where the tensile strength of the FRC was estimated 

according to Figure 24 considering the work of Moraes Neto, et al. [65].  

In Figure 47 is presented the relationship between the design crack width and the acting moment in 

the cross-section evaluated at SLS conditions. For a load combination corresponding to cracking 

serviceability criteria, the FRC cross-section presents a design crack width equal to 0.019FRC

dw mm=  

and a mean crack spacing of 91.271FRC

rms mm= , while the RC cross-section presents a design crack 

width value of 0.378RC

dw mm=  and a mean crack spacing of 322.721RC

rms mm= , which 

corresponds to a 20x reduction of the design crack width. For a crack width corresponding to the 

minimum and maximum value of crack opening commonly adopted in the SLS verifications, the 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0

5

10

15

20

25

30

35

40

B
en

d
in

g
 M

o
m

en
t 

[k
N

.m
]

Curvature [1/m]

 FRC (FRCcalc)

 RC (FRCcalc)

 FRC (DOCROS)

 RC (DOCROS)



Advanced tools for design and analysis of fiber reinforced concrete structures 
 

76 

resisting bending moment of the FRC cross-section is considerably higher than the RC cross-section 

(2.3x higher for 0.1w mm=  and 2.4x for 0.3w mm= ). 

 
Figure 47 – Design crack width vs. resisting bending moment at SLS relationship for FRC and RC 

cross-section of Example no.2 slab. 

Regarding the verification of the stress limitation criteria defined in MC2010, in Table 5 is presented 

a summary of the verification check. As can be seen, the use of fiber reinforcements provides a 

decrease of the stress in the cross-section when compared to the performance of a RC cross-section, 

especially of the steel bars stress, where for the RC cross-section the limitation criteria for the steel 

bars tensile stress is not verified. 

Table 5 – Verification of stress limitation criteria for Example no.2 slab. 
Concrete compressive stress 

Stress  Limit Result 
,

, 6.826SLS char

c FRC MPa =   ( )0.6 28 15ckf t MPa = =  Verified 
,

, 8.924SLS char

c RC MPa =   ( )0.6 28 15ckf t MPa = =  Verified 
,

, 2.700SLS qperm

c FRC MPa =   ( )0.4 28 10ckf t MPa = =  Verified 
,

, 5.737SLS qperm

c RC MPa =   ( )0.4 28 10ckf t MPa = =  Verified 

Steel tensile stress 
Stress  Limit Result 

,

, 145.563SLS char

s FRC MPa =   .80 400
yk

f MPa =  Verified 
,

,
439.871SLS char

s RC
MPa =    .80 400

yk
f MPa =  Not verified 

FRC tensile stress 
Stress  Limit Result 

Not applicable: 
Ftsk ctkf f  Verified 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

10

20

30

40

50

B
en

d
in

g
 M

o
m

en
t 

[k
N

.m
]

Crack opening [mm]

 FRC

 RC 













Advanced tools for design and analysis of fiber reinforced concrete structures 
 

77 

3.6 Concluding remarks 

This chapter was devoted to the presentation of a new software – FRCcalc - developed to perform 

analysis of the ULS and SLS safety verifications of FRC members, according to the MC2010 design 

guidelines and recommendations presented in chapter 2. The FRCcalc can be used for assessing 

the effectiveness of fiber reinforcement by comparing the design outputs at SLS and ULS conditions 

of members reinforced with fibers and with traditional reinforcements. The user interface, input 

variables, calculation principles and routines were also presented. 

The chapter ends by carrying the analysis of two examples of FRC members, which demonstrate the 

benefits provided by the use of fiber reinforcements in the performance of concrete structural 

members and the possibility of replacing conventional steel reinforcements by fiber reinforcements. 

In addition, the accuracy of FRCcalc was also confirmed by comparing the flexural response of FRC 

and RC cross-section with another software. 
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4 APPRAISAL OF MC2010 SHEAR RESISTANCE PREDICTION MODELS 

In the present chapter both shear models available in MC2010 and presented in section 2.5.2 are 

appraised by comparing the prediction of the shear resistance delivered by the models with an 

extended version of a database of results of experimental tests of FRC elements, DBs [76]. The 

complete database is presented in Appendix E. 

4.1 FRC beams shear tests database 

The DBs comprises the results of 113 samples of steel fiber reinforced concrete (SFRC) elements 

submitted to three-point shear tests, collected from the following sources [16], [18], [61], [77]–[90]. 

The beams cross-section of the database includes rectangular shape (99) and T-shape (14). Within 

the 113 samples, 99 represent SFRC deep beams ( )1.0wd b   and 14 are SFRC shall beams

( )1.0wd b  . The effective shear span ratio, a d , ranges from 2.0 to 4.0, therefore it is assured 

that the applied load is not directly conducted to the closest support of the beams.  

All specimens comprise the use of longitudinal reinforcements in the form of passive steel bars. The 

passive reinforcement ratio varies between 1.0 to 3.1%. The effective depth of the cross-section, , is 

within the interval 150 to 1440mm. None of the samples adopts conventional shear reinforcements. 

The fibers incorporated in FRC specimens are exclusively of the hooked-end type, with a fiber aspect 

ratio, 
f fl d , varying between 48 to 80. The fiber reinforcement volume ratio ranges from 0.25% to 

1.5%.  

The concrete maximum aggregate size, 
gd , varies between 10 and 25mm, while the mean 

compressive strength, 
cmf , of the FRC ranges between 19.6 to 64.6MPa.  

The main properties of the experimental data of the DBs are plotted in Figure 48. 

d
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Figure 48 – Main properties of the experimental data of the database: a) Cross-section width and 

effective depth; b) Shear span to effective depth ratio; c) Conventional and fiber reinforcement ratio; 
d) Mean compressive strength. 

Regarding the SFRC residual flexural tensile strength, the average values of 
1Rf  and 

3Rf  are not 

reported for 39 samples, while for 
2Rf  and 

4Rf  are not provided for 59 samples. In the DBs three 

different prism bending test standards were used, namely the EN 14651 [34], RILEM TC 162-TDF[35], 

the ASTM C1609 [62] and the UNI 11039 [63].Considering the main differences for the evaluation of 

the residual flexural strength using the referenced standards, the EN 14651 and RILEM TC 162-TDF 

adopt a 3-point bending test configuration with notched FRC beams, while the ASTM C1609 and 

UNI 11039 adopt a 4-point bending test, the former one with un-notched beams, and the later with 

notched beams.  
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Due to the use of un-notched SFRC samples on the prisms bending tests performed according to the 

ASTM C1609, the crack appears at the weakest point between the two loading points, and the 

measurement of the crack mouth opening displacement (CMOD) is not possible due to the unknown 

location of the crack. Consequently, in order to calculate the residual flexural strength of the SFRC 

samples of the database, the CMODs were obtained by correlating the CMOD with the measured mid-

span deflection of the SFRC prisms using the methodology proposed in [91] that considers a rigid 

body kinematic mechanism similar to the one adopted in 3-point bending tests of notched beams [92]. 

Due to this simplification, the residual flexural strength values that were determined according to the 

ASTM C1609 can present some additional inaccuracy. 

A first analysis of the DBs has consisted in the exclusion of test results where a flexural-shear failure 

mechanism could be feasible. For this purpose, the flexural capacity of each SFRC beam was assessed 

using the software FRCcalc (chapter 3), that follows the design guidelines of MC2010. For the 

samples where the ultimate resisting bending moment was lower than 95% of the acting bending 

moment (due to shear capacity registered experimentally), the shear test results were not considered. 

After this analysis, a total of 80 SFRC beams were considered for the assessment of the shear 

resistance prediction models, within which the complete data of the post-cracking residual flexural 

strength ( , 1,2,3,4Rif i = ) was available for 42 beams, and partial information ( , 1,3Rif i = ) was 

provided for 59 beams. Since some of the beams in the DBs are casted with the same SFRC mix, the 

results of the experimental characterization of the post-cracking residual strength for these beams are 

the same. The 59 beams with experimental data of 
1Rf  and 

3Rf  were casted from 44 different SFRC 

mixes, while the 42 beams with 
2Rf  and 

4Rf  resulted from 35 different SFRC mixes. In Table 6 is 

presented the different standards considered in the evaluation of the available residual flexural strength 

values, considering the different SFRC mixes present in the DBs. 

Table 6 – Prism bending test standards adopted for the evaluation of the residual flexural strength, 
Rif  , considering the different SFRC mixes present in the DBs. 

Number of samples 
Prism bending standards 

EN 14651 RILEM TC 16 ASTM C1609 UNI 11039 Total 

1Rf  and 
3Rf  9 9 25 1 44 

2Rf  and 
4Rf  9 0 25 1 35 



Advanced tools for design and analysis of fiber reinforced concrete structures 
 

81 

4.2 Residual flexural strength prediction model 

Due to the significant number of SFRC beams of the DBs were the residual flexural strength is not 

reported, the residual flexural strength of these SFRC beams was predicted based on the relationships 

derived by Moussa [66], that are presented in Eq. (2.61), and Eq. (2.62) to Eq. (2.69). 

In the database analyzed by Moussa [66], was found a very good agreement between the 

experimental, 
,expRif , and predicted, 

,modRif , values of the residual flexural strength, as the ratio 

,exp ,modRi Rif f  ranged between 1.02 to 1.09, while the coefficient of variation varied between 17.8% 

to 28.9% (Table 7). It is verified that the coefficient of variation has increased with the crack opening 

at which the 
Rif  is evaluated, which is a consequence of the increase of the dispersion of the results 

from 
1Rf  to 

4Rf . 

Table 7 – Statistical results of the residual flexural strength prediction model [66]. 

Residual flexural strength 
,exp ,modRi Rif f   

Average SD COV (%) 

1Rf  1.02 0.18 17.8 

2Rf  1.08 0.22 20.6 

3Rf  1.09 0.26 23.7 

4Rf  1.05 0.30 28.9 

A preliminary assessment was conducted by applying the prediction model for the SFRC mixes used 

in the beams of the DBs where the residual flexural strength was experimentally characterized. In 

Table 8 is presented the average and coefficient of variation (COV) of the ratio between experimental, 

,expRif , and estimated values, 
,Ri estf , of the residual flexural strength, considering the prism bending 

test standard adopted in the evaluation of the experimental values, considering in Eq. (2.61) is 

considered that 1.0F = . Globally, the prediction model exhibited a good agreement between the 

experimental and estimated values of the residual flexural strength. It is possible to verify that when 

comparing the estimated and experimental 
Rif  values determined from the test configuration that 

adopts notched beams (EN 14651/RILEM TC 162-TDF/UNI 11039), the model exhibits an higher 

dispersion and average values of the ratio 
,exp ,Ri Ri estf f  than the observed in [66]. For the samples 

tested according to the ASTM C1609, the model presents in average a slight underestimation of the 

SFRC residual flexural strength, which can be related with lower values of 
,expRif  due to cracking on 
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the weakest section between the loading points of the un-notched beams, and to the simplification 

adopted in the adopted correlation between the mid-span deflection and CMOD. 

Table 8 – Statistical analysis of the ratio between the experimental and estimated values of the 
residual flexural strength, 

Rif . 

Residual flexural 
strength 

,exp ,Ri Ri estf f   

Global 
EN 14651/RILEM TC 162-

TDF/UNI 11039 
ASTM C1609 

Average COV (%) Average COV (%) Average COV (%) 

1Rf  1.06 26.9 1.23 24.4 0.92 19.4 

2Rf  1.14 28.9 1.49 21.0 0.99 20.2 

3Rf  1.14 31.9 1.35 27.6 0.99 27.8 

4Rf  1.09 37.9 1.49 28.3 0.93 30.4 

For the prediction of the missing values of the residual flexural strength of the SFRC beams of the DBs 

was considered in Eq. (2.60) and Eq. (2.61) a partial safety factor 1.0F = . In addition, to determine 

the value of 
1R mf  with Eq. (2.60), the mean tensile strength of the SFRC was determined from the 

expression provided in MC2010, namely: 

 ( )

( )( )

2
30.3 , 50

2.12 ln 1 0.1 8 , 50

ck ck
ctm

ck ck

f f MPa
f

f f MPa

  
= 

 +  + 

 Eq. (4.1) 

In order to use Eq. (4.1) the characteristic value of the SFRC compressive strength was determined 

from the mean compressive strength by the following relationship: 

 8ck cmf f MPa= −  Eq. (4.2) 

The complete set of values of the residual flexural strength of the SFRC beams of the DBs after 

implementation of the prediction model is presented in Figure 49. The interval data ranges between 

 1 1.5 8.5Rf = − MPa,  2 1.8 8.9Rf = − MPa,  3 1.5 8.9Rf = − MPa and  4 1.1 7.9Rf = − MPa. 
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Figure 49 – Residual flexural strength of SFRC beams of the DBs. 

4.3 Appraisal of MC2010 shear resistance prediction models 

The predictive performance of both shear models presented in section 2.5.2 is appraised by using the 

information collected in the DBs. The shear resistance, 
,modeluV , obtained by the empirical based 

model (Eq. (2.37)), denoted as MC2010_EEN, and by the VEM/SMCFT (Eq. (2.41)), denoted as 

MC2010_MCFT is compared with the experimentally obtained shear resistance of each specimen, 

,expuV , and the ratio 
,exp ,modelu uV V =  is appraised, being the predictive performance of the model 

considered as better as closer to 1.0 is  . For the determination of the strain at mid-depth of the 

effective shear area, 
x , the internal forces in the member where determined for a control section at 

the distance 2a
 
from the beam’s support. During the analysis, the partial safety factors adopted in 

the theoretical models are set to 1.0, and average values of the FRC material properties are adopted, 

to properly compare the experimental and theoretical results. 

In Figure 50 is presented the statistical analysis of the relationship,  , between the experimental and 

theoretical shear resistance determined from both models, considering the source of the residual 

flexural strength values (experimental/estimated). When assessing the influence of the use of 

experimental or estimated values of the residual flexural strength of SFRC for the MC2010_EEN and 

MC2010_MCFT, it is possible to denote that the average values of the prediction ratio, , is slightly 

higher when using estimated values of 
Rif , which is related to the slight underestimation of the 

estimated values of Rif , as shown in the column “Global” of Table 8. However, the average values of 

the prediction ratio,  , for the analyzed scenarios have very small differences, including the 
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coefficients of variation. Due to this, it is possible to conclude that the residual flexural strength 

prediction model presented in the previous section is suitable to be used in the evaluation of the shear 

resistance of SFRC beams, when the values of 
Rif  are absent in the database.  

 

Prediction ratio 
  

No. 
Samples Average COV 

(%) 

MC2010_EEN 

Rif  

experimental 
59 1.202 15.2 

MC2010_EEN 

Rif  estimated 59 1.230 13.7 

MC2010_MCFT 

Rif  

experimental 
42 1.184 14.1 

MC2010_MCFT 
Rif  estimated 42 1.224 13.3 

 

Figure 50 – Statistical analysis of   for both MC2010 shear resistance models considering the use 
of experimental and estimated values of 

Rif . 

In Figure 53 is presented the comparison between the experimental and prediction values of the shear 

resistance for each beam of the DBs. The results are divided in two categories considering the source 

of the residual flexural strength values considered in the shear resistance model (experimental and 

estimated values). As can be seen, the predictive performance of the shear models is very similar and 

a satisfactory agreement with the experimental values of the DBs is attained. Considering the influence 

of the source of the residual flexural strength values, it is possible to observe that the use of the  

prediction model appears to be related with a more pronounced underestimation of the shear 

resistance (a relatively high percentage of results is in the interval of 
,exp ,model1.5u uV V=   to 

,exp ,model2.0u uV V=  ) for the SFRC beams under analysis. 
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Figure 51 - Comparison of experimental and shear strength determined from both MC2010 

prediction models 

In Figure 52 is presented the statistical analysis of the ratio,  , between the experimental and 

theoretical shear resistance determined from both models, for all samples analyzed (80 SFRC beams). 

In average, both models present a satisfactory approximation to the experimental results (average 

value of   equal to 1.26), with acceptable values of dispersion (coefficient of variation lower than 

20%). It should be noticed the existence of only one outlier in 80 samples (1%), which corresponds 

to a sample of the MC2010_EEN model. 

 

Prediction 
ratio   

MC2010_MCFT MC2010_EEN 

Average 1.259 1.258 
SD 0.231 0.248 

COV 18.4% 19.7% 
Q1 1.073 1.094 

Median 1.274 1.228 
Q3 1.420 1.418 

No. outliers 0 1 
Minimum 0.794 0.776 
Maximum 1.884 1.938 

 

Figure 52 - Statistical analysis of   for both MC2010 shear resistance models. 

In Figure 53 is presented the comparison of the prediction ratio,  , for each test sample. As can be 

clearly seen, the results of both models are very similar, which could indicate that the quality of the 
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prediction of the shear strength provided by the MC2010_EEN and MC2010_MCFT is being 

influenced by the same set of variables. 

 
Figure 53 – Comparison of the value of   for each sample determined by the theoretical models. 

In Figure 54 is presented the overall analysis of both models, regarding that the prediction values are 

safe for 1   and unsafe for 1  . From these results is possible to verify that the MC2010_MCFT 

model presents a slightly higher percentage of safe predictions when compared to the MC2010_EEN 

model. When a safety factor equal to 1.5 =  is considered in the shear strength prediction 

(discontinuous line in Figure 53), both models always return safe prediction of the shear resistance of 

the SFRC beams. 

 
Figure 54 – Predictive performance of the theoretical models, safe ( 1  ) and unsafe ( 1  ). 
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In addition, the comparison between the performance of both MC2010 models was assessed 

according to an adapted version of the Demerit Points Classification proposed in [93]. This 

classification is based on the determination of the cumulative number of penalties for each value of 

 . The penalty points scale is defined in Table 9, and the lower the number of penalties is, the safer 

is the performance of the model. For this case, both models present a very similar number of total 

penalties points, with a slight better performance of the MC2010_MCFT model presenting 62 penalty 

points while the MC2010_EEN model has 68 penalty points. 

Table 9 – Adapted version of the Demerit Points Classification.  
,exp ,modelu uV V =   Classification Penalty 

< 0.50 Extremely Dangerous 10 
[0.50-0.85[ Dangerous 5 
[0.85-1.15[ Appropriate Safety 0 
[1.15-2.00[ Conservative 1 
≥ 2.00 Extremely Conservative 2 

In Figure 55 is presented the relationship between the ratio  with some variables of the shear tests 

and of the shear models. For clarification, in Figure 55 the ultimate crack width, 
uw , and the strain 

at mid-depth of the effective shear area, 
x , are only determined for the MC2010_MCFT model. It is 

visible a slight correlation between the increase of the ultimate crack width and strain at mid-depth of 

the effective shear area, and the increase of the predictive performance of the MC2010_MCFT model. 

This may indicate that the aggregate interlock effect is being estimated too conservatively, since this 

favorable shear resisting mechanism is inversely proportional to the crack width at shear failure. 

Another possibility is a too conservative estimation of the adopted approach for the contribution of the 

fiber reinforcement for the shear capacity in the cases where shear failure occurs at relatively small 

crack width. 


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Figure 55 – Relationship between   and effective shear span ratio, a d

 
; the depth of longitudinal 

reinforcement, d ; the mean concrete compressive strength, 
cmf ; the mean value of the ultimate 

residual tensile strength, 
Ftumf ; the ultimate crack width, 

uw ; and the strain at mid-depth of the 

effective shear depth, x . 
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4.4 Concluding remarks 

In the present work was assessed the performance of the two shear resistance models available in 

MC2010 by comparing its predictive capability in a database that includes the results of 80 samples 

of SFRC beams submitted to shear.  

Due to the absence of the characterization of the residual flexural strength of the SFRC used in several 

tests, a model that estimates these mechanical parameters based on the reinforcement index and 

concrete strength class was proposed and coupled with the shear resistance models. 

For the assessment of the suitability of the residual flexural strength prediction model, a comparison 

of the prediction ratio,  , was performed, which was computed by considering estimated and 

experimentally obtained values of the residual flexural strength of the SFRC. The obtained results 

demonstrated a very small difference between the average and dispersion of the prediction ratio,  , 

which validates the use of the residual flexural strength prediction model in the assessment of the 

shear resistance of FRC elements. 

For evaluating the overall performance of the shear models, a statistical analysis of the prediction 

ratio,  , was conducted, which revealed that the performance of the MC2010_MCFT and 

MC2010_EEN models is very similar. For the majority of the cases, both MC2010 shear models 

predict safe values for the shear resistance of the SFRC beams, and when the partial safety factor is 

introduced, the models always return safe predictions. An additional comparison of the MC2010 shear 

models was done considering the Demerit Points Classification, having both approaches presented 

similar performance in this regard (the difference was only 6 penalty points between both models). 
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5 ANALYSIS OF FRC MEMBERS CONSIDERING FIBER ORIENTATION, FIBER 

SEGREGATION AND FIBER PULLOUT RESISTANCE MODEL 

5.1 Introduction 

This chapter describes an integrated approach for the prediction of the flexural capacity of FRC 

members. This approach considers the orientation and segregation of fibers along the cross-section 

of the FRC members and the pullout constitutive law of each fiber bridging the two faces of a crack. 

This model is implemented in a software developed for the analysis of the flexural response and 

cracking behavior of FRC structural elements.  

5.2  New material model for FRC in tension 

In order to describe the flexural behavior of FRC, a new model was implemented in DOCROS, an 

already existing software for the analysis of cross-sections of R-FRC members failing in bending [94]. 

The acronym R-FRC means a FRC member that is flexurally reinforced with conventional 

reinforcements like bars or meshes. 

As previously mentioned, DOCROS is a software used in the analysis of cross-sections, where a 

cross-section is discretized in  layers, for which is assigned a specific constitutive law to describe 

the material behavior of the layers. In this scope, the fiber orientation profile, fiber segregation and 

fiber pullout constitutive law were coupled to form a new material model, named NLMM107, to 

simulate the nonlinear material behavior of FRC.  

For the pre-cracking tensile behavior of the FRC is considered a linear elastic stress-strain response 

up to tensile strength, 
ctf , is reached. In Eq. (5.1) is presented the expression to determine the tensile 

stress at the thj  layer that discretizes the cross-section, considering that j  is the strain at the level 

of the center of gravity of the thj  layer. 

 ;j j j

c ct cE f E  =      Eq. (5.1) 

For the post-cracking tensile response of FRC, the contribution of the fiber pullout resistance, ( )P w  , 

is added to the post-cracking residual strength of FRC matrix, ( )ct w , namely: 

N
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( )

( )
j j

j j j

ctj j

P w
w

b t
 = +


  Eq. (5.2) 

where jb  and jt  are, respectively, the width and thickness of the generic thj  layer that discretizes 

the cross-section, and jw  is the crack width at the level of the center of gravity of the thj  layer. 

The adopted stress-crack width relationship of the concrete matrix is based on the model presented 

in [20]. The tensile softening response is defined by the following expression [95]: 

 ( ) 2

1 0

jc wj

ct w c e  − 
=     Eq. (5.3) 

where 
1c  is a coefficient that accounts for beneficial effect of the fibers on the tensile strength of the 

matrix; 
2c  is a coefficient that controls the steepness of the softening branch; and 

0  for fracture 

Mode I is equal to the matrix tensile strength, 
ctf . For fracture Mode I, in [96] is adopted a value of 

1 1.0c = , while 
2 15c =  and 

2 30c =  are proposed in [97] for concrete and mortar, respectively. 

To simulate the compressive behavior of the FRC, the NLMM107 model, resorts to the compressive 

monotonic stress-strain relationship presented in Figure 56, where 
ccf  is the FRC compressive 

strength, 
cc  is the concrete strain at peak compressive stress, and 

cr  is the critical strain for FRC 

in compression [98], which is already implemented in DOCROS. 

 
Figure 56 – Compressive stress vs. strain model adopted in NLMM107 constitutive model. 

5.2.1 Fiber orientation profile model 

In this section is presented a model capable of predicting the distribution of orientation angles of the 

fibers, 
i , on a cross-section of a FRC member, based on the definition of an orientation factor,  . 

The orientation factor corresponds to the average length of the projection of all fibers crossing a crack 



fcc

cc cr
0

Ec


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plane on its orthogonal direction, divided by the fiber length [42]. The fiber orientation factor can vary 

between 0.0 and 1.0, corresponding, respectively, to fibers parallel and orthogonal to the analyzed 

cross-section (herein representing the crack plane) [99]. The fiber orientation factor relates the 

theoretical number of fibers, 
thN , into the concrete medium with the number of fibers to be 

encountered in a cross-section, 
fN , according to the expression [100]: 

 sec
f th f

f

A
N N V

A
 =  =    Eq. (5.4) 

where 
secA  is the cross-section area of the FRC element, 

fA  is the cross sectional area of a fiber, 

and 
fV  is the fiber volume dosage. 

The fiber orientation profile model is based on the work of [42], where the distribution of the orientation 

of the fibers in a cross-section is arranged in discrete intervals, n  , and the number of fibers within 

each orientation angle interval, 
, if

N


 is determined according to the expression: 

 ( ), i
i ff

N C N


=    Eq. (5.5) 

where ( )iC   is the ratio between the number of fibers within each interval range with a mean 

orientation angle 
i  and the total number of fibers in the cross-section (Figure 57). 

 
Figure 57 – Fiber orientation profile. 

According to [42] the parameter ( )iC   can be determined by the expression: 

 ( ) ( ) ( )i i REC f F  =   Eq. (5.6) 

where ( )if   is the frequency of fibers within the interval of orientation angles 2i i   , 

90i n  =  , considering a Gaussian law to describe the frequency distribution, and ( )REF   is 

C(   )
i


i

  
m

 ºº
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a coefficient to account to the error resultant of adopting discrete ranges of fiber orientation angles 

rather than considering a continuous function, which is determined with Eq. (5.7). 

 
1.29 0.38 ; 0.75

1.0 ; 0.75
REF

 



−  
= 


 Eq. (5.7) 

According to [42], based on the orientation factor,   , is possible to determine the average orientation 

angle of the fibers in the cross-section, 
m , and the corresponding standard deviation, ( )m  , using 

the following equations: 

 ( )  arccos 180 ºm  =   Eq. (5.8) 

 ( ) ( )  90 1 ºm   =   −  Eq. (5.9) 

The methodology adopted to determine the fiber orientation factor,  , is based on the work of 

Krenchel [100]. Due to the wall effect on the orientation of the fibers, the cross-section of the FRC 

member is divided in three zones with different orientation factors (Figure 58). The fiber orientation 

factor of the cross-section is determined by the expression: 

 
( ) ( ) ( ) ( ) 2

3f f f f f fb l h l l b l h l l

b h

  


  −  − +   − + − + 
 =


  Eq. (5.10) 

where 
fl  is the length of the adopted fiber type, and ( )1,2,3z z =  is the fiber orientation factor for 

each zone of the cross-section.  



Advanced tools for design and analysis of fiber reinforced concrete structures 
 

94 

 
Figure 58 – Zones of cross-section for the determination of the fiber orientation factor due to wall 

effect. 

The values of the orientation factor for each zone of the cross-section are based on previous research, 

namely: 

- Zone 1: corresponds to the zone where the fiber orientation is not influenced by any boundary 

condition, and the orientation factor is equal to 
1 0.50 =  [101], [102];  

- Zone 2 : corresponds to the situation where the fiber orientation is affected by one boundary, 

leading to a zone of average orientation factor equal to 
2 2 =  [102];  

- Zone 3: zone within the influence of two boundaries, with an average orientation factor equal 

to 
3 0.84 =  [101];  

The boundaries correspond to the formwork that usually are adopted in the bottom and lateral surfaces 

of the cross-section, and to the top surface (the smoothing process of the concrete element top surface 

is considered to have a similar influence on fiber orientation as a mold [101]). 

The number of fibers within each orientation angle interval, 
, if

N


 is determined according to the 

algorithm presented in Table 10. 
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Table 10 – Algorithm to determine number of fibers within each orientation angle interval. 

ROUTINE TITLE: Calc_Fiber_Orientation_Profile 

INPUT:  

• Cross-section width, b , and height, h ; 

• Length (
fl ) and diameter (

fd ) of fibers; 

• Fiber volume dosage, 
fV ; 

• Number of divisions in the fiber orientation domain, . 

OUTPUT: 

• Number of fibers within each orientation angle interval, 
, if

N


 . 

i) Determine fiber orientation factor value according to Eq. (5.10); 

ii) Determine number of fibers in the cross-section, 
fN  , according to Eq. (5.4); 

iii) Determine the coefficient ( )REF   using Eq. (5.7); 

iv) Determine the average orientation angle, 
m , and the corresponding standard deviation, 

( )m   using Eq. (5.8) and Eq. (5.9); 

v) Divided the fiber orientation domain  0 90º−  into n   intervals. For each interval 

determine: 

a. Mean orientation angle of the interval: ( )1 2i i i   −= + ; 90i n =  ; 

1,...,i n =  ; 

b. Determine the frequency of fibers within the interval,

( ) ( )( ) ( )( )1, , , ,i i m i i m if F F        −= − , where ( )...F  is the cumulative 

distribution function of the standard Normal distribution; 

c. Determine ( )iC    according to Eq. (5.6); 

d. Determine the number of fibers within the orientation angle interval, 
, if

N


, using 

Eq. (5.5). 

5.2.2 Fiber segregation model 

In order to analyze the fiber segregation phenomena that can occur during FRC casting, a segregation 

model is implemented. The model is defined by a segregation factor,   , varying between -1.0 to 

n 
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+1.0. The segregation model assumes a linear variation of the fiber’s distribution along the depth of 

the cross-section. The cross-section is divided in N  layers, and considering the thickness 

( )1,...,jt j N=  and depth of center of gravity of the thj  layer to the top face of the FRC elements 

( )1,..,jd j N= , the number of fibers in each layer is determined by the following expression: 

 1 ; 1,...,
j j

j top bot j

f f f

d d
N N N t j N

h h

  
= − +   =  

  
 Eq. (5.11) 

where h  is the cross-section height, top

fN  and bot

fN  are, respectively, the number of fibers at top and 

bottom faces of the cross-section that are determined according to: 

 ( )1
ftop

f

N
N

h
=  −   Eq. (5.12) 

 ( )1
fbot

f

N
N

h
=  +  Eq. (5.13) 

where 
fN  is the total number of fibers in the cross-section. 

The model variables and schematic distribution of the fibers along the depth of the cross-section is 

presented in Figure 59. 

 
Figure 59 – Fiber segregation model. 

For a homogenous distribution of the fibers in the cross-section, the segregation factor assumes a 

value of 0 = , and top bot

f fN N= . If 1.0 =  is assumed, 0top

fN = , while 0bot

fN =  if 1.0 = − . 

5.2.3 Fiber pullout constitutive model 

Based on the execution of pullout tests of fibers from cimentitious matrix, it has been demonstrated 

that the pullout response, particularly for the case of steel fibers, is primarily influenced by the type, 
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geometry and length of the fibers, and by the mechanical properties of the fiber and of the matrix, as 

is summarized in [103]. 

The considered fiber pullout constitutive model is based on the Unified Variable Engagement Model 

(UVEM) proposed by [96], [103], [104]. The UVEM combines Mode I and Mode II fracture process of 

SFRC. 

The proposed model adopts the following assumptions [103]: 

- It is admitted that all the fiber slip from the matrix occurs from the shorter embedded length 

of the fiber, and the slip between the longer embedded part of the fiber and its surrounding 

matrix is negligible. This assumption leads to the slip of the shorter embedded length being 

equal to the crack opening displacement of the cimentitious matrix; 

- The elastic deformation of the fibers is insignificant in comparison with the slip of the fibers 

during pullout; 

- In comparison with the pullout of the fibers, the energy expended by bending the fibers is 

small and can be disregarded. 

The pullout force carried by a steel fiber bridging a crack of a cimentitious matrix is the sum of three 

components (Figure 60): i) friction of the embedded straight part of the fibers; ii) mechanical 

anchorage provided by end appendages of the fibers; and iii) a mechanical anchorage provided by the 

snubbing effect [105], [106]. The snubbing effect is characterized by a scrape and constrain of the 

cimentitious matrix against the fibers that occurs during the pullout mechanism of inclined fibers 

[107]. 



Advanced tools for design and analysis of fiber reinforced concrete structures 
 

98 

  
Figure 60 – Components of the fiber pullout response. 

Similarly to the UVEM model, in the proposed model is adopted an uniform bond strength, 
b , along 

the fiber embedded length. With this methodology, the contribution of each component (hooked-end, 

straight portion and snubbing zones) is not individually discretized, being rather defined the bond 

strength vs. slip relationship of the combined effect of all components contributing to the pullout 

resistance of a fiber.  

In the present model it is idealized a variable bond strength, as a function of the slip displacement of 

the fiber, while in the UVEM it is considered a constant bond strength. In Figure 61 is illustrated the 

adopted bond strength vs. slip model (
,0b − ), which is idealized for the pullout response of an 

aligned fiber ( 0º = ). The bond strength vs. slip model is defined by the following four parameters 

(Figure 61 and Eq. (5.14)): the peak bond strength, 
, ,b o p ; the slip corresponding to the peak bond 

strength, 
p ; and the exponents   and  , which define the 

,0b −  variation in its pre-peak and 

post-peak stage. 
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Figure 61 – Idealized bond stress vs. slip (

,0b − ) for the pullout response of an aligned fiber. 

In order to consider the snubbing effect in the pullout resistance of the fiber, the expression presented 

in [103] is adopted: 

 ( ) ( ) 3

,0 0.25b bs s  = +    Eq. (5.15) 

where   is the fiber bending angle, being defined as the angle between the fiber longitudinal axis and 

pullout force direction (Figure 62). For Mode I fracture, the crack sliding is null ( 0s = ), and the fiber 

bending angle is equal to the fiber orientation angle ( = ). 

  
Figure 62 – Definition of fiber bending angle,  . 

In the UVEM model is proposed the minimum crack displacement necessary to a fiber submitted to a 

pullout force to be considered engaged. This engagement model is a function of the fiber bending 

angle,  , and the engagement crack opening, 
ew , is defined by [103]: 

 3
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where for Mode I fracture process 
max 2 = , and for Mode II 

max =  [96]. 

The engagement model defined by Eq. (5.16) was experimentally derived from individual fiber shear 

test data, assuming that a fiber is considered engaged at the point where the force is 50% of the peak 

pullout force [103].  

By adopting this engagement model in the UVEM, at the initial stage of the crack formation and 

propagation, the contribution of the most inclined fibers in relation to the load direction is neglected 

while the crack opening displacement necessary to engage the most inclined fibers has not yet been 

reached. As in the deduction of the engagement model a fiber is engaged if the pullout force is at least 

50% of the maximum pullout load, the UVEM is disregarding 50% of the pullout force for the most 

inclined fibers up to 
ew  is reached. As is presented in the section 5.2.4 (Figure 68), this assumption 

can lead to a significant deviation of the response of a FRC submitted to tension. Due to this, in the 

present model, a new approach is assumed that considers a linear variation of the bond stress up to 

the 
ew  is reached, as is illustrated in Figure 63 and described in Eq. (5.17) and Eq. (5.18). 

 
Figure 63 – Idealized bond stress vs. slip (

,0b − ) of the pullout response of an aligned fiber, 

considering the engagement length of fibers. 
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  Eq. (5.18) 

As illustrated in Figure 64, the pullout force of a fiber with an orientation angle 
i , 

i
P

, corresponding 

to a crack opening displacement, w , is equal to: 

 ( ) ( ) ( ),,
i f b i bf oP w d w L w    =    =   Eq. (5.19) 

where 
fd  is the diameter of the fibers; 

b  is the average fiber bond strength determined according 

to Eq. (5.15), Eq. (5.17) and Eq. (5.18), function of the crack width and orientation angle of the fiber; 

,bf oL  is the fiber embedment length that is equal to its initial value minus the crack opening 

displacement. For the initial value of the fiber embedment length, which corresponds to a crack width 

equal to zero ( 0w = ), it is assumed 
,bf oL = 4fl  for the shortest embedment side, considering that 

it has been verified to be the average length of embedment of the fibers according to the work of 

[108]. 

 
Figure 64 – Pullout force of a fiber with the orientation 

i . 

Due to the increased bond strength, as result of improved mechanical anchorage provided by the 

snubbing effect and geometry irregularities (providing mechanical anchorage mechanisms), fibers may 

be susceptible to fracture during the pullout process, particularly the case of the most inclined fibers. 

In the present model is considered that a fiber fractures if the tensile stress, 
f , reaches the effective 

ultimate tensile strength of the fiber, fu . For the effective ultimate tensile strength of the fibers is 

proposed the expression considered in the UVEM model, namely [103]: 

P
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max2

fu fu


 


= 


  Eq. (5.20) 

where 
fu  is the fiber tensile strength. 

The failure criterion of the fibers with circular cross-section is verified by the following expression: 

 
( ),4 b bf o

fu f

f

L w

d


 

 
 =   Eq. (5.21) 

Considering that the cross-section of a FRC member is discretized in N  layers ( 1,...,j N= ), and 

that the fiber orientation domain is divided into n   intervals (Figure 65a), at the thj  cracked layer 

the pullout resistance is equal to: 

 ( ) ( )
1

i

n
j j

i

P w P w






=

=   Eq. (5.22) 

 ( ) ( ), ,,i i

j j

f bu i bf of
P w N d L w

 
 =      Eq. (5.23) 

where ( )
i

jP w


 is the pullout resistance of the 
, i

j

f
N


 fibers with a mean orientation angle 

i  at the 
thj  cracked layer, determined according to the fiber orientation and segregation models. In Figure 

65c-d is schematically presented an example of the calculation of the pullout force of the fibers bridging 

the crack at the thj  layer of a FRC cross-section. 

To determine 
, i

j

f
N


, at first, the number of fibers at each orientation angle interval is evaluated for 

the whole cross-section, according to the algorithm presented in Table 10. Afterwards, the 

corresponding number of fibers within each orientation angle interval, at the thj  layer, is determined 

according to the segregation model, namely Eq. (5.11) to Eq. (5.13) (Figure 65b). 
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Figure 65 – Schematic representation of coupling of the fiber orientation profile, fiber segregation 
and fiber pullout resistance model: a) Lateral and section cut view of a cracked FRC member; b) 
Determination of total number of fibers in a cracked layer, based on segregation model; c) Crack 
width of the thj  layer; d) Example to determine the fiber pullout force at the cracked thj  layer, 

considering 4; 22.5ºin   =  = . 
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5.2.4 Influence of the model parameters on the moment-rotation of SFRC members failing in 

bending 

In the present section is assessed the influence of the parameters of the new model on the moment-

rotation of SFRC members failing in bending. In Figure 66 is presented the cross-section geometry 

and reference values of SFRC material properties of the case study. The influence of the variation of 

the NLM107 parameters on the flexural response of the cross-section is analyzed, specifically in the 

moment vs. rotation ( M − ) response.  

