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Abstract 

The corner mechanism in masonry structures is one of the out-of-plane modes that may fre-
quently occur under dynamic actions such as earthquakes. The three dimensional motion, in 
principle complex to treat, can be simplified into a two-dimensional problem, where a prismatic 
equivalent block is associated to the corner mechanism. This paper provides a method to treat 
the corner mechanism in two dimensional rocking analysis, taking into account the roof actions 
– especially the roof thrust that acts as destabilizing force in the preliminary phases of motion 
– and the boundary conditions such as the transverse walls. A case study is taken as benchmark 
to perform rocking non-linear analyses and discuss the role of geometry, energy dissipation 
and boundary conditions. It is shown the relevant influence of the geometry and of the coeffi-
cient of restitution on the stability conditions, whenever the oscillation produce horizontal dis-
placement values of some cm. The results of the case study, subjected to the Central Italy 
earthquake, are compared to the actual response of the corner mechanism, which collapsed 
during this seismic swarm, showing that the rocking analysis on the equivalent block correctly 
predicts the collapse occurred. 
 
Keywords: Rocking; corner mechanism; roof thrust; one-sided motion; Housner’s model; 
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1 INTRODUCTION 

The need of understanding and predict failures due to strong earthquakes, including the over-
turning of a variety of slender structures, has motivated several studies on the rocking response 
of rigid blocks. Masonry buildings are strongly influenced by the integrity of the connections 
between structural elements, both vertical and horizontal, aimed at ensuring the so-called "box 
effect", often neglected in existing buildings [1]. Weak connections can therefore cause out-of-
plane modes involving parts of the structure that can be regarded as rigid blocks [2]. Such out-
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of-plane modes are usually studied through kinematic analysis, based on the limit analysis the-
orem, involving or not frictional resistances [3,4] or non-linear dynamic analysis, often called 
rocking analysis [5]. 
The latter, based on the solution of equations of motion, is able to investigate the performance 
of elements under earthquakes without neglecting energy dissipation and the response during 
motion [6,7], that can be subjected to resonance conditions [8]. Recently, several additions in 
the classical Housner’s equation [9] were made to include the presence of sidewalls and tie-
rods horizontally restraining the rocking masonry walls [10,11]. When the walls interact with 
roofs, the overloads and thrusts can also be considered and it was shown that they can be deci-
sive in causing the collapse of these modes [12]. 
Within the same framework, design strategies and stochastic approaches were proposed to as-
sess the beneficial effect of anti-seismic devices [13,14]. 
This paper presents a novel procedure to perform rocking analysis applied to masonry corner 
mechanisms, that occur when one corner of a building is strong enough not to create a vertical 
crack at the wall intersection [15]. The vulnerability of this mechanism is increased with the 
destabilizing contribution of the roof and the presence of openings near the edge. Other au-
thors recently investigated this mechanism from experimental and analytical points of view 
and using non-linear static analysis procedures [16–18]. 
In this paper, the one-sided motion of a corner mechanism is investigated by analyzing it as 
single degree of freedom system with spring bed simulating the adjacent walls. The energy 
dissipation is taken into account with a coefficient of restitution reduced with respect to the 
analytical one [9], considering recent experimental tests performed on rubble masonry walls 
[19]. However, it is worth noting that the experimental coefficient of restitution in one-sided 
rocking is much lower than in two-sided rocking. Whilst in two sided rocking energy damping 
does not sensitively change with the amplitude rotation, in one-sided rocking energy damping 
is markedly amplitude-dependent [20]. However, in this paper these effects are neglected and 
the coefficient of restitution is taken for the sake of safety that associated to two-sided rocking. 
As for the application of the proposed method, a real case of corner mechanism was selected: 
that was observed in a school struck by the 2016-2017 Central Italy earthquake in which the 
corner element collapsed [21]. Section 2 illustrates general and equilibrium considerations 
about the corner mechanism and the definition of an equivalent prismatic block. Section 3 con-
tains the considerations about the transition between motion phases, considering the effect of 
the roof overloads, and the equations of motion for the corner mechanism. Section 4 presents 
the case study and Section 5 illustrates the parametric analysis performed to assess the influence 
of geometry, boundary conditions and energy dissipation in the dynamic response. 
 

