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Abstract 19 

The main objectives of Structural Health Monitoring (SHM) are the characterization and the 20 

assessment of the health condition of structural systems. Combined with appropriate Damage 21 

Identification (DI) strategies, SHM aims to provide reliable information about the localization and 22 

quantification of the structural damage by using an inverse formulation approach, with the damage 23 

parameters being estimated from parametric changes in dynamical properties. Mathematically, an 24 

inverse problem consists of the optimization of a function which represents the "distance" between the 25 

experimental and the numerically-simulated features of the system. Such process requires the 26 

development of a mock-up numerical model fairly representative of the system and iteratively updated 27 

until a response as close as possible to the experimental one is provided. The minimization of the 28 

difference between measured and predicted features’ values is the objective function, whose global 29 

minimum corresponds to the best adjustment of the model variables. Metaheuristic represents a large 30 

class of global methods for optimization purposes able to outperform traditional methods in the 31 

following aspects: ease of implementation, time consumption, suitability for non-linear, black-box and 32 

high-dimensional problems. The present paper analyses, through a numerical experimentation 33 

approach, the suitability of one of the best-known metaheuristics, i.e. the Particle Swarm Optimization 34 

(PSO) algorithm, for DI of beam-like structures. Modal properties are used to define the objective 35 
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function and various algorithm instances are tested across different problem instances to assess 36 

robustness and influence of the algorithm parameters. 37 

 38 

1. Introduction 39 

Nowadays, developing cost-effective and automatic strategies for the maintenance of built environment 40 

is becoming essential, as many existing structures and infrastructures are close to the end of their 41 

service life (or over) and the new ones are growing in number, size and complexity. Furthermore, the 42 

costs of downtime and failure, the risk of injuries and life losses, as well as the repercussions that such 43 

accidents may have on a higher level are almost unaffordable. 44 

Structural Health Monitoring (SHM) is an ongoing field of research whose main aim is the 45 

implementation of strategies for the assessment of the health condition of a structural system and the 46 

prompt identification of damage – when no information about its location is available – in order to 47 

avoid unexpected breakdowns and serious economic and societal losses. Damage Identification (DI) 48 

strategies can be categorized according to five main goals of increasing complexity (Farrar & Worden, 49 

2007): (1) detection of existence, (2) localization, (3) classification of the type, (4) quantification of 50 

the extent and (5) prognosis of the remaining service life. 51 

To achieve the higher goals, meaning at least up to the quantification of the damage extent, an inverse 52 

model updating problem formulation is usually adopted, which consists in the minimization of an 53 

objective function defined in terms of discrepancies between the features extracted by operational 54 

modal analysis and those computed using a numerical or analytical model. 55 

Experience demonstrated that Particle Swarm Optimization (PSO) algorithms, as other metaheuristics, 56 

are suitable for the model updating as they do not need any knowledge of the function or of its 57 

derivatives. Furthermore, there is no requirement regarding the characteristics of the objective function 58 

itself, such as derivability or continuity, nor about the variables which can be continuous, discrete or 59 

mixed. Being population-based metaheuristic algorithms, PSO can explore in parallel more possible 60 

solutions in the same run and being also global methods, their performance does not depend on the 61 

initial population of solutions. 62 

Despite the advantages listed above, three main shortcomings of PSO are worth mentioning. First, 63 

these methods are considered as sub-optimal. There is no guarantee that the achieved solution is the 64 

optimal one, as well as there is no guarantee of the convergence to the overall optimum value. 65 

Therefore, there is a risk of local optima trapping and premature convergence. Second, the canonical 66 

version of the algorithm shows a tendency to suffer an uncontained increase of the velocity during the 67 



process, also called explosion of the particles. Third, PSO algorithms, as the metaheuristics in general, 68 

have a peculiar problem related to the parameter setting. Each algorithm, in fact, requires the definition 69 

of several parameters, whose values can significantly affect the final performance. 70 

The version of the PSO algorithm hereafter analysed relies on the inertia weight term, added to the 71 

canonical formulation to prevent the explosion of the particles Still, a specific analysis is required to 72 

overcome the other two drawbacks. In literature, many strategies have been formulated to face the 73 

premature convergence. In the DI field, most of the developed studies usually relied on multistage 74 

approaches to reduce the number of candidate locations for the damages (Nanda, Maity, & Maiti, 2014; 75 