 

Cross-section geometry: 150b mm= ; 125h mm=   

Fiber reinforcements: 35fl mm= ; 0.55fd mm= ; 
30.57%(45 )fV kg m= ; 1300fu MPa = ; 0.0 = , 9n  = . 

Material properties: 13.12ccf MPa= ; 33.5 10cc x −= ; 317.5 10cr x −= ; 

2.15ctf MPa= ; 
2 15c = ; 

,0, 10b p MPa = ; 0.5p mm = ; 0.1 = ; 

0.5 =   

Figure 66 – Cross-section geometry and reference values of the SFRC material properties 
considered in the case study. 

The moment-rotation cross-sectional analysis is performed according to the methodology presented in 

section 5.3. At each loading step, the crack width of the bottom layer of the cross-section is increased 

by 35 10pw x mm− = , up to a maximum crack width of 7.0w mm= . The cross-section is divided in 

125 layers of 1mm of thickness and with equal to 150mm. 

According to the fiber orientation model described in section 5.2.1, the reference cross-section 

presents a fiber orientation factor equal to 0.574 = , which leads to a total number of fibers in the 

cross-section under analysis equal to 260fN = . Since fiber segregation factor is assumed equal to 

zero ( 0.0 = ) all layers have the same number of fibers 2.08j

fN = . 

Number of divisions of the fiber orientation domain  

In Figure 67 is presented the M −  response of the cross-section considering four levels of division 

of the fiber orientation domain, namely for 4, 9, 15, 30n  = , which lead to an interval angle 

between each division of the fiber orientation profile equal to, respectively, 

22.5º , 10.0º , 6.0º , 3.0º = . As can be seen, the number of divisions of the fiber orientation 

h

b
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profile influence the flexural response of the cross-section when the division level of the fiber orientation 

domain is relatively small ( 4n  = ). However, no influence in the response of the cross-section is 

observed when the domain is decomposed in higher or equal 9 intervals ( 9n   ). 

 
Figure 67 – Moment vs. rotation relationship of cross-section considering 4, 9, 15, 30n  = . 

Engagement model 

In Figure 68 is analyzed the influence of the engagement model in the M −  response the cross-

section. Three situations are considered in the analysis, as presented in Figure 69, namely: i) the 

engagement model as considered in the present model; ii) the engagement model as considered in 

the UVEM; iii) no engagement model.  
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Figure 68 – Moment vs. rotation relationship of cross-section, considering different engagement 

models. 

 
Figure 69 – Bond stress vs. slip considering three engagement models. 

It is clear that the consideration of the engagement models has a significant influence in the resisting 

moment of the cross-section, particularly in the initial stage of the flexural response. When comparing 

the engagement model of the proposed model (linear variation of the bond strength up to the 

engagement crack opening) with the UVEM model, at the early stage of the flexural response 

( 0.003rad  ) there is a difference of about 25% of the resisting moment of the cross-section, with 

the proposed model exhibiting a higher resisting moment. For the residual flexural response 

( 0.03rad  ), the increase of the resisting moment of the proposed engagement model, when 

compared to the engagement model considered in the UVEM, is only of 13%. 
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Bond strength of the fiber pullout local constitutive law 

The influence of the bond strength of the pullout response of aligned fibers, 
,0,b p  (Figure 63), in the 

flexural response of the cross-section is evaluated taking in consideration different levels of 
,0,b p , 

namely 
,0, 2, 5, 10, 20b p MPa = . The bond stress vs. slip relationship adopted in the pullout 

response of aligned fiber is presented in Figure 70. As can be seen in Figure 71, the bond strength of 

the pullout response of fibers has a significant impact in the flexural response of the cross-section. For 

the case of 
,0, 20b p MPa = , both the pre-peak and post-peak M −  response of the cross-section 

is influenced, as the member exhibits a pronounced deflection hardening behavior. For the cases 

where 
,0, 10b p MPa  , the influence of the different levels of 

,0,b p  is only significant in the post-

peak stage of the M −  response. 

 
Figure 70 – Bond stress vs. slip (

,0b − ) of the pullout response of an aligned fiber considering 

,0, 2, 5, 10, 20b p MPa = . 
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Figure 71 – Moment vs. rotation relationship of cross-section considering 

,0, 2, 5, 10, 20b p MPa =

. 

Slip corresponding to bond strength of the fiber pullout local constitutive law 

The influence of the slip corresponding to the bond strength of the pullout response, 
p  (Figure 63), 

in the flexural response of the cross-section of the case study, is analyzed considering four levels of 

p , namely 0.1,0.5, 1.0, 5.0p mm = . The bond stress vs. slip relationship adopted in the pullout 

response of aligned fiber is presented in Figure 72. The M −  relationship of the cross-section is 

presented in Figure 73. It is evident that 
p  has a minor impact on the first peak of the flexural 

capacity of the cross section, but has a significant influence on this post-peak stage, with an increase 

of the flexural capacity, ductility and energy absorption with the 
p . 
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Figure 72 – Bond strength vs. slip (

,0b − ) of the pullout response of an aligned fiber considering 

0.1,0.5, 1.0, 5.0p mm = . 

 
Figure 73 – Moment vs. rotation relationship of cross-section considering 

0.1,0.5, 1.0, 5.0p mm = . 
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74. As is seen in the M −  presented in Figure 75, the exponent   influences the flexural capacity 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

 b
,o
 −

 B
o
n
d
 s

tr
es

s 
[M

P
a]

 − slip [mm]

 
p
=0.1mm  

p
=0.5mm

 
p
=1.0mm  

p
=5.0mm

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.0 3.0x10
-4

6.0x10
-4

9.0x10
-4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
o
m

en
t 

[k
N

.m
]

Rotation [rad]

 
p
=0.1mm  

p
=0.5mm

 
p
=1.0mm  

p
=5.0mm

Rotation [rad]

M
o
m

en
t 

[k
N

.m
]



Advanced tools for design and analysis of fiber reinforced concrete structures 
 

110 

of cross-section. The lower is  , the higher is the maximum resisting moment of the cross-section. 

This is due to the higher contribution of the fiber reinforcement, provided by a higher pre-peak bond 

strength up to 
p  is reached, when a lower value of   is adopted. 

 
Figure 74 – Bond strength vs. slip (

,0b − ) of the pullout response of an aligned fiber considering 

0.1,0.5, 1.0, 5.0p mm = . 

 
Figure 75 – Moment vs. rotation relationship of cross-section considering 0.001, 0.01, 0.1, 1.0 =

. 
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Post-peak exponent of the fiber pullout local constitutive law 

The influence of the value attributed to the   parameter, which defines the post-peak bond strength 

vs. slip rate, on the M −  response of the present case study is assessed by adopting the following 

values for the 0.1, 0.5,1.0, 5.0 =  (Figure 63). The bond stress vs. slip relationship adopted in the 

pullout response of aligned fiber is presented in Figure 76. Considering the corresponding obtained 

M −  relationship of the cross-section presented in Figure 77, it is denoted that a sharper decrease 

of the post-peak 
,0b −  relationship, which is obtained with a higher value of  , decreases the 

residual flexural capacity of the cross-section. 

 
Figure 76 – Bond strength vs. slip (

,0b − ) of the pullout response of an aligned fiber considering 

0.1,0.5, 1.0, 5.0 = . 
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Figure 77 – Moment vs. rotation relationship of cross-section considering 0.1,0.5, 1.0, 5.0 = . 

5.2.5 Assessment of the predictive performance of the new model  

In this section the predictive capacity of the NLMM107 model is assessed by comparing the flexural 

response of SFRC notched beams submitted to 3-point bending tests, with the numerical response 

determined with software DOCROS, where the NLMM107 was implemented. The experimental 

results and material properties of the SFRC beams were obtained from published work of several 

authors. 

For each conducted analysis, the parameters of the NLMM107 model, namely those corresponding 

to the pullout response of aligned fibers described by the bond stress vs. slip (
,0b − ) of aligned 

fibers, were obtained by a fitting procedure implemented in DOCROS, that resorts to the nonlinear 

least squares fitting routine MPFIT [109]. The data considered in the fitting procedure corresponded 

to the moment vs. crack tip opening displacement (CTOD) relationship that was derived from the 

experimental results of the bending tests. For most of the studied cases, the moment vs. CTOD 

relationship was obtained from the average force vs. midspan deflection results. The applied moment 

in the midspan cross-section is obtained from the expression: 

 
4

F L
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
=   Eq. (5.24) 

where L  is the span length. The CTOD can be estimated by the expression proposed in [35]: 
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h ND

CTOD CMOD
h

−
=    Eq. (5.25) 

where ND  is the notch depth, h  is the beam height and CMOD  is the crack mouth opening 

displacement. The CMOD  can be determined as a function of the midspan deflection for bending 

tests performed according to the RILEM TC 162-TDF or EN 14651 from the expression proposed in 

[35]: 

    1.18 0.0416MSCMOD mm mm=  −   Eq. (5.26) 

where 
MS  is the midspan deflection. 

Given to the inexistence of information, the tensile strength of the concrete matrix is also a parameter 

to be derived during the fitting procedure. 

Due to the existence of a notch in the SFRC members, executed after concrete casting, the fiber 

orientation factor as determined according to Eq. (5.10) needs to be adapted to notched beam cross-

section, as is illustrated in Figure 78. In order to determine the fiber orientation factor of notched SFRC 

beams, it is resorted to the Eq. (5.27) and Eq. (5.28), respectively for the case where 2fl ND  

and 2fl ND , where ND  is the notch depth. 

 
a) 

 
b) 

Figure 78 – Division of cross-section for determination of fiber orientation factor due to the existence 
of notch: a) 2fl ND ; b) 2fl ND . 
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An additional aspect concerning the determination of the fiber orientation factor is related to the 

rheology of the concrete mixture. Due to the employment of self-compacting concrete in some of the 

cases in study, the fiber orientation factor adopted in the numerical models needs to reflect the 

increased flowability of these concrete mixtures. For this aspect is resorted to the work of [42], that 

idealizes the problem considering that the flowability of the self-compacting concrete as virtual layers 

with a thickness equal to the fiber length, with each layer acting as a virtual boundary that induce fiber 

alignment with the flow direction. Due to this, for the fiber orientation factor of zone 1 of the cross-

section (Figure 58), is considered an orientation factor of 
1 0.60 = . 

In Table 11 are presented the FRC material parameters and the parameters of the NLMM107 model, 

for each case study. 

In Figure 79 and Figure 80 are illustrated the bond stress vs. slip relationship, 
,0b − , of the pullout 

response of aligned fibers, that are obtained with the NLMM107 model parameters derived by the 

fitting procedure. For each case is also displayed the average bond stress, 
, ,b o ave , determined up to 

the slip displacement correspondent to the maximum value of the CTOD obtained in the 3-point 

bending tests, and the maximum allowable bond stress vs. slip relationship, 
, ,maxb o − . The 

maximum allowable bond stress, 
, ,maxb o , is determined from the expression that defines the fibers 

tensile failure criteria (Eq. (5.21)), namely: 
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In Figure 81 and Figure 82 are presented the experimental and numerical response of the force vs. 

CTOD relationship of the FRC prisms submitted to 3-point bending, for all case studies. 
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Table 11 – Material properties of the FRC mixtures considered in the assessment of the predictive performance of the new model. 

Reference Mixture 
name 

Fiber reinforcement properties 
Concrete 
flowability 

    
Material properties Bond stress vs. slip relationship 

Fiber 
type 

fV  

[%] 
fl  

[mm] 
fd  

[mm] 
fu  

[MPa] 
cE  

[MPa] 
ccf  

[MPa] 
cc  

[‰] 
cr  

[‰] 
ctf  

[MPa] 
p  

[mm] 
,0,b p  

[MPa] 
  

[x10-3] 
  

Pereira [110] SFRSCC HE 0.38 60 0.75 1100 SCC 0.645 0.0 35.85 61.60 3.00 6.00 3.21 0.745 13.75 1.0E-03 0.831 
Lameiras [111] SFRSCC A HE 0.76 35 0.50 1300 SCC 0.619 0.0 35.83 65.78 5.87 12.00 1.83 0.502 5.13 1.640 1.404 

Frazão et al. [112] BACRFA HE 0.76 35 0.50 1300 SCC 0.619 0.0 36.88 61.90 5.00 12.00 2.98 0.694 18.83 23.609 0.481 
Valente et al. [113] PreBeamTec HE 0.76 33 0.55 1300 SCC 0.550 0.0 37.00 45.95 2.50 3.50 2.66 0.011 11.91 14.600 1.0E-06 

Salehian [49] 
 

c15_f45 HE 0.57 35 0.55 1300 SCC 0.619 0.0 23.31 13.12 3.50 17.50 2.29 0.700 10.23 1.340 0.499 
c25_f60 HE 0.76 35 0.55 1300 SCC 0.619 0.0 28.62 23.57 3.50 17.50 1.88 0.135 20.43 1.0E-03 0.281 
c45_f90 HE 1.15 35 0.55 1300 SCC 0.619 0.0 35.23 44.42 4.00 17.50 3.03 0.489 16.20 3.920 0.375 
c30_f45 HE 0.57 30 0.40 1000 SCC 0.616 0.0 29.63 26.18 3.50 17.50 5.36 1.004 13.33 1.0E-03 0.993 

Soltanzadeh et al. [114] HPFRC HE 1.15 35 0.55 1100 SCC 0.619 0.0 36.06 67.84 2.60* 6.00* 6.99 1.797 17.30 1.0E-03 0.431 
Frazão et al. [15] RSFRC R 1.00 20 0.15 2850 regular 0.530 0.0 24.31 39.42 2.30* 5.00* 1.18 0.467 7.19 0.679 0.281 

Amin [41] DA-0.5-S S 0.50 13 0.20 1800 regular 0.531 0.0 34.70 63.70 2.50* 6.00* 2.91 0.432 17.11 1.0E-03 0.242 
Pajak et al. [115] 0.5_S S 0.50 12.5 0.40 1250 SCC 0.606 0.0 42.60* 80.10 2.70* 6.00* 2.06 0.818 8.48 1.0E-03 1.0E-06 

Legend: HE – Hooked-end steel fibers; S – Straight steel fibers; R – recycled steel fibers; SCC – Self-compacting concrete; * - estimated values 
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a) 

 
b) 

 
c) 

  
d) 

 
e) 

 
f) 

Figure 79 – Derived bond stress vs. slip (
,0b − ) of the pullout response of an aligned fiber for the numerical model of the FRC studied in :a) Pereira [110]; b) 

Lameiras [111]; c) Frazão et al. [112]; d) Valente et al. [113]; e) mixture c15_f45 of Salehian [49]; f) mixture c25_f60 of Salehian [49]. 
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b) 

 
c) 
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f) 

Figure 80 – Derived bond stress vs. slip (
,0b − ) of the pullout response of an aligned fiber for the numerical model of the FRC studied in: a) mixture c45_f90 

of Salehian [49]; b) mixture c30_f45 of Salehian [49]; c) Soltanzadeh et al. [114]; d) Frazão et al. [15]; e) Amin [41]; f) Pajak et al. [115]. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Figure 81 – Experimental and numerical model comparison of force vs. CTOD relationship of the FRC studied in: a) Pereira [110]; b) Lameiras [111]; c) Frazão 
et al. [112]; d) Valente et al. [113]; e) mixture c15_f45 of Salehian [49]; f) mixture c25_f60 of Salehian [49]. 
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f) 

Figure 82 – Experimental and numerical model comparison of force vs. CTOD relationship of the FRC studied in: a) mixture c45_f90 of Salehian [49]; b) 
mixture c30_f45 of Salehian [49]; c) Soltanzadeh et al. [114]; d) Frazão et al. [15]; e) Amin [41]; f) Pajak et al. [115]. 
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As demonstrated in Figure 81 and Figure 82, for the majority of the case studies, the application of 

the NLMM107 model predicted with very good accuracy the flexural response of the FRC prisms. 

The main discrepancy between the experimental and numerical results are observed in the FRC 

studied in the work of Soltanzadeh et al. [114] and mixture c30_f45 of Salehian [49], with the 

numerical models exhibiting a lower flexural resistance when compared to the experimental values. 

Considering that the bond strength between the fibers cannot be increased, due to the maximum 

allowable bond stress, 
, ,maxb o , being reached at the initial stage of the fiber pullout response (Figure 

80a) and b)), a further analysis to these results is conducted. 

The numerical model determines the moment vs. CTOD considering the geometry and material 

properties at the notched cross-section of a FRC prisms, and assuming that the crack starts at the 

notch tip and propagates vertically along the notched section, as presented in Figure 83, which leads 

to a maximum crack surface area equal to 
spb h . However, the real situation, particularly for the 

case of high strength concrete matrix, the crack along the notched cross-section constantly changes 

direction and can bifurcate in two or more cracks. These phenomena, respectively known as crack 

tortuosity and crack branching [117], can significantly increase the fracture surface area leading to an 

increase of the total fiber pullout resistance by rising the number of fibers being solicited during the 

bending test. Ultimately, the overall flexural resistance of the FRC prisms submitted to 3-point bending 

tests is higher due to this diffusive crack path. Some real examples of the crack diffusivity observed in 

3PNBBT are presented in Figure 84. 

 
Figure 83 – Crack propagation in the cross-section of notched FRC prisms. 
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Figure 84 – Examples of crack tortuosity and branching of notched FRC prisms submitted to 3-point 

bending tests (extracted from [118], [119]). 

In order to consider the increase of fibers being solicited due to crack diffusivity, the number of fibers 

in the idealized crack is multiplied by a crack diffusivity factor,  . The expression Eq. (5.23) that 

defines the pullout resistance of the 
, i

j

f
N


 fibers with a mean orientation angle  at the  cracked 

layer is modified to take into account the crack diffusivity factor, namely: 

 ( ) ( ), ,,i i

j j

f bu i bf of
P w N d L w

 
  =       Eq. (5.30) 

The parameter   could be evaluated by performing a comprehensive experimental program that 

considers the performance of fiber pullout tests, 3PNBBT and direct tensile tests. For the fiber type 

and concrete matrix in analysis, the bond vs. slip relationship is derived from the pullout tests (Figure 

85a). Afterwards, based on the moment vs. CTOD relationship obtained in the 3PNBBT and by 

assessing the number and orientation of each fiber in fracture surface of each specimen (Figure 85b), 

the crack diffusivity factor for FRC members in bending, 
b , is obtained by performing an inverse 

analysis considering the concrete matrix tensile contribution and the fiber pullout resistance 

(Eq. (5.30)). Similarly, the crack diffusivity factor for FRC members in tension, 
t , is obtained by 

performing an inverse analysis based on the w −  relationsip obtained from direct tensile tests 

(Figure 85c). 

i
thj
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Figure 85 – Schematic representation of methodology to derive the crack diffusivity factor,  . a) 

Fiber pullout tests; b) 3-point nothed beam bending tests; c) Direct tensile tests. 

In the absence of experimental results, the parameter   must be empirically defined. In Figure 86 is 

presented the force vs. CTOD relationship of the FRC studied in the work of Soltanzadeh et al. [114] 

and the mixture c30_f45 of Salehian [49], considering a crack diffusivity factor equal to 1.20 = . In 

Figure 87 is presented the corresponding pullout response of aligned fibers, with the parameters of 

NLMM107 obtained from the fitting procedure. 

 
a) 

 
b) 

Figure 86 – Experimental and numerical model comparison of force vs. CTOD relationship 
considering 1.20 =  for the FRC studied in: a) mixture c30_f45 of Salehian [49]; b) Soltanzadeh et 

al. [114]. 
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a) 

 
b) 

Figure 87 – Derived bond stress vs. slip (
,0b − ) of the pullout response of an aligned fiber for the 

numerical model considering 1.20 =  for the FRC studied in :a) mixture c30_f45 of Salehian [49]; 
b) Soltanzadeh et al. [114]. 

In Figure 88 is presented the 
,0b −  model of the aligned fibers pullout response for all cases 

studied, which were obtained by adopting the fitting procedure. For the results of the mixture c30_f45 

of Salehian [49] and of Soltanzadeh [116] are considered the parameters obtained in the model with

1.20 = . The bond strength varies from 5.13 to 20.43MPa with the corresponding slide 

displacement ranging from 0.01 to 3.39mm. It is also denoted that in most cases, in order to obtain 

a good agreement between the experimental and numerical results, the pre-peak stage of the 
,0b −  

model presents a pseudo-plastic behavior, with the exponent   varying between 061 10x −  to 0.14. 

For the 
,0b −  softening branch, the exponent   ranges between 061 10x −  to 1.40. 

 
a) 

 
b) 

Figure 88 – Derived bond strength vs. slip (
,0b − ) of the pullout response of an aligned fiber for 

the numerical model of all cases studies, according to type of fibers: a) hooked-end fibers; b) straight 
and recycled fibers.  
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In Figure 89 is compared the average bond strength, 
, ,b o ave , up to the slip displacement 

correspondent to the maximum value of the CTOD obtained in the 3PNBBT and the average bond 

strength considered in the UVEM model [96] (Eq. (5.31), assuming that 0.45ctm cmf f=  ). As can 

be seen, the ratio 
, , , ,b o ave b ave UVEM   ranges between 1.0 and 2.2. The higher average bond strength 

derived from the fitting procedure, in comparison with the values considered in the UVEM model, can 

be justified by the different experimental data used to derive these parameters. While in the UVEM 

were considered the results of fiber pullout tests, in this study the parameters of the 
,0b −  were 

derived from 3PNBBT. As previously illustrated in Figure 83 and Figure 84, due to crack tortuosity and 

branching the ratio between the total pullout resistance of the fibers and the number of fibers being 

solicited is higher in the numerical model than the observed in the 3PNBBT. Consequently, when 

performing the inverse analysis to derive the parameters of fiber pullout model, the bond stress is 

overestimated to compensate the increase of solicited fibers in the fracture surface. 

 , ,

2.5 ; for hooked-end fibers

1.2 ; for straight fibers

ctm

b ave UVEM

ctm

f

f



= 


 Eq. (5.31) 

 
Figure 89 – Ratio between 

, , , ,b o ave b ave UVEM  . 

5.3 Moment-rotation procedure for analysis of cross-sections 

In order to be possible to analyze the flexural response of structural members’ cross-sections 

considering the NLMM107 model to simulate the FRC behavior, a moment-rotation procedure, 

M −  , was implemented in DOCROS. In this algorithm, after cracking in concrete is detected, is 
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increase of crack width and the crack propagation across the cross-section height. At the thp  rotational 

increment, the rotation of member is equal to: 

 p p =   Eq. (5.32) 

The axial deformation of the thj  layer at the thp  rotation increment, p

jD , w  can be determined by 

the following relationship: 

 ( )p p

j jD d x=  −  Eq. (5.33) 

where, 
jd  is the depth of the center of gravity of the thj  layer, and x  is the neutral axis depth. 

The corresponding strain of the thj  layer can be obtained by Eq. (5.34), considering that 
crL  is the 

crack spacing of the FRC member. 

 
2 p

jp

j

cr

D

L



=  Eq. (5.34) 

For the cracked layers in the cross-section, the crack width is determined according to the expression: 

 2p p ct
j j cr

c

f
w D L

E
=  −   Eq. (5.35) 

In each rotational increment, the neutral axis position is determined according to an iterative process, 

considering the equilibrium of forces in each layer that discretizes the member cross-section, namely: 

 
1

0
N

p

j

i

F
=

  Eq. (5.36) 

The axial force of the thj  layer of the cross-section is determined based on the stress at the layer, 

namely: 

 p p

j j j jF b t=    Eq. (5.37) 

The resisting moment is determined according to Eq. (5.38). 
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Rd j j
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M F d
=

=   Eq. (5.38) 
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The flexural stiffness of the cross-section, in the form of the moment vs. curvature ( M − ) 

relationship, can be determined by evaluating the curvature of the cross-section,  , at each rotational 

increment p , according to Eq. (5.39). 

 1

1

p p

j j

j jd d

 


−

−

−
=

−
  Eq. (5.39) 

5.3.1 Numerical simulation of FRC structural members 

In the present section is assessed the capability of capturing the structural response of FRC members 

by adopting the NLMM107 model and the moment vs. rotation relationship of the members cross-

section.  

In the first study case is performed the numerical simulations of flexural tests of the R-FRC beams 

studied in [120]. The experimental program includes the characterization of the force vs. midspan 

deflection of three sets of R-FRC, considering different characteristics of the FRC. The FRC studied 

corresponds to the mixtures c15_f45, c25_f60 and c45_f90 presented in Table 11, for which the 

parameters of the NLMM107 model were already derived, namely the bond stress vs. slip relationship, 

,0b − , of the pullout response of aligned fibers, based on the results of 3PNBBT. 

The beams were submitted to 4-point bending tests, with a span length equal to 1400mm (Figure 90). 

The rectangular cross-section has 150mm of width and 100mm of height. The beams are 

longitudinally reinforced with one Ø8mm steel bar with 40mm of cover. The midspan central deflection 

was registered with an LVDT installed on an aluminum bar. During testing, the crack width at the 

reinforcement level was also registered. 

 
Figure 90 – R-FRC beams submitted to four-point bending tests (extracted from [120]). 
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The numerical simulation was performed by adopting the derived NLMM107 model parameters to 

obtain the moment vs. rotation and moment vs. curvature relationship of the cross-section of the 

beams studied in [120]. For the simulation of the steel reinforcement was adopted a linear-plastic 

model with the following parameters: yield stress: 575syf MPa= ; Young’s modulus: 

204.8sE GPa= ; and ultimate strain: 332 10su x −= .  

In order to obtain the flexural response of the cross-section based in the presented moment-rotation 

procedure is necessary to determine the crack spacing, 
crL , of the R-FRC beams. The crack spacing 

of the beams was estimated considering the model presented in MC2010 and described in section 

2.5.5 of this thesis, for which was determined that the mean crack spacing of the R-FRC beams is 

equal to 60crL mm= . 

The numerical simulation of the bending tests is performed in the software DEFDOCROS, developed 

in [121], that derives the force-deflection of statically determinate structural elements based on the 

flexural stiffness, namely the moment vs. curvature ( M − ) relationship, of the cross-section of the 

structural member. The beams are discretized by 2-noded Euler-Bernoulli elements, and for each 

segment is considered the M −  relationship obtained in DOCROS. 

In Figure 91 is presented the comparison of the force vs. midspan deflection obtained experimentally 

and in the numerical simulation. To be noticed that the experimental force-deflection response 

observed experimentally denotes that the failure did not occurred due to yielding of the steel 

reinforcement, pointing to the debonding of the steel bar. As the numerical model considers a perfect 

bond between the reinforcement bar and the surrounding FRC, are expected some divergences 

between the experimentally and numerically obtained force-deflection responses of the beams. These 

deviations are notorious in the response of mixtures c25_f60 and c45_f90, with the numerical model 

predicting the force-deflection response of the tested beams up to the maximum force observed 

experimentally. For the case of mixture c15_f45, it is evident that the numerical model could not 

accurately capture the experimental response of the tested beam. 
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a) 

 
b) 

 
c) 

Figure 91 – Comparison between the experimental and numerical model force vs. midspan 
deflection for the R-FRC beams submitted to 4-point bending tests considering different FRC 

mixtures: a) c15_f45; b) c25_f60; and c) c45_f90 [114]. 

In Figure 92 is presented the comparison between the experimental and numerical derived moment 

vs. crack ( M w− ) width at reinforcement level of the tested beams. As it is observed, the numerical 

simulation was able to capture with a significant accuracy the M w−  response of the tested beams, 

particularly the case of mixtures c15_f45 and c25_f60. For the case of the mixture c45_f90, it is 

observed a more pronounced deviation between the experimental and numerical results. 
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a) 

 
b) 

 
c) 

Figure 92 – Experimental and numerical model comparison of moment vs. crack width at 
reinforcement level for the R-FRC beams submitted to 4-point bending tests considering different 

FRC mixtures: a) c15_f45; b) c25_f60; and c) c45_f90 [114]. 

Next is presented the application of the NLMM107 model and the moment-rotation algorithm to predict 

the flexural response of a composite beam studied in [113]. The composite beams are formed by 

castellated U-shaped steel profiles with an upper flange and web formed by steel fiber reinforced self-

compacting concrete. The steel profiles are formed by steel sheets with a thickness of 3mm. The web 

of the profiles is cut to form a castellated geometry, as presented in Figure 93. 
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Figure 93 – Steel profiles geometry. 

The self-compacting concrete adopted in the experimental program corresponds to the mixture 

presented in Table 11, denominated as PreBeamTec, for which the bond stress vs. slip relationship, 

,0b − , of the pullout response of aligned fibers were already derived based on the 3PNBBT results. 

The composite beams were submitted to 3-point bending tests, with a span length of 1100mm. The 

test setup and geometry of the beams are presented in Figure 94. The midspan deflection of the beam 

was registered with an LVDT installed on an aluminum bar (Figure 95). In addition, the deformation 

of the composite beam top and bottom face is also registered using strain gauges, placed at 50mm 

from the midspan of the composite beam. 

 
Figure 94 – 3-point bending test setup and section cuts of composite beam (dimension in mm) 

[113]. 
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Figure 95 – Composite beam ready for testing [113]. 

The numerical simulation of the 3-point bending test of the composite beam was performed by 

estimating the moment vs. rotation and moment vs. curvature relationship of the cross-section of the 

composite beams. For the simulation of the concrete behavior was adopted the NLMM107 model, 

whose parameters correspond to mixture PreBeamTec presented in Table 11. 

For the simulation of the steel reinforcement was adopted a linear-plastic model with the following 

parameters: yield stress: 235syf MPa= ; Young’s modulus: 210sE GPa= ; and ultimate strain:
310 10su x −= . 

In Figure 96 is presented the moment vs. curvature derived numerically using DOCROS at four 

section cuts of the composite beam, and the M −  relationship obtained experimentally considering 

the deformation measured with the strain gauges at the top and bottom faces of the composite beam. 

The numerical relationship derived with DOCROS was obtained admitting a perfect bond between 

the castellated steel profile and the FRC, and for the moment-rotation calculation procedure was 

considered a crack spacing equal to the height of the beam ( 220crL mm= ). Knowing that the strain 

gauges are positioned between the beam’s section cuts CC’ and DD’, it is clear the experimental 

M −  relationship is stiffer and denotes a significantly higher flexural resistance than the observed 

numerically with DOCROS. 
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Figure 96 – Experimental and numerically derived moment vs. curvature relationship at four section 

cuts of the composite beam studied in [113]. 

Considering the M −  relationship derived in DOCROS, the force vs. deflection of the composite 

beam when submitted to 3-point bending was obtained using the software DEFDOCROS. As it is 

presented in Figure 97, the numerical response could not capture the ultimate flexure capacity 

observed during the 3-point bending test. The discrepancy is based on the difference between the 

experimental and numerical M −  relationship observed in Figure 96. However, up to a deflection 

value of 500 2.2L mm= , which is normally considered in the verification of the limit states of 

deformation of concrete members, the force vs. deflection response obtained in DEFDOCROS is 

similar to the observed experimentally. 

 
Figure 97 – Comparison between the force vs. midspan deflection of the composite beam submitted 

to 3-point bending studied in [113]. 
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5.4 Concluding remarks 

In the present chapter was proposed a model capable of describing the flexural behavior of 1D type 

FRC members considering the orientation of the fibers, the fibers segregation along the cross-section 

of these members, and the pullout constitutive model of each fiber bridging the two faces of a crack.  

At the cross-section of a FRC member, the model is able to predict the distribution of the fibers in 

discrete orientation intervals, based on the evaluation of the orientation factor, which is a function of 

the length of the fibers and of the geometry and boundaries of the cross-section. 

The model also includes a strategy to simulate the fiber segregation phenomena that can occur during 

FRC casting. This strategy relies in the definition of a unique parameter, denominated fiber segregation 

factor, where a linear variation of the fiber distribution along the depth of the cross-section is assumed.  

The cross-section of the FRC member is divided into layers, and the number of fibers in each layer 

and within each orientation angle interval is determined by coupling the fiber orientation profile and 

segregation models.  

In the proposed model, the fiber contribution to the post-cracking resistance of the FRC is determined 

according to the pullout resistance of the number of fibers in each layer and within each orientation 

angle interval. A new nonlinear bond vs. slip relationship is proposed to simulate the behavior of the 

interface between fiber and concrete matrix. 

The components of the proposed model were coupled and implemented in a software for the analysis 

of cross-sections of R-FRC members failing in bending, considering a moment-rotation procedure. 

The performance of the new model was assessed by comparing the flexural response SFRC notched 

beams submitted to 3-point bending tests. For the majority of the studied cases, a very good 

agreement between the experimental and numerical results was obtained. For the cases that displayed 

some discrepancies, the influence of cracking tortuosity and branching was addressed by defining a 

crack diffusivity factor. After adopting an empirical value for the crack diffusivity factor, a good 

agreement was obtained between the experimental and numerical results. 

The chapter ends by assessing the capability of the new model to simulate the flexural response of 

FRC structural members. Although were obtained some discrepancies between the numerical and 
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experimental results, up to a certain level, the model was able to satisfactorily capture the experimental 

results for two case studies. 
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6 CREEP OF CEMENT BASED MATERIALS 

6.1 Introduction 

This chapter focus on the main aspects necessary to simulate the concrete creep effect by attending 

the viscoelastic response of cement based materials (CBM). 

A review of fundamental concepts of creep, its driven mechanisms and main influencing factors for 

CBM are described. 

An overview of the most widespread and significant existing creep prediction models is provided. 

Additionally, a new creep model capable of predicting the creep response of CBM, since their early 

ages, is presented. 

A concrete constitutive model that couples the creep and cracking behavior of CBM is derived and 

implemented in a software based on the finite element method (FEM), and its predictive performance 

is assessed. 

6.2 Time-dependent deformation 

When in service, all CBM, e.g. concrete and mortar, experience the effect of instantaneous and time-

dependent deformations. The total uniaxial deformation of a material at the time t , upon a sustained 

load since time 
0t  can be divided in five components, as expressed in the Eq. (6.1): 

 ( ) ( ) ( ) ( ) ( ) ( )0ins cr sh T crcot t t t t t     = + + + +  Eq. (6.1) 

where 
ins  is the instantaneous strain at loading, 

cr  is the creep strain, 
sh  is the shrinkage 

deformation, 
T  is the material deformation due to thermal expansion or contraction and 

crco  is the 

crack strain. The strains 
ins , 

cr and 
crco  are caused by the applied stress (or stress history), being 

commonly referred as mechanical strains, while the remaining components are stress independent 

strains. In Figure 98 are represented the CBM strain components along the time interval  ,dt t , where 

dt  is the time where shrinkage starts, of an uncracked material submitted to a constant compressive 

stress applied at 
0t , considering a uniform temperature during all the time interval. 
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Figure 98 – CBM strain under constant load and temperature. 

6.3 Creep fundamentals 

All the CBM, e.g. concrete and mortar, exhibit a viscoelastic behavior characterized by an 

instantaneous and a time-dependent deformation upon loading. When submitted to a constant 

sustained stress, the time-dependent deformation of a CBM is depicted by a slow and continuous 

increase of deformation with time, at a decreasing rate, but without a maximum limiting bound (Figure 

99a) [122]. This phenomenon is commonly referred as creep. 

Alternatively, the viscoelastic behavior of a CBM can also be identified with the decrease of stress 

when the material is submitted to a constant strain (Figure 99b). The latter behavior is called 

relaxation. Both types of viscoelastic phenomena are driven by the same principles, and differ only on 

the boundary conditions of the problems [123], although for CBM the term creep is generally adopted 

when describing the time-dependent deformation apart from shrinkage and thermal volume changes, 

and for so it remains the focus of this work. 
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(a) 

 
(b) 

Figure 99 – Viscoelastic behavior: a) Creep; b) Relaxation. 

The creep behavior depicted in Figure 99a is generally obtained when the applied stress is under the 

typical working stress level of CBM at serviceability limit state (SLS) loading conditions, which is 

generally 40-50% of the material strength. However, a more general form of the creep deformation 

can be obtained (Figure 100), considering that the sustained load is above 50% of the ultimate load. 

In this case, the creep deformation can be divided in three stages: a) primary creep (or transient 

creep), that is characterized by a decreasing rate of creep with time; b) secondary creep (or steady-

state creep), where the time-strain rate due to creep is almost constant; c) tertiary creep (or 

accelerating creep), when the time-strain rate due to creep increases continuously up to the failure of 

the material. For typical values of working stress in CBM, primary and secondary creep stages are 

undifferentiated, and the tertiary stage is never reached [124], [125]. 

 
Figure 100 – General form of creep deformation. 
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For a previously loaded specimen, when the stress is removed at instant 
1t , only a partial recovery of 

the accumulated deformation is observed, which corresponds to the instantaneous response to the 

unloading, ( ), 1ins u t , and to a long-term reduction of the creep strain with a gradual decreasing rate, 

( ),cr d t , (Figure 101). Upon unloading, the recoverable part of the creep strain is often named 

delayed elastic strain ( ),cr d t  and the irrecoverable part is often referred as flow ( ),cr f t  [123].  

 
Figure 101 – Recoverable and irrecoverable components of creep strain. 

A further fundamental concept in the study of creep is the linearity, which can be assumed if the 

applied stress level is less than about 40-50% of the material strength limit. A viscoelastic behavior 

can be considered linear when the principle of superposition and proportionality are fulfilled [126], 

which means that there is a linear relationship between stress and strain, as the one expressed in 

Eq. (6.2) [127]. 

 ( ) ( )0 0( , )t J t t t =   Eq. (6.2) 

where 
0( , )J t t  is the uniaxial creep compliance function that characterizes a given CBM. The creep 

compliance is a function that represents the instantaneous plus the creep deformation at time t , 

caused by a unitary stress acting since time 
0t . The typical curves of the compliance function with 

respect to varying time t  and loading ages 
0t  are presented in Figure 102. 
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Figure 102 – Typical curves of creep compliance [128]. 

The meaning of proportionality is reflected in Eq. (6.3): a loading n  times larger than another loading, 

shall also produce creep strains that are n  times larger than those of the latter [127]. 

 ( ) ( )n n

n const

    = 

=
 Eq. (6.3) 

where   is the material strain and   the applied stress. Considering the proportionality, it is possible 

to study a material submitted to a given stress level and extrapolate the viscoelastic behavior for 

distinct stress levels. 

