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Abstract: Salt weathering is the main erosive process affecting diverse geological materials in historical and 

contemporary structures and can also contribute to visual changes by surface crystallization. The main goal of 

the present paper is to assess publications concerning the study of salt weathering of natural stone considering 

the main approaches (laboratory tests and field observations). Our focus will be on rock types other than 

sedimentary carbonate rocks and sandstones (which are the most studied rocks both in laboratory and field 

studies). Granite and pyroclastic rocks are dominant in the studied set. Also deserves highlighting (for scientific 

reasons) the scarcity of studies regarding foliated rocks and marble.  
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1. Introduction  

Soluble salts can contribute to visual alteration of surfaces of diverse types of rocks used as stones due to surface 

crystallization and they are the main erosive agent of these materials.  

Salt weathering can affect stone elements on diverse locations, not being limited to coastal areas given that there 

are diverse other sources besides seawater (for a classical review see Arnold and Zehnder [1]). It can affect 

historical heritage and recent structures (as in Alves et al. [2]).  

In this paper we will attempt to assess the situation in terms of approaches to salt weathering of stones, 

considering simulation studies (by exposition and laboratory tests) and field studies. In order to have a 

manageable set of works to analyze in the framework of the present work, we will analyze publications on this 

theme published in or after 2010 (focusing on studies of the present decade) found in the Scopus database (this 

will leave out many publications, including several of our own!). Only cases with actual natural stone will be 

considered.  

2. Analysis of Publications  

We found few studies concerning controlled exposition to environmental conditions:   

one with volcanic rocks in Japan (Seiki et al. [3]) and another one regarding dolostones in Spain (Cámara et al. 

[4]).  

A large majority of the studies found concerned limestones (we will also include dolostones here) and sandstones 

and there are many publications that will not be discussed specifically here, besides those that are referred to in 

the context of methodological issues (laboratory studies with these rocks alone amounted to around fifty).  
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Laboratory studies are, in general, more frequent than field studies (around 50% more),  with diverse types of 

salts and weathering conditions (for recent reviews on laboratory salt weathering testing see Alves et al. [5], 

Lubelli et al. [6]). In the selected set, the main rock types are volcanic rocks (Seiki et al. [3]; Yu & Oguchi [7]; 

Yavuz [8]; López-Doncel et al. [9]; Germinario et al. [10]; Özşen et al. [11]; Çelik & Aygün [12]; Martínez-Martínez 

et al. [13]; Pötzl et al. [14]; Sato & Hattanji [15]; Zalooli et al. [16]), being dominated by studies of pyroclastic 

rocks, and plutonic rocks  

(Cámara et al. [4]; Yu & Oguchi [7]; López-Arce et al. [17]; Silva et al. [18]; Vázquez et al. [19];  Cerrillo et al. [20]; 

Martins et al. [21]; Sousa et al. [22]; Vázquez-Nion et al. [23]; Graus et al. [24]) with granite being dominant in 

this subset. In our present review we found fewer publications concerning laboratory testing of metamorphic 

rocks; most of them studying marbles (Vázquez et al. [19]; Martínez-Martínez et al. [25]; Navarro et al. [26]; 
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Vazquez et al. [27]) with one studying gneiss (Ricardo et al. [28]) but none in slates or schists. There are several 

questions connected with these laboratory studies in terms of relations to real conditions, namely in terms of 

scale (which might affect their potential for assessing the effects of rock heterogeneity). The diversity of testing 

conditions also hinders meta-analysis of results, tending to create a certain “case study” framework.  

Under field studies we will consider works dedicated to the study of human objects that have been subjected to 

actual weathering conditions (not laboratory simulations). These studies have focused, in general, on the 

distribution of salt occurrences and associated decay forms, which can include 2D/3D documentation of the 

structure using laser scanning and photogrammetry  (Bala’awi et al. [29]). These assessments can contribute to 

the evaluation of the effect of time by comparison of stone decay with age of emplacement (Přikryl et al. [30]).  

