
 Intelligent Event Broker

Twenty-fifth Americas Conference on Information Systems, Cancun, 2019 1

Intelligent Event Broker: A Complex Event
Processing System in Big Data Contexts

Completed Research

Carina Andrade
ALGORITMI Research Centre,

University of Minho,
Guimarães, Portugal

carina.andrade@dsi.uminho.pt

José Correia
ALGORITMI Research Centre,

University of Minho,
Guimarães, Portugal

josecorreia@dsi.uminho.pt
Carlos Costa

ALGORITMI Research Centre,
University of Minho,
Guimarães, Portugal

carlos.costa@dsi.uminho.pt

Maribel Yasmina Santos
ALGORITMI Research Centre,

University of Minho,
Guimarães, Portugal

maribel@dsi.uminho.pt

Abstract
In Big Data contexts, many batch and streaming oriented technologies have emerged to deal with the high
valuable sources of events, such as Internet of Things (IoT) platforms, the Web, several types of databases,
among others. The huge amount of heterogeneous data being constantly generated by a world of
interconnected things and the need for (semi)-automated decision-making processes through Complex
Event Processing (CEP) and Machine Learning (ML) have raised the need for innovative architectures
capable of processing events in a streamlined, scalable, analytical, and integrated way. This paper presents
the Intelligent Event Broker, a CEP system built upon flexible and scalable Big Data techniques and
technologies, highlighting its system architecture, software packages, and classes. A demonstration case in
Bosch’s Industry 4.0 context is presented, detailing how the system can be used to manage and improve the
quality of the manufacturing process, showing its usefulness for solving real-world event-oriented
problems.

Keywords

Big Data, Complex Event Processing, Rules Engine, Machine Learning.

Introduction
Nowadays, data is generated with high frequency due to, for instance, the internet and the proliferation of
devices that constantly connect people and make it possible to buy anything, anywhere, generating a vast
amount of transactions. Furthermore, data is not only associated with business transactions, since, with the
Industry 4.0 movement (Kagermann et al. 2013), products will be connected, machines with sensors will
give feedback about their working status, and decisions will be made, in the shop floor, by the intelligent
systems that anticipate the events and propose actions based on business rules or decision models. This
phenomenon provides a vast amount of data generated at even-increasing velocities, which should be
significantly valuable for organizations. Addressing this value is the main motivation of this work, making
possible the proliferation of the most adequate decisions as soon as the data is available inside the
organizations (e.g., Databases and IoT platforms), benefiting various business contexts.

Thereby, this proposal arises from Bosch’s requirements together with a gap found in the literature
regarding the existence of a common approach to integrate CEP in the Big Data era. The Design Science
Research Methodology for Information Systems with an objective-centered approach (Peffers et al. 2007)
is used in the overarching research process in which this work fits in, supporting the design of a CEP system
integrated in Big Data contexts. Moreover, this type of system is relevant for several organizational and

 Intelligent Event Broker

Twenty-fifth Americas Conference on Information Systems, Cancun, 2019 2

social contexts, such as industry, smart cities, agriculture, among others that have several data sources
available, being helpful for the monitoring of business processes and events, and for preventing possible
problems through its real-time processing capabilities. Therefore, this system must meet the following high-
level criteria: i) handle Big Data produced by several sources inside and outside the organization (e.g.,
production line, cars, and transactional systems); ii) process the data within the time frame needed for
several decision-makers; iii) provide predictions and recommendations based on the data, rules, events,
and indicators being processed; iv) autonomously execute adequate actions to avoid considerable problems
(e.g., stop a production line machine that is producing several defective products in a continuous manner);
and, v) should have capabilities of self-management and control, allowing the constant monitoring and
visualization of what happened in the CEP system. Thus, the artifact proposed in this work reflects the first
iteration of the Design and Development phase, using a proof-of-concept based on the Active Lot Release
(ALR) application from Bosch Car Multimedia Portugal as a demonstration case. With this first iteration,
the objectives i, ii, and iv where fulfilled, and the solution reveals an adequate effectiveness, considering the
success of the presented proof-of-concept. The efficiency and scalability of the solution, although it is
already a concern of the current architecture and proof-of-concept, will be rigorously evaluated in future
iterations of the overarching research process.
This document is structured as follows: the second section presents the related work; the third section
introduces the proposed system architecture and its software packages and classes; the fourth section
presents a demonstration case based on data from Bosch’s ALR application in the Braga plant shop floor in
Portugal; the fifth section presents the conclusions for this work and some prospects of future work.