The superposition principle is illustrated in Figure 103 through an example with two independent 

loads/stresses applied: 
0( )c  at instant 

0  and 
1( )c   at instant 

1 . According to this principle, if 

a material is subjected to a loading history that corresponds to the combination of two independent 

load cases, the creep deformation corresponds to the cumulative effect of each individual load case 

(see curves a, b and c in Figure 103) [123], [126]. Overall, the superposition principle can be 

expressed mathematically by the following expression: 

 ( ) ( )1 2 1 2( )      + = +  Eq. (6.4) 

where   is the total strain, while 1  and 2  are the load cases. 
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Figure 103 – Superposition principle of creep strains (adapted from [123]). 

In general, the deformation of a material due to a nonconstant applied stress history can be estimated 

by application of the superposition principle. This principle was applied for the first time in concrete 

by McHenry [129]. McHenry stated that the strain produced by the stress increment applied at any 

time 
0,it , is not affected by any previous and subsequent applied stresses. According to the 

superposition principle, the total strain ( )t  caused by a given stress history ( )t  can be obtained 

by decomposing the history in small increments ( )0,id t  applied at various time instants 
0,it  (Figure 

104), adding the corresponding strains based on Eq. (6.2) and the stress independent strains 0 , 

resulting in the following Stieltjes integral [122], [123], [128]: 

 ( ) ( ) ( )
0

0, 0, 0( ) ,

t

i i

t

t J t t d t t  =  +  Eq. (6.5) 
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Figure 104 – Decomposition of time varying stress history. 

Assuming that a material remains stress free until, at some time instant 
0,1t , a finite stress 

1  is 

applied in a sudden jump, and subsequently the stress ( )t  varies continuously, Eq. (6.5) can be 

written in terms of the Riemann integral [122]: 

 ( ) ( ) ( )
( )

( )
0,1

0

1 0,1 0 0 0

0

, ,

t

t

d t
t J t t J t t dt t

dt


  

+

=  +  +  Eq. (6.6) 

If the strain history ( )t  is known, then Eq. (6.5) or Eq. (6.6) represent an integral equation for the 

stress history ( )t , known as the Volterra integral equation [122]. The compliance function ( )0,J t t  

is the kernel of the integral equation [122], [128]. Due to the aging nature of CBM materials, the creep 

compliance ( )0,J t t  is a function dependent on two variables ( t  and 
0t ), and the use of the Laplace 

transform is ineffective to resolve the Volterra integral equation [130]. Nonetheless, in general the 

strain history ( )t  is not prescribed and Eq. (6.5) or Eq. (6.6) represents a uniaxial stress-strain 

relationship for creep [122]. 

Based on the theory of linear viscoelasticity, the superposition principle has been applied to materials 

with aging (aging linear viscoelasticity) [128]. Materials with aging are those whose mechanical 

properties are age dependent, such as the case of concrete and others CBM [126]. The fact that 

( )0,J t t  is a two variable dependent function ( t  and 
0t ) is a consequence of aging, which adds a 

significant complexity in the process of deriving accurate creep prediction models. If no aging is 

considered, then the compliance function can be only expressed as function of the duration period 

0t t− , ( )0,J t t . The concept of aging is further developed in the following sections.  

The use of the superposition principle for the analysis of creep problems is restricted to the following 

conditions [131]: 
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tt0,1
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- The stresses are within the service stress range (typically for stress/strength ratio lower than 

40%); 

- The strains do not decrease in value; 

- There is no drying creep; 

- Although possible, the stress increase after initial loading must exhibit a smooth change (i.e. 

no sudden variations are allowed). 

It has been reported [128], [131]–[134] that the violation of these conditions yields in inaccurate 

predictions of the creep behavior of concrete specimens. The particular case of using the superposition 

principle to predict the creep recovery response after partial or total unloading has revealed an 

overestimation of the creep recovery when compared to experimental results [131], [132]. The latter 

phenomenon is represented in Figure 103d. 

If the conditions of linearity are not fulfilled, it is then stated that the material exhibits a nonlinear 

viscoelastic behavior. The study of nonlinear viscoelastic behavior is not included within the scope of 

the present document.  

Disregarding the influence of the remaining time-dependent deformations, namely shrinkage and 

thermal volume changes, the total deformation ( )t  of an uncracked uniaxial loaded CBM material 

is expressed by: 

 ( ) ( ) ( )0ins crt t t  = +  Eq. (6.7) 

For stress-strength ratio lower than 40% the instantaneous strain is defined by: 

 ( )
( )

( )
0

0

0

ins

t
t

E t


 =  Eq. (6.8) 

and the creep compliance can be expressed as: 

 
( )

( )

( )0

0 0

1
( , )

cr t
J t t

E t t




= +  Eq. (6.9) 
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To the second term of Eq. (6.9) is called specific creep ( )0,C t t  and represents the creep strain at 

time t  produced by a sustained unit stress applied at time 
0t . In Figure 105 are represented some 

examples of specific creep curves for a material loaded at different loading ages. 

 
( )

( )
0

0

( , )
cr t

C t t
t




=  Eq. (6.10) 

 
Figure 105 – Example of specific creep curves for a material loaded at different time instants. 

Commonly, the creep deformation of CBM is quantified by the creep coefficient ( )0,t t . This 

coefficient is defined as the relation between the creep strain ( )cr t  evaluated at the instant t  and 

the instantaneous strain ( )0ins t  at the instant 
0t , namely: 

 ( )
( )

( )0

0

,
cr

ins

t
t t

t





=  Eq. (6.11) 

Based on Eq. (6.2), Eq. (6.7), Eq. (6.8) and Eq. (6.11) the creep compliance and the creep coefficient 

can be related by the following expression: 

 
( )

( )0 0

0

1
( , ) 1 ,J t t t t

E t
=  +    Eq. (6.12) 

Introducing Eq. (6.12) in Eq. (6.2), the total deformation ( )t  at time t   of a material submitted to 

a constant stress state ( )0t  since time 
0t  is obtained by the following expression: 

 ( ) ( )
( ) 
( )

0

0

0

1 ,t t

E t
t t


 

+
=   Eq. (6.13) 
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The inverse of the second term of Eq. (6.13) is known as effective modulus, ( ) ( )( )0 01 ,E t t t+

[123]. When considering the existence of the other remaining time-dependent deformations, the 

shrinkage strain, thermal dilation strains and cracking strains must be added to Eq. (6.13). 

From Eq. (6.11) and Eq. (6.8) is possible to determine the creep strain at a given time instant , 

resultant from a constant stress state ( )0t  applied since time 
0t , based on the creep coefficient 

( )0,t t  and on the material elastic modulus ( )0E t  at the corresponding loading age: 

 ( )
( )

( )
( )0

0

0

,cr

t
t t t

E t


 =   Eq. (6.14) 

6.4 Creep mechanisms and influencing factors in CBM 

The mechanisms that control creep behavior of CBM materials remain to be fully understood. 

According to [135], [136], some of these mechanisms can be: 

- Sliding of the colloidal sheets in the cement gel between the layers of absorbed water – viscous 

flow; 

- Expulsion and decomposition of the interlayer water within the cement gel – seepage; 

- Elastic deformation of the aggregate and the gel crystals as viscous flow and seepage 

occurring within the cement gel – delayed elasticity; 

- Local fracture within the cement gel involving the breakdown (and formation) of physical bonds 

– micro-cracking; 

- Mechanical deformation theory; 

- Plastic flow; 

- Solidification theory; 

- Microprestress of creep sites in cement gel microstructure. 

More recently [137], the creep deformation of concrete has been strongly linked to the dissolution-

precipitation process that acts at nanoscale contact regions of calcium-silicate-hydrates (C-S-H) 

particles. Based on nanoscale analysis techniques, it has been showed that the creep rates are related 

with the dissolution rates of C-S-H. The physical mechanisms rely on dissolution of C-S-H particles in 

high stress regions and their re-precipitation in low stress regions.  

t
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When submitted to sustained stress for long periods of time, concrete creep deformation can reach 

about 50% in the first 2-3 months and about 90% in 2-3 years after loading [123]. Afterwards, the 

strain rate is almost negligible [123]. 

It is known that creep deformation of CBM can be decomposed in two parts: a) basic creep; b) drying 

creep. The basic creep is associated to the stress state of the material and can be identified in sealed 

specimens in which all moisture interactions with the external environment are avoided. Basic creep 

is considered as a material constitutive property and independent from the specimens size and shape 

[138]. The drying creep is related to the time dependent deformation coupled with the drying effect of 

the CBM specimens, and is experimentally determined after subtracting shrinkage, elastic, thermal 

and basic creep components from the total measured strain [123], [138].  

It is believed that the basic creep component is related with the debonding and rebonding at the highly 

stressed sites within the C-S-H microstructure [122]. While the drying component is related with the 

increase of stress at the C-S-H sites, and consequently of the rate of bond failure [122]. 

To the best of the knowledge on the matter, it is known that the creep deformation magnitude and 

rate of change is influenced by different factors such as: material composition, and environmental and 

loading conditions [123], [128]. In general, the creep deformation of high strength concrete is lower 

than normal strength counterparts. Additionally, the higher aggregate content and maximum aggregate 

size, and the lower water-cement ratio, also reduce the creep deformation of CBM [123]. Regarding 

the element geometry, the creep is more significant in thin structural specimens, such as slabs, which 

exhibit higher surface-area/volume ratios [123], [139]. In addition to relative humidity, the 

environment temperature is also an important factor in creep phenomena. The rise in temperature 

increases the deformation of the cement paste and accelerates drying and consequently increases the 

creep. The dependence of creep deformations to the temperature is more pronounced in high 

temperatures and has low relevance between 0˚C and 20˚C. At room temperature of 40˚C, the creep 

in concrete has been reported to be 25% higher than that at 20˚C [123]. 

Regarding the CBM creep response upon unloading, the delayed elastic strain is thought to be a result 

of the elastic recovery of the CBM aggregates [123]. For concrete specimens loaded for long periods 

of time, the delayed elastic recovery can reach approximately 40-50% of the instantaneous strain of 

the material [123]. The flow (irrecoverable) strain is thought to be caused by irreversible changes in 
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the material microstructure that occur during the hydration process, rupture of the interparticles bonds 

by moisture seepage and micro-cracking [140]. 

The creep deformation of CBM is highly influenced by the loading age of the specimens. For early 

ages, the creep strain magnitude is higher than for specimens loaded at later ages (Figure 106), 

considering specimens submitted to equal stress levels. To this behavior is called aging (or maturing).  

Bažant physical explanation for aging is based on the solidification-microprestress theory [141]–[144], 

being related with the microstructural changes in the concrete pores. While the short-term aging is 

related to the volume growth of the hydration products in concrete pores (solidification concept), the 

long-term aging effect is assigned to the relaxation of the microprestress that is generated by the 

disjoining pressure of adsorbed water in the micropores and from the volume changes of the hydration 

products [143]. 

 
Figure 106 – Example of the dependence of creep strain of concrete specimens with the loading age 

(extracted from [130]). 

In Figure 107 is displayed the typical response of the specimens when submitted to loading and total 

unloading periods, given to the aging effect of CBM. It is noticeable that due to the increase of material 

stiffness ( ) ( )( )0 eE t E t , the instantaneous deformation of the material is smaller for older ages of 

the CBM [ ( ) ( )0ins e inst t  ]. Additionally, the creep deformation recovery after total unloading is 

smaller than the creep deformation at the loading stage [ ( ) ( )0, ,cr e crt t t t    ], for similar load 
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duration periods t , inducing an irreversible deformation of the CBM. The aging effect is particularly 

noticeable when comparing CBM specimens loaded since very early ages ( )0 3t days  [145].  

 
Figure 107 – Example of loading-unloading creep response of aging material (adapted from [146]). 

Additionally, the creep deformation of CBM is influenced by the stress level applied to the specimens. 

If the applied stress level is on the linear domain of the stress-strain relationship of the material, it is 

possible to state that the creep deformation is proportional to the stress, according to Eq. (6.2) [139]. 

Otherwise, the creep deformation exhibits a nonlinear response, and the creep deformation increases 

at a faster rate [123]. For CBM materials the maximum stress limit value where creep exhibits a linear 

response is about 40-50% of the material strength, compressive or tensile [128], [130].  

Although the main topics in CBM creep assessment are related with compressive stress states, the 

consideration of creep effect in tension is of great interest, especially in the analysis of the cracking 

risk of structures since early ages, due to the effects of shrinkage, temperature variations and load 

actions. Although some experimental research has been carried to evaluate the difference between 

concrete specimens submitted to compressive and tensile creep tests, a consensus between the 

researchers has not been reported [147], as some findings evidenced that creep is higher in 

compression, others have reached opposite conclusions, and similar response have also been pointed 

out [148]. 

The main mechanisms that rule the behavior of CBM creep in tension are common to creep in 

compression, namely i) micro-diffusion of water between capillary pores; and ii) long-term sliding of 

the calcium-silicates-hydrates, with the addition of micro-cracking [147]. Additionally, the creep in 
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tension has also evidenced to be influenced by the same type of factors as creep in compression, 

namely loading age, temperature, mix proportions and stress/strength ratio [145], [147]. 

6.5 Creep compliance prediction models 

In order to assess the performance of creep sensitive structures or structural components it is of key 

importance to adopt accurate prediction models that can simulate the creep behavior of CBM, namely 

the creep compliance. 

In this section are presented some the most widespread creep prediction models, including an analysis 

of the capabilities and drawbacks of each model. Additionally, a new model capable of predicting the 

creep behavior of CBM since early ages is also proposed. 

Regarding the use of creep prediction models, it is highly desirable that the models used in the analysis 

of structures follow the guidelines presented in [149]. More recently, these guidelines have been 

reviewed [150]. The main recommendations that a creep prediction model should comply are:  

- The model should describe creep in terms of the creep compliance function ( )0,J t t , rather 

than by the creep coefficient ( )0,t t  [149]; 

- Basic and drying creep components should be given by independent terms in the model 

formulation. The total creep deformation results from adding the instantaneous deformation 

with the basic and drying creep components [149]; 

- The creep compliance function must satisfy certain thermodynamics restrictions: 

o The creep compliance ( )0,J t t  is always monotonically increasing function, which is 

mathematically translated into [128]: 

 0( , )
0

J t t

t




  
 Eq. (6.15) 

o The rate of the creep compliance 0( , )J t t

t



  
 decreases with time [128]: 
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
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 Eq. (6.16) 
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o For increasing loading ages there is a decrease of the creep compliance magnitude 

for similar load duration periods 
0t t− , as is illustrated in Figure 108 and is 

mathematically expressed by [128]: 

 
0

0

0

( , )
0

t t

J t t

t
−

 
 

   
 Eq. (6.17) 

 
Figure 108 – Dependence of creep compliance rate with loading age 

0t  in the ( )0log t t−  time 

scale (based on [128, Fig. 2.1]). 

- Drying creep should approach a final asymptotic value [149], [150]; 

- The basic creep model should be able to describe the experimental data through the entire 

ranges of loading ages 
0t  and load duration 

0t t− , namely: 

o The final basic creep value is not limited, i.e. does not possess any asymptotic final 

value [149]; 

o A power function is recommended to describe well the short-term duration 

experimental creep data, while for long-term duration an asymptotic approach to a 

logarithmic function is suggested [149], [150];  

o The transition between the short-term and long-term durations shall be centered on 

a specific creep value, rather than on a specific time duration [149], [150]; 

o The aging effect on creep can be described by a power function of the loading age 

0t  , with a small negative exponent (approximately equal to 1
3− ) [149], [150]; 

- It is advisable that creep curves reveal a nondivergence property. Although this is not strictly 

necessary on a theoretical basis, by coupling the superposition principle with the creep models 

log(t-t )

t0,4

0

t0,3

t0,2

t0,1

t   <0,1 t   <0,2 t   <0,3 t0,4
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that exhibit divergence, a nonmonotonic recovery of creep strain upon total unloading can be 

attained (Figure 109) [149]; 

o Divergence occurs when creep curves, for the same time t  and for a higher loading 

age 
0t , exhibits a smaller slope than a creep curve of a lower loading age (Figure 

109), which can be mathematically expressed as [151]: 

 
( ) ( )0,2 0,1

0,2 0,1

, ,
,

J t t J t t
t t

t t

 
 

 
 Eq. (6.18) 

 
Figure 109 – Example of divergence of creep curves and nonmonotonic recovery of creep strain 

upon total unloading (
rt  - point of recovery reversal) (adapted from [151, Fig. 1]). 

- The creep model shall also be suitable for implementation in numerical computation, namely 

to expand the creep expression into a Dirichlet series, making it possible to characterize creep 

in a rate-type form corresponding to a Kelvin or Maxwell chain model [149]; 

- It is also preferable that the Dirichlet series expansion process can avoid ill-poised problems 

with nonunique solution, and always outputs positive and increasing Kelvin chain moduli with 

time (which grant nondivergence property) [149]. These problems can arise due to the age 

dependence of the Kelvin chain moduli, and are avoided if the age dependence is given by an 

external parameter, by means of some transformation of time [149], [150]; 

- The creep model must be continuous regarding its involving variables [149]; 
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- The mathematical form of the prediction model should be based on a theory that can 

physically explain the process involved in the creep phenomenon [149], [150]; 

- The creep model accuracy should be assessed by using a comprehensive database that 

includes all the relevant creep tests available in the literature, namely the data bank developed 

in the Northwestern University [149], [150]. The model should achieve the lowest possible 

coefficient of variation, and its value must be supplied with the model formulation [150]. The 

validity of the model cannot be acknowledged from a partial selection of data tests, to which 

the model presents a good fit [149], [150]; 

- The application of the creep models in the analysis and design of creep sensitive structures 

should be coupled with the use of confidence limits, such as 95%. This means that when 

applying such confidence limit in the design of a structure, the probability of not exceeding a 

specified structural response (e.g. maximum midspan deflection of a beam or slab) is equal 

to 95%. [149]; 

- The most important parameters of the model should be calibrated according to short-term 

creep tests and then extrapolating the data for long-term [149], [150]. In situations where is 

considered that creep deformation plays a critical role in the behavior of structures, it is 

mandatory to adopt this methodology [136], [138].  

6.5.1 Existing models 

This section presents five existing creep models that have a widespread use and encompass the state-

of-the-art theories to predict the creep of concrete, especially its basic component. The identified 

models are: (i) the Double Power Law (DPL); (ii) the Model Code 2010 model (MC2010); (iii) the 

Eurocode 2 model (EC2); (iv) the B3 model; (v) and its recent updated form, the B4 model. These 

models have almost exclusively been derived for concrete. However, as the creep is mostly caused by 

the deformation of the cement paste, it is considered that the existing models can be applied to other 

CBM, as mortar, including the use of fiber reinforced cement composites (FRC). 

Amongst these creep prediction models a division can be drawn based on the followed approach 

applied to describe creep: (i) the DPL, EC2 and MC2010 models follow the classical approach that 

treats the material parameters involved in creep as empirical functions of time and loading age; (ii) 

the B3 and B4 models that follows a phenomenological approach, where the materials parameters 
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are determined based on the existing physical, chemical and thermodynamic understanding on 

concrete creep phenomenon and its microstructure. 

6.5.1.1 Double Power Law 

The Double Power Law was proposed in 1976 by Bažant and Osman [152], and it is based on the 

evidence that creep of concrete can be described by power functions of load duration ( )0t t−  and 

inverse power functions of loading age 
0t  to describe aging effect [153].  

It is a simple and versatile model, which is primordially used to simulate concrete basic creep 

component, based on material parameters that should be derived from a data-fitting procedure to the 

experimental creep data. The model allows good adjustments with experimental information 

associated to the basic creep [152], however its formulation is not supported in any physical 

understanding of creep. 

Since its origin, the model received relevant updates, in order to increase creep prediction accuracy 

for long-time duration, by considering a transition from a power function for short-time duration to a 

logarithmic function for long-time duration.  

In Table 12 are presented the original and updated equations of the model. It is also relevant to remark 

that over the years the DPL model suffered several updates related with factors that influence the 

creep deformation along time, namely: drying creep [154]; temperature effect in basic [155] and 

drying creep [156]; and cyclic creep and nonlinearity [157].  
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Table 12 – Basic creep compliance evolution of DPL model. 
Models Creep compliance 

Double Power Law[152], [158]  ( ) ( )1
0 0 0

0 0

1
( , )

nmJ t t t t t
E E


−= +  +  −   Eq. (6.19) 

Log Double Power Law[158] 
 ( ) ( ) ( )0

0 1 0 0

0 0

1
, 1

nmJ t t ln t t t
E E


 − = +  + +  −

 
 

 Eq. (6.20) 

Triple Power Law[159] 
 ( ) ( ) ( ) ( )1

0 0 0 0

0 0

1
, , ;

nmJ t t t t t B t t n
E E


−  = +  + − −

 
 

 Eq. (6.21) 
Variables: 

− 
1 , m , n  and   are materials parameters (see references); 

− 
0 ,281.5 cE E , is the asymptotic elastic modulus [158]; 

− 
,28cE , is the static elastic modulus of concrete at 28 days of age; 

− 
0  and 

1  are constants (see reference [158]); 

− 
0( , ; )B t t n  – binominal integral (see reference [159]). 

Care must be taken, as the DPL and its succeeding variants resort to the concept of the asymptotic 

modulus 
0E , and not to the conventional static elastic modulus E . The 

0E  represents the true elastic 

instantaneous response of the material, while the conventional elastic modulus E  corresponds to a 

modulus obtained from compression tests with loading durations of 1 to 5 minutes, that incorporates 

the instantaneous and short-time creep response of the material within this time interval [158]. In 

Figure 110 is illustrated the concept of 
0E , that corresponds to the asymptotic value of the creep 

curve ( )0,J t t  vs. ( )0log t t− , as ( )0log t t− → −  or ( )0 0t t− → [158]. 

 
Figure 110 – Creep curve in log-time scale (a - true elastic deformation; b - true creep; a’ - 

conventional elastic deformation; b’ – conventional creep) (adapted from [158, Fig. 1]). 
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It should be noticed that the original DPL model and its succeeding improvements have revealed 

divergence of the creep curves, at least for some time periods [159]. 

Bažant and Osman [152] expanded the DPL creep compliance model into a Dirichlet series 

approximation. The DPL creep compliance expressed by a Dirichlet series takes the form: 

 ( )
( ) ( )

( )0

0

10 0

1 1
, 1

t t
N

s

J t t e
E t E t



 

−
−

=

 
 = +  −
 
 

  Eq. (6.22) 
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 
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 Eq. (6.24) 

For N = : 
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

   − − 
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 
 Eq. (6.25) 

where 
0E , ( )a n , ( )b n , 

1 , m  and n  are material parameters; ( )0sE t  is the modulus of the 

isolated spring of the Kelvin generalized model; ( )0E t  are the modulus of each Kelvin chain; and 

  are the chosen retardation times.  

The retardation time controls the growth of creep strain after stress is imposed; the shorter the 

retardation time, the more rapid the creep straining [160]. The retardation times of each Kelvin chain 

corresponds to the time after loading for the strain to reach ( )1 1 63.2%e− =  of its equilibrium 

value, corresponding to the maximum creep deformation obtained by each Kelvin chain. The 

retardation times for each chain are usually selected as 1

1
10




 

−
=  ( 1,2,..., )N =  [128]. 

Although the DPL model origin goes back to 1976 and several research about creep has been carried 

since then, the original model and its variants remain still widely used due to its simplicity and 

versatility when compared to the remaining existing models. This model have been successfully 

applied to predict the creep compliance of CBM in several research works, e.g. [161]–[164]. 
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6.5.1.2 Eurocode 2 

Another creep prediction model available is the Eurocode 2 (EC2) model, that is part of the design 

rules for concrete structures in EU-countries [37]. This model is based on the creep model of fib Model 

Code 1990 [165].  

The EC2 creep model, similarly to the MC2010 model, allows the determination of the creep 

coefficient function ( )0,t t . However, the EC2 model does not separate the time-dependent 

deformation in the basic and drying creep components.  

The model formulation is presented in Table 14. Due to its mathematical expressions, it is possible to 

state that creep coefficient presents a limiting value. Additionally, the model lacks theoretical support. 

It was also verified that the derived creep curves may violate the nondivergence condition [166]. 

When comparing the prediction capability of the model in an extensive creep database, a coefficient 

of variation equal to 20% was attained [37].  
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Table 13 - Creep coefficient function based on EC2 model [37]. 
Creep coefficient: 

 ( ) ( )0 0 0, ,ct t t t  =   Eq. (6.26) 

 ( ) ( )0 0RH cmf t   =    Eq. (6.27) 
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0 2 ch A u=   Eq. (6.34) 

Effect of type of cement and curing temperature: 

 
( )

0. 0, 1.2

0,

9
1 0.5

2
adj T

T

t t days
t


 
 =  + 
 + 

 Eq. (6.35) 

 ( )
4000

13.65
273

0,

1

i

n
T t

T i

i

t t e
−

+ 

=

=    Eq. (6.36) 

Parameters definition: 

cmf  - concrete compressive strength at an age of 28 days, in MPa; 

0,adjt  - adjusted age at loading, considering temperature and type of cement, in days; 

RH  - relative humidity of the ambient environment, in %; 

0h  - notational size, in mm 

cA  - cross-section section, in mm2; 

u  - perimeter of the member in contact with the atmosphere, in mm; 

it  - is the number of days where the temperature T  prevails; 

( )iT t  - is the average temperature during the time period 
it , in °C; 
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1,  cement type S

0,  cement type N

1,  cement type R



− 
 

=  
 
 

 - is a coefficient that depends on the type of cement 

6.5.1.3 Model Code 2010 

The creep model proposed by the Model Code 2010 (MC2010) [30] consists of an update version of 

the one described in the CEB-FIP Model Code 1990 [165].  

The model intends to describe the creep behavior of concrete by considering separately the effect of 

its basic and drying components. The first is considered to be a function of the concrete compressive 

strength, while the latter is related with the size and ambient relative humidity. In both parts, the aging 

effect of concrete is considered by relating the creep deformation with the loading age 
0t . 

Additionally, the MC2010 creep prediction model also takes into account the temperature history, 

cement type and the nonlinear effect of high stress levels. 

The model formulation was empirically derived from calibration to laboratory tests. The mathematical 

expressions to obtain the creep coefficient function ( )0,t t  are presented in Table 14. The creep 

compliance can be obtained using Eq. (6.12).  
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Table 14 – Creep coefficient function based on MC2010 model [30]. 
Creep coefficient: 

 ( ) ( ) ( )0 0 0, , ,bc dct t t t t t  = +  Eq. (6.37) 

where: 

( )0,bc t t - basic creep coefficient; 

( )0,dc t t - drying creep coefficient. 

Basic Creep: 

 ( ) ( ) ( )0 0, ,bc bc cm bct t f t t  =   Eq. (6.38) 

 ( )
( )

0.7

1.8
bc cm

cm

f
f

 =  Eq. (6.39) 

 ( ) ( )

2

0 0

0,

30
, ln 0.035 1bc

adj

t t t t
t


  
 = +  − +     

 Eq. (6.40) 

Drying Creep: 

 ( ) ( ) ( ) ( ) ( )0 0 0, ,dc dc cm dc dct t f RH t t t    =     Eq. (6.41) 

 ( )
03

1
100

0.1
100

RH

RH
h


−

=



 Eq. (6.42) 

 ( )
( )

1.4

412
dc cm

cm

f
f

 =  Eq. (6.43) 

 ( )
( )

0 0.2

0,

1

0.1
dc

adj

t
t

 =
+

 Eq. (6.44) 

 ( )
( )

( )0

0
0

0

,

t

dc

H

t t
t t

t t






 −
=  

+ − 

 Eq. (6.45) 

 1.5 250 1500
cm cmH f fh  =  +     Eq. (6.46) 

 

0.5

35
cmf

cmf


 
=  

 
 Eq. (6.47) 

 ( )0

0,

1

3.5
2.3

adj

t

t

 =

+

 Eq. (6.48) 

 
0 2 ch A u=   Eq. (6.49) 
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Effect of temperature and curing temperature: 

 
( )

0. 0, 1.2

0,

9
1 0.5

2
adj T

T

t t days
t


 
 =  + 
 + 

 Eq. (6.50) 

 ( )
4000

13.65
273

0,

1

i

n
T t

T i

i

t t e
−

+ 

=

=    Eq. (6.51) 

Effect of high stress ( ) ( )0 00.4 0.6cm c cmf t f t  : 

 ( ) ( ) ( )1.5 0.4

0 0, ,
k

t t t t e 

 
−

=   Eq. (6.52) 

 
( )0

c

cm

k
f t




=  Eq. (6.53) 

Parameters definition: 

cmf  - average concrete compressive strength at an age of 28 days, in MPa; 

( )0cmf t  - average concrete compressive strength at the loading age , in MPa; 

0,adjt  - adjusted age at loading, considering temperature and type of cement, in days; 

RH  - relative humidity of the ambient environment, in %; 

0h  - notational size, in mm 

cA  - cross-section section, in mm2; 

u  - perimeter of the member in contact with the atmosphere, in mm; 

it  - is the number of days where the temperature T   prevails; 

( )iT t  - is the average temperature during the time period  , in °C; 

c  - concrete stress, in MPa; 

1, strength class32.5N

0 , strength class32.5R, 42.5N

1 , strength class 42.5R, 52.5N, 52.5R



−

=

 
 
 
 
 

  - is a coefficient that depends on the type of cement 

As result of the mathematical equations, the model considers that the maximum value of the basic 

creep component is unlimited, i.e. ( )0lim ,t bc t t→ = + , while for the drying creep there is a 

limiting value ( )0lim , 1t dc t t→ =  [167]. 

The prediction accuracy of the model was tested on a creep test databank, revealing a reasonable 

good approximation for the time development of creep up to a loading duration of 50 years, with the 

model exhibiting a coefficient of variation equal to 25% [30]. 

It was also verified that the MC2010 model violates the condition of nondivergence of creep curves 

[166]. 

0t

it
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6.5.1.4 B3 model 

Nowadays, one of the most widespread prediction creep models is the model B3. This model is based 

on the solidification theory [141], [142] and microprestress relaxation [143], [144]. It was proposed 

by Bažant, and is presented as simpler, more accurate and with higher theoretical support than other 

existing models [168]. This model complies with general guidelines formulated by RILEM for creep 

and shrinkage prediction models [149], [150].  

One of the most important aspects of the solidification theory, and consequently of the B3 model, is 

the assumption that the chemical constituents of the cement paste are not aging, and aging effect 

observed in the experimental data is a consequence of the volume growth and interlinking of layers 

with nonaging viscoelastic properties [128], [141]. Aging creep takes place exclusively in the cement 

paste, while the aggregates deform elastically [169].  

On the other hand, the microprestress concept is related to the development of tensile stress in the 

cement paste microstructure (micropores in hardened cement gel) as result of the volume changes 

during the hydration process. The microprestress is originated since the early stages of microstructure 

formation and gradually reduces due to relaxation [169]. This relaxation results in long-term aging 

creep deformation (viscous flow) of concrete. 

According to the solidification theory, the creep deformation is considered as a sum of an aging and 

nonaging viscoelastic strains and aging viscous strain (flow) [141], [142], consequently the uniaxial 

total strain can be obtained from [141]: 

 
0

0

cr
E


  = + +  Eq. (6.54) 

 
, ,cr cr v cr f  = +  Eq. (6.55) 

in which,   is the applied stress; 
0E  is the asymptotic modulus; 

0E  is the elastic strain; cr  is 

the creep strain; 
,cr v  is the viscoelastic aging and nonaging creep strain component; 

,cr f  is the 

viscous flow creep strain component; and 
0  is the sum of hygrothermal strain, drying shrinkage, 

autogeneous shrinkage (chemical strain), thermal dilation and eventually cracking strain. For high 

stress levels, the relation between stress and both creep strain subcomponents ( ), ,,cr v cr f   becomes 

nonlinear. 
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The creep compliance function defined according to B3 model [170] is presented in Table 15, and its 

application is recommended for structures highly sensitive to creep effects. Alternatively, for structures 

of medium sensitivity, a short-form formulation is available in [171]. As can be seen in Table 15, the 

creep compliance function is dependent on some constitutive parameters 
1 5,...,q q , that should be 

calibrated from data of short-time creep tests or, in the absence of this information, by using prediction 

expressions statistically derived from existing databases. These prediction expressions use as input 

the information of the concrete mix and strength.  

Table 15 – Creep compliance function based on B3 model [170]. 
Creep compliance: 

 ( ) ( ) ( )0 1 0 0 0, , , ,d dJ t t q C t t C t t t= + +  Eq. (6.56) 

where: 

1q  - instantaneous strain due to unit stress; 

( )0 0,C t t - compliance function for basic creep; 

( )0, ,d dC t t t - compliance function for drying creep. 

Instantaneous component: 

 1
0

1q
E

=  Eq. (6.57) 

Basic creep compliance function: 

 ( ) ( ) ( )0 0 2 0 3 0 4

0

, , ln 1 ln
n t

C t t q Q t t q t t q
t

 
 =  +  + − +    

 
 Eq. (6.58) 

Drying creep compliance function: 

 ( ) ( ) ( )'
0.5

88 '

5, , for
dH tH t

d o d dC t t t q e e t t
− −  =  −  

 
 Eq. (6.59) 

 ( )'

0max ,d dt t t=  Eq. (6.60) 

 ( ) ( ) ( )1 1H t h S t= − −  Eq. (6.61) 

 ( )
0.5

tanh d

sh

t t
S t



 −
=  

 
 Eq. (6.62) 

 ( )
2

sh t sk k D =    Eq. (6.63) 

 2 VD
S

=   Eq. (6.64) 

 ( ) ( )
1

40.08 28.5    days/cmt d ck t f
− −

 =      Eq. (6.65) 

Parameters prediction based on concrete mix and strength: 

 
6

1

,28

0.6 10

c

q
E


=  Eq. (6.66) 

 ( )
0.90.5

2 185.4 cmq c f
−

=    Eq. (6.67) 
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 ( )
4

3 20.29 wq q
c

=    Eq. (6.68) 

 ( )
0.7

4 20.3 aq
c

−

=   Eq. (6.69) 

 ( )
0.615

5 7.57 10 c shq f 
−−

=     Eq. (6.70) 

Parameters definition: 

0E  - asymptotic modulus; 

1q  - parameter that characterizes the strain for extremely short load duration; 

2q  - parameter that characterizes the aging viscoelastic compliance; 

3q  - parameter that characterizes the nonaging viscoelastic compliance; 

4q  - parameter that characterizes the flow compliance; 

5q  - parameter that characterizes the drying creep; 

( )0,Q t t  - Binomial function that results from the integration of the basic creep compliance rate 

( )0 0,C t t

t




, and can be estimated from [170, Ch. 1.71.1]; 

V
S

 - volume-to-surface ratio; 

w
c

 - water-cement ratio, by weight; 

a
c

 - aggregate-cement ratio, by weight; 

sh 
 - ultimate shrinkage strain, calculated according to [41, Eq. 1.19] ; 

h - relative humidity of the environment, expressed as a decimal number 0 1h  ; 

1.00,  for an infinite slab

1.15, for an infinite cylinder

1.25, for an infinite square prism

1.30, for a sphere

1.55, for a cube

sk

 
 
  

=  
 
 
  

  - is a cross-section shape factor 

The B3 model also provides guidance for considering the parameters statistical uncertainties [170]. 

Additionally, the model also presents formulation to consider the effects of temperature [172], cyclic 

loading and environmental humidity variation [173], and nonlinear dependence of creep on stress 

[141]. 

When compared to other creep prediction models, the B3 model presents some improvements, 

namely [141], [142]: 
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- The fact that the material viscoelastic properties are age independent agrees with the 

thermodynamics laws, which can only be formulated for materials that have constant 

properties with time;  

- When the model formulation is expanded to a Dirichlet series (which concept is presented in 

section 6.6), its coefficients (spring moduli and dashpot viscosities) are always nonnegative 

and nondecreasing positive functions with time, complying with the laws of thermodynamics; 

- The model formulation grants the nondivergence of creep curves at constant stress for 

different loading ages; 

- Due to the nondivergence property, the application of superposition principle to simulate the 

creep recovery after unloading yields in monotonic creep recovery curves; 

- Consideration of the nonlinear relation between stress and creep deformation, by relating the 

creep rate as a function of the stress level. This method has a better agreement with existing 

experimental data to describe the nonlinear response of creep, related with the creep rate 

increase for high stress levels and also the for creep recovery after unloading. 

6.5.1.5 B4 model 

More recently, an update of the B3 model was proposed [174], [175]. The improvements of the creep 

model, named B4 model, were driven by the need to improve the long-term creep prediction capability, 

as an analysis of the midspan deflection of 69 large-span prestressed bridges revealed that the existing 

codes and models exhibit significant underestimation of long-term creep [175], [176]. Additionally, 

the B4 model also includes the effect of modern concrete compositions on creep (different types of 

cement, admixtures and aggregates) [175]. 

Compared to the B3 model and pertaining the creep behavior of concrete, the B4 model consists on 

the refinement of the prediction parameters (
1 5,...,q q ) that associate creep dependence on strength 

and mix composition. In this context, two sets of parameters predictors are proposed, being based on 

(i) mix composition and (ii) strength. While the former is aimed to be used in detailed creep analysis, 

the latter is mainly focused to be applied in the design process, or when the mix composition 

information is absent or unknown [176].  
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The prediction parameters were calibrated resorting to an extensive statistical optimization of an 

extended database of laboratory and multi-decade structural observations of the 69 bridges [176]. The 

two sets of expressions proposed to obtain the prediction parameters of the B4 model are presented 

in Table 16. The instantaneous and basic creep compliance function components are equal to the 

ones proposed in the B3 model (Table 15), while the drying creep has some slightly differences (only 

changes are presented in Table 16). In [175] is also presented the methodology to include the effect 

of temperature on basic and drying creep. 