2 THE CORNER MECHANISM: EQUILIBRIUM CONDITIONS AND 
DEFINITION OF AN EQUIVALENT PRISMATIC BLOCK 

2.1 Corner mechanism in masonry structures  

A relevant number of corner mechanism failures was observed in the last Italian earthquakes 
(Umbria-Marche 1997, L'Aquila 2009, Emilia Romagna 2012, Molise 2002, Figure 1a). These 
failures are different from simple overturning mechanisms, related to improper connections be-
tween vertical walls at the corners. Indeed, the corner mechanisms are originated in presence 
of good connections between vertical walls at the building corners, but a thrusting roof can 
cause the formation of a diagonal crack in the two intersecting walls bypassing the corners 
themselves. 
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The interaction of masonry structures with roofs is extremely relevant under dynamic actions 
such as earthquakes. Such an interaction should not be neglected particularly for existing ma-
sonry buildings, which usually have timber roofs composed by king-post trusses or beams, and 
completed by steel or wooden purlins and rafters [22]. The motion, and consequently the sta-
bility of the corner mechanism, strongly depends on this interaction. Starting from the essential 
role of the additional mass due to the roof, which changes the evolution of motion in the rocking 
mechanism, another crucial effect is caused, as pointed out, by a thrusting action. This applies 
a destabilizing effect in the motion, easing the out-of-plane behavior of the masonry corner in 
contact with the roof. A generic corner mechanism involving two intersecting walls of thickness 
𝑠  and 𝑠 , and height h, one with a window and the second one without it, can be defined in 
principle by three angles α, βand 𝜂 (Figure 1b). The main axes are in the main direction of the 
building, X and Y, and the out-of-plane rotation axis is ω. 
 

 
(a) 

 

 
(b) 

 

Figure 1: Corner mechanism: example in a real masonry building (L’Aquila 2009) (a), and schematic view (b). 

2.2 Definition of the equivalent prismatic block 

The corner wall portion is composed by two intersecting walls, in general with different thick-
ness and one opening to generalize the problem, subjected to the roof overload (Figure 2a). The 
motion of the corner mechanism is in principle in three dimensions and rotates around the cor-
ner point O (Figure 2Errore. L'origine riferimento non è stata trovata.). For the sake of 
simplicity, this 3D problem can be simplified into a two-dimensional problem, associating the 
corner geometry to a prismatic equivalent block. 
The equivalence criterion consists in keeping the same center of mass 𝐺 in the original position 
and the same moment of inertia 𝐼; indeed, 𝐺 and 𝐼 are two crucial parameters influencing the 
dynamic response of the rigid block [23]. To state the equivalence, first the roof configuration 
has to be studied, by identifying the inertia masses participating to the motion. 
A straightforward method to take into account the roof loads regards the assumption of a system 
of lumped masses. Let one assume the general configuration displayed in Figure 2: one of the 
wall composing the corner has an opening and the other one is full. Both walls are characterized 
by linearly vertical, distributed overloads and their resultants are punctual loads in points A, B, 
C (Figure 2a). On A, also the horizontal thrust of a strut, if any, can be considered.  
Afterwards, the first step to obtain the equivalent block consists in calculating the center of 
mass G1 of the corner including the contribution of the roof loads. Similarly, G0 is the center of 
mass of the corner without additional roof masses (Figure 2b). The application points A, B, C 
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of the roof loads coincide with the floor height ℎ, and these positions are considered in the 
equation of motion, not to change their effect in the equivalent configuration. They are identi-
fied by an angle 𝛼  from the vertical block line and a corresponding radius vector that connects 
the pivot point O to the mass position 𝑅 . These geometric parameters are very useful in syn-
thetically writing the differential equation of motion (illustrated in § 3.2). At this stage, it is 
possible to define the inclination of the generic ω rotation axis of the hinge in point O, that is 
orthogonal to the plan defined by Z axis and line OG1 or OG0 depending on whether the addi-
tional roof masses are considered or not. It is worth noting that the rotation plan strictly depends 
on the geometry and on the equilibrium conditions [16,17]. 

 
(a) (b) 

Figure 2: 3D view of the corner mechanism (a) and in-plan view (b) with the indication of the roof masses. 
 
Once that the rotation axis is known, the corresponding moment of inertia is:  
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where γ is the angle formed by the Y main building direction and the orthogonal line to the ω 
axis (Figure 2b). In Eq. (1)Errore. L'origine riferimento non è stata trovata. 𝐼 ,  and 𝐼 ,  are 
the inertia moments related to Phase 1 (namely the configuration with the additional roof masses, 
defined in §2.2). The other inertia moments referred to Phase 2 are reported in Appendix A. 
Phase 1 and 2 are shown in detail in Section 3.  
In general, one can imagine to make the rotation axis to correspond with one of the main build-
ing axes, X or Y, and obtain the equivalent prismatic block thickness 𝑠  (Figure 3) by doubling 
the distance of G1 (or G0) from the 𝜔 rotation axis. The equivalent height is then calculated 
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from the inertia moment with respect to the considered (modified) axis. In this way the inertial 
properties of the rocking corner are preserved and the equivalence is guaranteed.  

