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Abstract 
In Big Data contexts, many batch and streaming oriented technologies have emerged to deal with the high 
valuable sources of events, such as Internet of Things (IoT) platforms, the Web, several types of databases, 
among others. The huge amount of heterogeneous data being constantly generated by a world of 
interconnected things and the need for (semi)-automated decision-making processes through Complex 
Event Processing (CEP) and Machine Learning (ML) have raised the need for innovative architectures 
capable of processing events in a streamlined, scalable, analytical, and integrated way. This paper presents 
the Intelligent Event Broker, a CEP system built upon flexible and scalable Big Data techniques and 
technologies, highlighting its system architecture, software packages, and classes. A demonstration case in 
Bosch’s Industry 4.0 context is presented, detailing how the system can be used to manage and improve the 
quality of the manufacturing process, showing its usefulness for solving real-world event-oriented 
problems. 
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Introduction 
Nowadays, data is generated with high frequency due to, for instance, the internet and the proliferation of 
devices that constantly connect people and make it possible to buy anything, anywhere, generating a vast 
amount of transactions. Furthermore, data is not only associated with business transactions, since, with the 
Industry 4.0 movement (Kagermann et al. 2013), products will be connected, machines with sensors will 
give feedback about their working status, and decisions will be made, in the shop floor, by the intelligent 
systems that anticipate the events and propose actions based on business rules or decision models. This 
phenomenon provides a vast amount of data generated at even-increasing velocities, which should be 
significantly valuable for organizations. Addressing this value is the main motivation of this work, making 
possible the proliferation of the most adequate decisions as soon as the data is available inside the 
organizations (e.g., Databases and IoT platforms), benefiting various business contexts. 

Thereby, this proposal arises from Bosch’s requirements together with a gap found in the literature 
regarding the existence of a common approach to integrate CEP in the Big Data era. The Design Science 
Research Methodology for Information Systems with an objective-centered approach (Peffers et al. 2007) 
is used in the overarching research process in which this work fits in, supporting the design of a CEP system 
integrated in Big Data contexts. Moreover, this type of system is relevant for several organizational and 
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social contexts, such as industry, smart cities, agriculture, among others that have several data sources 
available, being helpful for the monitoring of business processes and events, and for preventing possible 
problems through its real-time processing capabilities. Therefore, this system must meet the following high-
level criteria: i) handle Big Data produced by several sources inside and outside the organization (e.g., 
production line, cars, and transactional systems); ii) process the data within the time frame needed for 
several decision-makers; iii) provide predictions and recommendations based on the data, rules, events, 
and indicators being processed; iv) autonomously execute adequate actions to avoid considerable problems 
(e.g., stop a production line machine that is producing several defective products in a continuous manner); 
and, v) should have capabilities of self-management and control, allowing the constant monitoring and 
visualization of what happened in the CEP system. Thus, the artifact proposed in this work reflects the first 
iteration of the Design and Development phase, using a proof-of-concept based on the Active Lot Release 
(ALR) application from Bosch Car Multimedia Portugal as a demonstration case. With this first iteration, 
the objectives i, ii, and iv where fulfilled, and the solution reveals an adequate effectiveness, considering the 
success of the presented proof-of-concept. The efficiency and scalability of the solution, although it is 
already a concern of the current architecture and proof-of-concept, will be rigorously evaluated in future 
iterations of the overarching research process. 
This document is structured as follows: the second section presents the related work; the third section 
introduces the proposed system architecture and its software packages and classes; the fourth section 
presents a demonstration case based on data from Bosch’s ALR application in the Braga plant shop floor in 
Portugal; the fifth section presents the conclusions for this work and some prospects of future work. 