Table 16 – Creep compliance function based on B4 model [175]. 
Instantaneous component: 

 
( )

1
1

28

p
q

E t days
=

=
 Eq. (6.71)v 

Drying creep compliance function: 

 ( ) ( ) ( )'
55

0.5
,, '

5 0, , for
d dd

p H t tp H t t

d o d dC t t t q e e t t
− −  =  −  

 
 Eq. (6.72) 

 ( ) ( ), 1 1 tanh d
d

sh

t t
H t t h



−
= − −   Eq. (6.73) 

 

2

0
1

sh a s

D
k k

mm
 

 
=    

 
 Eq. (6.74) 

Parameters prediction based on mix proportions: 

 
2

2
2

1 0.38

wp
w

cp
q

GPa

 
=  

 
 Eq. (6.75) 

 
3 3

3 3 2
6 0.38

a wp p
a w

c cq p q
   

=      
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 Eq. (6.76) 

 
4 4

4
4

1 6 0.38

a wp p
a w

c cp
q

GPa

   
=     

   
 Eq. (6.77) 

 ( )
5 5

55
5

1 6 0.38

a wp p
a w pc c

h sh d

p
q k t

GPa



 

   
=       

   
 Eq. (6.78) 

 
0

6.5

6 0.38

ca w
pp p

a w
c c

cem

c
 

 


    
=        

     
 Eq. (6.79) 

Parameters prediction based on strength mix: 

 

2
28

2
2

1 40

fs

cfs
q

GPa MPa

 
=  

 
 

 Eq. (6.80) 

 

3
28

3 3 2
40

fs

cfq s q
 

=   
 
 

 Eq. (6.81) 
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4
28

4
4

1 40

fs

cfs
q

GPa MPa

 
=  

 
 

 Eq. (6.82) 

 ( )
5

5

28

5
5

1 40

fs

p
c

h sh d

s f
q k t

GPa MPa



 

 
=    

 
 

 Eq. (6.83) 

 
28

0 ,
40

fs

c
s cem

f
days

MPa



 
 

=   
 
 

 Eq. (6.84) 

Parameters definition: 

1q  - parameter that characterizes the strain for extremely short load duration; 

2q  - parameter that characterizes the aging viscoelastic compliance; 

3q  - parameter that characterizes the nonaging viscoelastic compliance; 

4q  - parameter that characterizes the flow compliance; 

5q  - parameter that characterizes the drying creep; 

1 5...,...,p p  - cement type dependent factor, that can be taken from (see Appendix F); 

2 5...,...,s s  - cement type dependent factor, that can be taken from (see Appendix F); 

... ,, , ,cem s cem fp s    - cement type dependent factor, that can be taken from (see Appendix F); 

ak  - aggregate type dependent correction factor, that can be taken from (see Appendix F); 

( )

31 0.98

12.94 1 0.2 0.98 1
h

h h
k

h h

 −  
=  

− −    
- humidity dependence correction factor; 

w
c

 - water-cement ratio, by weight; 

a
c

 - aggregate-cement ratio, by weight; 

c  - cement content ( )3kg m ;  

h  - relative humidity of the environment, expressed as a decimal number 0 1h  ; 

  - mass density of concrete, in kg/m3;  

( )sh dt  - ultimate shrinkage strain, calculated according to Eq. (F.1) from (see Appendix F). 

According to [166], the B4 model outputs the most accurate creep predictions when applied to the 

Northwestern University creep database, compared to the B3 model and MC2010, amongst other 

models. Other studies [138], [177], [178], also pointed to the increased performance of the models 

based on the solidification-microprestress theory. 
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6.5.2 Proposed model 

As previously stated, the DPL model is capable of producing adequate prediction of the basic creep 

component of CBM. In this work is presented a basic creep model based on the Dirichlet series 

expansion of the DPL model [152], capable of predicting the aging creep behavior of CBM since early 

age. 

The proposed model, henceforward referred as ACC (aging creep compliance) model, formulates the 

creep compliance in view of the elements of the Kelvin chain according to the following expressions: 

 ( )
( ) ( )

0

0

10 0

1 1
, 1

t t
N

s

J t t e
E t E t



 

−
−

=

 
 = +  −
 
 

  Eq. (6.85) 
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( )11,1
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1
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

 








 − − 
=      

 
 Eq. (6.86) 

 
( ) ( )

( )11,1
0
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1
1.2 10 ,  for 
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n

n m

s

b t N
E t E t



 








 − − 
=      = 

 
 Eq. (6.87) 

where b
, n

, 
1,  and m

 are the defining coefficients of the model, which are calibrated from the 

experimental creep test data; N  is the number of Kelvin chains; 
  is the retardation time of the 

th  Kelvin chain; ( )0sE t  is the modulus of the isolated spring of the Kelvin generalized model, and 

( )0E t  are the modulus of each Kelvin chain.  

While in the original model [152], the defining coefficients are fixed for all Kelvin chains, the present 

model uses a different values for these coefficients in each Kelvin chain. The expression to compute 

the modulus of the isolated spring of the Kelvin generalized model ( )0sE t  is different than the 

proposed in the original model. Its value is determined with the following expression: 

 ( ) ( )0 0sE t E t=   Eq. (6.88) 

where ( )0E t  corresponds to the Young Modulus of the material evaluated at the loading age 
0t  and 

  is the scaling factor ( )1.0  . 

To determine the defining coefficients of the ACC model 
1, ,  1,...,b n m N      = =  , a 

nonlinear least square method (NLSM) is applied to the experimental creep compliance curves. This 
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fitting procedure considers the following input data: number of Kelvin chains N  , the retardation times

 , the Young’s modulus ( )0E t , and the scaling factor,  . 

The number of Kelvin chains should be adequately selected, so that their corresponding retardation 

times cover the entire scale of simulation [128]. It is further noted that, according to [128], is advisable 

that the retardation times are uniformly spread over the logarithmic time scale. 

The objective function of the NLSM takes the following form: 

 ( ) ( )( )
2

, 0, , 0, exp
1 1

, ,
LML

j i i j i inum
i j

J t t J t t
= =

 = −  Eq. (6.89) 

where L   is the total number of experimental creep compliance functions to be fitted; 
LM  is the 

number of discrete points considered for fitting each creep function (from experimental data); 
( ), 0, exp

,j i iJ t t  are the experimental values of the creep compliance corresponding to the loading age 

0,it  for each time step 
,j it ; ( ), 0,,j i i num

J t t  are the creep compliance estimated values determined 

according to Eq. (6.85)-Eq. (6.87). The meaning of variables L  and 
LM  is exemplified in Figure 111 

as illustrative case. The number of discrete points, 
LM , should be the enough to accurately capture 

the trend of each creep function. The coefficients of the model can be obtained through the 

minimization of the following the expression: 

 

1,

0

,  1,...,b n m N   



  


=



 = = 

 Eq. (6.90) 

 
Figure 111 — Example of three creep functions ( 3L = ) to be fitted, where each function is defined 

by different number of points: M1=10; M2=8; M3=7. 

tt0,1

L=3

M=10;

t0,2t0,3

1

J(t,    )t0,1

J(t,    )t0,2

J(t,    )t0,3

J(t,  )t0

M=8;
2

M=7
3



Advanced tools for design and analysis of fiber reinforced concrete structures 
 

169 

The ACC model performance was appraised in the research carried out in [179], [180], regarding its 

application for predicting, since early age, the creep behavior of concrete samples (
0 9t h ) and 

epoxy adhesive (
0 1t day ). As can be seen in Figure 112 and Figure 113, the model yielded 

satisfactory results. In [179] it was also verified that the ACC model inherited the handicap of its source 

model (DPL) related to the violation of the nondivergence condition. 

 
Figure 112 – Estimation of the creep function using the ACC model based on the experimental 

results of concrete samples (extracted from [179]). 

 
Figure 113 – Estimation of the creep function using the ACC model based on the experimental 

results of epoxy samples (extracted from [179]). 

Additionally, the performance of the ACC model has also been appraised in another two sets of 

experimental creep data extracted from the Northwestern University data bank. In Figure 114 and 

Figure 115 it is possible to verify that the ACC model captures adequately the evolution of the creep 

compliance with the load duration and loading age of these two sets of creep tests. 
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Figure 114 – Estimation of the creep function using the ACC model based on the experimental 

results [181] of concrete samples. 

 
Figure 115 – Estimation of the creep function using the ACC model based on the experimental 

results [182] of concrete samples. 

Furthermore, a comparison between the evolution of basic creep with time duration and loading age 

of the ACC and B4 models is performed. The creep compliance curves of the B4 model was 

determined considering the following sets of parameters: i) parameters prediction based on concrete 

strength; ii) cement type R; iii) ( )28 24.87E t days GPa= = ; iv) 0.5m = ; v) 0.1n = ; vi) 0.6w
c =

; vii) 7a
c =  ; viii) 28 28cf MPa= . The defining coefficients of  the ACC model were determined by a 

NLSM to fit the B4 model creep curves, considering the following parameters: i) 

( )3 27.7E t days GPa= = ; ii) ( )7 30.8E t days GPa= = ; iii) ( )28 34.0E t days GPa= = ; iv) 

( )200 36.2E t days GPa= = ; v) ( )2000 37.1E t days GPa= = ; vi) 1.75 = ; vii) 10N = ; viii) 
3

1 1 10 −=  ; ix) 1

1 10

  −=  . As can be seen in Figure 116, the ACC model reveals a good 

agreement with the B4 model particularly for short and medium-term time duration. However, for long-



Advanced tools for design and analysis of fiber reinforced concrete structures 
 

171 

term creep estimation, the ACC model exhibits a deviation from the B4 creep curves. This shortcoming 

of the model is related with the different mathematical formulation of the models. For long-term 

duration the B4 model approaches a logarithmic function, while the ACC model, that is based on the 

original DPL model, uses power curves for all time durations. 

 
Figure 116 – Comparison between ACC and B4 models creep curves. 

6.6 Numerical implementation for structural analysis 

Different computational approaches exist for the analysis of the time-dependent deformation of 

structures, namely [123], [136]: (i) one-step approximate solution using the effective modulus method; 

(ii) one-step approximate solution using the age-adjusted effective modulus method; (iii) step-by-step 

solution according to the integral-type creep law based on the principle of superposition; (iv) step-by-

step solution according to a rate-type creep law based on the Kelvin or Maxwell chain rheological 

models. Preferentially, for more advanced and complex analysis, the choice for a method usually 

resorts to the (iii) integral-type or (iv) rate-type creep law. 

The analysis of structural effects of time-dependent behavior of a CBM structure submitted to varying 

stress histories is based on the resolution of the integral stress-strain relationship based on the 

superposition principle (Eq. (6.5)). However, the adoption of this type of formulation results in the 

need to store the complete history of stress and strains during the numerical simulations, resulting in 

highly time and resource consuming computational tasks, particularly in the analysis of large 

structures with finite element method (FEM) [122], [131]. On the other hand, the computation process 

can be more efficient, if the integral-type relationship is converted into a rate-type relation, with the 
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additional advantage that the latter approach is more adequate for the consideration of the drying 

effects (varying pore humidity and temperature) on creep and aging [130], [136].  

To achieve this purpose, Eq. (6.5) can be converted to a system of differential equations (rate-type 

creep law) when the kernel ( )0,J t t  assumes the degenerated form, which consists of a sum of 

products of functions of t  and 
0t , called Dirichlet series (or Prony series). The degenerated kernel 

has the form [130], [183]: 

 ( )
( ) ( )

( )0

0

10 0

1 1
, 1

t t
N

s

J t t e
E t E t



 

−
−

=

 
 = + −
 
 

  Eq. (6.91) 

where ( )0sE t  and ( )0E t  are coefficients dependent of the loading age 
0t , both with units of elastic 

moduli; 
  are constants called retardation times;   is the number of series; and N  is the total 

number of series. An approximation of a creep function based on Dirichlet series is illustrated in Figure 

117. 

 

 
a) 

 
b) 

Figure 117 – Dirichlet series approximation of the creep function. a) curve of a single exponential in 
log-time; b) decomposition of the creep function (adapted from [128, Fig. 2.7]). 

In fact, the conversion of an integral-type creep law to a rate-type creep law based on expressing the 

creep compliance as a Dirichlet series, results into a differential equation that can be interpreted as a 

Kelvin Generalized rheological model, formed by springs and dashpots (Figure 118) [183], [184]. In 

Eq. (6.91) and Figure 118, ( )0sE t  is the modulus that influences the instantaneous response of the 
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creep function, while ( )0E t  are the moduli of each series (Kelvin chains). More information about 

the particular behavior of the Kelvin chain model components can be found in [126], [127], [185]. 

 
Figure 118 – Kelvin generalized model. 

Upon insertion of the Dirichlet series expansion (Eq. (6.91)) and considering that

( )
( )

( )0

0 0 0 0

0

d t
d t dt t dt

dt


 = = , Eq. (6.5) results in [183]: 

 
( ) ( )

( )

( ) ( )
0

0 0 0

10 00

1 1
( ) 1

t t
t N

s

t e t dt t
E t E t



 

  

−
−

=

  
  = +  −  +
  

  

  Eq. (6.92) 

Rearranging Eq. (6.92), leads to: 

 
( ) ( )

( ) ( )*

0 0 0

1 10 00

1 1
( ) ( )

t N N

s

t t dt t t
E t E t


 

   
= =

 
= +  − + 

  
   Eq. (6.93) 

with: 

 ( )
( )

( )
0

*
0 0

00

1
tt t

t e e t dt
E t

  




 
−

=    Eq. (6.94) 

where ( )* t  may be considered as a hidden state variable that represents the past history.  

The time t  can be subdivided into F  discrete times 
0 1, , ... , Ft t t , with time steps given by 

1n n nt t t − = −  . By considering that ( )0t  and ( )0E t  remain constant within each time step 
nt  , 

but allowing it to change discontinuously in each discrete time 
nt , Eq. (6.94) can take the form [183]:  

 ( )
( )
( )

0

1

*
0*

1

n st

st

tt tn
st

n
st tst

t
t e e dt

E t

  








−

− −

=

 =    Eq. (6.95) 

with *

1st st stt t t +  , using a generalized midpoint rule. Eq. (6.95) can be exactly integrated, yielding 

[183]: 
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 ( )
( )

( )*

*

1

1

st stn t t

st

st st

t
n

n
st

t
e e

t E t
t e     







 



− −−

=

   
    −

   
  

=   Eq. (6.96) 

Based on Eq. (6.96), a recurrent formula can be defined to express the hidden state variable value at 

time 
nt , based on its value in the preceding time step 

1nt −
, which surpasses the need to store the 

hidden variable value at each time step, namely [183]: 

 ( )
( )

( )
( )* *

1*
1

n nt t

n

n n

n n

t
t e t e

t E t

  

 



 
 

 
− −

−

  
 = −  + 
   
 

;  Eq. (6.97) 

Eq. (6.97) evidences that in order to determine the value of the hidden variable of each Kelvin chain 

( )*

nt  for the time 
nt , there is only the need to know (or store) its value from the preceding time 

step ( )*

1nt −
. This procedure is optimal for implementation in FEM software for the analysis of creep 

problems of large structures. 

The initial value of the state variable is determined from the expression: 

 ( )
( )

( )
1*

1

1

t
t

E t








=  Eq. (6.98) 

Based on Eq. (6.93), it is possible to derive the total incremental strain ( )nt  in each time step 

nt  [183]: 

 ( )
( ) ( )

( ) ( ) ( )*

0* *
1 1

1 1N N

n n n n

s n n

t t t t
E t E t
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 
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= =

 
  = +  −  + 
  

   Eq. (6.99) 

with *

1n n nt t t−   , using a generalized midpoint rule. 

The incremental value of the state variable ( )*

nt  can be expressed by: 
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
 = − +



 Eq. (6.100) 

By introducing Eq. (6.100) into Eq. (6.99) leads to: 

1,..., N =
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 Eq. (6.101) 

By arranging Eq. (6.101), a fictitious linear elastic stress-strain law can be obtained [183]: 

 ( )
( )

( )
( ) ( )0

n

n n n

n

t
t t t

E t


  


 = +  +   Eq. (6.102) 

in which ( )nE t  represents a pseudo-instantaneous elastic modulus (Eq. (6.103)), and ( )nt  

represents a pseudo-inelastic strain increment (Eq. (6.104)) [183]. 
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

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
−

−

=
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 
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  Eq. (6.104) 

For the numerical implementation of the material stress-strain constitutive relation into FEM software 

(based on displacement method) it is customary to explicitly derive the stress increment as a function 

of the strain increment. Considering this, Eq. (6.102) can take the form: 

 ( ) ( ) ( ) ( ) ( )0n n n n nt E t t t t     =   −  −  
 Eq. (6.105) 

Considering that ( ) ( ) ( )n n nt E t t = −  , Eq. (6.105) can be rewritten as: 

 ( ) ( ) ( ) ( ) ( )0n n n n nt E t t t t    =   −  +    Eq. (6.106) 

The multiaxial generalization of the problem can be obtained by introducing the matrix C  that relates 

the stress and strains components of the material. Conversely, in the previous equations Eq. (6.93)-
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Eq. (6.106) the strain and stress variables represent vectors, and the stress vector must be coupled 

to the dimensionless compliance matrix C . Introducing the matrix C  in Eq. (6.102) leads to: 

 ( )
( )

( )
( )n

n n

n

C t
t t

E t


 


 = +   Eq. (6.107) 

Assuming that the matrix 1
D C

−
= , the multiaxial generalization of Eq. (6.106) and Eq. (6.97) take 

the form: 

 ( ) ( ) ( ) ( ) ( )0n n n n nt E t D t t t    =  −  +    Eq. (6.108) 
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 Eq. (6.109) 

with ( ) ( ) ( )n n nt E t t = −  . 

For the tridimensional case, the compliance matrix C  is given by [186]: 
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 

+  

 Eq. (6.110) 

In order to perform accurate numerical simulations of creep sensitive structures, it is necessary to 

adopt a creep compliance prediction model that can simulate the aging effect of CBM. As presented 

in Eq. (6.103), in every time step 
nt  it is necessary to supply the moduli of each Kelvin chain ( )*

nE t  

for 1,..., N =  and ( )*

s nE t . This can be performed via the creep compliance prediction models, as 

the ones presented in section 6.5, that can return ( )*,j nJ t t , with *

j nt t . In the absence of analytical 

expressions, the evaluation of the Kelvin chains modulus can be performed with a nonnegative least-

square method [187], [188], where the moduli ( )*

nE t  of each chain are determined, given that the 

appropriate retardation times 
  are provided, similarly to the procedure described in section 6.5.2. 
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6.7 Coupling of creep and thermo-mechanical models 

In this section is presented the formulation for the coupling of the creep model with a thermo-

mechanical model for simulation of CBM elements and structures. 

The mechanical model corresponds to the 3D multidirectional fixed smeared crack model capable of 

simulating the crack initiation and propagation in structures that are discretized with solid finite 

element. The formulation of the model is presented in [189], [190] and is based on the decomposition 

of strain components for the cracked concrete, namely in the cracks 
crco  and concrete between 

cracks 
co  [191]–[193]. 

 ( ) ( ) ( )co crcot t t  = +  Eq. (6.111) 

The uncracked concrete strain component, 
co , can be further decomposed, which incorporates the 

elastic, creep, shrinkage and thermal deformation contribution, namely: 

 ( ) ( ) ( )

( )

( ) ( )

( )0

0

m

co ins cr sh T

t t

t t t t t

 

    = + + +  Eq. (6.112) 

where ins , cr , sh  and T  are the elastic, creep, shrinkage and thermal strain vectors. The sum 

of the elastic and creep components is designated as mechanical strain ( )m t  and the sum of 

shrinkage and thermal components is designated as stress-independent strain ( )0 t  [128], [190]. 

The formulation presented in previous section has been devoted to determine the stress-strain 

relationship of uncracked part of a cracked CBM. Introducing the incremental form of Eq. (6.111) in 

Eq. (6.108), results in the constitutive law of the cracked cement based materials coupled with the 

remaining time-dependent deformations (creep, shrinkage and temperature variations), namely:  

 ( ) ( ) ( ) ( ) ( ) ( )0 crkn n n n n nt E t D t t t t     =  −  − +    Eq. (6.113) 

Regarding the multidirectional fixed smeared crack concept, for a three-dimensional case, at the crack 

plane (local axis) it is considered that the incremental strain vector has three components regarding 

the displacements smeared out in the cracks (Figure 119), namely [189], [190]: 

  1 2

Tl

crk n t t    =     Eq. (6.114) 
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where 
n  is the incremental strain related with the opening displacement w ; 

1t  and 
2t  are 

the incremental strains related with the sliding displacements 
1s  and 

2s , in the 
1t  and 

2t  directions, 

respectively. 

 
Figure 119 – Displacement, stress components and local coordinate system of a crack. 

In the global coordinate system the incremental strain vector crk  is defined by [190]: 

 1 2 3 23 31 12
T

crk crk crk crk crk crk crk        =         Eq. (6.115) 

The local and global incremental strain vectors are related by: 

  
T l

crkcrk crkT  =   Eq. (6.116) 

where crkT  is the matrix that transforms the strain and stress components from the global coordinate 

system to the local crack coordinate system, and its components can be obtained according to the 

formulation presented in [190], [194].  

Regarding the incremental stress vector at the crack plane l

crk , it is defined by [190]: 

 1 2
Tl n t t

crk crk crk crk     =      Eq. (6.117) 

where n

crk  is the mode I incremental crack normal stress, related with the crack opening mode; 
1t

crk  and 2t

crk  are the sliding mode incremental crack shear stress in 
1t  and 

2t  directions, 

respectively. 

The incremental stress vector in the global coordinate system   is defined by [190]: 
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 1 2 3 23 31 12
T

        =         Eq. (6.118) 

The local and global incremental stress vectors are related by [190]: 

 l

crkcrk T  =   Eq. (6.119) 

At the crack, the relationship between the incremental stress and strain vectors is given by [190]: 

 l l

crkcrk crkD  =   Eq. (6.120) 

where 
crkD  is the crack constitutive matrix that incorporates the fracture mode I stiffness modulus, 

n
crkD  and the sliding stiffness modulus according to 

1t  and 
2t  directions, 1t

crkD  and 2t
crkD . 

Incorporating Eq. (6.113) in Eq. (6.119) yields in [190]: 

 ( ) ( ) ( ) ( ) ( )0

l

crcrk crkn n n n nT E t D t t t t      =  −  − +   
 Eq. (6.121) 

Further incorporation of Eq. (6.116) and Eq. (6.120) in Eq. (6.121) results in [190]: 

 ( )
( ) ( ) ( ) ( )

( )  

0crk n n n nl

crk n T

crk crk crkn

T E t D t t t
t

D T E t D T

  


  −  +    =
+

 Eq. (6.122) 

The incorporation of Eq. (6.122) in Eq. (6.116) returns the crack incremental strain in the global 

coordinate system [190]: 

  
( ) ( ) ( ) ( )

( )  

0crk n n n nT

crkcrk T

crk crk crkn

T E t D t t t
T

D T E t D T

  


  −  +    =
+

 Eq. (6.123) 

The inclusion of Eq. (6.123) in Eq. (6.113) completes the relationship between the incremental stress 

and strain of cracked CBM considering the time-dependent deformation, namely [190]: 

( )
( )  

( )  
( ) ( ) ( )  ( )0

T

crkn

crkn n n n nT

crk crk crkn

E t D T
t I T E t D t t t

D T E t D T
    = −   −  +

+

 
     

 

 Eq. (6.124) 

where I  is the identity matrix. In order to resolve Eq. (6.124) a nonlinear transient analysis must be 

performed, since the strain components are time dependent. The computational strategy adopted in 

FEMIX for the resolution of this type of problems is presented in [190], [195]. 
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For the evaluation of the incremental stress-independent strain, ( )0 nt , it is necessary to consider 

the incremental thermal and shrinkage strains.  

The incremental shrinkage strain ( )sh nt  is computed from the existing concrete shrinkage models. 

The Eurocode 2 [37] and B3 [168] shrinkage models are available in FEMIX. 

The incremental thermal strain ( )T nt  is computed from the temperature field the structure is 

submitted at a certain instant t , by adopting a thermal model (e.g. [190]). The thermal model allows 

the simulation of heat transfer in structures by conduction, convection and radiation. The 

implementation of the heat transfer model to the finite element method formulation is presented in 

[190], [195]. In addition, the model allows the consideration of the heat development during the 

hydration process of cement based materials using the Arrhenius law [195], [196]. 

For the evolution of the concrete Young’s modulus, compressive strength and tensile strength can be 

adopted the recommendations proposed in Eurocode 2 [37], while for the fracture energy the 

estimation proposed in [195] can be taken, while no more reliable approach is available from 

experimental evidence.  

6.8 Implementation of ACC model in FEMIX 

Due to the potentialities demonstrated by the ACC model to simulate the aging creep behavior of CBM, 

this model was implemented in FEMIX for the simulation of the creep behavior of CBM structures. 

The main routines of the model are:  

- Read discrete creep compliance curves determined for distinct loading ages; 

- Determine the model’s defining coefficients based on optimization technique; 

- Estimate the creep compliance ( )0,
num

J t t  and the moduli of each Kelvin chain ( )0E t  for 

all the loading ages 
0t  considered. 

Following the nomenclature adopted for the material models used in FEMIX, all data and code routines 

related to the ACC model incorporates the acronym NLMM174.  

In order to use the model in FEMIX is necessary the following input data: 
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- Name of the NLMM174 material model; 

- Number, L , and name of files containing the discrete values of the creep compliance to be 

fitted by the model. Each file contains the following data: 

o Loading age 
0,it ; 

o Modulus of elasticity at the loading age ( )0 0E t ; 

o Number of discrete points for fitting each creep function at the loading age 
LM ; 

o Set of points of the creep compliance ( )0 exp
,J t t  corresponding to the loading age 

0t  for each time step 
,j it ; 

- Number of Kelvin chains N ; 

- Retardation times of each Kelvin chain , 1,..., N  = ; 

- Scaling factor  . 

When analyzing a structure it is possible to consider different creep behavior for the CBM material 

adopted in different structural elements by defining different NLMM174 material models to the finite 

elements that discretize the structural elements. 

The fitting procedures implemented in FEMIX resorts to the nonlinear least squares fitting routine 

MPFIT [109] for the determination of defining coefficients of each NLMM174 material model. In the 

fitting routine, the model derivatives ( )0,J t t    are numerically approximated using the finite 

differences technique that is available in MPFIT. In order to guarantee the output of always positive 

Kelvin chain moduli ( )0E t  during the fitting procedure, the allowed solutions for the parameters b
 

and 
1,  are constrained to 16

1,, 1 10 ;b  − =  +  . 

After determination of the defining coefficients, it is possible to simulate the creep of CBM materials 

with the remaining thermo-mechanical model according to the formulation presented in the previous 

section. For the resolution of Eq. (6.124) during the nonlinear transient analysis of the structure, at 

each time step the value of ( )nE t  is determined by using Eq. (6.103), considering that 

( )*

1 2n n nt t t −= + . The value of ( )*

s nE t  is determined from Eq. (6.88), with the possibility of 

considering the evolution of the Young’s modulus at each *

nt  by adopting the maturity model of 

Eurocode 2 [37] that is implemented in FEMIX under the acronym NLMM173. The value of ( )*

nE t  
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is determined from Eq. (6.86) and Eq. (6.87) for each Kelvin chain 1, ..., N =  using the defining 

coefficients of each NLMM174 model derived during the fitting procedure. 

6.8.1 Numerical examples 

6.8.1.1 Concrete sample under compressive creep test  

The performance of the creep prediction model is appraised by performing the numerical simulation 

of creep compression tests of a concrete specimen and by comparing the numerical results of the 

deformation of the specimen with the experimental results. The experimental campaign was developed 

under the FCT project EXPL/ECM-EST/1323/2013 whose detailed description is presented in [197]. 

Concisely, the experimental program consisted in the casting of concrete cylinders with 150mm of 

diameter and 300mm of height. The specimens were tested in a creep testing rig, and the applied 

load was monitored with 100kN load cells. The specimens were internally monitored with vibrating-

wire strain gauges to measure the longitudinal strains and temperature at the concrete core. The 

experimental program also included the assessment of the evolution of the concrete Young’s modulus 

since early age, by resorting to the EMM-ARM test setup [197]. 

In Figure 120 is presented the creep compliance curves, ( )0,J t t , determined by fitting the 

parameters of the NLMM174 creep model to the experimental creep compliance functions, according 

to the fitting procedure implemented in FEMIX. The estimated creep functions were obtained 

considering 5 Kelvin chains with the retardation times  0.001;0.01;0.1;1;10 days = , the Young’s 

modulus ( )0 0 0.41days 15184E t MPa= = , ( )0 0 2.34 days 33044E t MPa= = , 

( )0 0 3.38 days 34692E t MPa= =  and ( )0 0 7.59 days 37695E t MPa= = , and a factor 1.5 = . 
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Figure 120 – Comparison between estimated and experimental creep compliance curves of concrete 

studied in [197]. 

The numerical simulation of the creep test is performed by assuming a representative 20-node solid 

element, with 1x1x1 Gauss Legendre integration scheme, submitted to the stress history recorded 

during the creep tests. In Figure 121 is presented the load history of one specimen of the experimental 

program, which was considered in the numerical simulation. 

 
Figure 121 – Load history of concrete specimen [197]. 

In Figure 122 is presented the longitudinal strain determined numerically and deformation registered 

experimentally resorting to the vibrating-wire strain gauges after removing the shrinkage and thermal 

deformation of the specimen. As can be seen, there is a good agreement between the numerical and 
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experimental results, which highlight the potentiality of the NLMM174 model to simulate the aging 

basic creep behavior of CBM structures since early ages. 

 
Figure 122 – Experimental and numerical model comparison of the longitudinal strain of the 

concrete specimen submitted to the creep test. 

6.8.1.2 Reinforced concrete beam under flexure creep test 

In the following numerical application, the performance of the creep prediction model is assessed by 

conducting a numerical simulation of a flexurally reinforced concrete beam submitted to bending up 

to a period of about two years. The total deformation obtained in the numerical simulation is compared 

with the experimental results of the beam with the reference CB-59 of experimental campaign 

conducted in [198].  

The geometry, reinforcements, and test setup are presented in Figure 123. The beam is longitudinally 

reinforced with two Ø10 steel bars as tensile reinforcement and two Ø6 steel bars as compressive 

reinforcement. Transverse reinforcements are also adopted in the form of steel stirrups placed in the 

entire length of the beam with a spacing of 75mm. The material properties of the steel reinforcements 

were assessed in [198] and are presented in Table 17. 
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a) 

 
b) 

Figure 123 – Beam geometry, reinforcement, support and loading configuration (dimensions in mm) 
[198]. 

Table 17 – Properties of the steel reinforcements [198]. 

Type of reinforcement 
Yield strength 

[MPa] 
Modulus of 

elasticity [GPa] 
Tensile longitudinal reinforcement 520 194 

Compressive longitudinal reinforcement 525 183 
Transverse reinforcement 212 200 

According to [198] the concrete used to cast the beam had a cement content of 394kg/m3 (ordinary 

Portland cement), a water-cement ratio of 0.53 and an aggregate-cement ratio of 4.56. The concrete 

cube’s compressive strength at 28 days of age was found to be about 40MPa, and the measured 

Young’s modulus at 28 days of age was equal to 27.2GPa, with the flexural tensile strength of 4.67MPa 

[198]. 

After casting, the beam was stored in the laboratory, staying covered with wet gunny sacks for 7 days 

after casting. The beam was loaded 28 days after casting, according to the test setup presented in 

Figure 123b. The loads were applied using concrete blocks and steel plates at four points along the 

beam span (1800mm). The total applied load is equal to 15.8kN ( 3.95F kN= ), which corresponds 

to a load level equal to 59% of the computed ultimate flexural capacity of the beam [198]. 

The midspan deflection of the beam was taken as the average of two dial gauges placed in a fixed 

reference frame, with the readings being regularly recorded up to a period of about two years [198]. 

In order to perform the numerical simulation of the creep flexural test, a finite element model of the 

concrete beam was formed with 20-node solid elements and the steel reinforcements were discretized 

by 3-node linear elements. For the solid elements a 2x2x2 Gauss Legendre integration scheme was 

adopted, while for the steel linear elements were adopted 2 integration points with the Gauss Legendre 

integration technique. Due to the symmetry of the beam, only half-length of the beam is simulated. A 







2Ø6

2Ø10

Ø6//75







      

F F F F






Advanced tools for design and analysis of fiber reinforced concrete structures 
 

186 

total of 1008 solid elements and 224 linear elements are used to simulate the reinforced concrete 

beam. The lateral view of the finite element mesh is presented in Figure 124. 

 
Figure 124 – Finite element mesh: line elements in blue line; solid elements in black line; supports 

in red circles (dimensions in mm). 

For the simulation of the concrete aging creep behavior is adopted the NLMM174 model, as previously 

presented. Due to the inexistence of creep compliance curves for the concrete mixture studied in 

[198], the B4 model is employed to predict the creep behavior of the concrete, based on its mix 

proportions (vide section 6.5.1.5). The creep compliance curves are then considered to determine the 

ACC model coefficients that are used in the NLMM174 model. In Figure 125 is presented the creep 

compliance curves ( )0,J t t  for four loading ages (  0 21,28,56,120t days= ), determined by the 

B4 model and by the NLMM174 creep model. The estimated NLMM174 creep functions were 

obtained considering 7 Kelvin chains with the retardation times

 0.001;0.01;0.1;1;10;100;1000 days = , the Young’s modulus 

( )0 0 21days 26949E t MPa= = , ( )0 0 28 days 27200E t MPa= = , 

( )0 0 56 days 27682E t MPa= =  and ( )0 0 120 days 28057E t MPa= = , and a factor 1.0 = . 
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Figure 125 – Comparison between the creep compliance curves obtained by the B4 model and by 

the NLMM174 model for the concrete studied in [198]. 

In addition, the creep model is combined with the 3D multidirectional fixed smeared crack model 

[189] to simulate the nonlinear behavior of concrete in tension. The smeared crack model considers 

the post-cracking residual strength of the concrete by adopting the trilinear diagram presented in 

Figure 126. The concrete tensile strength was calculated with the expression that relates the flexural 

tensile strength and the tensile strength proposed in MC2010 (Eq. (6.125) with 100bh mm= ), and 

the concrete post-cracking diagram and value of fracture energy were also determined according to 

the models proposed by MC2010 for plain concrete [30]. For the employment of the smeared crack 

model was adopted a crack bandwidth equal to the cubic root of the integration points volume. For 

the shear stress-strain relationship was adopted the concept of shear retention [190], considering a 

cubic degradation of the fracture mode II modulus with the increase of crack normal strain. 

For the compressive behavior of concrete, considering the relatively small load level that the beam is 

submitted, is considered in linear-elastic stage. For the same reason, it was also admitted a linear-

elastic response to simulate the steel reinforcements elements, assuming 200sE GPa=  and 

0.30 = . 

The concrete shrinkage deformation is not considered, as this phenomenon is particularly relevant for 

the analysis of early age problems, and for the loading age adopted in the creep test (
0 28t days= ), 

it is expected to have a minor impact in the obtained results. 
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Figure 126 – Trilinear tensile-softening diagram. 
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 Eq. (6.125) 

In order to assess the instantaneous deformation of the beam, to evaluate the stress level on the steel 

reinforcement elements and determine the initial cracking status of the concrete beam, a static 

analysis was conducted considering the self-weight of the beam and the loads applied during the creep 

test. The latter are simulated as line loads applied along the width of the beam’s cross section, with a 

value of 39.5 /F N mm= . 

In Figure 127 is displayed the vertical displacement of the beam obtained from the static analysis of 

the numerical model. The instantaneous midspan deflection reported in [198] was about 6.70mm, 

which was about 1.11ins mm =  higher than the maximum vertical displacement obtained in the 

numerical simulation ( 5.59mm = ). The discrepancy between the experimental and numerical 

results can be justified by the apparatus used to register the beam deformation during the 

experimental campaign, which does not register the deformation of the beam’s reaction structure, as 

well as the settlement of the beam’s supports. 
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Figure 127 – Displacement along x3 obtained in the static analysis (displacements in mm, deformed 

mesh with 50x magnification factor). 

From the static analysis was also possible to verify the maximum stress level in the steel 

reinforcements. As presented in Table 18, the stress level is considerably lower than the steel yield 

strength, which validates the adoption of a linear-elastic material model to simulate the steel 

reinforcement elements. Furthermore, due to low ratio between the stress and yield strength obtained 

for the instantaneous response, it is expected that the stress in the steel reinforcements remain in the 

elastic stage during the duration of the creep test. 

Table 18 – Maximum stress level of the steel reinforcements obtained in the static analysis. 

Type of reinforcement Stress [MPa] 
Yield strength 

[MPa] 
Stress/Yield 

strength ratio [%] 
Tensile longitudinal reinforcement 194.7 520 37.4 

Compressive longitudinal reinforcement -68.6 -525 13.0 
Transverse reinforcement 8.5 212 4.0 

From the static analysis, it is also possible to verify that a significant number of concrete elements are 

cracked for the considered load level. In Figure 128 is display the crack pattern obtained from the 

numerical model, where the maximum computed crack width is about 0.034mm for a solid element 

in the midspan zone of the finite element mesh. 
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Figure 128 – Crack pattern obtained in the static analysis (only displayed cracks with computed 

crack width higher than 0.005mm). 

Subsequently, a transient analysis was performed considering that the loads of creep tests are applied 

at the age of 28 days, and the deformation of the beam, considering the concrete creep and cracking, 

is obtained for the subsequent time steps up to the age of 750 days. In Figure 129 the instantaneous 

deformation of the beam (
0 28t days= ) and at 750t days=  are compared.  

 
Figure 129 – Displacement along x3 obtained in the transient analysis (displacements in mm, 

deformed meshes with 50x magnification factor). 

In Figure 130 are plotted the evolution of the midspan deflection of the beam with time. In addition to 

the experimental results of [198] and the obtained results from the numerical simulation, it is also 

plotted a curve that increases the numerically obtained midspan deflection by adding the difference 

between the experimental and numerical instantaneous midspan deflection ( 1.11ins mm = ). As can 

be seen, by adding 
ins , is achieved a good agreement between the numerical response and the 

experimental results. 
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Figure 130 – Evolution of midspan deflection of the reinforced concrete beam. 

In Table 19 is summarized the maximum stress level in the steel reinforcements obtained in the 

transient analysis at the time 750t days= . As expected, the steel yield stress is not achieved, and 

when compared to the stress level at 
0 28t days= (Table 18), a significant increase is attained. 

Table 19 – Maximum stress level of the steel reinforcements obtained in the transient analysis for 
750t days= . 

Type of reinforcement 
Stress 
[MPa] 

Yield strength 
[MPa] 

Stress/Yield 
strength ratio [%] 

Tensile longitudinal reinforcement 246.2 520 47.3 
Compressive longitudinal reinforcement -165.0 -525 31.4 

Transverse reinforcement 16.3 212 7.7 

In Figure 131 is display the crack pattern obtained from the transient analysis for 750t days= . 

Compared to the cracking pattern obtained at the loading age 
0 28t days= , presented in Figure 128, 

it is verified the localization of crack opening characterized by the progressive opening of some cracks, 

while the neighboring cracks started to close. The maximum computed crack width at 750t days=  

is about 0.063mm which represent an increase of about 1.85x regarding the maximum crack width 

computed at 
0 28t days=  due to the consideration of concrete creep deformation between cracks. 

 
Figure 131 – Crack pattern obtained in the transient analysis for 750t days=  (only displayed 

cracks with computed crack width higher than 0.005mm). 
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6.9 Concluding remarks 

The present chapter is mainly dedicated to the description of a new creep model, designated by Aging 

Creep Compliance model (ACC), and to the assessment of its predictive performance when applied at 

material and structural level. In addition, a review of creep fundamentals and of the mechanisms that 

influence viscoelastic behavior of cement based materials (CBM) are briefly overviewed. The most 

widespread creep compliance models are presented, including its capabilities and drawbacks. 