Related Work
CEP systems are considered as an evolution of the Active Database Systems and the Data Stream
Management Systems (DSMSs), being all of them covered by the Information Flow Processing concept
(Cugola and Margara 2012). These CEP systems aim to find patterns in different events that arrive from
different sources in a way that all the stakeholders can be notified, as soon as possible, with the processing
results (Cugola and Margara 2012).
The work of (Chakravarthy and Qingchun 2009) considers that the current capability to collect and process
data, continuously generated from multiple sources, created the need for new types of applications. Focused
on the perspective of quality of service related to DSMSs, it introduces several domains for these systems,
being CEP identified as a challenge for them, once it is important to not only deal with the data in real-time
as soon as it arrives at the system, but also to try to find patterns and trigger actions based on previously
defined business rules. The authors mention that DSMSs with and without the CEP component are already
available, as well as other CEP systems that do not have streaming capabilities.
Regarding the first published work that can be classified as a CEP system, Rapide (Luckham 1996; Luckham
and Vera 1995) is often unanimously considered as being the first one that explores this concept (Cugola
and Margara 2012; Leavitt 2009), which is a project started in the 90s that provides to users the capability
to identify the temporal and causal relationship among events. Since then, new systems classified as CEP
have emerged (Cugola and Margara 2012), some of them are open-source (mostly used by academics), while
others are commercial tools for Business Intelligence (Tawsif et al. 2018).
The tutorial presented in (Giatrakos et al. 2017) focuses in the Big Data and Complex Event Recognition
concepts, being this last one the identification of simple events that together are interesting once they meet
certain patterns. The authors aim to provide a guide for the use of event streams that achieve the Big Data
characteristics (volume, velocity, and variety), performing Complex Event Recognition in a distributed way.
The BiDCEP architecture is proposed in (Hadar 2016), based on the Lambda and Kappa architectures,
integrating the Big Data streaming and CEP concepts. This architecture is divided into several components
with different responsibilities: the ones responsible for the connection to the data sources; the ones
responsible for adding more value and to filter the data considering the business needs; and, the CEP
component that triggers actions to control consumer applications. The authors also present a motivational
example that aims to explain a context in which the system can be applied. In this example, the authors
refer that the use of IoT should be considered as an enabler for descriptive, predictive, and prescriptive
analytics, although it is not noticeable where these aspects are considered in the proposed architecture.

 Intelligent Event Broker

Twenty-fifth Americas Conference on Information Systems, Cancun, 2019 3

Another architecture is presented in (Flouris et al. 2016) together with the FERARI prototype for real-time
CEP with a vast amount of event data streams processed in a distributed way. The proposed architecture
considers components like producers, consumers, and event processing agents for different event types.
This work also refers a visualization component for dashboards and reports. The work of (Flouris et al.
2017) is focused on CEP issues related to Big Data, mainly focusing on hardware requirements. Therefore,
the authors propose the use of cloud computing platforms, referring the main properties that should be
considered in a Big Data CEP: parallelism, elasticity, multi-query, and distributed resources. In addition,
the authors show that some works consider these four mentioned features, although concluding that the
integration of CEP and Big Data technologies is still significantly unexplored.
In this context, other works (Babiceanu and Seker 2015; Krumeich et al. 2014) emphasize the importance
of combining Big Data, CEP, and IoT, in this case, to support the manufacturing industry through Cyber-
Physical Systems (CPSs) (Dundar et al. 2016). The QuantCloud architecture (Zhang et al. 2018) also aims
to connect the CEP concept with Big Data, as well as the work of (Saenko et al. 2017) that presents an
architecture divided into four components: data collection; data storage; data normalization and analysis;
and, data visualization.
Some of the main points presented in the related architectures are also shared by the architecture proposed
in this paper. However, to the best of our knowledge, the one here proposed provides further details about
the data processing component of the CEP system for Big Data, thoroughly explaining how the processing
of the events, rules, and triggers occurs, also considering aggregations and Key Performance Indicators
(KPIs) calculated in real-time. Furthermore, once ML was identified as a major gap in these systems (Tawsif
et al. 2018), the Machine Learning Models Lake (MLML) component can be significantly helpful for
patterns discovery. On the other hand, the use of batch data available in the Big Data Warehouse (Costa
and Santos 2018) is also relevant to increase the value of the results produced by the CEP system proposed
in this work. In addition, there is no architecture concerned with the monitoring of a CEP system and its
evolution, as it can quickly become untraceable in Big Data contexts, being this one of the core components
of our work. Finally, the proposed architecture, software packages, and classes embody a physically
implemented system presented in a detailed manner, so that other practitioners can follow the design and
development guidelines, which is seen as a valuable contribution that is not frequently seen in other related
works available in the emerging and scarce community related to CEP systems in Big Data contexts.