 
Figure 3: The equivalent prismatic block with horizontal elastic restraint and roof masses. 

For instance, in Figure 4, the equivalent block thickness is obtained by doubling the X-coordi-
nate of the center of mass, and calculating the equivalent height from the inertia moment with 
respect to Y ≡ ω. Obviously, the analysis of the corner with respect to O and O’ (Figure 3) 
requires the construction of two equivalent models in the two main building directions, applying 
the equation of motion illustrated in the Section 3.  

 
Figure 4: Geometry of the overturning with rotation around Y axis. 

3 DYNAMICS OF THE CORNER MECHANISM 

3.1 Phases of motion 

In the rocking motion of the corner mechanism two phases can be distinguished: 
 Phase 1: the block starts to rock from the base corner O to O’ due to the contribution 

of the masonry wall and the roof loads (Figure 3); 
 Phase 2: once that a threshold horizontal displacement of the rocking corner is attained, 

by assuming that the roof stands in its position, the contact between masonry corner 
and roof is not guaranteed anymore. In this phase only the masonry corner mechanism 
is considered neglecting the contribution of the roof loads. 

In Phase 1, the center of mass G1 and the moment of inertia 𝐼  are obtained by the contribution 
of masses 𝑚, 𝑚 , 𝑚 , 𝑚  (Eq. (A.1) and (A.4) in Appendix A). 
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In Phase 2, the contribution on the center of mass G0  and on the moment of inertia 𝐼  (Eq. 
(  (A.2) and (A.3) in Appendix A) are only due to the masonry portion, and therefore to the 
mass 𝑚. 
These parameters and the corresponding inertia moments are used in the equation of motion, 
defined in the following paragraph, and a specifically developed MATLAB code [24] automat-
ically recognizes the passage from phase 1 to phase 2, accordingly updating the geometric and 
mechanical parameters.  

3.2 Equation of motion of the corner mechanism 

The equation of motion of a block horizontally restrained and subjected to additional masses 
𝑚  and horizontal thrust 𝐻  is: 

 

 
 
(2) 
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Ĉ = sgn J( )×sinJ ×cos2J . The position of the additional masses due to the roof is defined by 

𝛢 , , whereas the basic geometric dimensions ℎ and 𝑠 are respectively the effective height of 
the spring bed and the thickness of the equivalent prismatic block, obtained with the method-
ology expressed in § 2.2. In the equation of motion, the term 𝐻  is the roof thrust; its direction 
and magnitude can be assumed constant during motion in the hypothesis of small displace-
ments [12]. 
The term depending on 𝐾 in Eq. (2) represents the contribution of a possible tie-rod, whose 
position is identified by 𝑅 . The corner wall is also restrained by horizontal diaphragms and 
transverse walls, that are represented as springs connected to the block (Figure 3). One can 
choose to simulate these boundary conditions as spring beds with unitary stiffness, both in ten-
sion and in compression. In general, the rocking analysis specialized for masonry mechanisms 
should consider one-sided motion (1S), namely a motion in which the two values of unitary 
stiffnesses of the spring beds in tension and in compression are different. In this paper, the 
analysis is performed considering the 1S motion and, for the sake of simplicity, the spring bed 
only in compression. For cantilever walls, the compression stiffness is calculated as 𝐾 =
𝐸𝑠 /𝐿, where E is the masonry elastic modulus in horizontal direction, 𝑠  the transverse wall 
thickness (to double if the number of sidewalls is 2), and 𝐿 is the effective depth of the trans-
verse walls [10]. 
As for the corner mechanism, two restraints of different direction are identified: one of wall 1 
in Y direction and the second of wall 2 in X direction, as shown in Figure 5. To obtain a signif-
icant stiffness considering the rotation around the ω axis, the stiffness in X and Y direction is 
calculated with the following expression (Figure 6): 
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 (Figure 6). 

 

 
Figure 5: Geometry of the corner mechanism with spring beds simulating the adjacent walls. 

 
These are the average lengths of each adjacent wall, considering the opening in wall along the 
X direction that does not contribute. 

 
Figure 6: Calculation of the effective lengths of the walls adjacent to the corner block for the definition of the 
compression spring bed stiffness. 