Related Work 
CEP systems are considered as an evolution of the Active Database Systems and the Data Stream 
Management Systems (DSMSs), being all of them covered by the Information Flow Processing concept 
(Cugola and Margara 2012). These CEP systems aim to find patterns in different events that arrive from 
different sources in a way that all the stakeholders can be notified, as soon as possible, with the processing 
results (Cugola and Margara 2012). 
The work of (Chakravarthy and Qingchun 2009) considers that the current capability to collect and process 
data, continuously generated from multiple sources, created the need for new types of applications. Focused 
on the perspective of quality of service related to DSMSs, it introduces several domains for these systems, 
being CEP identified as a challenge for them, once it is important to not only deal with the data in real-time  
as soon as it arrives at the system, but also to try to find patterns and trigger actions based on previously 
defined business rules. The authors mention that DSMSs with and without the CEP component are already 
available, as well as other CEP systems that do not have streaming capabilities.  
Regarding the first published work that can be classified as a CEP system, Rapide (Luckham 1996; Luckham 
and Vera 1995) is often unanimously considered as being the first one that explores this concept (Cugola 
and Margara 2012; Leavitt 2009), which is a project started in the 90s that provides to users the capability 
to identify the temporal and causal relationship among events. Since then, new systems classified as CEP 
have emerged (Cugola and Margara 2012), some of them are open-source (mostly used by academics), while 
others are commercial tools for Business Intelligence (Tawsif et al. 2018). 
The tutorial presented in (Giatrakos et al. 2017) focuses in the Big Data and Complex Event Recognition 
concepts, being this last one the identification of simple events that together are interesting once they meet 
certain patterns. The authors aim to provide a guide for the use of event streams that achieve the Big Data 
characteristics (volume, velocity, and variety), performing Complex Event Recognition in a distributed way. 
The BiDCEP architecture is proposed in (Hadar 2016), based on the Lambda and Kappa architectures, 
integrating the Big Data streaming and CEP concepts. This architecture is divided into several components 
with different responsibilities: the ones responsible for the connection to the data sources; the ones 
responsible for adding more value and to filter the data considering the business needs; and, the CEP 
component that triggers actions to control consumer applications. The authors also present a motivational 
example that aims to explain a context in which the system can be applied. In this example, the authors 
refer that the use of IoT should be considered as an enabler for descriptive, predictive, and prescriptive 
analytics, although it is not noticeable where these aspects are considered in the proposed architecture. 
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Another architecture is presented in (Flouris et al. 2016) together with the FERARI prototype for real-time 
CEP with a vast amount of event data streams processed in a distributed way. The proposed architecture 
considers components like producers, consumers, and event processing agents for different event types. 
This work also refers a visualization component for dashboards and reports. The work of (Flouris et al. 
2017) is focused on CEP issues related to Big Data, mainly focusing on hardware requirements. Therefore, 
the authors propose the use of cloud computing platforms, referring the main properties that should be 
considered in a Big Data CEP: parallelism, elasticity, multi-query, and distributed resources. In addition, 
the authors show that some works consider these four mentioned features, although concluding that the 
integration of CEP and Big Data technologies is still significantly unexplored.  
In this context, other works (Babiceanu and Seker 2015; Krumeich et al. 2014) emphasize the importance 
of combining Big Data, CEP, and IoT, in this case, to support the manufacturing industry through Cyber-
Physical Systems (CPSs) (Dundar et al. 2016). The QuantCloud architecture (Zhang et al. 2018) also aims 
to connect the CEP concept with Big Data, as well as the work of (Saenko et al. 2017) that presents an 
architecture divided into four components: data collection; data storage; data normalization and analysis; 
and, data visualization. 
Some of the main points presented in the related architectures are also shared by the architecture proposed 
in this paper. However, to the best of our knowledge, the one here proposed provides further details about 
the data processing component of the CEP system for Big Data, thoroughly explaining how the processing 
of the events, rules, and triggers occurs, also considering aggregations and Key Performance Indicators 
(KPIs) calculated in real-time. Furthermore, once ML was identified as a major gap in these systems (Tawsif 
et al. 2018), the Machine Learning Models Lake (MLML) component can be significantly helpful for 
patterns discovery. On the other hand, the use of batch data available in the Big Data Warehouse (Costa 
and Santos 2018) is also relevant to increase the value of the results produced by the CEP system proposed 
in this work. In addition, there is no architecture concerned with the monitoring of a CEP system and its 
evolution, as it can quickly become untraceable in Big Data contexts, being this one of the core components 
of our work. Finally, the proposed architecture, software packages, and classes embody a physically 
implemented system presented in a detailed manner, so that other practitioners can follow the design and 
development guidelines, which is seen as a valuable contribution that is not frequently seen in other related 
works available in the emerging and scarce community related to CEP systems in Big Data contexts. 

Intelligent Event Broker 
The Big Data-oriented CEP system here proposed is a collection of several software components and data 
engineering decisions that are integrated and validated to function harmoniously. This section presents the 
design and development decisions made in this research work, including the system architecture (Figure 1) 
and the structure of software packages and classes (Figure 2) of the Intelligent Event Broker. 