Intelligent Event Broker
The Big Data-oriented CEP system here proposed is a collection of several software components and data
engineering decisions that are integrated and validated to function harmoniously. This section presents the
design and development decisions made in this research work, including the system architecture (Figure 1)
and the structure of software packages and classes (Figure 2) of the Intelligent Event Broker.

System Architecture

A Big Data-oriented CEP system should be able to collect and process data from an extensive variety of
source systems, no matter their underlying communication interfaces. Depending on the implementation
context, Events can be produced or stored in several systems, including IoT gateways, Web servers,
databases (e.g., SQL, NewSQL and NoSQL), and Hadoop-related components such as Hive or HDFS. In
order to standardize the collection of Events in the system, we propose the deployment of an adequate
event-oriented system backed up by Kafka, a distributed streaming platform (Kafka 2018), which can be
used to publish Events in topics, through Kafka Producers, and to further develop Kafka Consumers that
subscribe these topics. In the proposed system, Kafka supports the backbone of Events collection and
dissemination. Events are collected from the corresponding Source Systems using Kafka Producers
developed for this purpose, which can include applications developed in any programming language having
available a Kafka client implementation (e.g., Java or C/C++), or a Spark Application that connects to the
Source Systems using the available connectors. These two types of Producers collect the data, serialize it
into the form of Broker Beans (simple classes representing business entities and information), and produce
the Events through their publication into a Kafka topic stored in a cluster of Kafka Brokers.
The topics containing the previously published Events are subscribed by the Event Processor through the
form of several Kafka Consumers embedded into Spark Applications that are continuously listening for the

 Intelligent Event Broker

Twenty-fifth Americas Conference on Information Systems, Cancun, 2019 4

arrival of the Events, no matter their frequency and quantity. Spark Streaming Applications that are
constantly processing huge amounts of Events arriving at higher frequencies will require more cluster
resources than more moderate workloads (e.g., a few Events per hour), but they can share a streaming-
oriented computing cluster. The Event Processor is, therefore, one of the core components of the system,
being tightly coupled with the Rules Engine that encapsulates all the business requirements in the form of
Strategical Rules (e.g., market attractiveness indicators/suggestions), Tactical Rules (e.g., supply chain
management indicators/warnings), and Operational Rules (e.g., stopping a production line due to
repetitive failures) for specific implementations. In this context, Drools can be used as the Rules Engine
(Drools 2018), wherein Data Engineers translate the business requirements into a series of Rules stored in
Drools files (Rules Repository), which are then transparently translated at runtime by the Event Processor.

Figure 1. System architecture

At any moment, the Event Processor can take as input Complementary Data from any Source System, as
Spark Applications can connect to these sources for querying historical or real-time data. This
Complementary Data can be used to provide a richer additional context for Business Rules and Events, as
the following business rule demonstrates: “when a defective part is detected in the production line, if in the
last 10 minutes there were more than 3 defective parts, send a message to the operational manager”.
Considering this, the Rules Engine and the encapsulated business logic also embed the following software
components: i) Triggers, which represent the connectors to several Destination Systems, i.e., after a
condition in a certain rule is evaluated as being true, these Triggers perform certain actions according to
the defined rule’s consequence. For example, Destination Systems may include an IoT gateway that
activates an actuator, a Text or E-mail Message, and Transactional and Analytical Applications that are