Seyedpoor, 2012) and/or on improved version or hybridization of the canonical PSO (Kang, Li, & Xu, 76 

2012; Kaveh, Javadi, & Maniat, 2014; Vakil Baghmisheh, Peimani, Sadeghi, Ettefagh, & Tabrizi, 77 

2012). Indeed, the size of the problem and the balance between exploration and exploitation (two key 78 

stages of metaheuristic optimization algorithms) are likely to affect the performance in this regard. For 79 

the sake of clarity, it is stressed that exploration refers to searching across the space collecting 80 

information and providing a diversification of the possible solutions, whereas exploitation refers to 81 

intensifying the investigation on a restricted area close to the best achieved solutions. However, the 82 

balance between exploration and exploitation also depends on the parameter setting, which is 83 

commonly an underrated task in the definition of the algorithm instance to use, although its importance 84 

is well-known (Adenso-Díaz & Laguna, 2006).  85 

Driven by the above considerations, the two main objectives of this paper are: (1) to test the PSO 86 

formulation developed by Shi and Eberhart (Shi & Eberhart, 1998), one of the most basic and common 87 

version, to demonstrate its suitability for damage identification in beam-like structures; (2) to show the 88 

influence of parameter setting and how to perform it. 89 

Using a basic version of the algorithm is important not only to exclude that the poor performances 90 

observed in its application are due to an incorrect setting, but also to gain a deep knowledge of the 91 

ongoing process, focusing on the aspects that need an improvement of the algorithm. The parameter 92 

setting is herein achieved through the Design Of the Experiment (DOE), an approach for planning 93 

experiments that aims at assessing the influence of different factors on the result so as to find their best 94 

combination.  95 

All the numerical simulations and the finite element models (FEM) are implemented in DIAMA (TNO, 96 

Delft, The Netherlands) using a Python script for the routine. 97 

 98 



2. Overview on PSO algorithms 99 

PSO is a name which encompasses a group of optimization algorithms developed starting from the first 100 

formulation by Kennedy and Eberhart (Kennedy & Eberhart, 1995) in 1995. 101 

As inferable by the name, PSO algorithms draw inspiration from the social behavior of a swarm of 102 

animals, as flock of birds or school of fishes, generally addressed as particles. 103 

Regardless the following improvements, in the common framework of the method, each particle is 104 

identified by its position and its velocity and keeps memory of the best position ever visited by itself 105 

and by the one that went nearest to the target among all the swarm (in the so called Global or gbest-106 

PSO) or only among its neighborhood (in the so called Local or lbest-PSO). Based on this information, 107 

each particle decides the velocity and moves to a new position. According to biological inspiration, the 108 

solution achieved, at the 𝑡-th iteration, by the 𝑖-th particle of the 𝑝 agents of the swarm, is called 109 

position, 𝑋i
t, and it is defined by the coordinates in a 𝑠-dimensional space, where 𝑠 is the number of 110 

variables 𝑥𝑖𝑗
𝑡  composing the solution: 𝑋i

t = {𝑥𝑖1
𝑡 , 𝑥𝑖2

𝑡 , . . , 𝑥𝑖𝑠
𝑡 }, 𝑖 = 1,2, … 𝑝. The change ratio of the 111 

position is called velocity. 112 

A typical PSO algorithm works as follows: (1) the number of particles is defined, positions and initial 113 

velocities are initialized, (2) the distance between the actual position and the target (objective function) 114 

for each particle is evaluated, (3) the personal best position and the best position ever reached by a 115 

member of the swarm are memorized or updated, (4) the velocity of each particle is updated and, 116 

finally, (5) each position is updated. The process is repeated until the termination criteria are met.  117 

In the version of the algorithm hereafter analysed, the position is updated according to the following 118 

expression: 119 

𝑥𝑖𝑗
𝑡+1 =  𝑥𝑖𝑗

𝑡 + 𝑣𝑖𝑗
𝑡+1        (1) 120 

where 𝑣𝑖𝑗
𝑡+1 is the velocity, 𝑥𝑖𝑗

𝑡+1 is the position at the iteration 𝑡 + 1 and 𝑥𝑖𝑗
𝑡  the position at the iteration 121 