System Architecture 

A Big Data-oriented CEP system should be able to collect and process data from an extensive variety of 
source systems, no matter their underlying communication interfaces. Depending on the implementation 
context, Events can be produced or stored in several systems, including IoT gateways, Web servers, 
databases (e.g., SQL, NewSQL and NoSQL), and Hadoop-related components such as Hive or HDFS. In 
order to standardize the collection of Events in the system, we propose the deployment of an adequate 
event-oriented system backed up by Kafka, a distributed streaming platform (Kafka 2018), which can be 
used to publish Events in topics, through Kafka Producers, and to further develop Kafka Consumers that 
subscribe these topics. In the proposed system, Kafka supports the backbone of Events collection and 
dissemination. Events are collected from the corresponding Source Systems using Kafka Producers 
developed for this purpose, which can include applications developed in any programming language having 
available a Kafka client implementation (e.g., Java or C/C++), or a Spark Application that connects to the 
Source Systems using the available connectors. These two types of Producers collect the data, serialize it 
into the form of Broker Beans (simple classes representing business entities and information), and produce 
the Events through their publication into a Kafka topic stored in a cluster of Kafka Brokers. 
The topics containing the previously published Events are subscribed by the Event Processor through the 
form of several Kafka Consumers embedded into Spark Applications that are continuously listening for the 
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arrival of the Events, no matter their frequency and quantity. Spark Streaming Applications that are 
constantly processing huge amounts of Events arriving at higher frequencies will require more cluster 
resources than more moderate workloads (e.g., a few Events per hour), but they can share a streaming-
oriented computing cluster. The Event Processor is, therefore, one of the core components of the system, 
being tightly coupled with the Rules Engine that encapsulates all the business requirements in the form of 
Strategical Rules (e.g., market attractiveness indicators/suggestions), Tactical Rules (e.g., supply chain 
management indicators/warnings), and Operational Rules (e.g., stopping a production line due to 
repetitive failures) for specific implementations. In this context, Drools can be used as the Rules Engine 
(Drools 2018), wherein Data Engineers translate the business requirements into a series of Rules stored in 
Drools files (Rules Repository), which are then transparently translated at runtime by the Event Processor. 

 
Figure 1. System architecture 

At any moment, the Event Processor can take as input Complementary Data from any Source System, as 
Spark Applications can connect to these sources for querying historical or real-time data. This 
Complementary Data can be used to provide a richer additional context for Business Rules and Events, as 
the following business rule demonstrates: “when a defective part is detected in the production line, if in the 
last 10 minutes there were more than 3 defective parts, send a message to the operational manager”. 
Considering this, the Rules Engine and the encapsulated business logic also embed the following software 
components: i) Triggers, which represent the connectors to several Destination Systems, i.e., after a 
condition in a certain rule is evaluated as being true, these Triggers perform certain actions according to 
the defined rule’s consequence. For example, Destination Systems may include an IoT gateway that 
activates an actuator, a Text or E-mail Message, and Transactional and Analytical Applications that are 



 Intelligent Event Broker  

Twenty-fifth Americas Conference on Information Systems, Cancun, 2019 5 

used to support daily operations or the decision-making process (via the database layer or via direct push 
mechanisms). This component can output: 1) the processed data related to the Events in the form of a new 
Broker Bean, if more data value is added after processing the Event according to the defined Rules and 
business logic; 2) the raw Event data in the form of a previously defined Broker Bean, if it is not relevant to 
include after-processing data (e.g., consequences of rules execution); and, ii) Predictors and 
Recommenders, which assure the capability of interpreting previously trained  ML models and use them to 
predict occurrences and recommend actions considering the Events that are being processed by the system 
(e.g., predict the likelihood of a continuous failure in the production line, given the production Events for 
the past 5 minutes). These models are stored in the MLML, which may contain several file formats 
depending on the implementation details (e.g., Predictive Model Markup Language - PMML - or pickle 
files). In this work, we consider that the Lake can be implemented using any local or distributed file system, 
and the models can be accessed through Web services that, given certain features, predict the corresponding 
occurrence or recommend the corresponding action. Through the development of scalable Web services, 
the ML models can be adequately invoked in Drools files. 