 Intelligent Event Broker

Twenty-fifth Americas Conference on Information Systems, Cancun, 2019 5

used to support daily operations or the decision-making process (via the database layer or via direct push
mechanisms). This component can output: 1) the processed data related to the Events in the form of a new
Broker Bean, if more data value is added after processing the Event according to the defined Rules and
business logic; 2) the raw Event data in the form of a previously defined Broker Bean, if it is not relevant to
include after-processing data (e.g., consequences of rules execution); and, ii) Predictors and
Recommenders, which assure the capability of interpreting previously trained ML models and use them to
predict occurrences and recommend actions considering the Events that are being processed by the system
(e.g., predict the likelihood of a continuous failure in the production line, given the production Events for
the past 5 minutes). These models are stored in the MLML, which may contain several file formats
depending on the implementation details (e.g., Predictive Model Markup Language - PMML - or pickle
files). In this work, we consider that the Lake can be implemented using any local or distributed file system,
and the models can be accessed through Web services that, given certain features, predict the corresponding
occurrence or recommend the corresponding action. Through the development of scalable Web services,
the ML models can be adequately invoked in Drools files.

Besides the Event Processor, the Intelligent Event Broker also includes an Event Aggregator, supported by
Druid, a columnar storage system that is able to aggregate Event data (Yang et al. 2014) with sub-second
response times over huge amounts of data (Correia et al. 2018). This component takes as input either raw
Event data (previously defined Broker Beans) or processed Event data (new Broker Bean), as previously
explained in the Triggers component. Taking into consideration the input data, the Event Aggregator is
responsible for ingesting the data, perform the aggregations as the ingestion takes place, and store them to
calculate the Key Performance Indicators (KPIs) that are relevant for a particular business context. This
calculation step takes place in other Kafka Producers that will periodically send KPI updates to specific
Kafka topics, generating Events that will be consumed by the Event Processor as soon as they occur.
Consequently, KPI information, in the form of an Event (through a Broker Bean representation) is also a
relevant part of the Rules that are interpreted by the Rules Engine.

Due to the complexity associated with running the Intelligent Event Broker in production environments,
we need to deploy adequate mechanisms that allow for the constant and long-term monitoring of the
system’s daily operations. This goal is achieved through the development and deployment of the Mapping
and Drill-down System, which is composed of the following components: i) a Graph Database built upon
the analysis and indexing of the Rules Repository (Drools files) and the Intelligent Event Broker codebase
(e.g., Java files), as well as appropriate runtime logging mechanisms, in order to store all the relevant
metadata regarding the system’s structure (e.g., Broker Beans, Rules, Producers, Consumers, Triggers,
and Predictors and Recommenders), functionality (e.g., the Rules that were triggered and the data that was
processed), and performance (e.g., number of Events processed per minute); and, ii) a Web Visualization
Platform fueled by the previously described Graph Database, which allows for an interactive and intuitive
navigation through the Intelligent Event Broker metadata, in order to retrieve useful insights regarding the
CEP scenarios related to a particular implementation context.

Software Packages and Classes

In terms of source code structure, the Intelligent Event Broker is composed of seven software packages,
each one corresponding to a Maven module of the top-level project. Despite the adoption of specific
technologies for the implementation of the Intelligent Event Broker, this work aims to provide general
design guidelines for the development of Big Data CEP systems and, therefore, the software packages and
classes depicted in Figure 2, as well as the components in Figure 1, should be seen as general constructs
that can be easily adapted and extended to future implementations of similar systems.
Regarding the Producers package, the same is mainly based on a set of Kafka Producers, whose
implementation of the main method varies depending on the specific data collection mechanism. In
contrast, the Consumers package is composed of a class that is responsible for configuring a Generic Spark
Kafka Consumer, providing a standard state and behavior for other child classes (Specific Spark Kafka
Consumer) that will then provide particular implementations to adequately read a specific data stream
(Kafka topic). The specific Consumers are the ones used in Spark Applications, one for each business goal
(or group of goals). The pool of Spark Applications deployed at a specific moment form the Event
Processor, as described in the previous section.