Depending on the rotation axis ω, the value of the spring bed stiffness has to be evaluated. For 
instance, if the rotation occurs around the Y axis (ω ≡ 𝑌), then only the 𝐾  stiffness has to be 
considered, and viceversa for the rotation around X axis (ω ≡ 𝑋). 
 

4 APPLICATION OF THE METHODOLOGY TO A CASE STUDY 

4.1 Case study 

The case study selected in this paper to apply the methodology is a corner mechanism activated 
during the 2016-2017 Central Italy earthquake in a two storey T-shape masonry building 
(Figure 7). A 3D finite element model of the entire building have previously been developed 
by Ferrero et al. [25] who accurately predicted the global in-plane cracks actually observed. 
The local corner mechanism, however, was not possible to obtain from such numerical model 
due to the presence of the concrete bond-beam and to the possible disintegration of the material. 
The earthquake was characterized by a seismic swarm lasted about five months, from August 
2016 to January 2017. The first relevant shock was recorded on August 24th, with magnitude 
6.0, but the strongest one was on October 30th (moment magnitude 6.5), just few days after two 
earthquakes in October 26th (moment magnitude 5.4 in the morning and 5.9 in the evening). 
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The corner mechanism was likely formed during the first relevant shock in August, but the 
collapse occurred on October 26th.  
The masonry is made of irregular square stone and the floors are concrete slabs, with the ex-
ception of the last floor made of steel beams and clay elements to lighten the structure. The roof 
is made of timber with two or three courses of purlins resting on load-bearing walls and, in 
correspondence of the hips, wooden struts; the latter are pushing on the cantonal one at the 
height of the perimeter reinforced concrete curb. The roof is considered acting on the masonry 
corner applying an outward thrust, as specified in the next paragraph. 
 

 
(a) 

 
(b) 

Figure 7: The corner mechanism activated in a masonry building during the 2016 Central Italy earthquake. 

4.2 Geometric and mechanical features of the corner mechanism 

The adopted geometric parameters of the equivalent prismatic block and of the roof masses, 
calculated through the procedures illustrate in § 2.2, are listed in Table 1. 
 

Geometric parameters for the 
equivalent block 

Geometric parameters for roof masses and mechanical parameters 

 aroundY aroundX   aroundY aroundX   aroundY aroundX  

seq 1.308 2.864 m R0O 2.793 3.042 m RBO 4.362 5.187 m 

Heq 6.199 6.342 m α0O 0.207 0.454 rad αBO 0.075 0.576 rad 

Req 3.410 3.640 m R0O’ 2.830 3.132 m RBO’ 4.460 4.350 m 

αeq 0.193 0.404 rad α0O’ 0.263 0.510 rad αBO’ 0.222 0.009 rad 

K' 1.57E9 5.49E8 N/m2 RAO 4.362 4.362 m RCO 4.698 4.362 m 

e 0.945 0.771  αAO 0.075 0.075 rad αCO 0.387 0.075 rad 

XG1 0.654  m RAO’ 4.460 5.037 m RCO’ 4.375 5.037 m 

YG1 1.432  m αAO’ 0.222 0.528 rad αCO’ 0.107 0.528 rad 

ZG1 3.346  m Hr 1870  N Iω 499030 601954 kg m2 
 

Table 1: Geometric and mechanical parameters for the equivalent block 
Due to the eccentricity of the masses, the radius vector and the slenderness ratio change de-
pending on the rotation sign, RiO or αiO for clockwise and RiO’ or αiO’ for counterclockwise 
rotation. 
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4.3 Selection of the acceleration time histories 

The seismic events of interest for the selected case study are those occurred on August 24th, on 
October 26th and 30th 2016. 
The seismic records are provided by accelerometer sensors at the hinge level, corresponding to 
the first floor of the building (Figure 8), installed after the seismic swarm was initiated in Au-
gust 2016. This aspect is of particular relevance, since it is not necessary to filter the seismic 
records at the ground level, process that usually cause unacceptable errors in the assessment of 
the correct seismic input at a certain level Z. 
 

 
Figure 8: Plan of the building first floor and indication of the accelerometers direction. 

 
The main characteristics of the considered earthquakes are shown in Table 2. It is possible to 
observe that the maximum Peak Floor Acceleration (PFA) is about 0.68 g and occurred on 
October 30th in X direction, whereas the maximum PGV is about 100 cm/s, occurred on August 
24th in Y direction. 
 