𝑡. The particle velocity is computed by:  122 

𝑣𝑖𝑗
𝑡+1 = 𝑤𝑣𝑖𝑗

𝑡 + 𝐶1𝑟𝑎𝑛𝑑1(𝑃𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑥𝑖𝑗
𝑡 ) + 𝐶2𝑟𝑎𝑛𝑑2(𝐺𝑏𝑒𝑠𝑡𝑗 − 𝑥𝑖𝑗

𝑡 ) (2) 123 

where 𝐶1 and 𝐶2 are positive weighting coefficients called learning factors, used to balance the 124 

influence of individual and social experience; 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are two random numbers varying in 125 

between zero and one; vector 𝑃𝑏𝑒𝑠𝑡𝑖𝑗, 𝑖 = 1,2, … 𝑝,  𝑗 = 1,2, … 𝑠, is the best position ever reached by 126 

the 𝑖-th agent and vector 𝐺𝑏𝑒𝑠𝑡𝑗 , 𝑗 = 1,2, … 𝑠 is the best position ever reached by the flock, namely 127 

the position of the agent nearest to the target since the beginning of the process. 128 



The first term of the equation (2) represents the direction of the particle in the previous step (its inertia), 129 

instead the second and the third terms represent the individual learning and the collective interaction, 130 

respectively.  131 

The inertia weight 𝑤 was introduced by Shi and Eberhart (Shi & Eberhart, 1998) to control the velocity, 132 

balancing exploration and exploitation. An adaptive term is suggested for 𝑤, since iteratively variable 133 

values initially push on global search and then switch for a local search. An extensively used 134 

formulation is the following:  135 

𝑤 = 𝑤𝑚𝑎𝑥 − 𝑖𝑡𝑒𝑟
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛 

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
       (3) 136 

where 𝑖𝑡𝑒𝑟 indicates the current iteration, 𝑤𝑚𝑎𝑥 is the initial weight, 𝑤𝑚𝑖𝑛 is the final weight and 137 

𝑖𝑡𝑒𝑟𝑚𝑎𝑥 stands for maximum iteration number.  138 

A further precaution to prevent the explosion of the particles consists of the limitation of their velocity 139 

range.  140 

𝑣𝑚𝑖𝑛 ≤ 𝑣𝑖 ≤  𝑣𝑚𝑎𝑥        (4) 141 

 142 

3. Design of the experiments 143 

Damage Identification is a constrained black-box optimization problem, since the decision variables 144 

correspond to the damage extent in each location, with values varying between 0 (completely 145 

collapsed) and 1 (no damage) and the objective function is not analytically known thus a FEM 146 

simulation is required to estimate it. The design variables express the damage ratio in terms of reduction 147 

of the Young modulus E. To avoid numerical problems, the lower bound of E is limited to 0.1 and an 148 

identification precision of 1% is adopted, which means that the algorithm can distinguish between 149 

damage extents that differs by 1%. Thus, from 10% to 100%, each element can assume 91 different 150 

possible values of the damage extent and the problem size is 91𝑠, where 𝑠 is the number of candidate 151 

locations.  152 

In the present study, a beam discretized in 20 elements is used to test the proposed PSO algorithm. 153 

Each element is a candidate location, therefore the problem size results 𝑃𝑆 = 9120 ≈ 1.5 ∙ 1039. The 154 

experiment is designed according to a two-levels factorial approach (see Table 1). There are four 155 

analysed parameters: (1) coefficient 𝐶1, (2) coefficient 𝐶2, (3) final weight 𝑤𝑚𝑖𝑛 and (4) population 156 

size 𝑝.  157 

The first three factors are the variables of the updating formula. Although the most common setting 158 

uses 𝐶1 = 𝐶2 = 2 and 𝑤𝑚𝑖𝑛 = 0.4 (Kang et al., 2012; Nanda et al., 2014; Seyedpoor, 2012), in the 159 



present work, the two constants 𝐶1 and 𝐶2 are tested at 1 and 3, in accordance with the common advice 160 

of using 𝐶1 + 𝐶2 < 4 to avoid particles explosion, derived from (Clerc & Kennedy, 2002). Considering 161 

a constant value of 𝑤𝑚𝑎𝑥 = 0.9 in the experiment 𝑤𝑚𝑖𝑛 assumes values of 0.9 and 0.4, meaning that 162 

two strategies are compared, one with constant inertia weight equal to 0.9 and the other with dynamic 163 

inertia weight decreasing from 0.9 to 0.4. The fourth parameter p is an index of the coverage of the 164 

problem space (PS). For values of 𝑝 ≪ 𝑃𝑆 the random initialization of the particles ensures that each 165 

of them is a different initial attempt and no clusters around specific points of the problem space exist. 166 