 Intelligent Event Broker

Twenty-fifth Americas Conference on Information Systems, Cancun, 2019 6

The Rules Engine package is used by the Consumers package, since the latter embeds the first during
execution, encapsulating all the business logic defined in the Rules Repository. The Rules Engine package
is mainly composed of two classes: the Rules Engine class assuring a connection to a Drools runtime
environment that will scan the current Rules Repository; and, a Rules Stateless Session, which is an
encapsulated Drools Stateless Session that can be used in any consumer by invoking the
“getStatelessSession” method of the Rules Engine with the proper session name (set of Business Rules in
the Rules Repository to apply in a specific Consumer, i.e., a set of Drools files). A Rules Stateless Session
contains methods to execute all the Rules of the respective session, to add Global Variables, add Triggers
(also treated internally as Global Variables), and to close the Session (invokes the “close” method in each
Trigger used in this Session, e.g., database connections). These Triggers make up the Triggers package,
wherein each Specific Trigger implements the Trigger interface, defining the behavior of each Trigger,
namely the need to implement the “fire” method (execute the trigger at any given moment) and the “close”
method. Each Specific Trigger also uses a Specific Connection Factory that, implementing the Connection
Factory interface, is able to provide a connection to a Destination System (see Figure 1).

Figure 2. Diagram of software packages and classes

The Producers, Consumers, Rules Engine, and Triggers packages use the Broker Beans package to
adequately represent business entities, assuring that Events and their corresponding data have the same
meaning throughout the CEP system. Another package using Broker Beans, and being used by the Rules
Engine, is the Predictors and Recommenders package containing the ML models that provide intelligence
to the proposed Big Data CEP system, as these models will be applied to the data related to the Events
(represented as Broker Beans). In order to conclude the description of the Intelligent Event Broker system,
the Mapping and Drill-down System package implements an overarching set of features that allow for the
adequate monitoring and analysis of the system’s functioning. This package, together with the Predictors
and Recommenders package, are not thoroughly detailed in Figure 2 due to the fact that their development
is currently being initiated, thus constituting a perspective for future research work. These are seen as
relevant design elements of the top-level project, reason why they are presented and described in this work.

Demonstration Case – Bosch Active Lot Release
The demonstration case presented in this section is based on data from the Bosch ALR system. This system
is responsible for supporting quality control during the manufacturing and packaging processes in the
factory. Summarizing, ALR applies a pre-defined set of rules to several distinct products contained in a lot,
before shipping it to the final client. When these rules are verified for all the products in a lot, the same is

 Intelligent Event Broker

Twenty-fifth Americas Conference on Information Systems, Cancun, 2019 7

marked as valid and it can be shipped. If the lot does not comply with the rules, it needs to be repaired and
resubmitted to the quality control process. The ALR system was created to solve a previously observed
problem: the lots were created as valid (by default) before the use of this quality control process, which
caused unnecessary costs, because after delivering the lots for shipping, if the quality department detected
problems, the lots had to return to the factory. Besides this, the data about defective products (and lots) was
not stored, making impossible to monitor or analyze past production problems. These issues are solved by
the ALR system, as it stores this real-time data in a distributed data storage, allowing the decision-makers
to analyze this information and act accordingly. The workflow from production to shipping, before and after
the ALR implementation, is schematized in Figure 3.

Figure 3. Quality control before and after the ALR implementation

Focusing on the description of the demonstration case, the system implemented in this context is entirely
based on the architecture depicted in Figure 1. As previously mentioned, the data comes from Bosch, thus
it is important to implement some privacy policies. To accomplish this, the developed Kafka Producer uses
a subset of the original ALR data (represented as an IoT Gateway in Figure 1), shuffling the data and
updating its temporal fields before providing this data to Kafka Consumers (one message per second). As
soon as this data is available through a topic in the Kafka Broker, it will be used by several Consumers. In
this demonstration case, there are 3 Kafka Consumers to be considered: i) ALR Raw Data Consumer - a)
consumes real-time data (Events); b) applies all the necessary transformations to assure data quality; and,
c) stores this data in Druid, in order to be immediately accessible; ii) ALR Operational Consumer - a)
consumes real-time data (Events); b) applies all the necessary transformations to assure data quality; and,
c) applies the operational Rules to each Event, activating the corresponding Triggers when the Rule is
verified; and, iii) ALR Analytical KPIs Consumer - a) consumes data (Events) previously stored in Druid;
and, b) applies the several Tactical Rules to the resulting Events, activating the corresponding Triggers
when the Rule is verified.