 

 PFA [g] PGA [g] PGV [cm/s] 

August 24th - X 0.61 0.32 55.95 

August 24th - Y 0.58 0.33 99.53 

October 26th - X 0.61 0.47 71.56 

October 26th - Y 0.44 0.36 70.34 

October 30th - X 0.68 0.30 46.14 

October 30th - Y 0.47 0.29 32.62 
Table 2: Main characteristics of the seismic records selected for the analysis (PGA Peak Ground Acceleration, PFA Peak 

Floor Acceleration, PGV Peak Ground Velocity). 
 

5 ANALYSIS AND RESULTS 

The local out-of-plane mode analyzed is the one side corner mechanism with 1) rotation 
around X-axis (Figure 4); 2) rotation around Y-axis. 
The corner mechanisms involve an incipient overturning of a masonry wing, which can be con-
nected to the orthogonal wall at some extent, with the axis of rotation coinciding with one of 
the main building directions. Obviously, for the first model (rotation around X-axis), only ac-
celerograms acting in Y-direction are considered and vice versa. This section illustrates the 
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influence of geometry, energy dissipation and boundary conditions on the response and com-
pares the numerical results with the real damages occurred to the case study. 

5.1 Parametric analysis of one-sided motion 

This paragraph describes the results of a parametric analysis considering geometry, energy dis-
sipation levels and horizontal restraints. 

5.1.1 Influence of the geometry 

The influence of the geometry on the dynamic response of the corner mechanism in one-sided 
(1S) motion is here discussed. The geometric parameter chosen to vary the geometry is 
𝛼  (Figure 2), which is the one that mostly changes the mass and therefore the inertia moment 
of the masonry corner, while 𝛽  is fixed to 45°. This parametric analysis has the aim of evalu-
ating, from a dynamic point of view, whether there is a critical geometry that amplifies the 
response in terms of normalized rotation.  
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(e) 

 
(f) 

Figure 9: Influence of geometry change – August 24th earthquake: (a), (c), (e) Y direction (Rotation around X); 
(b), (d), (f) X direction (Rotation around Y). 
 
Five values of 𝛼  are considered, from 0° to 55° (the latter considering the width of the wall up 
to the closest sidewall, namely 6.10 meters, Figure 8). The equation of motion (2) is time by 
time changed to take into account the variation of geometry. An angle equal to 𝛼 =0° corre-
sponds to the rocking mechanism of the solely wall 2 rotating around X or Y axis. In these 
analyses the coefficient of restitution is kept equal to the analytical Housner’s value [26]. In 
addition, the transverse walls stiffness is also kept constant (Table 1). For each earthquake, the 
results are reported in Figure 9-Figure 11. The results are displayed in terms of parametric 
curves showing the peaks of normalized rotation (a,b for Y and X direction respectively), the 
zoomed portions of the acceleration time-histories (c,d, with values of acceleration greater than 
0.01PFA) and the corresponding responses of the corner mechanism (e,f), where blue circles 
mark the transition from phase 1 to phase 2 (§ 3.1). In Figure 9-Figure 11a,b, the stars indicate 

the overturning of the corner. A nominal value of =1 is chosen to identify this collapse con-

dition, even though the rocking motion admits normalized rotations much higher than the static 
failure condition [27]. One can notice that the 1S motion, in all the cases, exhibits the typical 
rebound effect due to the spring bed in compression (inward direction) that impedes the rotation 
to develop. A common trend for the three pairs of earthquakes in the two directions is visible: 
by increasing 𝛼 , the absolute values of rotation peaks decrease for the rotation around X, 
whereas they increase for the rotation around Y. This is physically clear since the equivalent 
block thickness is respectively lower and greater, affecting the slenderness.  

The maximum peaks are obtained for the 
August 24th and October 26th shocks with 

overturnings for 𝛼 = 0° (rotation around X, 
August 24th and October 26th) and for 𝛼 =
 30-55° (rotation around Y, October 26th). 
Very small rotations are obtained for other 
geometries and are not shown in the corre-
sponding time histories response Figures. 
When the equivalent block is stable, the 

maximum normalized rotation value is of 
about 0.6, corresponding to a horizontal dis-
placement of the center of mass in X direc-
tion of 40 cm. At the top of the corner, this 
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value is about twice. Under October 30th 
seismic shock, only the geometry 𝛼 = 55° 
(rotation around X) caused the phase transi-

tion at 𝑡 =  18 𝑠𝑒𝑐 (Figure 11f). 