The ACC is based on the Dirichlet series expansion of the DPL model, and is capable of predicting the 

aging creep behavior of CBM and structures, since early age. The ACC model uses different values for 

these coefficients in each Kelvin chain, which are obtained by a nonlinear least square method applied 

to the experimental creep compliance curves. The ACC model was integrated into the FEMIX computer 

program, with the code designation of NLMM174 (Non-Linear Material Model 174), and can be 

coupled to the other time dependent constitutive models governing the behavior CBM since their early 

age up to hardened stage, like maturation, shrinkage, thermal variation and cracking. 

The good predictive performance of the ACC at material level was demonstrated by simulating 

experimental tests of laboratory scale. For demonstrating its suitability when coupled with a cracking 

model, a reinforced concrete beam experimentally tested under creep loading conditions was 

simulated. 
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7 IMPLEMENTATION OF A CYCLIC-HYSTERETIC CONSTITUTIVE MODEL FOR 

SIMULATING THE CONTACT BETWEEN DIFFERENT MATERIALS 

To simulate the contact between different materials, a new constitutive model was developed and 

implemented in the Finite Element Method (FEM) software – FEMIX. In the scope of this research, 

the main goal is to apply this constitutive model to simulate the behavior of the interface between 

concrete slabs supported on ground and the respective granular layers of the pavements. 

The constitutive model is applicable to the isoparametric zero-thickness interface finite elements 

available in FEMIX library, namely the 4 or 6-noded interface linear element and the 8 or 16-noded 

interface surface element, that are illustrated in Figure 132. 

 
Figure 132 – Isoparametric zero-thickness finite elements available in FEMIX: a) linear 4-node; b) 

quadratic 6-node; c) Lagrangian 8-node; d) Serendipity 16-node (extracted from [199]). 

7.1 Numerical implementation 

At the integration point level of a linear interface finite element is considered the following relationship: 
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where   is the stress vector, with the tangential ( )1  and normal ( )n  components in the local 

coordinate system. In this equation: 'u  is the vector of the relative displacements of the interface 

elements that comprises a sliding s  and opening w  components; and D  is the constitutive matrix: 
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 Eq. (7.2) 

where 
tD  and 

nD  are the tangential and normal stiffness, respectively. 

For the surface interface elements, a third stress and displacement component are considered, and 

the constitutive matrix is updated, namely: 
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The constitutive model assumes that no tensile stresses can be transferred between the interface, and 

a linear-elastic behavior is considered when the interface element is in compression, as defined by the 

following expression: 
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 Eq. (7.6) 

where  is a user defined value. 

To simulate the shear strength vs. sliding response ( )s −  of the interface was implemented a cyclic 

hysteretic model. It is considered that the envelope of the cyclic response of the interface is described 

by the monotonic response presented in Figure 133.  

The monotonic response is based on the work of [200], that is characterized by a linear-elastic branch 

up to the slide displacement 
0s , followed by a pre-peak nonlinear branch up to the slide displacement 

corresponding to peak shear stress 
ms , and, finally, a post-peak nonlinear branch. The shear-sliding 

nk
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response is defined by Eq. (7.7), and the tangent stiffness at any point of the curve is obtained by 

Eq. (7.8), where the subscript i  represents the relative sliding displacement and shear stress 

according to the local axis of the interface element. For the case of surface interface elements, no 

relationship between the two shear components is considered, and the response of the interface 

elements in each local axis of the finite elements is considered independently. For the case of linear 

interface elements, only one direction is considered, i.e. 1i = . 

 
Figure 133 – Shear stress vs. relative sliding displacement ( )s −  monotonic response of the 

constitutive model. 
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In Eq. (7.7) and Eq. (7.8) the slide displacement 
0s  and 

ms  are user defined values, which 

correspond, respectively, to the slide at the end of the linear-elastic branch and to the slide 

corresponding to peak shear strength of the interface. In addition, 
1  and 

2  are parameters that 



s0 s0 sm

m
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i

i
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define the shape of the pre-peak and post-peak nonlinear branches, respectively, as can be seen in 

Figure 134. 

 
(a) 

 
(b) 

Figure 134 – Schematic representation of the influence of the value of parameters 
1  and 

2  in 

the shape of the s −  relationship. 

The value of the shear stress at the end of the elastic branch 
0  is determined from the expression 

that defines the pre-peak nonlinear branch assuming 
0is s= , as follows: 
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The peak shear stress, 
m , is determined according to the Mohr-Coulomb failure criterion, namely: 

 
m n c  =  +  Eq. (7.10) 

where   is the friction coefficient that is taken equal to the tangent of the angle of internal friction, 

tan = , and c  is the material cohesion of the interface between the materials in contact. 

Previous research [201]–[204] pointed out the existence of a interrelation between the friction 

coefficient and the relative displacement of the concrete pavements and subbase interface. Due to 

this, in the constitutive model is considered that the friction coefficient varies with the accumulated 

relative sliding displacement 
as , as presented in Figure 135, Eq. (7.11), Eq. (7.12) and Eq. (7.13). 

The mathematical formulation of this relationship is based on the curve proposed in Model Code 1990 

for the stress-strain relationship of plain concrete [165]. 
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Figure 135 –Relationship between friction coefficient and accumulated relative sliding displacement 
 of the interface. 
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In order to apply Eq. (7.11) and Eq. (7.12) is necessary to input the maximum friction coefficient 
p  

and the corresponding sliding displacement 
,a ps , the ratio between the maximum friction coefficient 

and the residual friction coefficient   and the initial tangent slope of the 
as −  curve 

i . 

The accumulated relative sliding displacement, 
as , is determined according to the following 

expression: 
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where N  is the number of load combinations. 

The hysteretic model is based on the work developed in [205] to describe the hysteric behavior of 

steel, where the unloading and reloading curves are defined by the Menegotto-Pinto model [206]. The 

Menegotto-Pinto model is used to calculate a curve that connects two tangents with a variable radius 

of curvature at the intersection of those two tangents, whose formulation is presented in Appendix G. 

The steel constitutive model was implemented in FEMIX in the research carried out by Varma [121].  

The hysteretic model is presented in Figure 136. The complete cyclic model is defined by 10 rules, 

with 2 rules governing the monotonic envelope (1,2), and the remaining are set to describe the 

hysteretic response, namely reversal (3,4), returning (5,6), first transition (7,8) and second transitions 

curves (9,10).Considering the value of the relative sliding displacement, shear stress and tangent 

stiffness of the initial and target points of the curve, the shear stress and tangent stiffness of curves 3 

to 10 can be determined according to the formulation presented in Appendix G. 

 
Figure 136 – Representation of the types of curves considered in the cyclic hysteretic model. 

The positive (rule 1) and negative (rule 2) envelopes are defined by Eq. (7.7). When an unloading 

occurs, if the relative sliding displacement is on the first branch of the envelope response, i.e.

00 is s  , is admitted a elastic recovery, without inelastic deformation. When the relative sliding 

displacement surpasses the elastic branch, and an unloading occurs, the reversal curves (rule 3 or 4) 

are applied. 

In Figure 137 are presented the parameters that are considered in the rule 3, which are calculated 

according to Eq. (7.15).  
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Figure 137 – Representation of parameters of reversal curve 3. 

 

( )

( )

( )

( )

( ) ( )

max
max max 0

0 0

max

2

0

,3, max

,3, max

,3, min min

,3, ,3,

3, , ,3,

1 3

0 3

3,

, with

exp
5.0

1

, with

16 1 0.01

b om

rev

om om rev b rev

i o om

i o

i f om o

i f i i f

f t i i f

a

o

s s s s s
s

s
k

s

s s k s k

s s s

s s s s s

s

D D s

R s s

D





 

 

+ +

−

− + − + −

+

−

= + − 

 
= − 

 
 

=  +  −

= +

=

= + 

=

=

=   − 

= ( ) 0
3

0

,3, ,3,

3

1 0.3

2

a

i f i o

a

m

s
s

s s
s

s


−  

−
 =



 Eq. (7.15) 

Similarly, in Figure 138 are represented the parameters that are considered in the rule 4, and in 

Eq. (7.16) are indicated the formulas to calculate these parameters. 
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Figure 138 – Representation of parameters of reversal curve 4. 

 

( )

( )

( )

( )

( ) ( )

min
min min 0

0 0

min

2

0

,4, min

,4, min

,4, max max

,4, ,4,

4, , ,4,

1 3

0 4

4,

with

exp
5.0

1

, with

16 1 0.01

b om

rev

om om rev b rev

i o om

i o

i f om o

i f i i f

f t i i f

a

o

s s s s s
s

s
k

s

s s k s k

s s s

s s s s s

s

D D s

R s s

D





 

 

− −

+

+ − + − +

−

+

= + −  −

 
= − 

 
 

=  − + 

= +

=

= + 

=

=

=   − 

= ( ) 0
4

0

,4, ,4,

4

1 0.3

2

a

i f i o

a

m

s
s

s s
s

s


−  

−
 =



 Eq. (7.16) 

When the reversal from the positive envelope to the negative envelope is not completed (path A-B’ in 

Figure 139), is applied the returning curve (rule 5) from rule 3 to the positive envelope (rule 1). The 

parameters of rule 5 are presented in Figure 139 and are calculated according to Eq. (7.17). 
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Figure 139 – Representation of parameters of returning curve 5. 
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Conversely, when the reversal from the negative envelope to the positive envelope is not completed 

(path A-B’ in Figure 140), is applied the rule 6 that considers a returning curve from rule 4 to the 

negative envelope (rule 2). The parameters of rule 6 are presented in Figure 140 and are calculated 

according to Eq. (7.18). 
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Figure 140 – Representation of parameters of returning curve 6. 
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When a reversal from a returning curve (rule 5 and 6) occurs, it is activated the first transition curve. 

In Figure 141 and Eq. (7.19) are presented the parameters considered in rule 7 that are required 

when a reversal in rule 6 occurs. It is noted that the target point of rule 7 ( ),7, ,7,,i f i fs   is determined 

by applying a new reversal curve (3*) based on the formulation of rule 3, connecting points D’-B’’. 
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Figure 141 – Representation of parameters of first transition curve 7. 
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Conversely, in Figure 142 and Eq. (7.20) is presented the first transition curve that is activated when 

a reversal from rule 6 occurs. In this situation the target point for rule 8 ( ),8, ,8,,i f i fs   is determined 

from a new reversal curve 4*, based on the formulation of rule 4, with the initial point ( )* *

,4, ,4,,i o i os   

being calculated from the expression in Eq. (7.20). 
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Figure 142 – Representation of parameters of first transition curve 8. 
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When a reversal from rule 7 occurs, a second transition curve is enabled (rule 9), aiming the returning 

branch of rule 5. The schematic representation of the second transition curve 9 is presented in Figure 

143, and the defining parameters of rule 9 are presented in Eq. (7.21). To be noticed that the target 

point of rule 9 is the initial point of rule 7 ( ),7, ,7,,i o i os  , and the tangent stiffness 
9, fD  of the target 

point is determined according to rule 5 formulation ( )( )*5
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Figure 143 – Representation of parameters of second transition curve 9. 
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Analogously, when a reversal from rule 8 occurs, a second transition curve is enabled (rule 10), aiming 

the returning branch (rule 6). The schematic representation of the second transition curve 10 is 

presented in Figure 144, and the defining parameters of rule 9 are provided in Eq. (7.22). 
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Figure 144 – Representation of parameters of second transition curve 10. 
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If a reversal from a second transition curve occurs, a new first transition curve is adopted, keeping the 

target point of the first transition curve unchanged. In Figure 145a is represented the reversal from 

rule 9, where a new rule 7 is adopted with a target point equal to ( ),7, ,7,,i f i fs  . Similarly, in Figure 

145b is represented the reversal from rule 10, being adopted a new rule 8 with a target point equal 

to ( ),8, ,8,,i f i fs  . 
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(a) 

 
(b) 

Figure 145 – Representation of reversal from second transition curves of: a) Rule 9; b) Rule 10. 

7.2 Numerical example 

The adequate functioning of the developed constitutive model for interface finite elements, designated 

by NLMM306 in the programming philosophy of FEMIX, is assessed in this section by simulating some 

examples. 

In Figure 146 is presented the geometry, load and support conditions of the first analyzed example. 

This example aims basically to demonstrate the correct hysteretic functioning of the implemented 

model in a situation where the interface is subjected to constant normal compressive stress and 

several loading/unloading sliding loading conditions. The mesh is composed by two 8-node plane 

stress elements (element no. 1 and 2) with 10mm of thickness and one quadratic 6-node interface 

element (element no.3), being coincident the pair of nodes that form the interface element. For the 

interface element is considered a Gauss-Legendre integration scheme with 2 integration points (IP), 

and for the plane stress finite elements is considered a 2x2 IP Gauss-Legendre integration scheme.  
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Figure 146 – Geometry, load and support conditions considered in the numerical model (dimensions 

in mm). 

For the 8-node plane stress elements is considered a linear elastic material model, considering a 

Young’s modulus of 300 GPa and a null Poisson's coefficient. In Table 17 is presented the parameters 

of the NLMM306 constitutive model adopted in the interface element. 

Table 20 – Material properties of the constitutive model of the interface. 
os  0.1 mm 

ms  0.2 mm 
c  0.50 MPa 

1  0.2 

2  0.3 

i  5 mm-1 

p  0.466 

,a ps  0.15 mm 
  0.9 

nk  100x103 N/mm 

In Figure 147 is presented the evolution of the friction coefficient of the IP no (IP2) of the interface 

element, considering the adopted parameters of the NLMM306 constitutive model. 
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Figure 147 – Evolution of friction coefficient with the accumulated sliding displacement. 

In the top edge of element no. 2 is applied an uniformly distributed load with the value of 

1000 /q N mm=  in the 
2x−  global axis direction, which applies a normal compressive stress at each 

integration point of the interface element equal to 100MPa. On nodes 9, 10 and 11 is applied a 

horizontal prescribed displacement (values will be presented in each set of load combinations), whose 

value is equal to the relative sliding displacement of the IP of the interface element. 

7.2.1 Load combinations - set A 

In Figure 148a is presented the prescribed displacement applied at nodes 9, 10 and 11 for the set A 

of load combinations. The corresponding relative sliding displacement vs. shear stress response of 

the IP2 of the interface element is presented in Figure 148b, from which is noticeable the application 

of the rule 1 and 3 of the NLMM306 model.  

The analysis of Figure 148b reveals that due to the variation of the friction coefficient (Figure 147), 

the first branch of the constitutive model also assumes a nonlinear relationship between s − . The 

nonlinear behavior of the first branch of the s −  relationship is justified as follows: 

- The slope of the elastic branch is a function of the shear stress 
0 , as expressed in Eq. (7.8) ; 

- The shear stress 
0  is determined according to Eq. (7.9) considering the peak shear stress 

m ; 

- The peak shear stress is a function of the friction coefficient,  ; 

- The friction coefficient is a function of the accumulated sliding displacement, 
as ; 
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- The accumulated sliding displacement is obtained from Eq. (7.14), which increases with the 

variation of the relative sliding displacement of the interface element IP. 

For this example, the positive curvature of the first branch of the s −  is explained by the progressive 

increase of the tangential stiffness with the increase of the sliding displacement, up to reaching a 

sliding displacement of 
0 0.10s mm= , as shown in Figure 149; 

  
(a) 

 
(b) 

Figure 148 – a) Prescribed horizontal displacement at node 9, 10 and 11 for the set A of load 
combinations. b) Shear stress vs sliding displacement at the IP2 of the interface element. 

 
Figure 149 – Tangential stiffness at the IP2 of the interface element up to load combination 100. 

7.2.2 Load combinations - set B 

In Figure 150b is presented the s −  relationship at the IP2 of the interface element corresponding 

to the prescribed displacement applied in nodes 9, 10 and 11 according to Figure 150a. From this 

numerical simulation is clearly demonstrated the hysteretic response of the NLMM306 constitutive 
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model, as the response encloses the positive (rule 1) and negative (rule 2) envelopes and the reversal 

curves considered in rules 3 and 4.  

Until load combination no. 100 is adopted rule 1, and the relative sliding displacement is lower than 

0s . Due to the monotonic response did not reach the pre-peak nonlinear branch, as 
os s , after load 

combination no. 101 and until relative sliding displacement becomes negative, is still applicable rule 

1, being followed by rule 2 when 0s  . At the load combination no. 201 occurs a reversal of the 

sliding displacement, and rule 4 is activated until the positive envelope (rule 1) is reached. At load 

combination no. 301 a new reversal of the relative sliding displacement takes place and rule 3 is 

activated. However, due to the model restriction (lack of convergence of the iterative process of the 

Menegotto-Pinto model, see Appendix G), a linear interpolation in rule 3 is adopted. After reaching the 

negative envelope at load combination no. 400, a new reversal curve (rule 4) is adopted until the 

positive envelope is reached again (rule 1). 

 
(a) 

 
(b) 

Figure 150 – a) Prescribed horizontal displacement at node 9, 10 and 11 for the set B of load 
combinations; b) Shear stress vs sliding displacement at the IP2 of the interface element. 
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In Figure 151 is presented the set C of load combinations that demonstrates the application of the 

reversal, returning, first and second transition curves. The evolution of the prescribed displacement 

applied in nodes 9, 10 and 11 considered in the numerical example is presented in Figure 151a, and 

the corresponding s −  relationship of IP2 of the interface element is presented in Figure 151b. The 
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envelope and ends in the negative envelope, with unloading and reloading stages in between, with 

rules path of:1→3→2→4→6→8→10→6→2. 

 
(a) 

 
(b) 

Figure 151 – a) Prescribed horizontal displacement at node 9, 10 and 11 for the set C of load 
combinations; b) Shear stress vs sliding displacement at the IP2 of the interface element. 

7.3 Numerical application 

The example in this section aims to assess the capability of the new interface constitutive model to 

simulate the behavior of concrete slabs supported on ground submitted to push-off tests. The results 

of the numerical simulation are compared with the data of the experimental program presented in 

[201]. 

In [201] were conducted several push-off tests of concrete slabs with different geometries and with 

different materials between the concrete slabs and the granular base layers. It is simulated the test 

series no. 1 of the slab 1, which corresponds to a rectangular slab with 3.65x3.15m2 plant dimensions 

and with 152.4mm of thickness. In the interface between the slab and the granular base was placed 

a double layer of polyethylene sheets. The push-off test consisted in the application of a horizontal 

load on the center of the lateral edge of the slab, while the displacement of the slab was registered in 

four points by using dial gages disposed according to the schematic representation shown in Figure 

7.20. The horizontal load was applied with a stressing ram, and the applied load was registered with 

a 444kN load cell. In Figure 152 is presented the test setup.  
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Figure 152 – Test setup of slab tested in [201] (dimensions in mm). 

In order to perform the numerical simulation of the push-off test, a finite element model of the concrete 

slab was formed with 4-node of Reissner-Mindlin shell elements, considering a 2x2 Gauss-Legendre 

integration scheme. For the simulation of the contact conditions between the concrete slab and the 

granular layers of the pavement, 8-node surface interface finite elements were introduced between 

the elements of the slab and the supports that materialize the foundation of the pavement. For the 

surface interface finite elements was adopted a Gauss-Legendre 2x2 integration scheme. The finite 

element mesh is shown in Figure 153, being formed by 270 shell elements and 270 interface 

elements. 
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Figure 153 – Finite element mesh. 

The simulation is carried under displacement control. Resorting to the arc-length technique [207], the 

magnitude of the point load applied at node 295 is determined in order that the incremental 

displacement of the node 9 is equal to 1 3

9 2 10x mm −=   in each iteration. The self-weight of the slab 

is also considered during the analysis. 

For the simulation of the concrete behavior is admitted a linear-elastic response, assuming a Young’s 

modulus 30.0cE GPa=  and Poisson’s ratio 0.20 = . Based on the information collected in [201], 

the slab’s concrete density is equal to 32070 /c kg m = . 

The NLMM306 constitutive model is considered for simulating the behavior of the interface elements, 

with the parameters presented in Table 21. 

Table 21 - Material properties of the constitutive model of the interface. 
os  31 10−  mm 

ms  0.125 mm 
c  0.0 MPa 

1  0.10 

2  0.01 

i  10 mm-1 

p  0.472 

,a ps  0.125 mm 
  0.99 

nk  91 10  N/mm 

Node 295;

Applied load

Node 304

Node 286

Node 9

x1

x2
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In Figure 154 is presented the relationship between the applied horizontal load and the average 

displacement in the 
1x  direction of the nodes 9, 286, 295 and 304 of the mesh (Figure 153), similarly 

to the procedure employed in [201]. The very good agreement between the numerical model and 

experimental results reveals the capability of the NLMM306 constitutive model to simulate the 

behavior of the interface between concretes slabs supported on ground. 

 
Figure 154 – Horizontal load vs. displacement in the 

1x  direction relationship of the slab. 

7.4 Concluding remarks 

This chapter was dedicated to the description of a new constitutive model for simulating the contact 

between different materials. The constitutive model was implemented in FEMIX to be adopted in 

zero-thickness interface elements. 

To simulate the shear strength vs. sliding response of the interface was implemented a cyclic hysteretic 

model. Within the model, the maximum shear stress is defined according to the Mohr-Coulomb law, 

while being adopted a nonlinear variation of the friction coefficient as a function of the sliding 

displacement of the interface. 

The hysteretic response of the model was demonstrated by conducting simulations of simplified 

numerical examples, and some of the model’s particularities were presented. 
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The capability of the model to simulate the interface of concrete slabs supported on ground was 

assessed by performing the numerical simulation of a push-off test. It was verified a good agreement 

between the numerical and experimental response of the force vs. sliding displacement of the concrete 

slab. 
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8 CONCLUSIONS 

8.1 Main conclusions 

The present thesis has focused on the development and implementation of numerical tools that can 

be applied in the analysis and design of FRC structures.  

In this scope, the development of a software which is based on the most recent guidelines and 

recommendations for the design of FRC members, FRCcalc, can represent a significant resource for 

the design community. Based on a user-friendly interface, the program allows to conduct fast and 

detailed analysis of the ultimate and serviceability limit state safety verifications of FRC structural 

members, filling a gap in the availability of a software to conduct analysis of FRC members. In addition, 

the possibility to run comparative analysis between the structural performance of a concrete element 

with traditional reinforcements and fiber reinforcements can, based on the improved performance of 

FRC, promote the increase of prescription of FRC at the design stage. 

One of the most promising application of fiber reinforcements relies on the replacement of 

conventional shear reinforcements of concrete. In this aim, it was conducted an assessment of the 

reliability of the shear prediction models available on MC2010, by comparison with the experimental 

results of an extended version of a database of FRC elements shear tests. For the database under 

analysis, both models revealed a satisfactory approximation to the experimental results, and in average 

both models exhibited very similar predictive performance. A significant finding of the research relied 

on the fact that, in the majority of the cases, both shear prediction models returned safe estimations 

of the shear resistance of the FRC beams of the database. In addition, after application of the partial 

safety factor for FRC, both models always return safe predictions, which confirms the reliability of the 

shear models for the design of FRC structures. 

For the analysis of the flexural response of FRC members, an approach that couples the influence of 

fiber orientation and segregation, and the contribution of the pullout resistance of each fiber bridging 

a crack was developed. A novel local constitutive model for the pullout response of the fibers was 

proposed, which can be adapted to simulate the interface behavior between different types of fibers 

and concrete matrix properties. By adopting a fitting procedure to derive the values that define the 

parameters of the local bond strength vs. displacement of aligned fibers, the integrated model was 
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able to capture the flexural response of steel fiber reinforced concrete notched beams submitted to 3-

point bending tests. Although some discrepancies were found in its application to simulate the flexural 

response of FRC structural members for two case studies, it is believed that the followed approach 

can simulate more realistically the post-cracking response of FRC in comparison to the already 

available models, e.g. generalized stress vs. crack width relationships. The performance of the model 

would greatly benefit from the characterization of the pullout response of aligned and inclined fibers, 

which is being a major research topic in the more recent years. 

One of major reasons for the use of fiber reinforcements is the capability of fibers to transfer stresses 

across cracks, increasing the stiffness of cracked structural elements, which ultimately limits crack 

opening and reduces structural member’s deformation. In order to estimate the crack opening and 

deformation of FRC structural members under sustained loading, a new basic creep model – ACC 

model – based on the Dirichlet series expansion of the DPL model was developed for predicting the 

aging creep behavior of CBM, since early age. The model was integrated in FEMIX, which can be 

coupled with other time dependent constitutive models governing the behavior CBM since their early 

age up to hardened stage, like maturation, shrinkage, thermal variation and cracking. The good 

predictive performance of the ACC was demonstrated at material and structural levels. For this last 

situation, of more interest in structural design practice, the long term deflection of a reinforced 

concrete beam submitted to flexural creep test was predicted with good accuracy, in a complex 

scenario where cracking has also occurred. For the case of FRC members, the model can be adopted 

to simulate creep of concrete in compression and in tension between cracks. 

Until now, the widest use of FRC resides in its application in slabs of pavements supported on ground, 

mainly for industrial buildings. In this topic, is of paramount importance to adequately simulate the 

support conditions of the slabs, since the stress state and crack propagation developed in the slabs 

are significantly influenced by the restriction promoted by the granular layers of their foundation 

system. In this scope, it was implemented in FEMIX a constitutive model that can simulate the 

contact between different materials, namely concrete slabs supported on ground. The model adopts 

a cyclic-hysteretic response based on Mohr-Coulomb law, while a variable friction coefficient is 

adopted. In addition, only shear and compressive stresses are permitted in the interface between 

materials. This model can be used with the available models in FEMIX to simulate FRC cracking, 
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creep, shrinkage, maturation and thermal variation, and perform extremely thorough analysis for the 

assessment of the behavior of FRC pavements. 

8.2 Possible future developments 

The work conducted in this thesis can be further developed, and the following list of research topics 

is proposed: 

- Upgrade the design capabilities of FRCcalc to allow the analysis of T and I-shaped FRC cross-

sections, the use of prestressed reinforcements, and the use of fiber reinforced polymer 

reinforcement bars. Addition of a new module in FRCcalc for conducting comparative 

analysis of the economic aspects of concrete elements with traditional reinforcements and 

fiber reinforcements. In addition, a special module aimed for the design of FRC slabs 

supported on ground, submitted to the typical load conditions, could also reveal a great 

interest due to the widespread use of fiber reinforcements in this type of structures, namely 

in industrial buildings; 

- The fiber pullout resistance model, used in the analysis of FRC structures, should be extended 

to the use of non-steel based fiber reinforcements, particularly glass and synthetic fibers; 

- In the fiber segregation model, further research can be carried out by assessing the 

performance improvement of the numerical tool by adopting a nonlinear distribution of fibers 

along the cross-section height. The reliability of these models should be assessed with 

experimental results; 

- A creep model for concrete in compression and for the fiber-matrix interface can be 

implemented in the numerical tool presented in chapter 5, in order to adequately predict the 

long term deflection and crack opening of FRC members. 

- Coupling a tension-stiffening model, similar to the one proposed in [25], [208], with the fiber 

orientation profile, fiber segregation and fiber pullout resistance models to improve the 

capability to simulate the flexural and cracking behavior of FRC members, including members 

flexurally reinforced with conventional reinforcements (R-FRC). A new software based on the 

force method can be developed for the analysis of a R-FRC structures, where the flexibility 
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matrix of the structure is updated according to the moment-rotation relationship outputted by 

DOCROS; 

- The integrated approach that adopts the fiber orientation profile, fiber segregation model and 

fiber pullout resistance can be implemented in FEM-based software, as FEMIX, to be used 

in the analysis of more complex structural elements. In addition, the model formulation could 

also be improved in order to consider Mode II fracture of FRC based on the work of [209]. 

- Development of a time-dependent model to simulate the evolution of the post-cracking 

behavior of FRC since early ages. This model can be implemented in the available smeared 

crack model that is applied for the simulation of the crack opening and propagation of FRC, 

and be coupled with the thermo, maturation, creep and shrinkage models that are adopted 

in the simulation of cement based materials since early ages. 
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A APPENDIX A 

In Table 22 are presented the reference values of concrete mechanical properties based on the existing 

strength classes. 

Table 22 – Reference values of concrete mechanical properties for each strength class [30]. 

Strength 
classes 

ckf  
[MPa] 

3c  

[-] 
3cu  

[-] 
cE  

[GPa] 
ctmf  

[MPa] 

C12/16 12.0 1.750E-03 3.50E-03 27.0 1.6 
C16/20 16.0 1.750E-03 3.50E-03 29.0 1.9 
C20/25 20.0 1.750E-03 3.50E-03 30.0 2.2 
C25/30 25.0 1.750E-03 3.50E-03 31.0 2.6 
C30/37 30.0 1.750E-03 3.50E-03 33.0 2.9 
C35/45 35.0 1.750E-03 3.50E-03 34.0 3.2 
C40/50 40.0 1.750E-03 3.50E-03 35.0 3.5 
C45/55 45.0 1.750E-03 3.50E-03 36.0 3.8 
C50/60 50.0 1.750E-03 3.50E-03 37.0 4.1 
C55/67 55.0 1.800E-03 3.10E-03 38.0 4.2 
C60/75 60.0 1.900E-03 2.90E-03 39.0 4.4 
C70/85 70.0 2.000E-03 2.70E-03 41.0 4.6 
C80/95 80.0 2.200E-03 2.60E-03 42.0 4.8 
C90/105 90.0 2.300E-03 2.60E-03 44.0 5.0 
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B APPENDIX B 

The rigid-plastic and linear models are derived from the observed results of 3PNBBT to describe the 

uniaxial tension behavior of FRC. 

The rigid-plastic model is derived from an ultimate design analysis of FRC cross-section of the notched 

beams, and considers that the compressive force is concentrated in the top fiber of the section, while 

the tensile post-cracking strength of the FRC is distributed along the cross-section with a constant 

stress of 
Ftuf  (Figure 155) [30]. 

The value of 
Ftuf  can be obtained by equating the internal resisting moment of the cross-section, 

,intuM , and the external applied moment, 
,u extM , considering the forces acting on the beam during 

the 3PNBBT at ULS. Considering that at ULS the ultimate crack opening of FRC is equal to 

3 2.5uw CMOD mm= = , which and that considering a liner-elastic stress distribution in the 

specimen critical cross-section (notch zone) the maximum stress in the cross-section corresponds to 

the residual flexural strength 
3Rf  [39] (Figure 155), the expression that yields in the relationship 

between 
Ftuf  and 

3Rf  presented in Eq. (2.15), can be deduced from: 

 
2 2

3 3
, ,int

6 2 3

R sp Ftu sp R
u ext u Ftu

f b h f b h f
M M f

   
=  =  =

 
 Eq. (B.1) 

 
Figure 155 – Stress-strain distribution in 3PNBBT critical cross-section at ULS considering the rigid-

plastic model for FRC. 

The linear model is defined by two variables: the serviceability and ultimate residual tensile strength, 

Ftsf  and 
Ftuf , respectively. Each variable is defined according to different assumptions at SLS and 

ULS. 

h

b

h
sp

Strain StressStress
(linear-elastic)
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At SLS it is considered that the FRC in the notched beam cross-section assumes an elastoplastic stress 

distribution for FRC in tension and linear-elastic stress distribution in compression [30]. Considering 

a linear-elastic stress distribution assumed for the critical cross-section of 3PNBBT (Figure 156) at 

SLS, the serviceability residual tensile strength 
Ftsf  can be derived from following set of equilibrium 

equations: 

( )

2

1,int ,

0
0 2

1 2

3 2 2 3 3 6

Fts
Fts

R sps s ext Fts
Fts

f b q
b x f b y q

F

f b hM M f b qy
f b y x q x


 

  − −   − = = 
 

 =           + −   +  =       



 

 Eq. (B.2) 

 
cE x =     Eq. (B.3) 

 Ftsf x
q




=

 
 Eq. (B.4) 

 
cs

w

l y
 =

  
 Eq. (B.5) 

where, 
1 0.5w CMOD mm= =  and 

spy h x= − . 

 
Figure 156 – Stress-strain distribution in 3PNBBT critical cross-section at SLS for determination of 

Ftsf . 

The resolution of the set of equilibrium equations Eq. (B.2) yields a correlation between 
Ftsf  and 

1Rf  

that depends on the Young’s modulus, 
cE  , and of the structural characteristic length, 

csl  , namely 

[39]: 

 ( ) 1,Fts a cs Rf k E l f=     Eq. (B.6) 
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Considering that 
cs spl h= , the factor 

ak  changes with the Young’s modulus, ranging between 0.362 

and 0.375 (Figure 157), with an average value of 0.37ak =  [39]. 

 
Figure 157 – Values of  for the linear model and considering 

cs spl h=  (extracted from [39]). 

At ULS it is considered that the compressive stress is concentrated in the top fiber of the critical cross-

section, and that the FRC assumes a linear stress distribution along the cross-section. It is assumed 

that the tensile strength varies from 
1b Rk f  at 0w = , and 

Ftuf   at 2.5uw w mm= =  [39]. 

Considering the rotational equilibrium of the cross-section, 
Ftuf  can be defined as: 

 

( )
2 2 2

3

, 1

,int

3 1

2 3 6

0.5
2

Ftu sp sp R sp

u ext b R Ftu

u

b
Ftu R R

f b h b h f b h
M k f f

M

k
f f f

    
 +  −  =

= 

=  − 



  Eq. (B.7) 

Considering that the linear model has also to pass in the point 
1CMOD 0.5w mm= = , 

1 10.37Fts a R Rf k f f=  =  , the value of 
bk  can be obtained from: 

 3

1

0.529 0.143 R
b

R

f
k

f
= −   Eq. (B.8) 

ak
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Figure 158 – Stress-strain distribution in 3PNBBT critical cross-section at SLS for determination of

Ftuf . 

In order to obtain the expression presented in Eq. (2.16), it is introduced in Eq. (B.8) the lower limit 

of the expression presented in Eq. (2.3), 
3 10.5R Rf f=  , and 

bk  takes the value of: 

 0.45bk =  Eq. (B.9) 

Introducing the value of 
bk   in Eq. (B.7), the ultimate residual tensile strength for 2.5uw mm=   can 

be obtained by: 

 
3 1 3 10.5 0.225 0.5 0.2Ftu R R R Rf f f f f=  −    −   Eq. (B.10) 

The expression presented in Eq. (2.17) corresponds to the ultimate residual tensile strength of the 

linear model that can be calculated for ultimate crack opening values that differ from 
3CMODuw   . 
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C APPENDIX C 

In the present section are presented the derivation of the compatibility and equilibrium equations of 

the generic rectangular cross-section presented in Figure 35, that are implemented in the software 

FRCCalc.  

Based on Figure 35 the forces and moment equilibrium equations in the cross-section are: 

 
, ,

, ,
2

s t u t r c

i i s t u t r c

F F F F N
F N

h
F d M M M M M N M

+ + + =
 = 

 
 = + + + +  = 






  Eq. (C.1) 

From Figure 35is also possible to define the following compatibility relationships: 

 
top

i top i

x

p

 

  

= − 


= + 

 Eq. (C.2) 

where 
id  is the depth of the resultant internal forces, relatively to the top fiber of the cross-section; 

and   is the curvature of the cross-section. 

By specifying the bilinear diagram for concrete in compression (section 2.3.1), the distribution of 

compressive stress ( )1 2,c c  , forces ( )1 2,c cF F  and forces depth ( )1 2,c cd d  in the cross-section is 

presented in Figure 159 and Figure 160, for situations where the neutral axis position is inside the 

cross-section and member presents positive and negative curvature respectively. For situations where 

the neutral axis position is outside the cross-section is assumed a virtual compressive force between 

the neutral axis and the face of the cross-section ( )1, 2,,c v c vF F , as can be seen in Figure 161 and 

Figure 162. 
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(c) 

Figure 159 – Stress, strain, compressive forces and forces depth for the compressive zone of the 
cross-section applying the bilinear model, for positive curvature and neutral axis position inside the 

cross-section. 

 
(a) 

c1

c2

h

b

Strain StressCross section

c3


cu3

top

c1F

Forces

c2F

x c
1

x c
2 d

c2

d c
1

M


bot

As1

As2 s2F d
s2

s2

s1


s1F

d
s1

s2

s1

FRC/RC

(1+   )

x p c1

p c2

N
>0

=fcd

=fcd

As1

h

b

Strain StressCross section

c3

cu3



top

c1F

x c
1

c1

As2

Forces

d
c1M

bot

s2F d
s2

s2


s1 s1F

d
s1

FRC/RC

(1+   )

<0

p c1

p c2

N

s2
x

c2=fcd



Advanced tools for design and analysis of fiber reinforced concrete structures 
 

237 

 
(b) 

 
(c) 

Figure 160 – Stress, strain, compressive forces and forces depth for the compressive zone of the 
cross-section applying the bilinear model, for negative curvature and neutral axis position inside the 

cross-section. 
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(e) 

Figure 161 – Stress, strain, compressive forces and forces depth for the compressive zone of the 
cross-section applying the bilinear model, for positive curvature and neutral axis position outside the 

cross-section. 
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(d) 

 
(e) 

Figure 162 – Stress, strain, compressive forces and forces depth for the compressive zone of the 
cross-section applying the bilinear model, for negative curvature and neutral axis position outside the 

cross-section. 
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From Figure 159 to Figure 162 can be deducted the following relationships: 
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The design compressive strength of concrete, 
cdf , is determined according to Eq. (2.9). In FRCcalc 

it is assumed that 1.0cc =  and that for ULS analysis the partial safety factor assumes the value of 

1.50c =  and for SLS analysis the value is equal to 1.0c = . 

As can be deducted in Eq. (C.7) and Figure 159, in the model is considered the influence of creep of 

concrete under compression, in accordance with the methodology presented in section 2.3.1. 

The stress and internal forces of the conventional steel rebars are also represented in Figure 159. 

Applying the elastic-perfectly plastic diagram for steel in compression and tension (section 2.3.2), the 

rebars stress ( )1 2,s s  , forces ( )1 2,s sF F  and force depth ( )1 2,s sd d  can be determined from the 

following expressions: 
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For FRC in tension, the stress-strain model to be adopted depends if a ULS and SLS analysis is being 

performed. In FRCcalc a generalized stress-strain distribution is adopted that is capable to be 

adapted to both ULS and SLS FRC in tension models. The generalized model is divided in 4 linear 

branches, which is presented in Figure 163. 