This demonstration case implements two Triggers: i) a Mail Trigger, which sends an E-mail Notification
to the related stakeholders; and, ii) a Cassandra Trigger, which stores the Events in this database for future
analysis using an Analytical Application (Tableau (Tableau 2018) is used for this demonstration case).
Triggers execution and the subsequent analysis, either by E-mail Notification or through the Analytical
Application, are important for decision-makers to be aware of some unusual or unexpected behavior, and
to rapidly analyze this data and act accordingly.

Regarding Rules, as previously mentioned, it is important to highlight that there are two different types of
Rules used in this demonstration case, namely Operational Rules and Tactical Rules. The first type includes
“Lot State = ‘INVALID’”, which activates the Triggers when a lot is invalid after the quality control
verification. The second type includes: i) “Num Invalid Lots by Day > x”, which activates the Triggers when
the number of invalid lots in a day exceeds a predefined threshold; ii) “Num Invalid Lots by Day & Line >
Avg Line Last Week”, which activates the Triggers when the number of invalid lots of a specific production
line in a day exceeds the average number of invalid lots of that production line in the last week.
Rules and Triggers are two important aspects in this system, therefore it is relevant to thoroughly explain
how the Consumers, Rules, and Triggers are integrated and what are the tasks of each one. In order to
illustrate the workflow from the Rules definition to the Rules execution, Figure 4 presents the definition of
a Rule, its invocation in the Event Processor, and the Triggers execution.

 Intelligent Event Broker

Twenty-fifth Americas Conference on Information Systems, Cancun, 2019 8

The rule presented in the right side of Figure 4 corresponds to the Rule “Num Invalid Lots by Day > x”
presented above, and it verifies the value of a KPI named “Invalid Lots By Day”, which is a Tactical Rule
executed in the ALR Analytical KPIs Consumer. As previously explained, this rule evaluates if the number
of invalid lots by day is higher than a threshold (100 in this case) and, if so, it executes the Mail and
Cassandra Triggers.

Figure 4. Example of the Rules definition and execution

This workflow is executed periodically (e.g., every day), submitting a query to Druid and sending the result
via a Kafka Producer (“KPIs” in Figure 1). After this, the Kafka Producer broadcasts this data to the
Consumers through a topic in the Kafka Broker. In this demonstration case, the only Consumer interested
in this data is the ALR Analytical KPIs Consumer, which consumes the data, does the necessary
transformation to interpret it, and executes the Rules. In the left side of Figure 4, we can observe how simple
it is to embed the Rules Engine into the Event Processor (set of Spark Consumers), in order to execute
Rules. It is only necessary to: i) get a Rules Engine instance and a Session; ii) instantiate and add the
necessary Triggers to the previously created Session; iii) invoke the execution of the previously defined
Rules according to the consumed Events; and, finally, iv) close the Session.
As already mentioned, for this demonstration case, two types of rules were implemented (tactical and
operational). Taking this into account, two types of dashboards (Figure 5) were developed to show different
kinds of analysis for the different levels of the decision-making process. Before presenting the dashboards,
it is important to recall that due to confidentiality reasons, all the data here presented is fictitious.

Figure 5. Example of Operational and Tactical Dashboards

Taking this into consideration, Figure 5a) shows a dashboard that can be displayed in the production line
(PL), showing, for a specific work shift, the evolution of the invalid lots in the several PLs grouped by part
number (PN). This type of dashboard provides to the PL manager the capability to take a specific action in
the PL (or in the PN being produced) as soon as the quantity of invalid lots increases, having a constant

 Intelligent Event Broker

Twenty-fifth Americas Conference on Information Systems, Cancun, 2019 9

vision of the PL status (and, in this specific case, the problematic PN in production). Furthermore, the exact
number of invalid lots in each hour already completed in the current work shift can be tracked for each PN.
On the other hand, Figure 5b) presents the KPIs based on the difference between the number of invalid lots
produced in a specific PL and day and the average of invalid lots produced in the same PL for the last seven
days, being also illustrated the percentage of increase when compared with the average value. Moreover, to
have a global view on the performance of the previous week, a chart with the three PLs with more production
problems is also presented in this dashboard, also detailing their daily evolution regarding the number of
invalid lots.