 
(a) 

 
(c) 

 
 (d) 

 
(e) 

 
(f) 

Figure 10: Influence of geometry change – October 26th earthquake: (a), (c), (e) Y direction (Rotation around X); 
(b), (d), (f) X direction (Rotation around Y). 
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(a) 

 
(b) 

 
(c) 

 
 (d) 

 
(e) 

 
(f) 

Figure 11: Influence of geometry change – October 30th earthquake: (a), (c), (e) Y direction (Rotation around X); 
(b), (d), (f) X direction (Rotation around Y). 

5.1.2 Influence of the coefficient of restitution 

The influence of energy dissipation is evaluated through different values of coefficient of res-
titution for 𝛼 = 45°. The analytical value of coefficient of restitution changes when passing 
from phase 1 to phase 2 (as depending on 𝛼 ), but the greater values, namely those correspond-
ing to phase 1, are considered: they are 𝑒 = 0.94 for rotation around Y model and 𝑒 = 0.77 for 
rotation around X. Also, other values are set up to investigate how this parameter affects the 
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response. The additional coefficients of restitution are for the rotation around Y 𝑒 = 0.9 and 𝑒 
= 0.8. Considering that experimental values of coefficient of restitution are between 85% [19] 
and 90% [20] the analytical Housner’s value, these reference values are considered to be sig-
nificant. 
For the rotation around X, it was considered 𝑒 = 0.80 and a greater value, 𝑒 = 0.90, typically 
adopted for more slender elements, are set: the response corresponding to this greater value is 
investigated to increase the response for a sake of safety, since it signifies a lower energy dis-
sipation. Table 3 summarizes the values of coefficient of restitution chosen for the parametric 
analysis. 
 

Axis of rotation ac eH e2 e3 
X-X 45° 0.77 0.80 0.90 
Y-Y 45° 0.94 0.80 0.90 
X-X 30° 0.90 0.675 0.80 

Table 3: Values of coefficient of restitution selected for the two models; eH is the Housner's analytical value 
 
 The time-history results from all earthquakes and rotation axes are shown in Figure 12, again 
zooming the peaks for making the reading clearer. It is evident that, when the rotation ampli-
tudes are small, the influence of the coefficient of restitution is not relevant; by contrast, when 
the normalized rotations are over 0.1, there is a significant variation of the response depending 
on the coefficient of restitution. In particular, the response shape is similar for the first rebounds, 
but after, when one considers e.g. the 85% of the analytical value (0.8/0.94), the maximum peak 
is four times lower. Nevertheless, if the 95% of the analytical value is considered, the maximum 
peak is only about 20% of the original one (Figure 12b). 

 
(a) 
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(c) (d) 

 
(e) 

 
(f) 

Figure 12: Influence of energy dissipation – August 24th earthquake: rotation around X (a); August 24th : rotation 
around Y (b); October 26th earthquake: rotation around X (c); October 26th: rotation around Y (d); October 30th 
earthquake: rotation around X (e); October 30th: rotation around Y (f). 
 
Greater values of rotations around X-axis are obtained, e.g. for 𝛼 = 30° (Figure 13). By adopt-
ing this change, the coefficient of restitution accordingly varies. In particular, the analytical 
coefficient of restitution becomes 0.9; this value is now assumed for the analysis with two extra 
values (0.675 and 0.80) respectively corresponding to 75% and about 90% of the analytical 
value. Also in this case, the variation of the coefficient of restitution causes a modification of 
the response, although the general shape remains the same. In fact, as shown in (Figure 13a), 
the variation occurs for the second peak, for which the shape is the same but the maximum 
values increase by decreasing the amount of energy dissipation. Here, the maximum value is 
about 0.18, corresponding to the minimum energy dissipation (e = 0.90). One can notice that a 
10% reduction of coefficient of restitution (e = 0.80) couses a 30% reduction of the peak re-
sponse. This fact underlines that there is no linear correlation between energy dissipation and 
peak values. Analogously to what discussed for the previous geometry (𝛼 = 45°), for small 
normalized rotations (order 10-3), the response sensitivity depending on the energy dissipation 
is not evident. 
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August 24th – Y 

(a) 

 
October 26th – Y 

(b) 

 
October 30th– Y 

(c) 

Figure 13: Influence of energy dissipation – Model with rotation around X for 𝛼 = 30°. 