 
Figure 163 – Generalized multi-linear model for FRC in tension. 
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As presented in section 2.5.1, for FRC cross-section with longitudinal steel bars reinforcement the 

tensile zone should be divided in two zones. Consequently, an independent stress-strain relationship 

is applied for each zone. In Figure 163 the index i  represents the tensile zones of the cross-section, 

where i r=  stands for reinforced zone, corresponding to the effective tension zone of the section, 

and i u=  is referred to the unreinforced zone, corresponding to the remaining part of the cross-

section, i.e. zone between the height of the effective tensile zone and the neutral axis position. 

The possible distribution of stresses, strains, tensile forces and force depth for the unreinforced tensile 

zone of the cross-section are represented in Figure 164 and Figure 165 for the situation where the 

neutral axis position is inside the cross-section and member presents positive and negative curvature 

respectively. For situations where the neutral axis position is outside the cross-section are assumed 

virtual tensile forces between the neutral axis and the face of the cross-section ( ), ,ti u vF , as can be 

seen in Figure 166 and Figure 167. 
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(e) 

Figure 164 – Possible distribution of stresses, strains, tensile forces and forces levers for the 
unreinforced tensile zone of a FRC cross-section with longitudinal conventional reinforcement, 

adopting quadrilinear stress-strain diagram, for positive curvature and neutral axis position inside the 
cross-section. 
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(e) 

Figure 165 – Possible distribution of stresses, strains, tensile forces and forces levers for the 
unreinforced tensile zone of a FRC cross-section with longitudinal conventional reinforcement, 

adopting quadrilinear stress-strain diagram, for negative curvature and neutral axis position inside 
the cross-section. 
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(f) 

Figure 166 – Possible distribution of stresses, strains, tensile forces and forces levers for the 
unreinforced tensile zone of a FRC cross-section with longitudinal conventional reinforcement, 

adopting quadrilinear stress-strain diagram, for positive curvature and neutral axis position outside 
the cross-section. 

 
(a) 

*

*

*

*

*

*

*

*
h

b
StrainCross section

t4,u

h
c,

ef
t1,uF

y
h

c,
ef

=t1,u

Stress


hc,ef

As2

M

Forces

bot

FRC

N
p t2

,u

top

>0 p h
c,

ef

x

As1

=
y t

1
,u

,v

t1,u,vF

t3,u

y
t1

,u t1,u,vt1,u

p t3
,u

t2_2,u,vF
t2,u =t2,ut2,u,v

t2_1,u,vF

t3_1,u,vF

t3_2,u,vF

=
y t

2
,u

,v
y t

2
,u

p t4
,u

=t3,ut3,u,v

=
y t

3
,u

,v
y

t3
,u

t2_1,uF

t2_2,uF

t3_1,uF

t3_2,uF

d
t3

_
2
,u=

d
t3

_
2
,u

,v

d
t3

_
1
,u=

d
t3

_
1
,u

,v

d
t2

_
2
,u=

d
t2

_
2
,u

,v

d
t2

_
1
,u=

d
t2

_
1
,u

,v

d
t1

,u
=

d
t1

,u
,v

p t1
,u

t4_1,u,vF t4_1,uF

t4_2,u,vF t4_2,uF

d
t4

_
1
,u=

d
t4

_
1
,u

,v

d
t4

_
2
,u=

d
t4

_
2
,u

,v

=
y t

4
,u

,v
y

t4
,u

=t4,ut4,u,v

y

y
h

c,
ef

h

b

StrainCross section

t1,u

h
c,

ef

t1,uF

y
h

c,
ef

t1,u

Stress

As2

M



Forces

top
d

t1
,u

FRC

N

p t1
,u

=bot

<0

p h
c,

ef

x

As1

y
t1

,u
,v t1,u,vFt1,u,v t1,u,v

d
t1

,u
,vy

*
t1,uhc,efhc,ef

=
t1,u
*

y
t1

,u=
y h

c,
ef



Advanced tools for design and analysis of fiber reinforced concrete structures 
 

254 

 
(b) 

 
(c) 

h

b

StrainCross section

t1,u

h
c,

ef

t1,uF

y
h

c,
ef

t1,u

Stress

As2

y
t1

,u

M

Forces

top

d
t1

,u

FRC

N

p t
1

,u

=bot

<0 p h
c,

ef

x

As1

y
t1

,u
,v t1,u,vFt1,u,v

t1,u,v

d
t1

,u
,v

t2,u

t2_1,uF
t2_2,uF

t2,u

d
t2

_
1

,u

d
t2

_
2

,u

y

p t2
,u

* *

hc,efhc,ef
=

t2,u
* t2,u

*

t2
,u=

y h
c,

ef
y

h

b

StrainCross section


t3,u

h
c,

ef

t1,uF

y
h
c,

ef

=t1,u

Stress

As2

y
t2

,u

M

Forces

d
t1

,u

FRC

N

p t1
,u

=bot

<0

p h
c,

ef

x

As1

=
y t

1
,u

,v t1,u,vF

t2,u,v t2,u,v
=

d
t1

,u
,v

t2,u

t3_1,uF

t3_2,uF

t2,u

d
t2

_
1
,u

d
t2

_
2
,u

y
t1

,u

t1,u,vt1,u

p t2
,u

p t3
,u

t3,u

t2_1,u,vF t2_2,u,vF
d

t2
_
1
,u

,v

d
t2

_
2
,u

,v

t2_1,uF
t2_2,uF

d
t3

_
1
,u

d
t3

_
2
,u

y
t2

,u
,v

=t1,u,v

top

y

**

*
*

hc,efhc,ef
=

t3,u
* t3,u

*

y t
3
,u=

y h
c,

ef



Advanced tools for design and analysis of fiber reinforced concrete structures 
 

255 

 
(d) 

 
(e) 

h

b

StrainCross section

t4,u

h
c,

ef

t1,uF

y
h

c,
ef

=t1,u

Stress

As2

y
t3

,u

M

Forces

top

d
t1

,u

FRC

N

p t1
,u

=bot

<0

p h
c,

ef

x

As1

=
y t

1
,u

,v
t1,u,vF

t3,u,v t3,u,v

=
d

t1
,u

,v

t3,u

t4_1,uF

t4_2,uF

t3,u

d
t3

_
1

,u

d
t3

_
2

,u

y
t1

,u t1,u,v
t1,u

p t2
,u

p t4
,u

t4,u

t2_2,u,vF

d
t2

_
1

,u=
d

t2
_

1
,u

,v

d
t2

_
2

,u=
d

t2
_

2
,u

,v

t3_1,uF
t3_2,uF

d
t4

_
1

,u

d
t4

_
2

,u

t2,u =t2,ut2,u,v

t2_1,u,vF

t3_1,u,vFt3_2,u,vF

d t
3

_
1

,u
,v

d t
3

_
2

,u
,v

=
y

t2
,u

,v
y

t2
,u

y
t3

,u
,v

p t3
,u

t2_1,uF

t2_2,uF

y



*

*

*
*

*

*

hc,efhc,ef
=

t4,u
* t4,u

*

y
t4

,u=
y h

c,
ef

h

b

StrainCross section

t4,u

h
c,

ef

*

*

*

**

*

* *

t1,uF

y
h
c,

ef

Stress


hc,ef

As2
y

t4
,u

,v

M

Forces

top

FRC

N

p t2
,u

=bot

<0

p h
c,

ef

x

As1

t1,u,vF

t3,u,v
t4,u,v

t3,u

t4,u

d
t4

_
2
,u

,v

d
t4

_
1
,u

,v

y
t4

,u

y
t1

,u

t1,u

p t3
,u

t2_2,u,vF

t4_1,uF

t4_2,uF

d
t4

_
1
,u

d
t4

_
2
,u

t2,u =t2,ut2,u,v

t2_1,u,vF

t3_1,u,vF

t3_2,u,vF

=
y t

2
,u

,v
y

t2
,u

p t4
,u

=t3,ut3,u,v

=
y t

3
,u

,v
y

t3
,u

t2_1,uF

t2_2,uF
t3_1,uF

t3_2,uF

t4_1,u,vFt4_2,u,vF

d
t3

_
2
,u=

d
t3

_
2
,u

,v

d
t3

_
1
,u=

d
t3

_
1
,u

,v

d
t2

_
2
,u=

d
t2

_
2
,u

,v

d
t2

_
1
,u=

d
t2

_
1
,u

,v

d
t1

,u
=

d
t1

,u
,v

p t1
,u

=t1,ut1,u,v

y

y
h
c,

ef



Advanced tools for design and analysis of fiber reinforced concrete structures 
 

256 

 
(f) 

Figure 167 – Possible distribution of stresses, strains, tensile forces and forces levers for the 
unreinforced tensile zone of a FRC cross-section with longitudinal conventional reinforcement, 

adopting quadrilinear stress-strain diagram, for negative curvature and neutral axis position outside 
the cross-section. 

The possible distribution of stresses, strains, tensile forces and force depth for the reinforced tensile 

zone of the cross-section are represented in Figure 168 for the situation when quadrilinear tensile 

stress-strain diagram is adopted. 
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(d) 

 
(e) 

Figure 168 – Possible distribution of stresses, strains, tensile forces and forces levers for the 
reinforced tensile zone of a FRC cross-section with longitudinal conventional reinforcement, adopting 

quadrilinear stress-strain diagram. 

From Figure 164 and Figure 168 it is possible to deduct the following relationships: 
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D APPENDIX D 

D.3 Determination of structural characteristic length 

In Table 23 is presented the algorithm for the determination of the structural characteristic length of 

FRC member. The calculation procedure is based on the methodology presented in section 2.3.3.  

The structural characteristic length of an FRC cross-section without longitudinal conventional 

reinforcements is equal to the cross-section height, u

csl h= .  

For FRC cross-section with longitudinal steel rebars, the structural characteristic zone is evaluated for 

the two zones of the cross-section: (i) a reinforced zone limited between the bottom fiber and the 

height of the effective tensile zone, 
,c efh ; (ii) and an unreinforced zone limited by the height of the 

effective tensile zone of the cross-section and extreme compressive (top) fiber of the cross-section.  

The value of r

csl  is the minimum between mean crack spacing, 
rms , and the distance between the 

cross neutral axis-position and the extreme tensile (bottom) fiber of the cross-section, y . The neutral 

axis position is determined considering the bending moment corresponding to the serviceability criteria 

(data input) and disregarding the FRC tensile strength. The value of u

csl  is equal to the distance 

between top fiber of the cross-section and the height of the effective tensile zone of the cross-section. 

Table 23 – Algorithm for determination of structural characteristic length of FRC member. 

ROUTINE TITLE: Calc_structural_length 

INPUT:  
• Class with geometry and material data, cData. 

OUTPUT: 

• Structural characteristic length of the unreinforced zone, u

csl , and of the reinforced zone, 

r

csl . 

I) Determine if longitudinal conventional reinforcements are adopted in the cross-section. Is 

( ) ( ), 1_1 1_ 2 , 2_1 2_ 20 0 0 0 0 0Ed crack s s Ed crack s sM A A M A A  =  =    =  = ? 

i) Yes: Set u

csl h= . Go to II). 

ii) No:  
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i) Read variable corresponding to the creep coefficient, 
c , from cData. 

ii) Set analyze type to RC cross-section: CS_type = RC. 

iii) Set analysis state to SLS: Analysis_type = SLS. 

iv) Resolve cross-section equilibrium equations disregarding tensile strength of FRC: 

Call routine Calc_section(cData, CS_type, Analysis_type,  , 
,Ed crackM , 

,Ed crackN ), and retrieve neutral axis position, x , and curvature,  . 

v) Calculate y h x= − . 

vi) Determine 
Ftsmf  from Eq. (2.113) and Eq. (2.16). 

vii) Determine mean crack spacing 
rms  : Call routine Calc_lsmax (cData, 

Ftsmf , 

y  ). Retrieve 
rms . 

viii) Determine the height of the effective tensile zone, 
,c efh , considering the distance 

between neutral axis and extreme fiber of cross-section in tension, y . Call routine 

Calc_effective_height(cData). Retrieve 
,c efh  . 

ix) Set ( )min ,r

cs rml s y= . 

x) Set 
,

u

cs c efl h h= − . 

II) End. 

In Table 24 is presented the algorithm that is used to set the formula to determine the height of 

effective tensile zone of the cross-section. This procedure is based on the approximated method 

presented in section 2.5.5. The set of formulas that allow to determine the effective tensile zone height 

are exported to an Excel worksheet, whose value is updated considering the type of element in analysis, 

geometrical data of the cross-section and distance y . 
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Table 24 – Algorithm to set the formulas for effective height of tensile zone of cross-section. 

ROUTINE TITLE: Calc_effective_height 

INPUT:  
• Class with geometry and material data, cData. 

OUTPUT: 
• Height of effective tensile zone, 

,c effh  . 

I) Read in cData the type of element to be analyzed: Elem_Type 

II) Define formula for 
,c effh . Check value of Elem_Type? 

i) Elem_Type=”Beam” :  

1)  If 0  : 

a) If 
1_1 1_20 0s sA A    : ( )( ), 1_1 1_ 2min 2.5 min , ,

3c eff

y
h c c=  . End. 

b) If 
1_1 1_20 0s sA A  =  : ( ), 1_1min 2.5 ,

3c eff

y
h c=  . End. 

c) If  
1_1 1_20 0s sA A=    : ( ), 1_ 2min 2.5 ,

3c eff

y
h c=  . End. 

d) 
1_1 1_20 0s sA A=  =  :

, 0c effh = . End. 

2)  If 0  : 

a) If 
2_1 2_ 20 0s sA A    : ( )( ), 2_1 2_ 2min 2.5 min , ,

3c eff

y
h c c=   . End. 

b) If 
2_1 2_ 20 0s sA A  =  : ( ), 2 _1min 2.5 ,

3c eff

y
h c=   . End. 

c) If 
2_1 2_ 20 0s sA A=    : ( ), 2 _ 2min 2.5 ,

3c eff

y
h c=   . End. 

d) If 
2_1 2_ 20 0s sA A=  =  :

, 0c effh =  . End. 

ii) Elem_Type=”Slab” : 

1)  If 0  : 
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a) If 
1_1 1_20 0s sA A    : 

( )
2 2

1_1 1_1 1_ 2 1_ 2

, 1_1 1_ 2

1_1 1_1 1_ 2 1_ 2

min 2.5 min , 0.5 ,
3

s s

c eff

s s

A A y
h c c

A A

 

 

    + 
 =  +       +    

 

End. 

b) If 
1_1 1_20 0s sA A  =  : ( )( ), 1_1 1_1min 2.5 0.5 ,

3c eff

y
h c =  +  . End. 

c) If 
1_1 1_20 0s sA A=    : ( )( ), 1_ 2 1_ 2min 2.5 0.5 ,

3c eff

y
h c =  +  . End. 

d) If 
1_1 1_20 0s sA A=  =  : 

, 0c effh = . End. 

2)  If 0  : 

a) If 
2_1 2_ 20 0s sA A    : 

( )
2 2

2_1 2_1 2_ 2 2_ 2

, 2_1 2_ 2

2_1 2_1 2_ 2 2_ 2

min 2.5 min , 0.5 ,
3

s s

c eff

s s

A A y
h c c

A A

 

 

    + 
 =  +       +    

End. 

b) If 
2_1 2_ 20 0s sA A  =  : ( )( ), 2_1 2_1min 2.5 0.5 ,

3c eff

y
h c =  +  . End. 

c) If 
2_1 2_ 20 0s sA A=    : ( )( ), 2_ 2 2_ 2min 2.5 0.5 ,

3c eff

y
h c =  +  . End. 

d) If  
2_1 2_ 20 0s sA A=  =  : 

, 0c effh = . End. 

iii) Elem_Type=”Wall” : 

1)  If 0  : 

a) If 
1_1 1_20 0s sA A    : 

( )
2 2

1_1 1_1 1_ 2 1_ 2

, 1_1 1_ 2

1_1 1_1 1_ 2 1_ 2

min 2.5 min , 0.5 ,
2

s s

c eff

s s

A A
hh c c

A A

 

 

    + 
 =  +       +    

 

End. 

b) If  
1_1 1_20 0s sA A  =  : ( )( ), 1_1 1_1min 2.5 0.5 ,

2c eff
hh c =  +  . End. 
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c) If  
1_1 1_20 0s sA A=    : ( )( ), 1_ 2 1_ 2min 2.5 0.5 ,

2c eff
hh c =  +  . End. 

d) If  
1_1 1_20 0s sA A=  =  : 

, 0c effh = . End. 

2)  If 0  : 

a) If 
2_1 2_ 20 0s sA A    :

( )
2 2

2_1 2_1 2_ 2 2_ 2

, 2_1 2_ 2

2_1 2_1 2_ 2 2_ 2

min 2.5 min , 0.5 ,
2

s s

c eff

s s

A A
hh c c

A A

 

 

    + 
 =  +       +    

End. 

b) If 
2_1 2_ 20 0s sA A  =  : ( )( ), 2_1 2_1min 2.5 0.5 ,

2c eff
hh c =  +  . End. 

c) If 
2_1 2_ 20 0s sA A=    : ( )( ), 2_ 2 2_ 2min 2.5 0.5 ,

2c eff
hh c =  +  . End. 

d) If 
2_1 2_ 20 0s sA A=  =  : 

, 0c effh = . End. 

D.4 Definition constitutive models 

The definition of the constitutive models for concrete in compression, FRC in tension and steel in 

tension and compression are based on the formulation presented in section 2.3. In Table 25 to Table 

28 are presented the algorithms used in FRCcalc to define the mentioned constitutive models. The 

formulas that define the constitutive models are exported to an Excel worksheet, and for each iteration 

of the calculation procedure the stresses are updated according to the strains of each characteristic 

point of the cross-section. 

Table 25 – Algorithm for definition of constitutive model for concrete in compression. 

ROUTINE TITLE: model_SigmaC 

INPUT:  
• Class with geometry and material data, cData. 

• Variable that defines type of limit state analysis to be performed, Analysis_type = 

ULS/SLS. 

OUTPUT: 
• Formula for

1c  , 
2c , 

1cx  and 
2cx .  
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I) Read concrete creep coefficient, 
c , from cData. 

II) Define partial safety factor for concrete in compression. Check value of Analysis_type? 

i) Analysis_type = SLS: Set 1.0c = . 

ii) Analysis_type = ULS: Set 1.5c = . 

III) Set 1.0cc = . 

IV) Determine design value for concrete compressive strength: 
cd cc ck cf f =  . 

V) Set formula for 
1cp , 

2cp  and 
3c

d
 according to Eq. (C.3). 

VI) Set formula for 
1cx , 

2cx , 
1,c vx  and 

2,c vx  according to Eq. (C.4) and Eq. (C.5). 

VII) Set formula for 
1c , 

2c ,
1,c v  and 

2,c v  according to Eq. (C.6). 

VIII) Set formula for 
1c , 

2c ,
1,c v  and 

2,c v  according to Eq. (C.7). 

IX) End. 

Table 26 – Algorithm for definition of constitutive model for steel in compression or tension. 

ROUTINE TITLE: model_SigmaS 

INPUT:  
• Class with geometry and material data, cData. 

• Variable that defines type of limit state analysis to be performed, Analysis_type = 

ULS/SLS. 

• Variable j , that represents if the model is for bottom ( )1j =   or top ( )2j =  

reinforcements. 

OUTPUT: 
• Formula for

,s j  . 

I) Define partial safety factor for concrete in compression. Check value of Analysis_type? 

i) Analysis_type = SLS: Set 1.0s = . 

ii) Analysis_type = ULS: Set 1.15s = . 
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I) Determine design value of steel yield strength: 
yd yk sf f =  . 

II) Set formula for 
,s j  according to Eq. (C.13). 

III) End. 

Table 27 – Algorithm for definition of constitutive model for FRC in tension at ULS. 

ROUTINE TITLE: model_FRC_ULS 

INPUT:  
• Class with geometry and material data, cData. 

• Variable i   that defines the zone of tensile zone of the cross-section ( 1i =  corresponds to 

unreinforced zone; 2i =  corresponds to reinforced zone limited by the effective tension 

zone height). 

• Variable z  that defines the number of divisions of the tensile zone of the cross-section. 

• 
,cs il  , structural characteristic length of zone i . 

OUTPUT: 
• Values of 

,tj i  of the quadrilinear model, 1, 2,3, 4j = . 

• Formulas for 
,tj iy , 

,bot i  and 
,h i  . 

I) Set partial safety factor: 1.5F =   

II) Determine characteristic tensile strength: 0.7ctk ctmf f=    

III) Determine values for the model characteristic points: 

i) Set 
1, 0.9t i ctk Ff =   and 

1, 1,t i t i cE = . 

ii) Set 
2,t i ctk Ff =  and 

1, 0.15t i = ‰ . 

iii) Set 
3. 10.45t i r k Ff =   and 

3, 0.15t i = ‰ . 

iv) Determine ultimate crack opening for zone i , based on Eq. (2.18) and considering. 

0.02fu =  : ( ), ,min 2.5; 0.02u i cs iw l=  . 
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v) Set ( ),

4, 3 1max 0; 0.5 0.2
2.5

u i

t i Ftsk Ftsk R k R k

w
f f f f

 
= −  −  +  

 
 and 

4, , ,t i u i cs iw l = . 

vi) If 2z = : Set formulas for tensile stress at division of tensile zone, 
, ,hc ef r  from 

Eq. (C.32). 

vii) Value of i   ? 

1) 1i =  : 

a) Set formulas for distance between cross-section top edge and end of each 

quadrilinear branch of the model, 
, , 1,2,3,4j up j = from Eq. (C.19). 

b) Set formulas for distance between neutral axis and end of each quadrilinear 

branch of the model, 
, , 1,2,3,4tj uy j = from Eq. (C.21) and 

, , , 1,2,3,4tj u vy j = from Eq. (C.22). 

c) Set formulas for stress corresponding to the distance 
, ,tj uy , *

,tj u  from 

Eq. (C.26), respectively. 

d) Set formulas for 
, , 1,2,3,4tj u v j =  from Eq. (C.27). 

2) 2i = :  

a) Set formulas for 
,hc efp  (Eq. (C.20)), 

,hc efy  (Eq. (C.23)), 
,hc ef  (Eq. (C.24)) 

and 
, ,hc ef r  (Eq. (C.32)). 

e) Set formulas for distance between cross-section top edge and end of each 

quadrilinear branch of the model, 
, , 1,2,3,4j rp j = from Eq. (C.19). 

f) Set formulas for distance between neutral axis and end of each quadrilinear 

branch of the model, 
, , 1,2,3,4tj ry j = from  Eq. (C.30) and 

, , 1,2,3,4ant

tj ry j = from Eq. (C.31). 

b) Set formulas for ,

ant

tj r  from Eq. (C.33). 

IV) End. 
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Table 28 – Algorithm for definition of constitutive model for FRC in tension at SLS. 

ROUTINE TITLE: model_FRC_SLS 

INPUT:  
• Class with geometry and material data, cData. 

• Variable i  that defines the zone of tensile zone of the cross-section ( 1i =  corresponds to 

unreinforced zone; 2i =  corresponds to reinforced zone limited by the effective tension 

zone height). 

• Variable z  that defines the number of divisions of the tensile zone of the cross-section. 

• 
,cs il  , structural characteristic length of zone i . 

OUTPUT: 
• Values of 

,tj i  of the quadrilinear model, 1, 2,3, 4j = . 

• Formulas for 
,tj iy , 

,bot i  and 
,h i  . 

I) Set partial safety factor: 1.0F = . 

II) Determine serviceability residual tensile strength:
10.45Ftsk R kf f=   . 

III) Determine characteristic tensile strength: 0.7ctk ctmf f=   . 

IV) Determine mean compressive strength: 8cm ckf f= +  . 

V) Determine fracture energy: 
0.1873

1000

cm
F

f
G


=  . 

VI) Determine values for the model characteristic points: 

i) Set 
1, 0.9t i ctk Ff =   and 

1, 1,t i t i cE =  . 

ii) Set 
2,t i ctk Ff =  and 

2, 0.15t i = ‰ . 

iii) Set 
4,t i Ftskf =  and 

4, ,0.5t i cs il = . 

iv) Determine ultimate crack opening for zone based on Eq. (2.18) and considering. 

0.02fu =  : ( ), ,min 2.5; 0.02u i cs iw l=  . 
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v) Set ( ),

, 3 1max 0; 0.5 0.2
2.5

u i

E i Ftsk Ftsk R k R k

w
f f f f

 
= −  −  +  

 
 and

, , ,E i u i cs iw l = . 

vi) Determine type of case for SLS model: 

1) Is 
Ftsk ctkf f  ?  

a) No: Go to 2).  

b) Yes: Case=1: 

b.1) Set 
, 0.2Q i ctkf =   and , 2,

,

0.8 ctkF
Q i t i

ctk cs i c

fG

f l E
 

 
= + − 

  
.  

b.2) Set , 4,

,

, ,

E i t i

ED i

E i A i

m
 

 

−
=

−
 and 

, , , ,ED i E i ED i E ib m = −  . 

b.3) Set , 2,

,

, 2,

Q i t i

BQ i

Q i i

m
 

 

−
=

−
 and 

, , , ,BQ i Q i BQ i Q ib m = −  . 

b.4) Is 
, 2,Q i t i   ? 

- Yes: Set 16

3, 2, 1 10t i t i  −= +   and 
3, , 3, ,t i ED i t i ED im b =  +  

(Figure 15). Go to ix). 

- No: Go to b.5).  

b.5) Determine point C coordinates): 

, ,

,

, ,

DE i BQ i

C i

BQ i DE i

b b

m m


−
=

−
 and 

, , , ,C i DE i C i DE im b =  + . 

b.6) Is 
, 2,C i t i  ? 

- No: Set 
3, ,t i C i =  and 

3, ,t i C i = (Figure 14a). Go to ix). 

- Yes: Set 
3, 2,t i t i =  and 16

3, 2, 1 10t i t i  −= +  (Figure 16). Go 

to ix).  

2) Check if Case=2 or 3. Is 4 1 2 1

4 1 2 1

t t t t

t t t t

   

   

− −


− −
 ?  
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a) Yes: Case=2. Go to viii);  

b) No: Case=3. Go to vii). 

vii) Determine point 'A  : 
', 0.9A i Ftskf =   and ',

',
A i

A i
cE


 = , and set 

2, ',t i A i =  

and 
2, ',t i A i =  . 

viii) Determine mid-point between point B and D (Figure 14a,b). Set 

4, 2,

3, 2,
2

t i t i

t i t i

 
 

−
= +  and 4, 2,

3, 2,
2

t i t i

t i t i

 
 

−
= + . 

ix) If 2z = : Set formulas for tensile stress at division of tensile zone, 
, ,hc ef r  from 

Eq. (C.32). 

x) Value of i  ? 

3) 1i =  : 

a) Set formulas for distance between cross-section top edge and end of each 

quadrilinear branch of the model, 
, , 1,2,3,4j up j = from Eq. (C.19). 

b) Set formulas for distance between neutral axis and end of each quadrilinear 

branch of the model, 
, , 1,2,3,4tj uy j = from Eq. (C.21) and 

, , , 1,2,3,4tj u vy j = from Eq. (C.22). 

c) Set formulas for stress corresponding to the distance 
, ,tj uy , *

,tj u  from 

Eq. (C.26), respectively. 

d) Set formulas for 
, , 1,2,3,4tj u v j =  from Eq. (C.27). 

4) 2i = :  

c) Set formulas for 
,hc efp   (Eq. (C.20)), 

,hc efy  (Eq. (C.23)), 
,hc ef  (Eq. (C.24)) 

and 
, ,hc ef r  (Eq. (C.32)). 

e) Set formulas for distance between cross-section top edge and end of each 

quadrilinear branch of the model, 
, , 1,2,3,4j rp j = from Eq. (C.19). 
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f) Set formulas for distance between neutral axis and end of each quadrilinear 

branch of the model, 
, , 1,2,3,4tj ry j = from  Eq. (C.30) and 

, , 1,2,3,4ant

tj ry j = from Eq. (C.31). 

d) Set formulas for 
,

ant

tj r  from Eq. (C.33). 

VII) End.  

D.5 Calculate neutral axis position and curvature for cross-section under bending and axial force 

In the following section are presented the algorithm used to calculate the neutral axis position and 

curvature, considering the acting bending moment, M , and axial force N  in the FRC or RC cross-

section. This calculation routine is based on the plain section analysis presented in section 3.2. 

In Table 29 is presented the main algorithm of the calculation routine, which calls the routines that 

defines the formulas of the constitutive models, equilibrium and compatibility equations, as well as 

the routine that resolves the equilibrium equations. 

Table 29 – Algorithm to determine neutral axis and curvature of a FRC or RC cross-section. 

ROUTINE TITLE: Calc_section 

INPUT:  
• Class with geometry and material data, cData. 

• Variable that defines type of cross-section to be analyzed, CS_type = FRC/RC. 

• Variable that defines type of limit state analysis to be performed, Analysis_type 

=ULS/SLS. 

• Variable corresponding to the creep coefficient, 
c . 

• Bending moment, 
EdM , and axial force, 

EdN .  

OUTPUT: 
• Neutral axis, x . 

• Curvature,  . 

• Stresses, strain forces and depth of forces in characteristic points of the cross-section. 

I) Define concrete compressive constitutive model. Call model_SigmaC(Analysis_type,

c , cData). 
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II) If 
1_1 1_20 0s sA A    :Set 1j = .Call model_SigmaS( j, Analysis_type, cData). 

III) If 
2_1 2_ 20 0s sA A    :Set 2j = .Call model_SigmaS( j, Analysis_type, cData). 

IV) Check type of analysis to be performed: Is CS_type =FRC ? 

i) Yes: Go to V). 

ii) No: Set 0z = . Go to VI). 

V) Define FRC tensile constitutive model:  

i) Check if longitudinal conventional tensile reinforcements are adopted in the cross-

section. Is ( ) ( )1_1 1_ 2 2_1 2_ 20 0 0 0 0 0Ed s s Ed s sM A A M A A  =  =    =  =  ? 

Yes : 1z = . 

No : 2z = . 

ii) Define formula for the height of effective tensile zone. Call routine 

Calc_effective_height(cData). 

iii) Determine structural characteristic length. Call routine 

Calc_structural_length(cData). If 1z = , retrieve u

csl . If 2z =  , retrieve u

csl  and 

r

csl . 

iv) Set 1i = . 

v) Define structural characteristic length for zone i : 

If 1i =  :
,

u

cs i csl l= . 

If 2i = : ,

r

cs i csl l= . 

vi) Is i z ?  

Yes: Go to vii). 

No: Go to VI). 

vii)  Check value of Analysis_type ? 

a) Analysis_type = SLS: Call routine model_FRC_SLS(cData, i, z, 
,cs il ). 

b)  Analysis_type = ULS: Call routine model_FRC_ULS(cData, i, z, 
,cs il ). 
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viii) 1i i= +  . Go to v). 

VI) Define equilibrium equations in the cross-section. Call Formula_Forces(cData, z, 

CS_type, 
EdN ) and Formula_Moment(cData, z, CS_Type, 

EdM , 
EdN ). 

VII) Define compatibility equations in the cross-section. Call Formula_Compatibility(). 

VIII) Resolve equilibrium equations. Call resolve_x_curvature(
EdM ). Return neutral axis 

position, x , and curvature,  . 

IX) Import data of resolution of equilibrium and compatibility equations (stresses, strains, 

forces, depth of forces) to cData. 

X) End. 

In Table 30 and Table 31 are presented the subroutines to define the formulas of the equilibrium 

equations for a FRC and RC cross-section. 

Table 30 – Algorithm to set the formulas for forces in a FRC cross-section. 

ROUTINE TITLE: Formula_Forces 

INPUT:  
• Class with geometry and material data, cData. 

• Variable z  that defines the total number of divisions of the tensile zone of the cross-section. 

• Variable that defines type of cross-section to be analyzed, CS_type = FRC/RC. 

• Axial force, N . 

OUTPUT: 
•  Formula for sum of forces in the cross-section. 

I) Define formulas for concrete in compression forces in the cross-section according to 

Eq. (C.8). 

II) Define formulas for reinforcement steel bars forces in the cross-section according to 

Eq. (C.14). 

III) Check type of cross-section to be analyzed. Value of CS_type? 

i) CS_type=FRC. Go to IV). 

ii) CS_type=RC. Set 
, , , , 0t u t u v t rF F F= = = . Go to V). 
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IV) Define formulas for FRC in tension forces in the cross-section according to Eq. (C.35). 

V) Define formula for sum of forces in cross-section according to Eq. (C.1), considering the 

value of N . 

VI) End. 

Table 31 – Algorithm to set the formulas for forces depth and moments in a FRC cross-section. 

ROUTINE TITLE: Formula_Moments 

INPUT:  
• Class with geometry and material data, cData . 

• Variable z  that defines the total number of divisions of the tensile zone of the cross-section. 

• Variable that defines type of cross-section to be analyzed, CS_type = FRC/RC. 

• Axial force, N  and bending moment, M . 

OUTPUT: 
•  Formula for sum of moments in the cross-section. 

I) Define formulas for depth and moment of forces for concrete in compression in the cross-

section according to Eq. (C.9) and Eq. (C.11). 

II) Define formulas for depth and moment of forces of reinforcement steel bars in the cross-

section according to Eq. (C.15) and Eq. (C.16). 

III) Check type of cross-section to be analyzed. Value of CS_type? 

i) CS_type=FRC. Go to IV). 

ii) CS_type=RC. Go to V). 

IV) Define formulas for depth and moment of forces of FRC in tension in the cross-section 

according to Eq. (C.36) to Eq. (C.39). 

V) Define formula for sum of moments in cross-section according to Eq. (C.1), considering 

the value of M  and N . 

VI) End. 

In Table 32 is presented the algorithm that defines the formulas of the compatibility equations in the 

cross-section, based on Eq. (C.2). 
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Table 32 – Algorithm to set the formulas compatibility equations. 

ROUTINE TITLE: Formula_Compatibility 

INPUT: not applicable 

OUTPUT: 
• Formulas for compatibility equations in the cross-section. 

I) Define formula for top and bottom fibers of the cross-section: 

top

bot top

x

h

 

  

= − 

= + 
 

II) Define formula for curvature of the cross-section: top

x


 = −  . 

III) End. 

In Table 33 is presented the algorithm that is used to resolve the equilibrium equations and find the 

solution for the neutral axis position, x , and cross-section curvature,  , for a given acting bending 

moment, M . This procedure resorts to Microsoft Excel Solver algorithm to apply an iterative approach 

to find the solution for the problem ( )( )min ,x  , given specific constraints 

( );F N M M= =   . 

Table 33 – Algorithm to resolve the equilibrium equations and find solution for neutral axis position 
and cross-section curvature. 

ROUTINE TITLE: resolve_x_and_curvature 

INPUT Bending moment, 
EdM . 

OUTPUT: 
• Neutral axis, x  ; 

• Curvature,   . 

I) Set changing variables equal to neutral axis and curvature: changing variables = ;x  . 

II) Set objective function equal to the sum of the neutral axis and curvature: objective = 

( )min x + . 

III) Set constraints of the iterative model based on the equilibrium equations Eq. (C.1). 

IV) Set initial values of neutral axis and curvature equal to: 
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3 3

2

2 2
0 : ; 0 :

10 10

c c
Ed Ed

h
x

M M
h h

 
 


=


   =  = −

  

  

V) Set iIter = 1. 

VI) Set maximum number for changing the initial values of iterative algorithm,

20nIterMax = . 

VII) Call Excel Solver module. Return state variable of convergence Solver_out. 

VIII) Convergence check: Value of Solver_out? 

i) Solver_out = OK : End. 

ii) Solver_out = KO and iIter nIterMax : Change initial solution: 
20

h
x iIter=   and 

3 32 2
0 : ; 0 :

10 10

c c
Ed EdM M

h h

 
 

 
 =  = −

 
 . Set 1iIter iIter= + . Go to VII). 

iii) Solver_out=KO and iIter nIterMax : No convergence. Send error message. End. 

D.6 Determination of moment-curvature relationship 

In the following section are presented the algorithms used to calculate the resisting moment vs. 

curvature relationship of a FRC or RC cross-section under bending without axial force. The calculation 

procedure resorts to an iterative approach to determine the neutral axis position in the cross-section, 

considering an incremental strain value of the top fiber of the cross-section. At each strain increment, 

the height of the effective tensile zone of the cross-section is updated. After resolution of the 

equilibrium equations, the curvature of the cross-section is determined from the compatibility 

equations (Eq. (C.2)). 
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Table 34 – Algorithm to determine the moment-curvature relationship of a FRC or RC cross-section. 

ROUTINE TITLE: Calc_M_curv 

INPUT:  
• Class with geometry and material data, cData . 

• Variable that defines type of cross-section to be analyzed, CS_type = FRC/RC; 

• Variable that defines type of limit state analysis to be performed, Analysis_type = 

ULS/SLS . 

OUTPUT: 
• Relationship of .M vs   of the cross-section. 

I) Define concrete compressive constitutive model. Call model_SigmaC(Analysis_type , 

c  , cData). 

II) If 
1_1 1_20 0s sA A    :Set 1j = .Call model_SigmaS( j, Analysis_type, cData). 

III) If 
2_1 2_ 20 0s sA A    :Set 2j = .Call model_SigmaS( j, Analysis_type, cData). 

IV) Check type of analysis to be performed: Is CS_type =”FRC” ? 

i) Yes: Go to V). 

ii) No: Set 0z = . Go to VI). 

V) Define FRC tensile constitutive model:  

i) Check if longitudinal conventional tensile reinforcements are adopted in the cross-

section. Is 
1_1 1_ 20 0s sA A=  =  ? 

1) Yes : 1z =  . 

2) No : 2z =  . 

ii) Define formula for height of effective tensile zone. Call routine 

Calc_effective_height(cData). 

iii) Determine structural characteristic length. Call routine 

Calc_structural_length(cData). If 1z = , retrieve u

csl . If 2z =  , retrieve u

csl  and 

r

csl . 

iv) Set 1i =  . 
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v) Define structural characteristic length for zone i  : 

If 1i =  : 
,

u

cs i csl l= . 

If 2i = : 
,

r

cs i csl l= .  

vi) Is i z ?  

1) Yes: Go to vii). 

2) No: Go to VI). 

vii) Check value of Analysis_type ? 

1) Analysis_type = SLS: Call routine model_FRC_SLS(cData, i, z , 
,cs il ). 

2) Analysis_type = ULS: Call routine model_FRC_ULS(cData, i, z , 
,cs il ). 

viii) 1i i= + .  

ix) Go to v). 

VI) Set initial values of solution:  
10

init

h
x m= . 

VII) Set 
initx x=  and 0M =  . 

VIII) Read N  from cData: 
,Ed ULSN N= . 