Conclusion
This paper presented the Intelligent Event Broker, a CEP system based on Big Data techniques and
technologies (e.g., Spark, Druid, and Kafka), as well as on a MLML concept. A Bosch Car Multimedia
Portugal demonstration case was also presented in this work, where the Intelligent Event Broker is used in
the context of the manufacturing and packaging quality control, including the processing of Tactical and
Operational Rules based on KPIs and raw Event data. The system architecture and software packages and
classes shared in this work with the scientific and technical community are seen of major relevance for the
advancement of CEP systems in the era of Big Data. In this work, the integration of the CEP and Big Data
concepts is made through the use of a rule engine over Big Data technologies that provides an environment
of scalability and distributed processing. Furthermore, in addition to the basic CEP components that were
considered, we further propose components that fill other gaps identified in the literature, including the
MLML for the predictions and recommendations, and the component that will monitor the evolution of the
Intelligent Event Broker through the Mapping and Drill-down System.

The contributions of this paper help researchers and practitioners in the development of systems based on
the Intelligent Event Broker logical components, and in the exploration of new ways of combining Big Data
and CEP systems to build innovative data-based analytical systems, significantly relevant considering the
number of devices and data sources available in current organizational contexts. For future work, as part of
the followed research process, a benchmark is planned to access the response times, throughput, resource
usage, and scalability of the system, as well as the extension of the work to address the objectives iii and v,
namely by implementing and evaluating the ML capabilities and the Mapping and Drill-down System.

Acknowledgements
This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope:
UID/CEC/00319/2019 and the Doctoral scholarship PD/BDE/135101/2017. This paper uses icons made by
Freepik, from www.flaticon.com.

REFERENCES
Babiceanu, R. F., and Seker, R. 2015. “Manufacturing Cyber-Physical Systems Enabled by Complex Event

Processing and Big Data Environments: A Framework for Development,” in Service Orientation in
Holonic and Multi-Agent Manufacturing, Studies in Computational Intelligence, Springer
International Publishing Switzerland 2015, pp. 165–173. (https://doi.org/10.1007/978-3-319-15159-
5_16).

Chakravarthy, S., and Qingchun, J. 2009. Stream Data Processing: A Quality of Service Perspective:
Modeling, Scheduling, Load Shedding, and Complex Event Processing, Advances in Database Systems,
Springer US. (//www.springer.com/la/book/9780387710020).

Correia, J., Santos, M. Y., Costa, C., and Andrade, C. 2018. Fast Online Analytical Processing for Big Data
Warehousing, presented at the International Conference on Intelligent Systems, Madeira Island,
Portugal, September.

Costa, C., and Santos, M. Y. 2018. “Evaluating Several Design Patterns and Trends in Big Data Warehousing
Systems,” in Advanced Information Systems Engineering, Lecture Notes in Computer Science, J.
Krogstie and H. A. Reijers (eds.), Springer International Publishing, pp. 459–473.

Cugola, G., and Margara, A. 2012. “Processing Flows of Information: From Data Stream to Complex Event
Processing,” ACM Comput. Surv. (44:3), 15:1–15:62. (https://doi.org/10.1145/2187671.2187677).

 Intelligent Event Broker

Twenty-fifth Americas Conference on Information Systems, Cancun, 2019 10

Drools. 2018. “Drools - Business Rules Management System.” (https://www.drools.org/, accessed October
11, 2018).

Dundar, B., Astekin, M., and Aktas, M. S. 2016. “A Big Data Processing Framework for Self-Healing Internet
of Things Applications,” in 12th International Conference on Semantics, Knowledge and Grids (SKG),
Beijing, China, August, pp. 62–68. (https://doi.org/10.1109/SKG.2016.017).

Flouris, I., Giatrakos, N., Deligiannakis, A., Garofalakis, M., Kamp, M., and Mock, M. 2017. “Issues in
Complex Event Processing: Status and Prospects in the Big Data Era,” Journal of Systems and Software
(127), pp. 217–236. (https://doi.org/10.1016/j.jss.2016.06.011).