5.1.3 Influence of the sidewalls 

This paragraph discusses the results of the analysis performed by changing the compression 
spring bed stiffness values, considering an analytical value of coefficient of restitution 𝑒 = 0.94 
for the rotation around Y axis and 𝑒 = 0.77 for the rotation around X axis. Taking into account 
that the real value of the spring bed stiffness is 1.57E9 N/m/m for the rotation around Y axis 
and 5.49E8 N/m/m for the rotation around X axis (Table 1), a second value of three order of 
magnitude greater has been considered, to investigate the case of a much stiffer adjacent wall. 
In addition, a third value three order of magnitude lower than the actual one is assumed. The 
one-sided motion is significantly affected by the value of the sidewalls when the oscillations 
are visible (normalized rotation values greater than 0.05), namely for the rotation around Y axis 
(Figure 14). Considering the August 24th (rotation around Y), the different stiffness values 
hugely influence the response. In particular, for the more flexible adjacent wall, there are oscil-
lations in the two directions instead of the rebound effect (slightly visible in the time-history), 
and the spring bed stiffness is not as high as that that it would be necessary to restrain the block. 
The minimum 𝐾’ stiffness, calculated according to [10] (Eq. 45) to define a minimum value 
corresponding to a positive global system stiffness, is 12250.82 N/m/m for rotation around Y 
axis, while 12223.48 N/m/m for rotation around X axis. The August 24th (rotation around Y) is 
the only earthquake in Y direction that causes the block to oscillate; by contrast, the earthquakes 
in X direction give a clear rebound effect. Since for the actual stiffness value, the phase transi-
tion occurs at about 20 seconds (Figure 14b) but the peaks for the two stiffer cases do not change 
significantly. The peaks of the flexible adjacent wall are anyway lower in absolute value, and 
this happens also for the Oct. 26th earthquake for which in case of stiffer walls there are two 
failure cases. The opposite occurs for the Oct. 30th earthquake (Figure 14f), for which the re-
sponse of the stiffer cases is less conservative. Thus, no specific trends are seen if the stiffness 
is reduced from the original value, but if one assumes a stiffness greater than the actual one, 
again the response shape is the same and the peaks are slightly higher. 
The parametric analysis is shown in Figure 15, showing that for low values of 𝛼  the influence 
of the sidewalls is relevant. When the rotations are small, the sidewalls nature does not affect 
the response. 
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Figure 14: Influence of boundary condition for fixed geometry (𝛼 = 45°).  
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August 24th - Y 

 
August 24th - X 
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Figure 15: Influence of boundary condition for different geometries (0° < 𝛼 < 55°) for both directions. 

5.1.4 Comparison with the real damages and hypothesis of a retrofitting intervention 

The rocking non-linear dynamic analysis of the corner is here discussed and compared with 
what actually occurred to the masonry building during the 2016-2017 Central Italy earthquake. 
The numerical analysis shows that the earthquake that caused significant rotation was first the 
Aug. 24th, but it probably caused only the crack formation. Indeed, after this earthquake, no 
apparent damage was detected in the building. However, under the Oct. 26th shock, the masonry 
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corner actually collapsed, as visible in Figure 7b. This collapse is clearly detected by the rocking 
analyses, since high rotation values and overturning are obtained for 𝜶𝒄 =30-55° (rotation 
around Y) and 𝜶𝒄 = 0° (rotation around X). Obviously, the corner was not struck by the Oct. 
30th shock, since in that moment it was already collapsed. Nevertheless, the analyses show that 
a collapse could have occurred for 𝜶𝒄 = 0° (rotation around X). Since the actual collapse is 
associated to an angle of about 𝜶𝒄 = 50°, the rotation occurred around Y. As for the rotation 
around X, this probably was avoided for a proper connection at the wall intersection, as it can 
be inferred from a correct disposal of corner blocks (Figure 7b, in the undamaged portion). 

It is interesting to investigate what it could have occurred during the same earthquakes if the 
corner was restrained with steel tie rods. In particular, an analysis is performed under 30th Oc-
tober seismic event in X direction, solving the equation of motion (2). The minimum value of 
tie stiffness for the global system stiffness 𝐾  to be positive ([10] (Eq. 9)) is 2.9E5 N/m. 
Therefore, a greater value of tie-rod stiffness should be chosen. The block is supposed to be 
restrained on top (ℎ = 4.35 𝑚) by an ideal elastic steel tie with 20 𝑚𝑚 diameter, 5 𝑚 length 
and a Young’s modulus of 2.1𝐸5 𝑀𝑃𝑎. These assumptions give a steel tie rod of 1.32E7 N/m >> 
2.9E5 N/m.  
The clear beneficial effect of the device is shown in Figure 16a, reducing by one order of mag-
nitude the maximum response peaks of the rotation without steel tie rods. The maximum hori-
zontal elongation of the tie, corresponding to a normalized rotation of 0.01, is 8.76 mm. This 
value is greater than the yielding elongation of the tie, which is 6.5 mm. Moreover, the influence 
of a 14 mm diameter tie but with same length as before is shown in Figure 16b. Its maximum 
horizontal displacement is 13.5 mm, still significantly lower than the maximum without tie-rod 
of 65.4 mm. 