IX) Define equilibrium equations in the cross-section. Call Formula_Forces(cData, z, 

CS_type, N ) and Formula_Moment(cData, z, CS_type, M , N ). 

X) Define equilibrium equations in the cross-section. Call Formula_Compatibility(). 

XI) Is 0N = : 

i) No: 0N = . 

ii) Yes: Determine strain in the cross-section when submitted to axial force only 

Strain_Axial_Force(N). Return 
N . 

XII) Set 
top N = and strain increment equal to: 3

30

c
inc


 =  . 

XIII) Set strain at top fiber 
top top inc  = + . 
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XIV) Check if concrete in compression fails: 

i) If 
3top cu   : Failure. End. 

ii) If 
3top cu   : Proceed to step XV) 

XV) Set maximum number of iterations in each strain increment for changing the initial values 

of iterative algorithm, 30nIterMax = . 

XVI) Resolve equilibrium equations. Call resolve_x( ,x nIterMax ). Return convergence 

check, conv_check, neutral axis position, x , and respective moment, M . 

XVII) Import data of resolution of equilibrium and compatibility equations (curvature, stresses, 

strains, forces and depth of forces) to cData. 

XVIII) Test convergence: Value of conv_check? 

i) conv_check=KO:  Send error message. End. 

ii) conv_check=OK :  

1)  If CS_type =FRC:  Check failure of FRC is reached. Call 

check_FRCfailure(cData) and return variable FRC_failure_check: 

a) If FRC_failure_check=Yes: End. 

b) If FRC_failure_check =NO: Proceed to step 2). 

2)  Store results ( ),, , , ,c ef topM x h   in Excel worksheet. 

3)  Set 0M = . Go to step XIII). 

In Table 35 is presented the algorithm used to resolve the equilibrium equations and find the solution 

for the neutral axis position, x , considering an imposed compressive strain in the top fiber of the 

section, and  determine respective resisting bending moment of the cross-section, M . This procedure 

resorts to Microsoft Excel Solver algorithm to apply an iterative approach to find the solution for the 

problem ( )( )min x , given specific constraints ( )F N= . 
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Table 35 – Algorithm to resolve the equilibrium equations and find solution for neutral axis position 
and bending moment. 

ROUTINE TITLE: resolve_x 

INPUT:  
• Initial values for solution, 

initx . 

• Maximum number of iterations, nIterMax . 

OUTPUT: 
• Neutral axis, x . 

• Bending moment, M . 

I) Set changing variables equal to neutral axis: changing variable = x . 

II) Set objective function equal to the sum of the forces in the cross-section equal to N : 

objective = 
iF N= . 

III) Set initial values of neutral axis and moment equal to: 

 initx x=   

IV) Set iIter=1. 

V) Call Excel Solver module. 

VI) Convergence check: Value of Solver_out? 

i) Solver_out = OK : Determine the resisting bending moment, M , using Eq. (C.1). 

End. 

ii) Solver_out = KO and iIter<nIterMax : Change initial solution: 

init initx x iIter x= −   . Go to V). 

iii) Solver_out=KO and iIter> nIterMax: No convergence. Send error message. End. 

In Table 36 is presented the algorithm to check if tensile failure of FRC is reached, i.e. if the strain at 

bottom fiber of cross-section exceeds the ultimate strain of the quadrilinear model.  
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Table 36 – Algorithm to check if tensile failure of FRC is reached. 

ROUTINE TITLE: check_FRCfailure 

INPUT:  
• Class with geometry and material data, cData . 

OUTPUT: 
• State variable regarding the convergence check, FRC_failure_check . 

I) Check if longitudinal conventional reinforcements are adopted in the cross-section. Is 

( ) ( )1_1 1_ 2 2_1 2_ 20 0 0 0 0 0s s s sM A A M A A  =  =    =  = ? 

i) Yes :  

1) If 
4,bot t r   : FRC_failure_check=YES. End. 

2) If 
4,bot t r   : FRC_failure_check=NO. End.  

ii) No :  

1) If 
4bot t   : FRC_failure_check=YES. End. 

2) If 
4bot t   : FRC_failure_check=NO. End.  

D.7 Determination of shear resistance 

In the present section are presented the algorithms to determine the shear resistance of FRC and RC 

cross-sections.  

The calculation routines for FRC cross-sections are based on the design assumptions provided in 

section 2.5.2. For FRC cross-sections with longitudinal conventional reinforcements (only bottom 

reinforcements are considered for shear resistance contribution), the two design formulations are 

available in FRCcalc: the empirical based model and the model based on the VEM/SMCFT. In Table 

37 is presented the algorithm of the main routine adopted for determination of the shear resistance 

of FRC cross-sections. 
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Table 37 – Algorithm to determine shear resistance of FRC cross-section. 

ROUTINE TITLE: FRC_shear 

INPUT:  
• Class with geometry and material data, cData. 

OUTPUT: 
• Shear resistance of FRC cross-section, 

RdV . 

I) Check if longitudinal conventional reinforcements are adopted in the cross-section. Is 

1_1 1_20 0s sA A=  = ? 

i) Yes:  

1) Determine shear resistance of FRC cross-section without longitudinal reinforcement: 

Call Calc_Shear_FRC_NoReinf(cData). Return 
,Rd FV  . 

2) 
,Rd Rd FV V=  . End. 

ii) No: 

1) Determine shear resistance of FRC cross-section with longitudinal reinforcement, 

based on empirical model (Eq. (2.37)): Call Calc_Shear_FRC_LongReinf(cData). 

Return 
RdV .  

2) Store results 
RdV  in Excel worksheet. 

3) Determine shear resistance of FRC cross-section with longitudinal reinforcement 

with or without transverse reinforcements, based on VEM/SMCFT model: Call 

Calc_FRC_Shear_MCFT (cData). Return 
,Rd cV , 

,Rd fV , 
,Rd sV  and 

RdV . 

4) Store results 
,Rd cV , 

,Rd fV , 
,Rd sV  and 

RdV  in Excel worksheet. End. 

In Table 38 is presented the algorithm to determine the shear resistance of a FRC cross-section without 

longitudinal and transversal conventional reinforcements. 
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Table 38 – Algorithm to determine shear resistance of FRC cross-section without longitudinal and 
shear reinforcements. 

ROUTINE TITLE: Calc_Shear_FRC_NoReinf 

INPUT:  
• Class with geometry and material data, cData . 

OUTPUT: 
• Shear resistance of FRC cross-section without longitudinal and transversal reinforcements, 

,Rd FV . 

I) Determine 
Ftukf  based on Eq. (2.17) and Eq. (2.16), considering 1.5uw mm= . 

II) Set partial safety factor equal to : 1.5F = . 

III) Based on Eq. (2.76) 
,Rd FV  for a rectangular cross-section:  

 
,

1.5

Ftuk
Rd F

F

f b h
V



 
=


  Eq. (D.1) 

IV) End. 

In Table 39 is presented the algorithm to determine the shear resistance of a FRC cross-section with 

longitudinal conventional reinforcements, based on the empirical model (Eq. (2.37)).  

Table 39 – Algorithm to determine shear resistance of FRC cross-section with longitudinal 
reinforcement, based on empirical model. 

ROUTINE TITLE: Calc_Shear_FRC_LongReinf 

INPUT:  
• Class with geometry and material data, cData . 

OUTPUT: 
• Shear resistance of FRC cross-section with longitudinal and transverse reinforcements, 

RdV  

I) Set partial safety factor for FRC equal to : 1.5F = . 

II) Determine d : 

a. If 1_1 1_1 1_ 2 1_ 2

1_1 1_ 2

1_1 1_ 2

0 0 :
s s s s

s s

s s

d A d A
A A d

A A

 + 
   =

+
 ; 

b. If 
1_1 1_ 2 1_10 0:s s sA A d d  = = ;  
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c. If
1_1 1_ 2 1_ 20 0:s s sA A d d=   = . 

III) Calculate size effect factor:
 
200

1 2.0k
d mm

= +   . 

IV) Determine longitudinal reinforcement ratio: 1_1 1_ 2s s

sl

A A

b d


+
=


 . 

V) Determine 
Ftukf  based on Eq. (2.17) and Eq. (2.16), considering 1.5uw mm=  . 

VI) Determine characteristic value of concrete tensile strength: 0.7ctk ctmf f=   . 

VII) Obtain 
, ,Ed Shear ULSN  from cData. Set axial force equal to 

, ,1Ed Ed Shear ULSN N= −  . 

VIII) Determine 0.2cp Ed c cdN A f =   . 

IX) Determine 
,Rd FV  based on Eq. (2.37). 

X) Determine 
min  based on Eq. (2.39). 

XI) Determine 
, ,minRd FV  based on Eq. (2.38). 

XII) Check if 
, , ,minRd F Rd FV V  : 

a. Yes: 
, , ,minRd F Rd FV V=  .  

b. No: Proceed to step XIII). 

XIII) Check if 0sw

w

A

s
 : 

a. No: Set 
, 0Rd sV = . Set 

,Rd Rd FV V=  End. 

b. Yes:  

i. Determine z : 

1. If 
( ) ( )

2 2

1_1 1_1 1_ 2 1_ 2

1_1 1_ 2

1_1 1_1 1_ 2 1_ 2

0.9 0.9
0 0 :

0.9 0.9

s s s s

s s

s s s s

d A d A
A A z

d A d A

  +  
   =

  +  
 . 

2. If 
1_1 1_ 2 1_10 0: 0.9s s sA A z d  = =   . 
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3. If
1_1 1_2 1_20 0: 0.9s s sA A z d=   =  . 

c. Set 0e =  . 

d. Obtain 
, ,Ed Ed Shear ULSN N=  , 

, ,Ed Ed Shear ULSV V= , 
, ,Ed Ed Shear ULSM M=  and 

gd  

from cData. 

e. Determine 
x  from Eq. (2.49). 

f. Determine  ( )( )min 20º 10000 ,45ºx = +  . 

g. Determine ( )1 x   according to Eq. (2.74). 

h. Determine k  according to Eq. (2.73). 

i. Determine 
,Rd sV  according to Eq. (2.71). 

j. Check if 
, ,Rd F Rd sV V : 

i. Yes: 
,Rd Rd FV V= . 

ii. No: 
,Rd Rd sV V= . 

k. Check if 
.,maxRd RdV V  : 

i. Yes: 
, ,maxRd Rd FV V=  . End. 

ii. No: End. 

In Table 40 is presented the algorithm to determine the shear resistance of a FRC cross-section with 

longitudinal conventional reinforcements and with or without transverse reinforcements, based on the 

VEM/SMCFT model. For the determination of the tensile strength of FRC is considered the model 

presented in Eq. (2.54) and assuming that the post-cracking residual flexural strength 
2R kf  and 

4R kf  

are obtained according to the standard EN 14651 [34]. 
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Table 40 – Algorithm to determine shear resistance of FRC cross-section with longitudinal 
reinforcement and with or without transversal reinforcements, based on VEM/SMCFT model. 

ROUTINE TITLE: Calc_FRC_Shear_MCFT 

INPUT:  
• Class with geometry and material data, cData. 

• Transverse reinforcement area, 
swA  . 

OUTPUT: 
• Contribution of concrete matrix for shear resistance, 

,Rd cV . 

• Contribution of fiber reinforcements for shear resistance, 
,Rd fV . 

• Contribution of transverse reinforcements for shear resistance, 
,Rd sV . 

• Shear resistance of FRC cross-section with longitudinal reinforcements and with or without 

transversal reinforcements, 
RdV . 

I) Set partial safety factor for FRC equal to: 1.5F = . 

II) Determine d  : 

a. If 1_1 1_1 1_ 2 1_ 2

1_1 1_ 2

1_1 1_ 2

0 0 :
s s s s

s s

s s

d A d A
A A d

A A

 + 
   =

+
 . 

b. If 
1_1 1_2 1_10 0:s s sA A d d  = = . 

c. If
1_1 1_ 2 1_ 20 0:s s sA A d d=   = . 

III) Set 
1_1 1_ 2sl s sA A A= + . 

IV) Determine z : 

a. If 
( ) ( )

2 2

1_1 1_1 1_ 2 1_ 2

1_1 1_ 2

1_1 1_1 1_ 2 1_ 2

0.9 0.9
0 0 :

0.9 0.9

s s s s

s s

s s s s

d A d A
A A z

d A d A

  +  
   =

  +  
 . 

b. If 
1_1 1_ 2 1_10 0: 0.9s s sA A z d  = =  . 

c. If
1_1 1_2 1_ 20 0: 0.9s s sA A z d=   =  . 

V) Set 0e =  . 
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VI) Obtain 
, ,Ed Ed Shear ULSN N=  , 

, ,Ed Ed Shear ULSV V= , 
, ,Ed Ed Shear ULSM M=  and 

gd  from 

cData. 

VII) Determine transverse reinforcement ratio:
sin

sw
sw

A
b s




=
 

 . 

VIII) Determine longitudinal reinforcement ratio: 1s
sl

A
b d

 =


 . 

IX) Determine 
dgk  according to Eq. (2.45). 

X) Set formulas for ( )v xk    according to Eq. (2.44). 

XI) Set formula for 
min =  according to: 

 ( )( )min 29º 7000 ,45ºx = +    Eq. (D.2) 

XII) Set formula for 
,Rd cv  according to Eq. (2.43): ( ), min ,8Rd c v ckv k f=  . 

XIII) Set formula for ( )u xw   according to Eq. (2.70). 

XIV) Obtain 
2R kf  and 

4R kf  from cData. 

XV) Set 5 /12 =   and 0.6Gk = . 

XVI) Set formula for ( )uw  according to Eq. (2.55). 

XVII) Set formula for ( )Tk uf w  according Eq. (2.54). 

XVIII) Set 0.8fdk = . 

XIX) Set formula for 
,Rd fv  according to Eq. (2.53). 

XX) Set formula for 
,Rd FV  according to Eq. (2.42). 

XXI) Obtain sw

w

A

s
,    and 

wydf   from cData. 

XXII) Check if 0sw

w

A

s
 : 

a. Yes: Set formula for 
,Rd sV  according to Eq. (2.71). 
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b. No: Set 
, 0Rd sV = . 

XXIII) Set formula for 
RdV  according to Eq. (2.41). 

XXIV) Set formula for ( )x   according to Eq. (2.48). 

XXV) Run iterative procedure: 

i) Set initial values of 
10

wyk

x

s

f

E
 =


. 

ii) Set changing variables: changing variables =
x  . 

iii) Set objective function: objective = 61 10x x  −−    . 

iv) Set constraints of the iterative model: 0.0 0.003x  .  

v) Call Excel Solver module. 

vi) Convergence check: Value of Solver_out? 

a) Solver_out = OK : Go to XXVI). 

b) Solver_out=KO: No convergence. Send error message. End. 

XXVI) Determine concrete matrix contribution to shear resistance ,

,

rd c

Rd c

c

v
V z b


=   . 

XXVII) Determine ,

,

rd f

Rd f

c

v
V z b


=    . 

XXVIII) Determine 
fc  according to Eq. (2.75). 

XXIX) Determine 
1  according to Eq. (2.74). 

XXX) Determine k  according to Eq. (2.73). 

XXXI) Determine 
,maxRdV  based on Eq. (2.72). 

XXXII) Check if 
.,maxRd RdV V  : 

i) Yes: 
,maxRd RdV V=  . End. 
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ii) No: End. 

In Table 41 is presented the algorithm of the main routine to determine the shear resistance of a RC 

cross-section. 

Table 41 – Algorithm to determine shear resistance of RC cross-section. 

ROUTINE TITLE: RC_shear 

INPUT:  
• Class with geometry and material data, cData. 

OUTPUT: 
• Shear resistance of RC cross-section, 

RdV  . 

I) Check if transverse reinforcements are provided. Is 0swA =  ? 

i) Yes: Determine shear resistance of RC cross-section without transverse reinforcements, 

based on Level II of approximation: Call Calc_Shear_RC_Vcd(cData). Return 
,Rd cV . Set 

,Rd Rd cV V= . 

ii) No: Determine shear resistance of RC cross-section with transverse reinforcements based 

on Level III of approximation: Call Calc_Shear_RC_Vcd_and_Vwd(cData). Return 

,Rd cV , 
,Rd sV  and 

RdV . 

II) End. 

In Table 42 is presented the algorithm to determine the shear resistance of a RC cross-section with 

longitudinal reinforcements (only bottom reinforcements are considered) and without transverse 

reinforcements, that is based on the level of approximation II presented in §7.3.3.2 MC2010 [30].  
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Table 42 – Algorithm to determine shear resistance of RC cross-section with longitudinal 
reinforcement. 

ROUTINE TITLE: Calc_Shear_RC_Vcd 

INPUT:  
• Class with geometry and material data, cData. 

OUTPUT: 
• Shear resistance of RC cross-section with longitudinal reinforcements and without 

transverse reinforcements, 
cdV . 

I) Set partial safety factor for FRC equal to 1.5c =  : 

II) Determine d . 

a. If 1_1 1_1 1_ 2 1_ 2

1_1 1_ 2

1_1 1_ 2

0 0 :
s s s s

s s

s s

d A d A
A A d

A A

 + 
   =

+
 . 

b. If 
1_1 1_ 2 1_10 0:s s sA A d d  = = . 

c. If
1_1 1_ 2 1_ 20 0:s s sA A d d=   = . 

III) Set 
1_1 1_ 2sl s sA A A= + . 

IV) Determine z : 

a. If 
( ) ( )

2 2

1_1 1_1 1_ 2 1_ 2

1_1 1_ 2

1_1 1_1 1_ 2 1_ 2

0.9 0.9
0 0 :

0.9 0.9

s s s s

s s

s s s s

d A d A
A A z

d A d A

  +  
   =

  +  
 . 

b. If 
1_1 1_2 1_10 0: 0.9s s sA A d d  = =  . 

c. If
1_1 1_ 2 1_ 20 0: 0.9s s sA A d d=   =  . 

V) Set 0e = . 

VI) Obtain 
, ,Ed Ed Shear ULSN N=  , 

, ,Ed Ed Shear ULSV V= , 
, ,Ed Ed Shear ULSM M=  and 

gd  from 

cData. 

VII) Determine 
dgk  according to Eq. (2.45). 

VIII) Determine 
x  according to Eq. (2.48). 



Advanced tools for design and analysis of fiber reinforced concrete structures 
 

293 

IX) Determine 
vk  according to Eq. (2.44). 

X) Determine 
,Rd cv  according to Eq. (2.43): ( ), min ,8Rd c v ckv k f=  . 

XI) Determine 
,Rd cV  according to: 

 ,

,

Rd c

Rd c

c

v
V b z


=      Eq. (D.3) 

XII) End. 

In Table 43 is presented the algorithm to determine the shear resistance of a RC cross-section with 

longitudinal (only bottom reinforcements are considered) and transverse reinforcements, that is based 

on the level of approximation III presented in §7.3.3.3 MC2010 [30].  

Table 43 – Algorithm to determine shear resistance of RC cross-section with longitudinal and 
transverse reinforcements. 

ROUTINE TITLE: Calc_Shear_RC_Vcd_and_Vwd  

INPUT:  
• Class with geometry and material data, cData. 

OUTPUT: 

• Contribution of concrete matrix for shear resistance, 
,Rd cV . 

• Contribution of transverse reinforcements for shear resistance, 
,Rd sV . 

• Shear resistance of RC cross-section with longitudinal and transverse reinforcements, 
RdV  . 

I) Set partial safety factor for RC equal to: 1.5c = . 

II) Determine d : 

d. If 1_1 1_1 1_ 2 1_ 2

1_1 1_ 2

1_1 1_ 2

0 0 :
s s s s

s s

s s

d A d A
A A d

A A

 + 
   =

+
 . 

e. If 
1_1 1_ 2 1_10 0:s s sA A d d  = = . 

f. If
1_1 1_ 2 1_ 20 0:s s sA A d d=   = . 

III) Set
1_1 1_ 2sl s sA A A= + . 

IV) Determine z : 
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a. If 
( ) ( )

2 2

1_1 1_1 1_ 2 1_ 2

1_1 1_ 2

1_1 1_1 1_ 2 1_ 2

0.9 0.9
0 0 :

0.9 0.9

s s s s

s s

s s s s

d A d A
A A z

d A d A

  +  
   =

  +  
. 

b. If 
1_1 1_2 1_10 0: 0.9s s sA A d d  = =  . 

c. If
1_1 1_ 2 1_ 20 0: 0.9s s sA A d d=   =  . 

V) Set 0e = . 

VI) Obtain 
, ,Ed Ed Shear ULSN N=  , 

, ,Ed Ed Shear ULSV V= , 
, ,Ed Ed Shear ULSM M=  and 

gd  from 

cData. 

VII) Obtain sw

w

A

s
,   and 

wydf  from cData. 

VIII) Determine 
dgk  according to Eq. (2.45). 

IX) Set formulas for ( )v xk   according to: 

 
( ),max

0.4
1 0

1 1500

Ed
v

Rdx

V
k

V 

 
= −   +   

  Eq. (D.4) 

X) Set formula for 
min =  according to: 

 ( )( )min 20º 10000 ,45ºx = +    Eq. (D.5) 

XI) Set formula for 
,Rd cv  according to Eq. (2.43). 

XII) Set formula for 
,Rd cV  according to Eq. (D.3). 

XIII) Set formula for 
fc  according to Eq. (2.75). 

XIV) Set formula for ( )1 x   according to Eq. (2.74). 

XV) Set formula for k  according to Eq. (2.73). 

XVI) Set formula for 
,maxRdV  according to Eq. (2.72) 

XVII) Set formula for 
,Rd sV  according to Eq. (2.71). 

XVIII) Set formula for 
RdV  according to: 
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,. ,Rd Rd c Rd sV V V= +   Eq. (D.6) 

XIX) Set formula for ( )x   according to Eq. (2.48). 

XX) Run iterative procedure: 

i) Set initial values of 
10

wyk

x

s

f

E
 =


. 

ii) Set changing variables: changing variables =
x  . 

iii) Set objective function: objective = 61 10x x  −−    . 

iv) Set constraints of the iterative model: 0.0 0.003x   . 

v) Call Excel Solver module. 

vi) Convergence check: Value of Solver_out? 

a) Solver_out = OK : Go to XXI). 

b) Solver_out=KO: No convergence. Send error message. End. 

XXI) Check if 
.,maxRd RdV V  : 

i) Yes: 
,maxRd RdV V=  . End. 

ii) No: End. 

D.8 Calculation of bond transfer length and crack spacing 

In Table 44 is presented the routine to determine the bond transfer length and the mean crack spacing 

of a FRC and RC cross-section, considering the methodology presented in section 2.5.5. 



Advanced tools for design and analysis of fiber reinforced concrete structures 
 

296 

Table 44 – Algorithm to determine the bond transfer length in a FRC and RC cross-section. 

ROUTINE TITLE: Calc_lsmax 

INPUT:  
• Class with geometry and material data, cData. 

• Serviceability residual tensile strength, 
Ftsmf . 

• Distance between neutral axis and bottom fiber of cross-section, y . 

• Acting bending moment, 
EdM . 

OUTPUT: 
• Bond transfer length, 

,maxsl  . 

• Mean spacing between cracks, 
rms  . 

• Reinforcement ratio of effective tensile zone, 
,s ef  . 

I) Determine height of effective tensile zone based on routine 

Calc_effective_height(cData), considering the distance between neutral axis and 

bottom fiber of cross-section, y . Return 
,c efh  . 

II) Determine area of effective tensile zone: 
, ,c ef c efA h b=  . 

III) Set 
, 0s efA = .Determine reinforcement area inside effective tensile zone:  

i) If 0EdM  : 

i. If 
, 1_1c efh c  : 

, , 1_1s ef s ef sA A A= + . 

ii. If 
, 1_2c efh c  : 

, , 1_ 2s ef s ef sA A A= + . 

iii. If 
, 2_1c efh h c −  : 

, , 2_1s ef s ef sA A A= + . 

iv. If 
, 2_ 2c efh h c −  : 

, , 2_ 2s ef s ef sA A A= + . 

ii) If 0EdM  : 

i. If 
, 2_1c efh c  : 

, , 2_1s ef s ef sA A A= + . 

ii. If 
, 2_ 2c efh c  : 

, , 2_ 2s ef s ef sA A A= + . 

iii. If 
, 1_1c efh h c −  : 

, , 1_1s ef s ef sA A A= + . 
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iv. If 
, 1_2c efh h c −  : 

, , 1_ 2s ef s ef sA A A= + . 

iii) If 
, 0s efA =  Send error message. End. 

IV) Determine reinforcement ratio of effective tensile zone: ,
,

,

s ef
s ef

c ef

A

A
 = . 

V) Set empirical value to consider influence of concrete cover, 1.0k = . 

VI) Read loading type and cracking stage from cData. Determine ( )bms ctmf  according to 

Table 3. 

VII) If 0Ftsm ctmf f−   set 0Ftsm ctmf f− = . 

VIII) Determine 
,maxsl  based on Eq. (2.177). 

IX) Determine mean crack spacing, 
,max1.5rm ss l=  . 

X) End. 

D.9 Determination of design crack width at SLS 

In Table 45 and Table 46 are presented the algorithms to determine the design crack width of the 

FRC and RC cross-sections, considering the load combination corresponding to cracking serviceability 

criteria. The calculation procedure is based in the methodology presented in section 2.5.5. 

Table 45 – Main algorithm to determine the design crack width of a FRC and RC cross-section at 
SLS. 

ROUTINE TITLE: Calc_crack_width_SLS 

INPUT:  
• Class with geometry and material data, cData. 

• Variable that defines type of cross-section to be analyzed, CS_type = FRC/RC. 

• Variable corresponding to the creep coefficient,
c  . 

• Bending moment, 
,Ed crackM , corresponding to the load combination corresponding to the 

cracking serviceability criteria. 
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OUTPUT: 
• Design crack width, 

dw .  

I) Set Analysis_type=SLS. 

II) Call Calc_Section(CData, CS_type, Analysis_type, 
c , 

,Ed crackM ). Return y  and 

stress in steel longitudinal reinforcements ( , 1_1,1_ 2,2 _1,2 _ 2si i = ). 

III) Type of cross-section in analysis. Check CS_type value: 

i) If CS_type=FRC: Determine serviceability residual tensile strength, 

10.45

0.7

R k
Ftsm

f
f


= .  

ii) If CS_type=RC: Set 0Ftsmf = . 

IV) Determine bond transfer length 
,maxsl . Call routine Calc_lsmax(cData,

Ftsmf , y , 

,Ed crackM ). Return 
,maxsl , 

,s ef  and 
,c efh . 

V) Determine design crack width 
dw . Call routine Calc_crack_width(cData,

Ftsmf ,
si ,

,maxsl , 
,s ef , 

,c efh , 
,Ed crackM ). 

Table 46 – Algorithm to determine the design crack width of a FRC and RC cross-section. 

ROUTINE TITLE: Calc_crack_width 

INPUT:  
• Class with geometry and material data, cData. 

• Serviceability residual tensile strength, 
Ftsmf . 

• Stress of steel longitudinal reinforcements, 
si , 1_1,1_ 2,2 _1,2 _ 2i = . 

• Bond transfer length, 
maxsl . 

• Reinforcement ratio in the effective tensile zone, 
,s ef . 

• Height of the effective tensile zone, 
,c efh . 

• Acting bending moment, 
EdM . 

OUTPUT: 
• Design crack width, 

dw .  
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I) Read variable corresponding to the creep coefficient, 
c , from cData. 

II) Determine concrete effective modulus according to 
( ),
1

c
c ef

c

E
E


=

+
. 

III) Determine modular ratio: s
E

c

E
E

 =  . 

IV) Determine 
sr  according to Eq. (2.112). 

V) Read shrinkage strain, 
sh  from cData. 

VI) Read loading type and cracking stage from cData. Determine 
r  and   according to 

Table 3. 

VII) Determine 
s : 

a. If 0EdM   : 

i. If 
1_1 1_20 0s sA A    : 

1. If 
, 1_1 , 1_ 2c ef c efh c h c   : 1_1 1_1 1_ 2 1_ 2

1_1 1_ 2

s s s s

s

s s

A A

A A

 


 + 
=

+
 ; Go to VIII). 

2. If 
, 1_1c efh c : 

1_1s s =  ; Go to VIII). 

3. If 
, 1_2c efh c : 

1_ 2s s =  ; Go to VIII). 

ii. If 
1_1 0sA  : 

1_1s s =  ; Go to VIII). 

iii. If 
1_ 2 0sA  : 

1_ 2s s =  ; Go to VIII). 

b. If 0EdM   : 

i. If 
2_1 2_ 20 0s sA A    : 

1. If 
, 2_1 , 2_ 2c ef c efh c h c   : 2 _1 2 _1 2 _ 2 2 _ 2

2 _1 2 _ 2

s s s s

s

s s

A A

A A

 


 + 
=

+
 ; Go to 

VIII). 

2. If 
, 2_1c efh c : 

2_1s s =  ; Go to VIII). 



Advanced tools for design and analysis of fiber reinforced concrete structures 
 

300 

3. If 
, 2_ 2c efh c : 

2_ 2s s =  ; Go to VIII). 

ii. If 
2_1 0sA  : 

2_1s s =  ; Go to VIII). 

iii. If 
2_ 2 0sA  : 

2_ 2s s =  ; Go to VIII). 

VIII) Determine 
sm cm cs  − −  according to Eq. (2.120). 

IX) Determine design crack width 
dw  according to Eq. (2.119). 

X) End. 

D.10 Determination of moment-crack width relationship 

In Table 47 is presented the algorithm that determines the moment vs. crack width relationship for a 

FRC and RC cross-section. The calculation procedure resorts to an iterative approach to determine 

the neutral axis position and bending moment in the cross-section, considering at each step an 

incremental value of the top compressive fiber strain. At each strain increment, the height of the 

effective tensile zone of the cross-section is updated. After resolution of the equilibrium equations, the 

tensile stress is determined, and the bond transfer length and design crack width are calculated based 

in the methodology presented in section 2.5. 

Table 47 – Algorithm to determine moment-crack width relationship of FRC and RC cross-section. 

ROUTINE TITLE: Calc_M_crack 

INPUT:  
• Class with geometry and material data, cData. 

• Variable that defines type of cross-section to be analyzed, CS_type = FRC/RC; 

OUTPUT: 
• Relationship of . dM vs w  of the cross-section. 

I) Read variable corresponding to the creep coefficient, 
c  , from cData. 

II) Set analysis state to SLS: Analysis_type=SLS. 

III) Define concrete compressive constitutive model. Call model_SigmaC(Analysis_type , 

c , cData). 
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IV) If 
1_1 1_20 0s sA A    :Set 1j = .Call model_SigmaS( j, Analysis_type, cData). 

V) If 
2_1 2_ 20 0s sA A    :Set 2j = .Call model_SigmaS( j, Analysis_type, cData). 

VI) Check type of analysis to be performed: Is CS_type =FRC ? 

i) Yes: Go to VII) . 

ii) No: Set 0Ftsmf = and 0z =  . Go to VIII) . 

VII) Define FRC tensile constitutive model:  

i) Determine 10.45

0.7

R k
Ftsm

f
f


=  . 

ii) Check if longitudinal conventional tensile reinforcements are adopted in the 

cross-section. Is 
1_1 1_ 20 0s sA A=  =  ? 

1) Yes : 1z = . Go to iv). 

2) No : 2z = . Go to iii). 

iii) Define formula for height of effective tensile zone. Call routine 

Calc_effective_height(cData). 

iii) Determine structural characteristic length. Call routine 

Calc_structural_length(cData). Retrieve u

csl  and/or r

csl . 

iv) Set 1i =  . 

v) Define structural characteristic length for zone i  : 

1i =  : 
,

u

cs i csl l= . 

2i =  : 
,

r

cs i csl l= . 

vi) Is i z ?  

Yes: Go to vii). 

No: Go to VIII). 

vii) Call routine model_FRC_SLS(cData, i, z , 
,cs il ). 

viii) 1i i= + .  
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ix) Go to v). 

XIX) Read N  from cData: 
,Ed crackN N= . 

VIII) Determine moment at crack initiation. Call Calc_M_crack_init(cData, N ). Return 

crackM , 
crackx and 

,top crack  . 

IX) Set initial values of solution: 
init crackx x=  and 0M = . 

X) Define equilibrium equations in the cross-section. Call Formula_Forces(cData, z, 

CS_type, N ) and Formula_Moment_FRC(cData, z, CS_type, M , N ).  

XI) Define equilibrium equations in the cross-section. Call Formula_Compatibility(). 

XII) Set 
initx x= . 

XIII) Set 
,top top crack = and strain increment equal to: 3

30

c
inc


 =  . 

XIV) Set strain at top fiber 
top top inc  = + . 

XV) Check if concrete in compression fails: 

i) If 
3top cu   : Failure. End. 

ii) If 
3top cu   : Proceed to step XVI). 

XVI) Set maximum number of iterations in each strain increment for changing the initial values 

of iterative algorithm, 30nIterMax = . 

XVII) Resolve equilibrium equations. Call resolve_x( ,x nIterMax ). Return convergence 

check (conv_check), neutral axis position, x , moment, M . 

XVIII) Import data of resolution of equilibrium and compatibility equations (curvature, stresses, 

strains, forces and depth of forces) to cData, namely , 1_1,1_ 2,2 _1,2 _ 2si i =  and 

y . 

XIX) Test convergence: Value of conv_check? 

i) conv_check=KO:  Send error message. End. 

ii) conv_check=OK :  
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1) If CS_type=FRC:  Check failure of FRC is reached. Call 

check_FRCfailure(cData) and return variable FRC_failure_check: 

a) If FRC_failure_check=Yes: End. 

b) If FRC_failure_check =NO: Proceed to step 2). 

2) Determine bond transfer length 
,maxsl . Call routine Calc_lsmax(cData, 

Ftsmf ,

y , M ). Return 
,maxsl , 

,s ef  and 
,c efh . 

3)  Determine design crack width 
dw . Call routine Calc_crack_width(cData, 

Ftsmf  , 
si , 

,maxsl ,
,s ef , 

,c efh , M ). 

4)  Store results ( ),, , , , ,d c ef topM w x h   in Excel worksheet. 

5) Set 0M = . Go to XIV). 

D.11 Determination of bending moment corresponding to crack initiation 

In Table 48 is presented the algorithm to determine the bending moment corresponding to crack 

initiation of a FRC and RC cross-section with axial force. In this particular case, as the pre-cracking 

stress-strain relationship for FRC is independent of the structural characteristic length is adopted a 

unique stress-strain relationship for FRC in tension (i. e. 1z = ), even if longitudinal conventional steel 

reinforcements are adopted. 
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Table 48 – Algorithm to determine the moment at crack initiation. 

ROUTINE TITLE: Calc_M_cracking 

INPUT:  
• Class with geometry and material data, cData. 

• Axial force, N . 

OUTPUT: 
• Bending moment at crack initiation, 

crackM . 

• Position of neutral axis at crack initiation, 
crackx . 

• Strain of top fiber of cross-section at crack initiation, 
,top crack . 

I) Define concrete compressive constitutive model. Call model_SigmaC(Analysis_type , 

c , cData). 

II) If 
1_1 1_20 0s sA A    :Set 1j = .Call model_SigmaS( j, Analysis_type, cData). 

III) If 
2_1 2_ 20 0s sA A    :Set 2j = .Call model_SigmaS( j, Analysis_type, cData). 

IV)  Define FRC/RC tensile constitutive model:  

i) Set 1z =  . 

ii) Call routine model_FRC_SLS(cData, i, z , u

csl ). 

V) Set CS_type=FRC. 

VI) Set 0M = . 

VII) Define equilibrium equations in the cross-section. Call Formula_Forces(cData, z, 

CS_type, N  ) and Formula_Moment(cData, z, CS_type, M , N ). 

VIII) Define equilibrium equations in the cross-section. Call Formula_Compatibility(). 

IX) Set maximum number of iterations, 30nIterMax = . 

X) Set 
2 0.15bot t = = ‰ . 

XI) Set formulas: 
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bot

top

y

x




 

=

= 

 Eq. (D.7) 

XII) Resolve equilibrium equations. Call resolve_x( ,x nIterMax ). Return convergence state 

variable (conv_check), neutral axis position, x , moment, M . 

XIII) Set 
crackM M=  and 

crackx x= . 

XIV) Determine 
,top crack  based on Eq. (D.7). 

XV) End. 

D.12 Verification of stress limitation criteria 

In Table 49 is presented the algorithm adopted to verify the stress limitation criteria at SLS verification 

of FRC and RC cross-sections. The calculation procedure is based on methodology presented in 

section 2.5.4. 

Table 49 – Algorithm of routine of stress limitation serviceability verifications. 

ROUTINE TITLE: Calc_FRC_stress_limitation 

INPUT:  
• Class with geometry and material data, cData . 

• Variable that defines type of cross-section to be analyzed, CS_type = “FRC” or “RC”. 

• Variable corresponding to the creep coefficient, 
c  . 

• Bending moment, 
,sd charM , and axial force, 

,sd charN , corresponding to the characteristic 

load combination. 

• Bending moment, 
,sd qpermM , and axial force, 

,sd qpermN ,corresponding to the quasi-

permanent load combination. 

OUTPUT: 
• Variables of state of SLS verifications: Check_Conc_Stress_Char, 

Check_Conc_Stress_QPerm, Check_Steel_Stress_Char and  

Check_FRC_Stress_Char. 

I) Set Analysis_type=SLS. 
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II) Verification of concrete compressive stress limitation: 

i) Call Calc_Section(CData, CS_type, Analysis_type, 0c = , 
,Ed charM , 

,Ed charN  ). Return 
1c . Set 

1, 1c char c =  . 

ii) Is 
1, 0.6c char ckf    ? 

1) Yes: Check_Conc_Stress_Char=OK. 

2) No: Check_Conc_Stress_Char=KO. 

iii) Call Calc_Section(CData, CS_type, Analysis_type, 0 = , 
,Ed qpermM , 

,Ed qpermN  ). Return 
1c . Set 

1, 1c qperm c =  . 

iv) 
1, 0.4c qperm ckf    ? 

1) Yes: Check_Conc_Stress_QPerm=OK. 

2) No: Check_Conc_Stress_QPerm=KO. 

III) Verification of steel tensile stress limitation: 

i) Call Calc_Section(CData, CS_type, Analysis_type,  , 
,Ed charM ,

,Ed charN ). 

Return , 1_1,1_ 2,2 _1,2 _ 2si i = .  

ii) If 
, 0Ed charM  : 

a. If 
1_1 1_ 20 0s sA A   : 

1) Is 
1_1 1_ 20.8 0.8s syk s sykf f        

Yes: Check_Steel_Stress_Char=OK. Go To IV). 