Field studies can include the performance of diverse tests on site such as the use of Drilling Resistance 

Measurement System (Modestou et al. [31]), and many generally non-destructive procedures such as 

measurements of moisture content and water absorption (Zoghlami et al. [32]), the Schmidt rebound test 

(Boumezbeur et al. [33]), ultrasonic velocity propagation (Zoghlami et al. [32]; Zezza [34]), rock surface micro-

topography (Kamh & Koltuk [35]), image analyses (Zezza [34]; Ruiz-Agudo et al. [36]), and colorimetric studies 

(Columbu et al. [37]).  

Field studies also frequently include the characterization of the salts, namely in terms of types, amounts, and 

sources, using diverse mineralogical and chemical techniques, including advanced analytical techniques such as 

isotopic analyses in the search for the sources of the salts (Hosono et al. [38]; Siedel et al. [39]; Rivas et al. [40]; 

Kloppmann et al. [41]). The involved sampling mostly consisted of collecting salt concentrations (efflorescences) 

and loose stone portions (which are considered as already compromised by the action of the soluble salts) but 

could include contact by extraction by paper pulp poultices (Egartner & Sass [42]) and more invasive procedures 

such as microdrilling (Ruiz-Agudo et al. [36]; Siedel et al. [39]). There are some cases where it was possible to 

collect laboratory specimens from discarded blocks (but these are rare situations that generally cannot be 

replicated for other study places so they will not be specifically considered here).   

In the case of field studies we found some more balance between the studied rocks (of course excluding 

limestones and sandstones). Nonetheless, there is some predominance of igneous rocks, clearly dominated by 

granites (Sousa et al. [22]; Rivas et al. [40]; Silva Hermo et al. [43]; Warke et al. [44];  Costa [45]; Pozo-Antonio et 

al. [46]), followed by volcanic rocks (Seiki et al. [3]; Columbu et al. [37]; Antonelli et al. [47]). However, we also 

found studies of gabbros (Matović et al. [48]) and diorites (Bader et al. [49]).  

In terms of metamorphic rocks we found studies of slates (Cann [50]), schists (Peñas Castejón et al. [51]), marbles 

(Zezza [34]; Antonelli et al. [47]) and gneiss (Küng & Zehnder [52]; da Conceição Ribeiro et al. [53]; Gaylarde et 

al. [54]).  

These field studies focused on real anthropogenic objects of stone, but they suffer from the “case study” stigma 

(they concern a limited set of rocks under conditions of a given place) and furthermore, there is, usually, 

insufficient historical information in terms of these materials and conditions in this kind of study.  

Some papers include field and laboratory studies. We can highlight in relation to this the publication by 

Martínez-Martínez et al. [55] concerning a study of limestones in Spain, which based in the comparison of 

laboratory and field studies presents a proposal of equivalence in terms of time.  

3. Final Considerations  

This review highlights the predominance of limestones and sandstones in terms of studies of salt weathering, 

while in a kind of second level were studies concerning plutonic and pyroclastic rocks. The incidence of 

laboratory studies of salt weathering concerning rock types seems to be in part related to the relevance of those 

rock types in terms of cultural heritage, which might explain the scarcity of studies including slates and schist 

but certainly will not explain the few studies with marbles. Hence, the perceived susceptibility of stone types 

also seems to influence the selection of stones for these studies (this seems a more likely explanation for the 

relative scarcity of studies considering marbles).  

However, this situation can leave out some issues with scientific relevance in terms of understanding the relation 

between petrographic features and salt weathering processes such as the influence of anisotropy planes (which 

can be specially marked in some metapelitic rocks, depending on their characteristics) and heterogeneity, which 

can be significant in marbles. One can question the usefulness of laboratory testing of marble heterogeneity 

without previous indication from field studies. This indicates a particular interesting case in terms of the 

problem-situation concerning salt weathering of stones: the special value of field observations that show the 

effects of salts in heterogeneous marble stones.  

The diversity of procedures for laboratory salt weathering constitutes an obstacle to the metaanalysis of results 

and the definition of universal trends for salt weathering susceptibility.  
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