Flouris, I., Manikaki, V., Giatrakos, N., Deligiannakis, A., Garofalakis, M., Mock, M., Bothe, S., Skarbovsky,
I., Fournier, F., Stajcer, M., Krizan, T., Yom-Tov, J., and Curin, T. 2016. “FERARI: A Prototype for
Complex Event Processing over Streaming Multi-Cloud Platforms,” in Proceedings of the 2016
International Conference on Management of Data, SIGMOD ’16, New York, NY, USA: ACM, pp. 2093–
2096. (https://doi.org/10.1145/2882903.2899395).

Giatrakos, N., Artikis, A., Deligiannakis, A., and Garofalakis, M. 2017. “Complex Event Recognition in the
Big Data Era,” Proceedings of the VLDB Endowment (10:12), pp. 1996–1999.
(https://doi.org/10.14778/3137765.3137829).

Hadar, E. 2016. “BIDCEP: A Vision of Big Data Complex Event Processing for near Real Time Data
Streaming Position Paper - A Practitioner View,” in CEUR Workshop Proceedings (Vol. 1600).

Kafka. 2018. “Apache Kafka Homepage.” (https://kafka.apache.org/, accessed July 3, 2018).
Kagermann, H., Wahlster, W., and Helbig, J. 2013. “Recommendations for Implementing the Strategic

Initiative INDUSTRIE 4.0. Final Report of the Industrie 4.0 Working Group,” acatech - National
Academy of Science and Engineering, April, p. 82.

Krumeich, J., Jacobi, S., Werth, D., and Loos, P. 2014. “Big Data Analytics for Predictive Manufacturing
Control - A Case Study from Process Industry,” in 2014 IEEE International Congress on Big Data,
Anchorage, AK, USA, June, pp. 530–537. (https://doi.org/10.1109/BigData.Congress.2014.83).

Leavitt, N. 2009. “Complex-Event Processing Poised for Growth,” Computer (42:4), pp. 17–20.
(https://doi.org/10.1109/MC.2009.109).

Luckham, D. C. 1996. “Rapide: A Language and Toolset for Simulation of Distributed Systems by Partial
Orderings of Events.,” Stanford, CA, USA: Stanford University.

Luckham, D. C., and Vera, J. 1995. “An Event-Based Architecture Definition Language,” IEEE Transactions
on Software Engineering (21:9), pp. 717–734. (https://doi.org/10.1109/32.464548).

Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chatterjee, S. 2007. “A Design Science Research
Methodology for Information Systems Research,” Journal of Management Information Systems (24:3),
pp. 45–77. (https://doi.org/10.2753/MIS0742-1222240302).

Saenko, I., Kotenko, I., and Kushnerevich, A. 2017. “Parallel Processing of Big Heterogeneous Data for
Security Monitoring of IoT Networks,” in 2017 25th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), St. Petersburg, Russia, March, pp. 329–336.
(https://doi.org/10.1109/PDP.2017.45).

Tableau. 2018. “Tableau - Business Intelligence and Analytics Software.” (https://www.tableau.com/,
accessed October 16, 2018).

Tawsif, K., Hossen, J., Emerson Raja, J., Jesmeen, M. Z. H., and Arif, E. M. H. 2018. “A Review on Complex
Event Processing Systems for Big Data,” in 2018 Fourth International Conference on Information
Retrieval and Knowledge Management (CAMP), Kota Kinabalu, Malaysia, March 26.
(https://doi.org/10.1109/INFRKM.2018.8464787).

Yang, F., Tschetter, E., Léauté, X., Ray, N., Merlino, G., and Ganguli, D. 2014. “Druid: A Real-Time
Analytical Data Store,” in Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data, Utah, USA: ACM, pp. 157–168.

Zhang, P., Shi, X., and Khan, S. U. 2018. “QuantCloud: Enabling Big Data Complex Event Processing for
Quantitative Finance through a Data-Driven Execution,” IEEE Transactions on Big Data, pp. 1–13.
(https://doi.org/10.1109/TBDATA.2018.2847629).