No: Check_Steel_Stress_Char=KO. Go To IV). 

b. If 
1_1 0sA  : 

1) Is 
1_1 0.8s sykf     

Yes: Check_Steel_Stress_Char=OK. Go To IV). 

No: Check_Steel_Stress_Char=KO. Go To IV). 
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c. If 
1_ 2 0sA  : 

1) Is 
1_2 0.8s sykf     

Yes: Check_Steel_Stress_Char=OK. Go To IV). 

No: Check_Steel_Stress_Char=KO. Go To IV). 

iii) If 
, 0Ed charM  : 

a. If 
2_1 2_ 20 0s sA A   : 

1) Is 
2_1 2_ 20.8 0.8s syk s sykf f        

Yes: Check_Steel_Stress_Char=OK. Go To IV). 

No: Check_Steel_Stress_Char=KO. Go To IV). 

b. If 
2_1 0sA  : 

1) Is 
2_1 0.8s sykf     

Yes: Check_Steel_Stress_Char=OK. Go To IV). 

No: Check_Steel_Stress_Char=KO. Go To IV). 

c. If 
2_ 2 0sA  : 

1) Is 
2_ 2 0.8s sykf     

Yes: Check_Steel_Stress_Char=OK. Go To IV). 

No: Check_Steel_Stress_Char=KO. Go To IV). 

IV) Set 
10.45Ftsk R kf f=   and 0.7ctk ctmf f=  . 

V) Check if FRC has strain-hardening behavior: Is 
Ftsk ctkf f  : 

i) Yes: Verification of FRC tensile stress limitation: 

1) Call Calc_Section(CData, CS_type, Analysis_type,  , 
,Ed charM , 

,Ed charN  ).  
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2) Check if longitudinal conventional reinforcements in tension are adopted in the 

cross-section. Is 

( ) ( )1_1 1_ 2 2_1 2_ 20 0 0 0 0 0s s s sM A A M A A  =  =    =  =  ? 

a) Yes : Set 
, 4t FRC t =  . 

b) No : Set 
, 4, inft FRC t re =  . 

3) Is 
, 0.6t FRC Ftskf    ? 

a) Yes: Check_FRC_Stress_Char=OK. End. 

b) No: Check_FRC_Stress_Char=KO. End. 

ii) No: Check_FRC_Stress_Char=OK. End. 
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E APPENDIX E 

Table 50 – Database of beams shear tests and results of theoretical models. 

 

Sample Cross-section Concrete Passive reinforcement Experimental test MC2010_MCFT MC2010_EEN 

Ref,. Code Type w
b  

[mm] 

h  
[mm] 

d  
[mm] 

cm
f  

[MPa] 
g

d  

[mm] 

fV  

[%] 
f f

l d  1R m
f  

[MPa] 
2R m

f  

[MPa] 
3R m

f  

[MPa] 
4R m

f  

[MPa] 
sl

A  

[mm2] 
syk

f  

[MPa] 

s
z  

[mm] 
a d  ,expu

V  

[kN] 
dg

k  
v

k  
x

    
[º} 

u
w  

[mm] 
,Rd c

V  

[kN] 
Ftum

f  

[MPa] 
,Rd f

V  

[kN] 

,modelu
V  

[kN] 
  Ftum

f  

[MPa] 
,modelu

V  

[kN] 
  

[77] 

1 B18-3a R 152.4 457.2 381 31.0 10 1.50 54.55 6.60 6.31 5.29 4.45 1552 448 342.9 3.43 150.76 1.23 0.17 7.65E-04 34.36 1.06 49.54 1.45 88.72 138.26 1.09 1.98 129.81 1.16 
2 B18-3b R 152.4 457.2 381 31.0 10 1.50 54.55 6.60 6.31 5.29 4.45 1552 448 342.9 3.43 Excluded due to possible flexural-shear failure  
3 B18-3c R 152.4 457.2 381 44.9 10 1.50 54.55 6.60 6.31 5.29 4.45 1552 448 342.9 3.43 193.32 1.23 0.16 8.33E-04 34.83 1.13 56.92 1.57 94.25 151.16 1.28 1.98 137.33 1.41 
4 B18-3d R 152.4 457.2 381 44.9 10 1.50 54.55 6.60 6.31 5.29 4.45 1552 448 342.9 3.43 191.77 1.23 0.16 8.33E-04 34.83 1.13 56.92 1.57 94.25 151.16 1.27 1.98 137.33 1.40 
5 B27-1a R 203.2 685.8 607 50.8 10 0.75 54.55 5.70 5.27 3.55 2.73 2534 455 546.3 3.52 Excluded due to possible flexural-shear failure  
6 B27-1b R 203.2 685.8 607 50.8 10 0.75 54.55 5.70 5.27 3.55 2.73 2534 455 546.3 3.52 341.94 1.23 0.14 8.42E-04 34.90 1.34 108.68 1.06 134.47 243.16 1.41 1.41 249.53 1.37 
7 B27-2a R 203.2 685.8 607 28.7 10 0.75 80.00 5.23 5.70 5.79 5.59 2534 455 546.3 3.52 Excluded due to possible flexural-shear failure  
8 B27-2b R 203.2 685.8 607 28.7 10 0.75 80.00 5.23 5.70 5.79 5.59 2534 455 546.3 3.52 Excluded due to possible flexural-shear failure  
9 B27-4a R 203.2 685.8 607 29.6 10 0.75 80.00 5.86 5.74 6.14 5.90 1940 448 546.3 3.52 Excluded due to possible flexural-shear failure  
10 B27-4b R 203.2 685.8 607 29.6 10 0.75 80.00 5.86 5.74 6.14 5.90 1940 448 546.3 3.52 229.54 1.23 0.12 1.08E-03 36.53 1.64 71.86 1.41 168.64 240.50 0.95 2.19 237.38 0.97 
11 B18-2d R 152.4 457.2 381 38.1 10 1.00 54.55 6.60 6.31 5.29 4.45 1552 448 342.9 3.50 153.20 1.23 0.16 8.29E-04 34.80 1.13 52.59 1.57 94.51 147.10 1.04 1.98 133.89 1.14 
12 B18-5a R 152.4 457.2 381 49.2 10 1.00 80.00 6.60 6.31 5.29 4.45 1552 448 342.9 3.43 176.38 1.23 0.16 8.42E-04 34.89 1.14 59.23 1.56 93.73 152.96 1.15 1.98 139.32 1.27 
13 B18-5b R 152.4 457.2 381 49.2 10 1.00 80.00 6.60 6.31 5.29 4.45 1552 448 342.9 3.43 Excluded due to possible flexural-shear failure  

[78] 

14 H1000 FRC50 R 250 1000 940 32.1 16 0.64 62.50 5.40 5.60 5.00 4.50 2513 555 846 3.00 289.52 1.00 0.11 1.03E-03 36.20 1.75 132.71 0.97 223.32 356.04 0.81 1.82 354.91 0.82 
15 H1000 FRC75 R 250 1000 940 33.1 16 1.00 62.50 6.00 6.10 6.00 5.50 2513 555 846 3.00 367.07 1.00 0.10 1.15E-03 37.05 1.92 125.78 1.23 274.99 400.78 0.92 2.16 373.60 0.98 
16 H1500 FRC50 R 250 1500 1440 32.1 16 0.64 62.50 5.40 5.60 5.00 4.50 3619 518 1296 3.00 521.28 1.00 0.09 9.67E-04 35.77 2.06 169.69 0.86 310.18 479.87 1.09 1.82 500.32 1.04 
17 H1500 FRC75 R 250 1500 1440 33.1 16 1.00 62.50 6.00 6.10 6.00 5.50 3619 518 1296 3.00 593.28 1.00 0.08 1.11E-03 36.80 2.32 158.05 1.15 399.93 557.98 1.06 2.16 526.66 1.13 
18 H500 FRC50 R 250 500 440 32.1 16 0.64 62.50 5.40 5.60 5.00 4.50 1232 500 396 3.00               
19 H500 FRC75 R 250 500 440 33.1 16 0.96 62.50 6.00 6.10 6.00 5.50 1232 500 396 3.00 235.00 1.00 0.13 1.22E-03 37.53 1.52 75.04 1.30 133.83 208.87 1.13 2.16 203.45 1.16 

[79] 

20 2.3_2 R 200 300 260 40.04 16 0.25 66.67 1.85(*) 1.85(*) 1.72(*) 1.65(*) 690 500 234 2.50 Excluded due to possible flexural-shear failure  
21 2.3_3 R 200 300 260 38.68 16 0.76 66.67 4.6(*) 4.45(*) 3.87(*) 3.48(*) 690 500 234 2.50 Excluded due to possible flexural-shear failure  
22 2.4_2 R 200 300 260 40.04 16 0.25 66.67 1.85(*) 1.85(*) 1.72(*) 1.65(*) 1086 500 234 2.50 Excluded due to possible flexural-shear failure  
23 2.6_2 R 200 300 260 41.168 16 0.25 66.67 1.89(*) 1.88(*) 1.73(*) 1.67(*) 1086 500 234 4.04 Excluded due to possible flexural-shear failure  
24 2.6_3 R 200 300 260 40.296 16 0.76 66.67 4.73(*) 4.53(*) 3.9(*) 3.5(*) 1086 500 234 4.04 Excluded due to possible flexural-shear failure  
25 3.1_1 R 200 300 260 37.696 16 0.51 66.67 3.21(*) 3.15(*) 2.84(*) 2.61(*) 1698 500 234 3.50 189.00 1.00 0.23 5.65E-04 32.95 0.73 65.56 0.74 42.52 108.08 1.75 1.04 110.74 1.71 
26 3.1_1 F2 R 200 300 260 38.8 16 0.51 66.67 3.27(*) 3.2(*) 2.86(*) 2.63(*) 1698 500 234 3.50 Excluded due to possible flexural-shear failure  
27 3.1_2 R 200 450 410 37.696 16 0.51 66.67 3.21(*) 3.15(*) 2.84(*) 2.61(*) 2781 500 369 3.34 249.00 1.00 0.22 5.05E-04 32.53 0.74 97.96 0.73 67.90 165.86 1.50 1.04 158.01 1.58 
28 20_50 R 200 500 460 38.8 16 0.51 66.67 3.27(*) 3.2(*) 2.86(*) 2.63(*) 2730 500 414 3.37 272.00 1.00 0.20 5.56E-04 32.89 0.82 103.44 0.73 74.73 178.17 1.53 1.05 174.45 1.56 
29 3.1_3 R 200 600 560 37.696 16 0.51 66.67 3.21(*) 3.15(*) 2.84(*) 2.61(*) 3276 500 504 3.48 265.00 1.00 0.19 5.54E-04 32.88 0.87 116.86 0.71 88.87 205.73 1.29 1.04 203.00 1.31 
30 3.1_3 F2 R 200 600 560 38.8 16 0.51 66.67 3.27(*) 3.2(*) 2.86(*) 2.63(*) 3276 500 504 3.48 383.00 1.00 0.19 5.59E-04 32.91 0.88 118.05 0.72 89.69 207.74 1.84 1.05 204.47 1.87 
31 8_50 T 200 500 460 38.8 16 0.51 66.67 3.27(*) 3.2(*) 2.86(*) 2.63(*) 2800 500 414 3.37 338.00 1.00 0.20 5.46E-04 32.82 0.81 104.28 0.73 75.11 179.39 1.88 1.05 174.45 1.94 
32 3.2_1 T 200 500 460 37.696 16 0.51 66.67 3.21(*) 3.15(*) 2.84(*) 2.61(*) 2800 500 414 3.37 286.00 1.00 0.20 5.41E-04 32.78 0.81 103.23 0.72 74.38 177.61 1.61 1.04 173.20 1.65 
33 10_50 F2 T 200 500 460 38.8 16 0.51 66.67 3.27(*) 3.2(*) 2.86(*) 2.63(*) 2800 500 414 3.37 265.00 1.00 0.20 5.46E-04 32.82 0.81 104.28 0.73 75.11 179.39 1.48 1.05 174.45 1.52 
34 3.2_2 T 200 500 460 37.696 16 0.51 66.67 3.21(*) 3.15(*) 2.84(*) 2.61(*) 2800 500 414 3.37 Excluded due to possible flexural-shear failure  
35 15_50 F2 T 200 500 460 38.8 16 0.51 66.67 3.27(*) 3.2(*) 2.86(*) 2.63(*) 2800 500 414 3.37 276.00 1.00 0.20 5.46E-04 32.82 0.81 104.28 0.73 75.11 179.39 1.54 1.05 174.45 1.58 
36 23_50 F2 T 200 500 460 38.8 16 0.51 66.67 3.27(*) 3.2(*) 2.86(*) 2.63(*) 2800 500 414 3.37 Excluded due to possible flexural-shear failure  
37 3.2_3 T 200 500 460 37.696 16 0.51 66.67 3.21(*) 3.15(*) 2.84(*) 2.61(*) 2800 500 414 3.37 Excluded due to possible flexural-shear failure  
38 3.2_4 T 200 500 460 37.696 16 0.51 66.67 3.21(*) 3.15(*) 2.84(*) 2.61(*) 2800 500 414 3.37 Excluded due to possible flexural-shear failure  

[80] 
39 HSC-FRC1 R 200 480 435 61.1 15 0.64 48.39 2.90 4.86 2.81 2.65 905 512 391.5 2.51 188.51 1.03 0.15 9.39E-04 35.58 1.23 94.08 0.56 49.27 143.36 1.31 1.02 146.74 1.28 
40 NSC1-FRC1 R 200 480 435 24.8 20 0.38 50.00 2.50 2.73(*) 2.40 2.48(*) 905 512 391.5 2.51 131.51 0.89 0.17 8.18E-04 34.73 1.06 67.54 0.62 56.13 123.67 1.06 0.87 118.52 1.11 
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Sample Cross-section Concrete Passive reinforcement Experimental test MC2010_MCFT MC2010_EEN 

Ref,. Code Type w
b  
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h  
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41 NSC2-FRC1 R 200 480 435 33.5 20 0.38 50.00 2.60 1.82(*) 2.29 1.64(*) 905 512 391.5 2.51 117.01 0.89 0.18 7.84E-04 34.49 1.02 80.36 0.41 37.76 118.12 0.99 0.84 124.17 0.94 
42 NSC3-FRC1 R 200 480 435 38.6 20 0.38 50.00 3.34 1.98(*) 2.73 1.76(*) 905 512 391.5 2.51 138.51 0.89 0.17 8.21E-04 34.75 1.06 84.07 0.44 40.11 124.18 1.12 1.02 133.02 1.04 
43 HSC-FRC2 R 200 480 435 58.3 15 0.64 78.95 6.50 6(*) 5.39 5.01(*) 905 512 391.5 2.51 220.01 1.03 0.14 1.15E-03 37.08 1.46 81.09 1.18 97.74 178.83 1.23 2.01 170.36 1.29 

[81] 

44 A0.5% R 150 250 202 21.3 16 0.50 54.55 2.81(*) 2.81(*) 2.8(*) 2.55(*) 400 478 181.8 2.97 48.04 1.00 0.19 8.70E-04 35.09 0.97 24.03 0.77 23.92 47.96 1.00 1.01 53.75 0.89 
45 A1% R 150 250 202 19.6 16 1.00 54.55 3.63(*) 3.72(*) 3.73(*) 3.39(*) 400 478 181.8 2.97 57.04 1.00 0.18 9.51E-04 35.66 1.05 21.89 1.01 30.85 52.74 1.08 1.34 57.15 1.00 
46 B0.5% R 300 500 437 21.3 16 0.50 54.55 2.81(*) 2.81(*) 2.8(*) 2.55(*) 2000 429 393.3 3.09 159.16 1.00 0.17 7.65E-04 34.35 1.03 94.66 0.77 105.76 200.42 0.79 1.01 205.07 0.78 
47 B1% R 300 500 437 19.6 16 1.00 54.55 3.63(*) 3.72(*) 3.73(*) 3.39(*) 2000 429 393.3 3.09 202.86 1.00 0.16 8.44E-04 34.91 1.12 86.02 1.01 136.32 222.34 0.91 1.34 218.07 0.93 

[41] 
48 B25-0-0-0 R 300 700 622 34 10 0.32 66.67 2.39 2.52 2.56 2.26 3694 540 559.8 2.81 282.82 1.23 0.17 5.41E-04 32.79 0.96 166.38 0.58 120.23 286.61 0.99 0.91 314.55 0.90 
49 B50-0-0-0 R 300 700 622 36 10 0.64 66.67 6.74 8.58 8.07 7.91 3694 540 559.8 2.81 352.82 1.23 0.14 7.69E-04 34.38 1.26 144.07 1.37 269.73 413.80 0.85 2.83 426.75 0.83 

[82] 

50 DI-N-HO-35-0.75 R 150 300 251 28.1 12.5 0.75 63.64 3.15 3.33 3.01 2.69 1202 500 225.9 3.49 113.90 1.12 0.22 5.79E-04 33.05 0.75 39.88 0.93 38.88 78.76 1.45 1.09 77.68 1.47 
51 DII-N-HO-35-0.75 R 150 300 251 25.3 12.5 0.75 63.64 3.15 3.33 3.01 2.69 1202 500 225.9 3.49 80.01 1.12 0.22 5.68E-04 32.98 0.74 38.18 0.94 39.07 77.24 1.04 1.09 76.34 1.05 
52 F-I-N-HO-35-1.50 R 150 300 251 28.1 12.5 1.50 63.64 5.88 6.30 5.26 4.43 1202 500 225.9 3.49 112.01 1.12 0.21 6.74E-04 33.72 0.84 37.05 1.36 55.19 92.24 1.21 1.93 90.36 1.24 
53 F-II-N-HO-35-1.50 R 150 300 251 27.3 12.5 1.50 63.64 5.88 6.30 5.26 4.43 1202 500 225.9 3.49 Excluded due to possible flexural-shear failure  
54 G-I-N-HO-60-0.50 R 150 300 251 27.5 12.5 0.50 80.00 2.89 3.09 2.94 2.71 1202 500 225.9 3.49 65.70 1.12 0.23 5.61E-04 32.93 0.73 40.01 0.87 36.31 76.33 0.86 1.05 76.73 0.86 
55 G-II-N-HO-60-0.50 R 150 300 251 24.9 12.5 0.50 80.00 2.89 3.09 2.94 2.71 1202 500 225.9 3.49 78.13 1.12 0.23 5.51E-04 32.86 0.72 38.40 0.87 36.46 74.86 1.04 1.05 75.47 1.04 
56 I-I-N-HO-60-1.00 R 150 300 251 26.3 12.5 1.00 80.00 4.40 4.98 4.81 4.64 1202 500 225.9 3.49 Excluded due to possible flexural-shear failure  
57 I-II-N-HO-60-1.00 R 150 300 251 27.1 12.5 1.00 80.00 4.40 4.98 4.81 4.64 1202 500 225.9 3.49 105.61 1.12 0.21 6.63E-04 33.64 0.83 36.68 1.33 54.03 90.71 1.16 1.71 86.88 1.22 
58 K-I-M-HO-35-0.75 R 150 300 251 53.4 12.5 0.75 63.64 6.00 5.12 3.99 3.24 1202 500 225.9 3.49 113.90 1.12 0.20 7.45E-04 34.21 0.91 48.52 1.35 53.79 102.31 1.11 1.56 94.99 1.20 
59 K-II-M-HO-35-0.75 R 150 300 251 54.1 12.5 0.75 63.64 6.00 5.12 3.99 3.24 1202 500 225.9 3.49 126.70 1.12 0.20 7.46E-04 34.22 0.91 48.79 1.35 53.74 102.52 1.24 1.56 95.28 1.33 
60 P-I-M-HO-35-1.50 R 150 300 251 64.6 12.5 1.50 63.64 8.52 7.59 6.20 5.09 1202 500 225.9 3.49 Excluded due to possible flexural-shear failure  
61 P-II-M-HO-35-1.50 R 150 300 251 59.9 12.5 1.50 63.64 8.52 7.59 6.20 5.09 1202 500 225.9 3.49 160.96 1.12 0.18 8.76E-04 35.13 1.04 47.02 1.92 74.16 121.18 1.33 2.37 108.75 1.48 
62 AA-II-M-HO-60-0.50 R 150 300 251 49.5 12.5 0.50 80.00 4.54 5.88 5.50 4.87 1202 500 225.9 3.49 153.05 1.12 0.19 7.85E-04 34.50 0.95 45.41 1.59 62.72 108.13 1.42 1.92 98.43 1.55 
63 N-I-M-HO-60-1.00 R 150 300 251 53.4 12.5 1.00 80.00 7.29 8.93 8.70 7.59 1202 500 225.9 3.49 128.96 1.12 0.18 8.85E-04 35.20 1.05 44.12 2.04 78.47 122.59 1.05 3.05 113.49 1.14 
64 N-II-M-HO-60-1.00 R 150 300 251 51 12.5 1.00 80.00 7.29 8.93 8.70 7.59 1202 500 225.9 3.49 157.95 1.12 0.18 8.73E-04 35.11 1.03 43.46 2.01 77.36 120.81 1.31 3.05 112.32 1.41 

[83] 

65 H35-1 R 150 300 251 27.9 12.5 1.00 63.64 3.17 3.34 3.07 2.76 1202 500 225.9 3.49 110.13 1.12 0.22 5.78E-04 33.05 0.75 39.76 0.93 38.91 78.67 1.40 1.11 77.95 1.41 
66 H35-2 R 150 300 251 26.2 12.5 1.00 63.64 3.17 3.34 3.07 2.76 1202 500 225.9 3.49 Excluded due to possible flexural-shear failure  
67 H60-1 R 150 300 251 26.25 12.5 1.00 80.00 3.89 4.45 4.38 4.21 1202 500 225.9 3.49 Excluded due to possible flexural-shear failure  
68 H60-2 R 150 300 251 27.12 12.5 1.00 80.00 3.89 4.45 4.38 4.21 1202 500 225.9 3.49 105.61 1.12 0.21 6.45E-04 33.51 0.81 37.21 1.24 50.87 88.08 1.20 1.55 84.57 1.25 

[16] 

69 W750 FRC25-1 0 750 250 210 38 16 0.32 62.50 3.01 3.20 2.99 2.69 1913 537 189 2.50 348.36 1.00 0.19 8.71E-04 35.10 0.98 165.67 0.71 114.55 280.22 1.24 1.08 301.63 1.15 
70 W750 FRC25-2 0 750 250 210 38 16 0.32 62.50 3.01 3.20 2.99 2.69 1913 537 189 2.50 364.36 1.00 0.19 8.71E-04 35.10 0.98 165.67 0.71 114.55 280.22 1.30 1.08 301.63 1.21 
71 W750 FRC35-1 0 750 250 210 36.9 16 0.45 62.50 3.52 3.87 3.62 3.24 1913 537 189 2.50 352.86 1.00 0.18 9.13E-04 35.39 1.02 158.94 0.85 135.66 294.60 1.20 1.30 313.87 1.12 
72 W750 FRC35-2 0 750 250 210 36.9 16 0.45 62.50 3.52 3.87 3.62 3.24 1913 537 189 2.50 363.36 1.00 0.18 9.13E-04 35.39 1.02 158.94 0.85 135.66 294.60 1.23 1.30 313.87 1.16 
73 W1000 FRC25-1 R 1000 250 210 38 16 0.32 62.50 3.01 3.20 2.99 2.69 2625 537 189 2.50 491.15 1.00 0.19 8.55E-04 34.99 0.96 223.23 0.71 153.86 377.09 1.30 1.08 406.08 1.21 
74 W1000 FRC25-2 R 1000 250 210 38 16 0.32 62.50 3.01 3.20 2.99 2.69 2625 537 189 2.50 482.65 1.00 0.19 8.55E-04 34.99 0.96 223.23 0.71 153.86 377.09 1.28 1.08 406.08 1.19 
75 W1000 FRC35-1 R 1000 250 210 36.9 16 0.45 62.50 3.52 3.87 3.62 3.24 2625 537 189 2.50 483.15 1.00 0.19 8.96E-04 35.27 1.00 214.19 0.85 182.28 396.47 1.22 1.30 422.55 1.14 
76 W1000 FRC35-2 R 1000 250 210 36.9 16 0.45 62.50 3.52 3.87 3.62 3.24 2625 537 189 2.50 509.65 1.00 0.19 8.96E-04 35.27 1.00 214.19 0.85 182.28 396.47 1.29 1.30 422.55 1.21 

[82] 

77 MH35-1 R 150 300 251 53.2 12.5 1.00 63.64 7.51 6.74 5.46 4.35 1202 500 225.9 3.49 145.14 1.12 0.19 8.22E-04 34.76 0.99 45.90 1.73 67.57 113.48 1.28 2.09 102.28 1.42 
78 MH35-2 R 150 300 251 55.3 12.5 1.00 63.64 7.51 6.74 5.46 4.35 1202 500 225.9 3.49 166.61 1.12 0.19 8.26E-04 34.79 0.99 46.67 1.73 67.39 114.06 1.46 2.09 103.21 1.61 
79 MH60-1 R 150 300 251 53.4 12.5 1.00 80.00 7.13 8.94 8.87 7.59 1202 500 225.9 3.49 128.96 1.12 0.18 8.85E-04 35.20 1.05 44.12 2.04 78.47 122.59 1.05 3.09 113.91 1.13 
80 MH60-2 R 150 300 251 51 12.5 1.00 80.00 7.13 8.94 8.87 7.59 1202 500 225.9 3.49 157.95 1.12 0.18 8.73E-04 35.11 1.03 43.46 2.01 77.36 120.81 1.31 3.09 112.74 1.40 

[84] 81 B2-HS R 114.3 177.8 149.86 44.57 16 1.00 50.00 3.38 2.72 1.71 1.11 492 470 134.874 3.56 52.75 1.00 0.23 6.80E-04 33.76 0.77 23.34 0.75 13.90 37.25 1.42 0.71 36.99 1.43 

[86] 

82 20x30-SFRC-S1 R 200 300 260 37.7 25 0.51 66.67 3.21(*) 3.15(*) 2.84(*) 2.61(*) 1473 500 234 3.50 Excluded due to possible flexural-shear failure  
83 20x30-SFRC-S2 R 200 300 260 38.8 25 0.51 66.67 3.27(*) 3.2(*) 2.86(*) 2.63(*) 1473 500 234 3.50 Excluded due to possible flexural-shear failure  
84 20x45-SFRC-S1 R 200 450 410 37.7 25 0.51 66.67 3.21(*) 3.15(*) 2.84(*) 2.61(*) 2413 500 369 3.34 248.50 0.78 0.22 5.75E-04 33.02 0.77 98.26 0.73 66.27 164.52 1.51 1.04 158.01 1.57 
85 20x50-SFRC-S2 0 200 500 460 38.8 25 0.51 66.67 3.27(*) 3.2(*) 2.86(*) 2.63(*) 2413 500 414 3.37 272.30 0.78 0.20 6.25E-04 33.37 0.84 104.65 0.73 73.07 177.73 1.53 1.05 174.45 1.56 
86 20x60-SFRC-S1 0 200 600 540 37.7 25 0.51 66.67 3.21(*) 3.15(*) 2.84(*) 2.61(*) 2945 500 486 3.50 264.50 0.78 0.20 6.08E-04 33.26 0.86 117.66 0.71 84.76 202.42 1.31 1.04 197.10 1.34 
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Sample Cross-section Concrete Passive reinforcement Experimental test MC2010_MCFT MC2010_EEN 
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87 20x60-SFRC-S2 0 200 600 540 38.8 25 0.51 66.67 3.27(*) 3.2(*) 2.86(*) 2.63(*) 2945 500 486 3.50 Excluded due to possible flexural-shear failure  
88 T10x50-SFRC-S1 0 200 500 460 37.7 25 0.51 66.67 3.21(*) 3.15(*) 2.84(*) 2.61(*) 2413 500 414 3.37 285.60 0.78 0.20 6.19E-04 33.33 0.83 103.62 0.72 72.39 176.02 1.62 1.04 173.20 1.65 
89 T10x50-SFRC-S2 R 200 500 460 38.8 25 0.51 66.67 3.27(*) 3.2(*) 2.86(*) 2.63(*) 2413 500 414 3.37 264.60 0.78 0.20 6.25E-04 33.37 0.84 104.65 0.73 73.07 177.73 1.49 1.05 174.45 1.52 
90 T15x50-SFRC-S2 0 200 500 460 38.8 25 0.51 66.67 3.27(*) 3.2(*) 2.86(*) 2.63(*) 2413 500 414 3.37 276.10 0.78 0.20 6.25E-04 33.37 0.84 104.65 0.73 73.07 177.73 1.55 1.05 174.45 1.58 
91 T23x50-SFRC-S2 R 200 500 460 38.8 25 0.51 66.67 3.27(*) 3.2(*) 2.86(*) 2.63(*) 2413 500 414 3.37 Excluded due to possible flexural-shear failure  
92 T15x75-SFRC-S1 R 200 500 460 37.7 25 0.51 66.67 3.21(*) 3.15(*) 2.84(*) 2.61(*) 2413 500 414 3.37 Excluded due to possible flexural-shear failure  
93 T15x100-SFRC-S1 R 200 500 460 37.7 25 0.51 66.67 3.21(*) 3.15(*) 2.84(*) 2.61(*) 2413 500 414 3.37 Excluded due to possible flexural-shear failure  

[18] 
94 FNB2-2 R 125 250 212 30.8 19 0.51 62.50 2.7(*) 2.69(*) 2.56(*) 2.35(*) 469 442 190.8 2.00 Excluded due to possible flexural-shear failure  
95 FNB2-3 R 125 250 212 30.8 19 0.51 62.50 2.7(*) 2.69(*) 2.56(*) 2.35(*) 469 442 190.8 3.00 67.58 0.91 0.21 7.22E-04 34.05 0.83 28.13 0.62 17.58 45.71 1.48 0.93 53.41 1.27 

[85] 
96 S-HE-50-0.75 R 200 300 265 38 10 0.75 50.00 3.51(*) 3.43(*) 3.06(*) 2.8(*) 1020 400 238.5 3.02 105.47 1.23 0.19 7.27E-04 34.09 0.92 56.52 0.76 43.01 99.53 1.06 1.13 113.17 0.93 
97 S-HE-50-1.0 T 200 300 265 42.2 10 1.00 50.00 4.8(*) 4.56(*) 3.89(*) 3.51(*) 1020 400 238.5 3.02 Excluded due to possible flexural-shear failure  

[87] 

98 FRC-20 H50_1 T 200 500 455 24.4 20 0.25 50.00 1.47 2.13(*) 1.54 1.93(*) 901 500 409.5 2.50 154.00 0.89 0.18 7.80E-04 34.46 1.03 71.06 0.49 46.33 117.39 1.31 0.55 108.76 1.42 
99 FRC-20 H50_2 T 200 500 455 24.4 20 0.25 50.00 1.47 2.13(*) 1.54 1.93(*) 901 500 409.5 2.50 Excluded due to possible flexural-shear failure  
100 FRC-40 H50_1 T 200 500 455 20.6 20 0.51 50.00 3.10 2.6(*) 2.94 2.36(*) 901 500 409.5 2.50 125.00 0.89 0.17 8.00E-04 34.60 1.05 64.41 0.59 56.18 120.59 1.04 1.07 123.35 1.01 
101 FRC-40 H50_2 T 200 500 455 20.6 20 0.51 50.00 3.10 2.6(*) 2.94 2.36(*) 901 500 409.5 2.50 133.00 0.89 0.17 8.00E-04 34.60 1.05 64.41 0.59 56.18 120.59 1.10 1.07 123.35 1.08 
102 FRC-60 H50_1 T 200 500 455 19.2 20 0.76 50.00 4.40 2.97(*) 4.62 2.7(*) 901 500 409.5 2.50 Excluded due to possible flexural-shear failure  
103 FRC-60 H50_2 R 200 500 455 19.2 20 0.76 50.00 4.40 2.97(*) 4.62 2.7(*) 901 500 409.5 2.50 Excluded due to possible flexural-shear failure  
104 FRC-20 H100 R 200 1000 910 24.4 20 0.25 50.00 1.47 2.13(*) 1.54 1.93(*) 1893 500 819 2.50 258.00 0.89 0.15 6.82E-04 33.77 1.17 120.39 0.48 93.34 213.73 1.21 0.55 195.30 1.32 

[88] 105 FRC R 200 450 435 40.7 20 0.38 50.00 2.08 2.04(*) 1.91 1.79(*) 1357 500 391.5 3.10 140.00 0.89 0.18 7.51E-04 34.26 0.99 90.60 0.46 42.39 132.98 1.05 0.70 141.80 0.99 
[89] 106 FRC-100 R 200 1000 910 55 20 0.25 50.00 2.47 1.77(*) 2.52 1.41(*) 1875 512 819 2.50 339.00 0.89 0.14 7.62E-04 34.33 1.28 170.64 0.35 67.39 238.04 1.42 0.90 254.41 1.33 

[90] 

107 W105 FRC25-14 0 105 250 210 35.3 16 0.32 62.50 2.17 1.96(*) 2.23 1.75(*) 309 541 189 2.50 39.00 1.00 0.21 7.01E-04 33.91 0.82 25.13 0.46 10.78 35.91 1.09 0.80 40.84 0.96 
108 W210 FRC25-14 0 210 250 210 35.3 16 0.32 62.50 2.17 1.96(*) 2.23 1.75(*) 617 541 189 2.50 98.00 1.00 0.21 7.01E-04 33.91 0.82 50.27 0.46 21.56 71.83 1.36 0.80 81.67 1.20 
109 W315 FRC25-14 0 315 250 210 35.3 16 0.32 62.50 2.17 1.96(*) 2.23 1.75(*) 926 541 189 2.50 142.00 1.00 0.21 7.01E-04 33.91 0.82 75.40 0.46 32.34 107.74 1.32 0.80 122.51 1.16 
110 W420 FRC25-14 0 420 250 210 35.3 16 0.32 62.50 2.17 1.96(*) 2.23 1.75(*) 1235 541 189 2.50 196.00 1.00 0.21 7.01E-04 33.91 0.82 100.54 0.46 43.12 143.66 1.36 0.80 163.34 1.20 
111 W525 FRC25-14 0 525 250 210 35.3 16 0.32 62.50 2.17 1.96(*) 2.23 1.75(*) 1544 541 189 2.50 261.00 1.00 0.21 7.01E-04 33.91 0.82 125.67 0.46 53.90 179.57 1.45 0.80 204.18 1.28 
112 W630 FRC25-14 0 630 250 210 35.3 16 0.32 62.50 2.17 1.96(*) 2.23 1.75(*) 1852 541 189 2.50 353.00 1.00 0.21 7.01E-04 33.91 0.82 150.81 0.46 64.68 215.49 1.64 0.80 245.01 1.44 
113 W735 FRC25-14 0 735 250 210 35.3 16 0.32 62.50 2.17 1.96(*) 2.23 1.75(*) 2161 541 189 2.50 376.00 1.00 0.21 7.01E-04 33.91 0.82 175.94 0.46 75.46 251.40 1.50 0.80 285.85 1.32 

Legend: R- Rectangular cross-section; T – T-shape cross-section; (*) - Values estimated according to [66]. 
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F APPENDIX F 

In this appendix are presented the factors that are used to determine the prediction parameters of the 

B4 model that were calibrated from optimization process to existing creep database [175].  

In Table 51 are presented the B4 creep model parameters that are dependent on the cement type. 

Table 51 – B4 model creep parameters dependent on cement type [175]. 
Type of 
cement 

R RS SL 

1p  0.70  0.60  0.80  

2p  358.6 10−  317.4 10−  340.5 10−  

3p  339.3 10−  339.3 10−  339.3 10−  

4p  33.4 10−  33.4 10−  33.4 10−  

5p  6777 10−  694.6 10−  6496 10−  

5Hp  8.00  1.00  8.00*  

2wp  3.00  3.00  3.00  

3ap  1.10−  1.10−  1.10−  

3wp  0.40  0.40  0.40  

4ap  0.90−  0.90−  0.90−  

4wp  2.45  2.45  2.45  

5p   0.85−  0.85−  0.85−  

5ap  1.00−  1.00−  1.00−  

5wp  0.78  0.78  0.78  
( )cem days  0.016  0.080  0.010  

( ),s cem days  0.027  0.027  0.032  

ap  0.33−  0.33−  0.33−  

wp  0.06−  2.40−  3.55  

cp  0.10−  2.70−  3.80  

cem  6360 10−  6860 10−  6410 10−  

ap  0.80−  0.80−  0.80−  

wp  1.10  0.27−  1.00  

cp  0.11  0.11  0.11  

2s  314.2 10−  329.9 10−  311.2 10−  

3s  0.976  0.976  0.976  

4s  34.00 10−  34.00 10−  34.00 10−  

5s  31.54 10−  641.8 10−  6150 10−  

2 fs  1.58−  1.58−  1.58−  

3 fs  1.61−  1.61−  1.61−  
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4 fs  1.16−  1.16−  1.16−  

5 fs  0.45−  0.45−  0.45−  

fs   0.21  1.55  1.84−  

The following expressions are used to determine the ultimate shrinkage strain [175]:  
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where  20º ,30ºcurT C C  is the temperature at curing; ( )E t  is the Young’s modulus evaluated at 

t  days; 
hU  is the activation energy of hydration; 

sU  is the activation energy of moisture diffusion; T  

is the average environmental temperature before load application; 
cem  can be obtained from Table 

51; and 32.350kg m = . The coefficient 
ak  is dependent of the type of aggregate and can be 

estimated from Table 52. 

Table 52 – B4 model shrinkage parameter dependent on aggregate type [175]. 
Type of aggregates Diabase Quartzite Limestone Sandstone Granite Quartz Diorite 

ak  0.76*  0.71  0.95  1.60  1.05  2.20*  

ak  0.06*   0.59   1.80   2.30   4.00   15.0*   

* - denotes uncertain fitted parameters 
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G APPENDIX G 

In this section is presented the formulation of the Menegotto-Pinto model. This model describes a 

curve (connecting two tangents with a variable radius of curvature at the intersection point of these 

tangents. In Eq. (G.1) is presented the Menegotto-Pinto equation to describe a curve that connects the 

initial ( ),o os   and final ( ),f fs   points, while in Eq. (G.2) is presented the equation that expresses 

the tangent stiffness of the Menegotto-Pinto curve at any point.  

 
Figure 169 – Menegotto-Pinto curve. 
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In Eq. (G.1) and Eq. (G.2), 
ch , Q  and R  are parameters that control the shape of the curve, and 

are calculated as shown in Figure 170. 

When the Newton-Raphson iterative algorithm fails to resolve the nonlinear equation, the Menegotto-

Pinto model is replaced by a linear model that connects the initial and target points with a slope equal 

to 
secD . 
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Figure 170 – Algorithm to determine the parameters that control the shape of the Menegotto-Pinto 

curve. 
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