Thus, the bigger the population p, the better the exploration, but this also reduces the speed of each 167 

iteration.  168 

Table 1: summary of the parameters in the 2-levels factorial design. 169 

Number 𝐶1 𝐶2 𝑤𝑚𝑖𝑛 𝑝 

1 Low Low Low Low 

2 Low Low Low High 

3 Low Low High Low 

4 Low Low High High 

5 Low High Low Low 

6 Low High Low High 

7 Low High High Low 

8 Low High High High 

9 High Low Low Low 

10 High Low Low High 

11 High Low High Low 

12 High Low High High 

13 High High Low Low 

14 High High Low High 

15 High High High Low 

16 High High High High 

 170 

The study intends to assess how much such a reduction is and whether it compensates for the growth 171 

of computational cost. To this end, a number of particles p equal at least to the number of the design 172 

variables s would be required, but a value threefold greater than the minimum is usually suggested 173 

(Gerist & Maheri, 2016). In this experiment, both levels are analysed: 𝑠 and 3 ∙ 𝑠. 174 

 175 

4. Application and discussion of the results 176 

The case study used to set the parameters of the proposed PSO algorithm is a 10 meters long clamped-177 

clamped steel beam with a 0.2x0.45 m2 cross section, discretized in 20 elements (Figure 1). The  178 

adopted objective function equals: 179 

𝐹 = ∑
(𝑓𝑒,𝑖−𝑓𝑛,𝑖)

2

𝑓𝑒,𝑖
2

𝑛𝑚
𝑖=1 + ∑ ∑ (|𝜑𝑒,𝑗𝑖| − |𝜑𝑛.𝑗𝑖|)

2𝑛𝑛
𝑗=1

𝑛𝑚
𝑖=1      (5) 180 



where 𝑓𝑖 and 𝜑𝑗𝑖 are the 𝑖-th natural frequency and modal coordinates, respectively, and the subscripts 181 

𝑒 and 𝑛 refer to numerical and experimental respectively. To simulate the reduced information usually 182 

available in real situations, only a few lower modes are used (𝑛𝑚 = 5) and not all the DOFs of the 183 

numerical model are employed to extract the modal coordinates (𝑛𝑛 = 6). The considered nodes are 184 

circled in red in Figure 1. The structural damage is numerically simulated by halving the value of the 185 

Young modulus of the 11th element so as to reproduce a damage scenario in the midpoint. 186 

 187 

Figure 1: Case-study steel beam (the red circles indicate the DOFs considered in the optimization problem). 188 

Throughout the experiments, the initial position and velocity of the particles are randomly generated. 189 

A random effect is also present at any iteration according to the formula of the velocity in Eq. (2). For 190 

any combination of factors, ten repetitions are carried out. No limitation to the velocity is introduced 191 

and two termination criteria are assumed: (1) a maximum number of iterations equal to 100 and (2) a 192 

value of the objective function equal to 0. In what concerns the latter criterion, allowing a margin 193 

through the definition of a threshold value is usually preferable, as setting for the objective function 194 

equal to 0 means looking for the exact solution rather than an optimal one. Still, the threshold value 195 

depends on the features used to define the function as well as on its formulation, thus setting a proper 196 

value should require a numerical experiment.  197 

The performance of each repetition is assessed in terms of success (1=success, 0=failure) and number 198 

of FEM simulations. The latter is an index of the computational cost and corresponds to the number of 199 

particles multiplied by the number of iterations.  200 

The set parameters are used as dependent variables in a univariate analysis of variance (ANOVA), 201 

analysing the influence of all the 4 independent factors on the algorithm performance. The null 202 

hypothesis H0 corresponds to the case in which the coefficients 𝐶1, 𝐶2, 𝑤𝑚𝑖𝑛 and the population size p 203 

do not affect the success of the PSO algorithm. Such hypothesis is rejected at a significance level of 204 