Besides the Event Processor, the Intelligent Event Broker also includes an Event Aggregator, supported by 
Druid, a columnar storage system that is able to aggregate Event data (Yang et al. 2014) with sub-second 
response times over huge amounts of data (Correia et al. 2018). This component takes as input either raw 
Event data (previously defined Broker Beans) or processed Event data (new Broker Bean), as previously 
explained in the Triggers component. Taking into consideration the input data, the Event Aggregator is 
responsible for ingesting the data, perform the aggregations as the ingestion takes place, and store them to 
calculate the Key Performance Indicators (KPIs) that are relevant for a particular business context. This 
calculation step takes place in other Kafka Producers that will periodically send KPI updates to specific 
Kafka topics, generating Events that will be consumed by the Event Processor as soon as they occur. 
Consequently, KPI information, in the form of an Event (through a Broker Bean representation) is also a 
relevant part of the Rules that are interpreted by the Rules Engine. 

Due to the complexity associated with running the Intelligent Event Broker in production environments, 
we need to deploy adequate mechanisms that allow for the constant and long-term monitoring of the 
system’s daily operations. This goal is achieved through the development and deployment of the Mapping 
and Drill-down System, which is composed of the following components: i) a Graph Database built upon 
the analysis and indexing of the Rules Repository (Drools files) and the Intelligent Event Broker codebase 
(e.g., Java files), as well as appropriate runtime logging mechanisms, in order to store all the relevant 
metadata regarding the system’s structure (e.g., Broker Beans, Rules, Producers, Consumers, Triggers, 
and Predictors and Recommenders), functionality (e.g., the Rules that were triggered and the data that was 
processed), and performance (e.g., number of Events processed per minute); and, ii) a Web Visualization 
Platform fueled by the previously described Graph Database, which allows for an interactive and intuitive 
navigation through the Intelligent Event Broker metadata, in order to retrieve useful insights regarding the 
CEP scenarios related to a particular implementation context. 

Software Packages and Classes 

In terms of source code structure, the Intelligent Event Broker is composed of seven software packages, 
each one corresponding to a Maven module of the top-level project. Despite the adoption of specific 
technologies for the implementation of the Intelligent Event Broker, this work aims to provide general 
design guidelines for the development of Big Data CEP systems and, therefore, the software packages and 
classes depicted in Figure 2, as well as the components in Figure 1, should be seen as general constructs 
that can be easily adapted and extended to future implementations of similar systems. 
Regarding the Producers package, the same is mainly based on a set of Kafka Producers, whose 
implementation of the main method varies depending on the specific data collection mechanism. In 
contrast, the Consumers package is composed of a class that is responsible for configuring a Generic Spark 
Kafka Consumer, providing a standard state and behavior for other child classes (Specific Spark Kafka 
Consumer) that will then provide particular implementations to adequately read a specific data stream 
(Kafka topic). The specific Consumers are the ones used in Spark Applications, one for each business goal 
(or group of goals). The pool of Spark Applications deployed at a specific moment form the Event 
Processor, as described in the previous section. 
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The Rules Engine package is used by the Consumers package, since the latter embeds the first during 
execution, encapsulating all the business logic defined in the Rules Repository. The Rules Engine package 
is mainly composed of two classes: the Rules Engine class assuring a connection to a Drools runtime 
environment that will scan the current Rules Repository; and, a Rules Stateless Session, which is an 
encapsulated Drools Stateless Session that can be used in any consumer by invoking the 
“getStatelessSession” method of the Rules Engine with the proper session name (set of Business Rules in 
the Rules Repository to apply in a specific Consumer, i.e., a set of Drools files). A Rules Stateless Session 
contains methods to execute all the Rules of the respective session, to add Global Variables, add Triggers 
(also treated internally as Global Variables), and to close the Session (invokes the “close” method in each 
Trigger used in this Session, e.g., database connections). These Triggers make up the Triggers package, 
wherein each Specific Trigger implements the Trigger interface, defining the behavior of each Trigger, 
namely the need to implement the “fire” method (execute the trigger at any given moment) and the “close” 
method. Each Specific Trigger also uses a Specific Connection Factory that, implementing the Connection 
Factory interface, is able to provide a connection to a Destination System (see Figure 1). 