 
(a) 

 
(b) 

 
Figure 16: Influence of a steel tie rod for fixed geometry (𝛼 = 45°) and October 30th earthquake in X direction. 

 

6 CONCLUSIONS 

This paper presented the extension of the classical Housner’s equation of motion for the 
rocking analysis of rigid blocks to corner mechanisms, frequently observed in masonry struc-
tures subject to earthquakes. A one-sided (1S) motion is considered in the non-linear dynamic 
analyses, representing the two walls adjacent to the corner portion as spring bed of specific 
unitary stiffness. The methodology to obtain the equivalence between the 3D corner and the 2D 
rocking mechanism is illustrated and the equations of motion implemented in a specifically 
developed MATLAB code.  
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The influence of geometry was investigated, referring to a real case of masonry building hit 
by the 2016 Central Italy earthquake, crossing the results with the those obtained from the var-
iation of energy dissipation and boundary conditions (namely, the spring bed properties).  
The response, for all the earthquakes, exhibits the typical rebound effect due to the spring bed 
only in compression (inward direction). A common trend for the three pairs of earthquakes is 
visible: by increasing the main geometrical parameter 𝛼  (inclination of a diagonal crack bond-
ing the corner mechanism), the absolute values of rotation peaks decrease (increase) for the 
rotation around X (Y): this is physically justified from the adopted equivalence criterion. Even 
if five values of inclination angles are enough to get a general trend of the parametric curve, 
future works are intended to increase the data-set obtaining smoother curves. 
The maximum peaks are obtained right for 𝛼 =30-55° (rotation around Y, Oct. 26th), attaining 
horizontal displacement of the center of mass of about 40 cm (in the condition near collapse) 
or exhibiting overturning. It is interesting to notice that this was the earthquake that actually 
caused the overturning of the masonry corner, and therefore the dynamic analysis appears to 
correctly predict this failure. A numerical test considering the beneficial effect of a steel tie-rod 
was made, assuming that the corner mechanism was restrained by a 20 mm tie-rod. In this case, 
a great improvement of the dynamic response was observed, with maximum rotation peaks 
about one order of magnitude lower. This could have possibly avoided the overturning of the 
corner. 

It was shown that the influence of the coefficient of restitution, for the strongest earthquakes, 
can be relevant. In particular, when the normalized rotations are over 0.1, there is a significant 
variation of the response depending on the coefficient of restitution. In general, for different 
geometries of the corner mechanism, the response shape is similar, but the peaks are different, 
not following a linear relationship between energy dissipation and response peaks.  

The influence of the sidewalls stiffness is investigated with the actual value and two values 
three orders of magnitude greater and lower. The one-sided motion is significantly affected by 
the stiffness of the sidewalls if they are less rigid than the actual value (for stiffness not corre-
sponding to physical values of masonry walls). For the more flexible adjacent walls, there are 
oscillations in the two directions instead of the rebound effect. One cannot say that the stiffer 
adjacent walls cause more conservative results if the stiffness is reduced from the original value, 
but if one assumes a stiffness greater than the actual one, again the response shape is the same 
and the peaks are slightly higher. 

These aspects make it necessary to recommend, when a seismic vulnerability assessment of 
the stability of a corner is made, a parametric analysis varying the mechanical parameters in-
volved in the rocking analysis. Such a parametric analysis should consider the variation of the 
coefficient of restitution, of the stiffness of the sidewalls and especially of the geometry. The 
latter can be considered by varying the inclination angle of the diagonal crack, identifying the 
most dangerous configuration as that that produces the greatest values of rotation amplitude. If 
necessary, the response can be improved by the installation of a tie-rod to de-amplify the max-
imum response. 
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APPENDIX A 

Referring to Figure 2, the coordinates of the center of mass of the model adopted in Phase 1 
is: 
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whereas for Phase 2 one has: 
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The inertia moments 𝑰𝑿𝟎 and 𝑰𝒀𝟎 (respectively with respect to X and Y axes) of the corner 
mechanism for Phase 2 are: 
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whereas for Phase 1 one has the contribution of the roof masses on the points A, B and C (Figure 
2), therefore the corresponding inertia moments 𝑰𝑿𝟏 and 𝑰𝒀𝟏 are: 
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