5%, which means that if the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 calculated based on the observance value of the test statistic is 205 

less than the significance level the hypothesis is rejected. In this case, at least one of the factors or their 206 

interaction affects the performance. 207 

In Table 2 the average results of the ten runs for each combination of factors are reported. The first 208 

four rows show, respectively, the success ratio over the ten runs, the average fitness in the ten runs, the 209 



average number of iterations required to achieve the solution (in case of failure, the process is repeated 210 

for 101 iterations, considering the initialization as first iteration), and the number of operations, viz. 211 

the number of FEM analysis. The other rows show the average damage extent identified by the 212 

algorithm for each element. 213 

The results are analysed according to the ANOVA. From the test, it is possible to infer that the influence 214 

of  𝑝, 𝐶1 and 𝐶2 results statistically relevant. Moreover, a relevant correlation also exists between  𝐶2 215 

and 𝑤𝑚𝑖𝑛 exists and between 𝐶2 and 𝑁.  216 

Table 2: PSO performance indicators and average values of the ten runs for each combination of the factorial design. 217 

Test 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Succ. 

Ratio 
0.8 0.9 0.6 0.7 0.3 0.8 0.5 0.8 0.9 1 0.9 1 0.4 0.8 0.7 1 

Fit. 2.2E

-03 

5.1E

-04 

3.2E

-03 

1.1E

-03 

5.9E

-03 

1.0E

-03 

3.1E

-03 

2.0E

-03 

4.7E

-04 

0.0E

+00 

3.8E

-04 

0.0E

+00 

5.1E

-03 

1.0E

-03 

2.6E

-03 

0.0E

+00 

N° It 39.8 23.8 55.2 43.8 80.8 31.4 60.7 30 40.5 22.1 42 26.4 73 34.5 51.2 17.9 

N° op 796 1428 1104 2628 1616 1884 1214 1800 810 1326 840 1584 1460 2070 1024 1074 

El. 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

El. 2 1.00 1.00 1.00 0.98 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 

El. 3 1.00 1.00 0.99 0.98 1.00 0.99 1.00 1.00 1.00 1.00 0.99 1.00 0.98 1.00 0.99 1.00 

El. 4 0.99 1.00 0.99 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 

El. 5 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

El. 6 0.99 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 

El. 7 1.00 1.00 1.00 0.99 1.00 1.00 0.95 0.98 1.00 1.00 1.00 1.00 0.96 1.00 0.97 1.00 

El. 8 0.99 1.00 1.00 1.00 0.96 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 

El. 9 0.99 1.00 0.99 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 

El. 10 1.00 0.99 0.96 0.94 0.99 1.00 0.96 1.00 0.99 1.00 0.98 1.00 1.00 1.00 0.98 1.00 

El. 11 0.60 0.55 0.70 0.65 0.85 0.60 0.75 0.60 0.55 0.50 0.55 0.50 0.80 0.60 0.65 0.50 

El. 12 0.97 0.96 0.89 0.89 0.82 0.93 0.89 0.97 0.96 1.00 0.96 1.00 0.86 0.93 0.93 1.00 

El. 13 0.98 1.00 1.00 1.00 0.98 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

El. 14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

El. 15 1.00 1.00 0.98 0.99 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.99 1.00 1.00 

El. 16 0.98 1.00 1.00 1.00 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

El. 17 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

El. 18 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

El. 19 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

El. 20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 218 

It is worth noticing that using a number of particles three time higher does not imply an equivalent 219 

growth of the number of iterations (see Table 3), which means that the improvement in the algorithm 220 

performance attained by using a bigger population compensates for the increase in computational cost. 221 



Table 3: Number of average FEM simulation for each combination of factors comparing the two levels of population size. 222 

 

𝐶1 − 𝑙𝑜𝑤 𝐶1 − ℎ𝑖𝑔ℎ 

Average 
𝐶2 − 𝑙𝑜𝑤 𝐶2 − ℎ𝑖𝑔ℎ 𝐶2 − 𝑙𝑜𝑤 𝐶2 − ℎ𝑖𝑔ℎ 

𝑤
𝑚

𝑖𝑛

−
𝑙𝑜

𝑤
 

𝑤
𝑚

𝑖𝑛

−
ℎ

𝑖𝑔
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𝑤
𝑚

𝑖𝑛

−
𝑙𝑜

𝑤
 

𝑤
𝑚

𝑖𝑛

−
ℎ

𝑖𝑔
ℎ

 