 
Figure 2. Diagram of software packages and classes 

The Producers, Consumers, Rules Engine, and Triggers packages use the Broker Beans package to 
adequately represent business entities, assuring that Events and their corresponding data have the same 
meaning throughout the CEP system. Another package using Broker Beans, and being used by the Rules 
Engine, is the Predictors and Recommenders package containing the ML models that provide intelligence 
to the proposed Big Data CEP system, as these models will be applied to the data related to the Events 
(represented as Broker Beans). In order to conclude the description of the Intelligent Event Broker system, 
the Mapping and Drill-down System package implements an overarching set of features that allow for the 
adequate monitoring and analysis of the system’s functioning. This package, together with the Predictors 
and Recommenders package, are not thoroughly detailed in Figure 2 due to the fact that their development 
is currently being initiated, thus constituting a perspective for future research work. These are seen as 
relevant design elements of the top-level project, reason why they are presented and described in this work. 

Demonstration Case – Bosch Active Lot Release 
The demonstration case presented in this section is based on data from the Bosch ALR system. This system 
is responsible for supporting quality control during the manufacturing and packaging processes in the 
factory. Summarizing, ALR applies a pre-defined set of rules to several distinct products contained in a lot, 
before shipping it to the final client. When these rules are verified for all the products in a lot, the same is 
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marked as valid and it can be shipped. If the lot does not comply with the rules, it needs to be repaired and 
resubmitted to the quality control process. The ALR system was created to solve a previously observed 
problem: the lots were created as valid (by default) before the use of this quality control process, which 
caused unnecessary costs, because after delivering the lots for shipping, if the quality department detected 
problems, the lots had to return to the factory. Besides this, the data about defective products (and lots) was 
not stored, making impossible to monitor or analyze past production problems. These issues are solved by 
the ALR system, as it stores this real-time data in a distributed data storage, allowing the decision-makers 
to analyze this information and act accordingly. The workflow from production to shipping, before and after 
the ALR implementation, is schematized in Figure 3. 

 
Figure 3. Quality control before and after the ALR implementation 

Focusing on the description of the demonstration case, the system implemented in this context is entirely 
based on the architecture depicted in Figure 1. As previously mentioned, the data comes from Bosch, thus 
it is important to implement some privacy policies. To accomplish this, the developed Kafka Producer uses 
a subset of the original ALR data (represented as an IoT Gateway in Figure 1), shuffling the data and 
updating its temporal fields before providing this data to Kafka Consumers (one message per second). As 
soon as this data is available through a topic in the Kafka Broker, it will be used by several Consumers. In 
this demonstration case, there are 3 Kafka Consumers to be considered: i) ALR Raw Data Consumer - a) 
consumes real-time data (Events); b) applies all the necessary transformations to assure data quality; and, 
c) stores this data in Druid, in order to be immediately accessible; ii) ALR Operational Consumer - a) 
consumes real-time data (Events); b) applies all the necessary transformations to assure data quality; and, 
c) applies the operational Rules to each Event, activating the corresponding Triggers when the Rule is 
verified; and, iii) ALR Analytical KPIs Consumer - a) consumes data (Events) previously stored in Druid; 
and, b) applies the several Tactical Rules to the resulting Events, activating the corresponding Triggers 
when the Rule is verified. 

This demonstration case implements two Triggers: i) a Mail Trigger, which sends an E-mail Notification 
to the related stakeholders; and, ii) a Cassandra Trigger, which stores the Events in this database for future 
analysis using an Analytical Application (Tableau (Tableau 2018) is used for this demonstration case). 
Triggers execution and the subsequent analysis, either by E-mail Notification or through the Analytical 
Application, are important for decision-makers to be aware of some unusual or unexpected behavior, and 
to rapidly analyze this data and act accordingly. 

Regarding Rules, as previously mentioned, it is important to highlight that there are two different types of 
Rules used in this demonstration case, namely Operational Rules and Tactical Rules. The first type includes 
“Lot State = ‘INVALID’”, which activates the Triggers when a lot is invalid after the quality control 
verification. The second type includes: i) “Num Invalid Lots by Day > x”, which activates the Triggers when 
the number of invalid lots in a day exceeds a predefined threshold; ii) “Num Invalid Lots by Day & Line > 
Avg Line Last Week”, which activates the Triggers when the number of invalid lots of a specific production 
line in a day exceeds the average number of invalid lots of that production line in the last week. 
Rules and Triggers are two important aspects in this system, therefore it is relevant to thoroughly explain 
how the Consumers, Rules, and Triggers are integrated and what are the tasks of each one. In order to 
illustrate the workflow from the Rules definition to the Rules execution, Figure 4 presents the definition of 
a Rule, its invocation in the Event Processor, and the Triggers execution. 
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The rule presented in the right side of Figure 4 corresponds to the Rule “Num Invalid Lots by Day > x” 
presented above, and it verifies the value of a KPI named “Invalid Lots By Day”, which is a Tactical Rule 
executed in the ALR Analytical KPIs Consumer. As previously explained, this rule evaluates if the number 
of invalid lots by day is higher than a threshold (100 in this case) and, if so, it executes the Mail and 
Cassandra Triggers. 