𝑤
𝑚

𝑖𝑛

−
𝑙𝑜

𝑤
 

𝑤
𝑚

𝑖𝑛

−
ℎ

𝑖𝑔
ℎ

 

𝑤
𝑚

𝑖𝑛

−
𝑙𝑜

𝑤
 

𝑤
𝑚

𝑖𝑛

−
ℎ

𝑖𝑔
ℎ

 

𝑁 − 𝑙𝑜𝑤 796 1104 1616 1214 810 840 1460 1024 1108 

𝑁 − ℎ𝑖𝑔ℎ 1428 2628 1884 1800 1326 1584 2070 1074 1724.25 

Ratio: high/low 1.79 2.38 1.17 1.48 1.64 1.89 1.42 1.05 1.56 

 223 

 224 

Figure 2: estimated marginal mean 225 

According to the estimated marginal mean (Figure 2) the best combination is the one with high levels 226 

for all the factors but the 𝐶2.  227 

 228 

Figure 3: Numbering of the beam’s elements. 229 

Finally, this optimized algorithm instance is tested over other damage scenarios applied to the same 230 

steel beam. For ease of reference, the numbering of the elements is shown again in Figure 3. In Table 231 

4 all the tests carried out are summarized along with the relevant damage scenarios. The main objective 232 

of this final task is to analyse the algorithm performance by simulating the most expected damage 233 

conditions occurring in a clamped-clamped beam, namely damages close to the clamps and damage in 234 

the mid-point. Furthermore, the tests include specific conditions that, according to experience, 235 

complicate the damage identification process, such as: (1) asymmetric configuration of damage, (2) 236 

very weak damage extent and (3) multi-damage scenarios.   237 



Table 4: Number of tests and damage scenarios used to analyse the performance of the optimized PSO algorithm. 238 

Test Damage ratio/Damage location Description 

Par. 

setting 
0.5/Element 11 

Relevant damage in the midpoint, asymmetric 

condition 

1st test 0.8/Element 11 
Weak damage in the midpoint, asymmetric 

condition 

2nd test 0.95/Element 11 
Very weak damage in the midpoint, asymmetric 

condition 

3rd test 0.5/Element 2 
Relevant damage close to the clamp, asymmetric 

condition 

4th test 0.5/Element 2 – 0.5/Element 20 
Relevant damages close to both the clamps, 

asymmetric condition 

5th test 0.8/Element 2 – 0.5/Element 20 
Relevant and weak damage close to both the 

clamp, asymmetric condition 

6th test 0.5/Element 10 – 0.5/Element 11 
Relevant damage in the midpoint, symmetric 

continuous condition 

7th test 0.8/Element 1 – 0.8/Element 20 
Weak damages close to both the clamps, 

symmetric condition 

8th test 0.8/Element 1 – 0.9/Element 11 – 0.6/Element 20 
Mixed damage condition close to both the clamps 

and in the midpoint 
Table 5: Result of the tests: performance indicators. 239 

Test 1 2 3 4 5 6 7 8 

Success ratio 1 0.8 1 0.4 0.6 0.4 0.2 0 

Fitness 0.0E+00 1.2E-05 0.0E+00 4.1E-04 3.7E-06 1.3E-05 1.2E-03 2.7E-05 

N° It 18 34.8 21.6 85.2 65.6 84.2 87.6 101 

N° op 1080 2088 1296 5112 3816 5052 5256 6060 

 240 

Asymmetric damages on a symmetric structure can be easily mistaken when only frequencies are used 241 

in the objective function, therefore this kind of problem instances test the sensitivity of the considered 242 

features to the damage. Nevertheless, detecting damages with very low extent is essential to test the 243 

early warning capability of the algorithm. Usually, identifying weak extent damages as well as multi-244 

damage scenarios are complicated tasks and many algorithms fail in this regard. 245 

Table 5  to 8  report all the results of the numerical experiments. The three single-damage scenarios do 246 

confirm the efficiency of the algorithm. Dealing with a very weak damage, the algorithm only fails in 247 

one case out of five and the average error is almost negligible. Increasing the number of damages 248 

increases the number of false positive errors, despite almost negligible in all the cases. This is due to a 249 

common issue of PSO that usually shows a quick convergence in the surrounding of the best solution 250 

followed by a slower fluctuation around it. In Figure 4, the convergence trend of one of the unsuccessful 251 

runs of damage scenario 6 is showed as an example. In this specific instance, increasing the maximum 252 



number of iterations is likely to lead to the correct identification in most cases, but in general the local 253 

search capabilities of the algorithm should be improved. 254 

Table 6: Result of the tests: damage extent in each element (tests 1 to 4). In grey correctly identified damages. In yellow false positive 255 
errors. Exp and Num are the actual damage and the average results in 10 runs, respectively. 256 