 
Figure 4. Example of the Rules definition and execution 

This workflow is executed periodically (e.g., every day), submitting a query to Druid and sending the result 
via a Kafka Producer (“KPIs” in Figure 1). After this, the Kafka Producer broadcasts this data to the 
Consumers through a topic in the Kafka Broker. In this demonstration case, the only Consumer interested 
in this data is the ALR Analytical KPIs Consumer, which consumes the data, does the necessary 
transformation to interpret it, and executes the Rules. In the left side of Figure 4, we can observe how simple 
it is to embed the Rules Engine into the Event Processor (set of Spark Consumers), in order to execute 
Rules. It is only necessary to: i) get a Rules Engine instance and a Session; ii) instantiate and add the 
necessary Triggers to the previously created Session; iii) invoke the execution of the previously defined 
Rules according to the consumed Events; and, finally, iv) close the Session. 
As already mentioned, for this demonstration case, two types of rules were implemented (tactical and 
operational). Taking this into account, two types of dashboards (Figure 5) were developed to show different 
kinds of analysis for the different levels of the decision-making process. Before presenting the dashboards, 
it is important to recall that due to confidentiality reasons, all the data here presented is fictitious.  

 
Figure 5. Example of Operational and Tactical Dashboards 

Taking this into consideration, Figure 5a) shows a dashboard that can be displayed in the production line 
(PL), showing, for a specific work shift, the evolution of the invalid lots in the several PLs grouped by part 
number (PN). This type of dashboard provides to the PL manager the capability to take a specific action in 
the PL (or in the PN being produced) as soon as the quantity of invalid lots increases, having a constant 
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vision of the PL status (and, in this specific case, the problematic PN in production). Furthermore, the exact 
number of invalid lots in each hour already completed in the current work shift can be tracked for each PN. 
On the other hand, Figure 5b) presents the KPIs based on the difference between the number of invalid lots 
produced in a specific PL and day and the average of invalid lots produced in the same PL for the last seven 
days, being also illustrated the percentage of increase when compared with the average value. Moreover, to 
have a global view on the performance of the previous week, a chart with the three PLs with more production 
problems is also presented in this dashboard, also detailing their daily evolution regarding the number of 
invalid lots. 

Conclusion 
This paper presented the Intelligent Event Broker, a CEP system based on Big Data techniques and 
technologies (e.g., Spark, Druid, and Kafka), as well as on a MLML concept. A Bosch Car Multimedia 
Portugal demonstration case was also presented in this work, where the Intelligent Event Broker is used in 
the context of the manufacturing and packaging quality control, including the processing of Tactical and 
Operational Rules based on KPIs and raw Event data. The system architecture and software packages and 
classes shared in this work with the scientific and technical community are seen of major relevance for the 
advancement of CEP systems in the era of Big Data. In this work, the integration of the CEP and Big Data 
concepts is made through the use of a rule engine over Big Data technologies that provides an environment 
of scalability and distributed processing. Furthermore, in addition to the basic CEP components that were 
considered, we further propose components that fill other gaps identified in the literature, including the 
MLML for the predictions and recommendations, and the component that will monitor the evolution of the 
Intelligent Event Broker through the Mapping and Drill-down System. 

The contributions of this paper help researchers and practitioners in the development of systems based on 
the Intelligent Event Broker logical components, and in the exploration of new ways of combining Big Data 
and CEP systems to build innovative data-based analytical systems, significantly relevant considering the 
number of devices and data sources available in current organizational contexts. For future work, as part of 
the followed research process, a benchmark is planned to access the response times, throughput, resource 
usage, and scalability of the system, as well as the extension of the work to address the objectives iii and v, 
namely by implementing and evaluating the ML capabilities and the Mapping and Drill-down System. 
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