Test Exp 1 Num 1 Exp 2 Num 2 Exp 3 Num 3 Exp 4 Num 4 

El. 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 
El. 2 1.00 1.00 1.00 1.00 0.50 0.50 0.50 0.60 
El. 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 11 0.80 0.80 0.95 0.96 1.00 1.00 1.00 1.00 
El. 12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 17 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 18 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 19 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93 
El. 20 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.51 

 257 
 258 
Table 7: Result of the tests: damage extent in each element (tests 5 to 8). In grey correctly identified damages. In yellow false positive 259 

errors. Exp and Num are the actual damage and the average results in 10 runs, respectively. 260 

Test Exp 5 Num 5 Exp 6 Num 6 Exp 7 Num 7 Exp 8 Num 8 

El. 1 1.00 1.00 1.00 1.00 0.80 0.89 0.80 0.80 
El. 2 0.80 0.79 1.00 1.00 1.00 0.84 1.00 1.00 
El. 3 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 
El. 4 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 
El. 5 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 
El. 6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 10 1.00 1.00 0.50 0.50 1.00 1.00 1.00 1.00 
El. 11 1.00 1.00 0.50 0.50 1.00 1.00 0.90 0.91 
El. 12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 15 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 
El. 16 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 
El. 17 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 
El. 18 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
El. 19 1.00 1.00 1.00 1.00 1.00 0.85 1.00 0.95 
El. 20 0.50 0.50 1.00 1.00 0.80 0.89 0.60 0.61 

 261 



 262 

 263 

Figure 4: Global best fitness of the swarm along the iterations in test 6 run 3 resulted in a failure (suboptimal solution).  264 

5. Conclusion and future scopes 265 

In the present paper, one of the most basic and well-known version of the PSO algorithm by Shi and 266 

Eberhart (Shi & Eberhart, 1998), is used to identify the location and the extent of damage scenarios in 267 

a clamped-clamped steel beam. The reference beam is numerically simulated and the damage is 268 

introduced in the model through a reduction of the Young modulus. The simulated scenarios are meant 269 

to reproduce the most expected damage conditions in the reference beam, namely damage close to the 270 

mid-point and damage at the beam clamps. 271 

The analysis allows to confirm that even a basic version of the PSO is suitable for damage 272 

identification, although such a version is generally considered not efficient enough in the literature, 273 

thereby leading to prefer improved or hybrid versions of the PSO. The influence of parameter setting 274 

on the algorithm performance is also confirmed, especially in regard to the coefficients 𝐶1 and 𝐶2, 275 

whose values have been usually based on previous works performed on completely different classes of 276 

problems. Therefore, it is clear from the developed work how a proper parameter setting is pivotal to 277 

achieve an improvement in this field of research. 278 

Beside the aforementioned aspects, the influence of the population size on the algorithm performance 279 

is analysed as well. A test involving two levels of the population size demonstrated that using a 280 

threefold greater population does not imply an equivalent growth of the number of FEM analyses nor 281 

of the time required for the process.  282 

Finally, the optimized algorithm instance resulting from all these analyses is tested over a set of more 283 

complex problems. The experiments carried out demonstrated that the PSO is a feasible way to face 284 



inverse problems for damage identification, but a few questions are still open and worth of more 285 

research.  286 

Real world applications do actually differ from the problem instances used in this study, essentially in 287 

two main aspects. First, the features extracted from the monitored structure. Here, such features have 288 

a perfect precision, whereas in real world the signal is always polluted by noise. Second, the size of the 289 

case study. The beam-like example used in this work is very small compared to real world systems. 290 

Therefore, it can be concluded that testing the PSO algorithm over bigger problem spaces, also 291 

considering polluted features, is essential. Finally, the robustness of the algorithm should be assessed 292 

with yet less information (e.g. number of modes and DOFs) and without disregarding eventual 293 

modelling errors (e.g. differences between reference and numerical models in terms of geometry or 294 

material properties). 295 
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