
A Generalized Program Verification Workflow
Based on Loop Elimination and SA Form

Cláudio Belo Lourenço∗, Maria João Frade† and Jorge Sousa Pinto†
∗LRI, Université Paris-Sud & INRIA Saclay, France

†HASLab/INESC TEC & Universidade do Minho, Portugal

Abstract—This paper presents a minimal model of the func-
tioning of program verification and property checking tools
based on (i) the encoding of loops as non-iterating programs,
either conservatively, making use of invariants and assume/assert
commands, or in a bounded way; and (ii) the use of an
intermediate single-assignment (SA) form. The model captures
the basic workflow of tools like Boogie, Why3, or CBMC,
building on a clear distinction between operational and axiomatic
semantics. This allows us to consider separately the soundness
of program annotation, loop encoding, translation into SA form,
and verification condition (VC) generation, as well as appropriate
notions of completeness for each of these processes.

To the best of our knowledge, this is the first formalization
of a bounded model checking of software technique, including
soundness and completeness proofs using Hoare logic; we also
give the first completeness proof of a deductive verification tech-
nique based on a conservative encoding of invariant-annotated
loops with assume/assert in SA form, as well as the first soundness
proof based on a program logic.

I. INTRODUCTION

The goal of this paper is to formalize and establish prop-
erties of key aspects of modern program checking tools, in
particular deductive program verifiers and bounded model
checkers of software. For reasons that are discussed below,
it turns out that many tools eliminate loops and convert the
resulting code into an intermediate single-assignment form.

1) Single-assignment Form for Checking Programs: Single
Assignment (SA) programs impose the restriction that each
variable cannot be assigned after it has been used (read or
assigned). They have been introduced as intermediate forms
in compilation pipelines, in both static [8] and dynamic [27]
variants. More recently they have been used as intermediate
forms in the context of program verification and bug finding
tools, for a number of reasons. Programs in SA form are
easy to encode in logic, since assignments can be written
directly as equalities: the instruction x := x + 1 cannot be
encoded as the formula x = x + 1, but its single-assignment
counterpart x2 := x1 +1 can be encoded as x2 = x1 +1. This
encoding is commonly employed in tools such as CBMC [6],
that check for assertion violations by solving satisfiability
problems. Furthermore, the resulting logical encoding is com-
pact. The number of execution paths of a program may grow
exponentially with its size, and encodings that directly follow
the control flow will generate formulas of exponential size –
this is the case in some symbolic execution tools [1], and tools
based on predicate transformers such as weakest precondition.

For a certain class of programs this exponential explosion can
be avoided [14], by first translating them into an SA form.

There are additional reasons for the use of SA form. An
operator that is commonly used in the source language of
program verifiers is known as havoc; it has the effect of
modifying the value of a variable in a non-deterministic way,
and is an essential part of conservative iteration-free encodings
of loops. Since in the single-assignment intermediate form
each variable x is represented by a family of variables {xi},
whenever the value of x needs to be havoced it suffices to
start using a fresh variable xk in the SA form.

Finally, in an SA setting the need for auxiliary variables
may be greatly reduced (or even eliminated). Note that the
initial and all intermediate values of every variable of the
original program are available throughout the entire execution
of the SA form (since variables are only assigned once),
which eliminates the need to use auxiliary variables to record
these initial or intermediate values, or to consider labels in
the program semantics [16]. See for instance [9], where the
authors show examples of verified programs that require the
use of auxiliary variables, and describe the advantages of
eliminating such variables.

2) Checking Iterating Code: A major issue in program
verification is the encoding of iterating programs. Iterating
constructs are not present in SA form, and must be eliminated
when programs are converted to this intermediate form. Two
different families of tools, and major approaches to reasoning
about loops, are:
• Deductive program verifiers (DV), based on the axiomatic

semantics of programs, which rely on the use of loop
invariants (typically provided by users).

• Bounded model checkers of software (BMC), which elim-
inate loops by unrolling them a given number of times.

In BMC, loops are removed by the very nature of the tech-
nique: the branching programs resulting from loop unfolding
can be readily converted to SA form. But in the deductive
approach an additional step is required, to convert loops
annotated with invariants into iteration-free programs that can
be expressed in SA form. The most widely used technique,
employed by deductive tools like Boogie [2] and Why3 [12],
is to encode loops by means of assume and assert commands,
using the havoc operator (described above) in order to isolate
different parts of the encoding. However, if loop elimination
is performed simultaneously with conversion to SA form, the
havoc operator is not required. As an example, let Fact be the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/344900051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

f := 1 ; i := 1 ;
while i ≤ n do {f = (i− 1)! ∧ i ≤ n+ 1}
f := f ∗ i ;
i := i+ 1

od

(a) Factorial program

f := 1 ; i := 1 ;
if i ≤ n then
f := f ∗ i ; i := i+ 1 ;
if i ≤ n then
f := f ∗ i ; i := i+ 1 ;
assert¬(i ≤ n) fi fi

(b) BMC encoding of Factorial

f := 1 ; i := 1 ;
assert f = (i− 1)! ∧ i ≤ n+ 1 ;
f := havoc ; i := havoc ;
assume f = (i− 1)! ∧ i ≤ n+ 1 ;
if i ≤ n then
f := f ∗ i ; i := i+ 1 ;
assert f = (i− 1)! ∧ i ≤ n+ 1 ;
assume⊥ fi

(c) Havoc encoding of Factorial

f1 := 1 ; i1 := 1 ;
assert f1 = (i1 − 1)! ∧ i1 ≤ n0 + 1 ;
assume f2 = (i2 − 1)! ∧ i2 ≤ n0 + 1 ;
if i2 ≤ n0 then
f3 := f2 ∗ i2 ; i3 := i2 + 1 ;
assert f3 = (i3 − 1)! ∧ i3 ≤ n0 + 1 ;
assume⊥

else f3 := f2 ; i3 := i2 fi

(d) SA encoding of Factorial (obtained after Havoc encoding)

Fig. 1: An example

factorial program of Figure 1a, annotated with a loop invariant.
It can be encoded without iteration as shown in Figure 1c, or
in SA form, Figure 1d. Figure 1b shows a bounded encoding
(straightforward to convert to SA form).

3) Contributions: We formalize the deductive and bounded
approaches to program verification by means of a workflow
consisting of the following steps (see Figure 2). The same
SA translation function handles annotated loops (in the DV
workflow) and iteration-free programs (in the BMC workflow).

(i) Loop unfolding or annotation: loops are either annotated
with loop invariants (the DV approach), or else they are
unfolded a given number of times (the BMC approach).

(ii) SA translation: the program resulting from step (i) is
translated into SA form. If annotated loops are present
they will in this step be eliminated, encoded by means of
assume and assert statements.

(iii) Verification Condition Generation: a set of logical for-
mulas is generated from the SA form, such that if all
formulas are valid then the program is correct.

The notion of correctness that will be considered is that the
program is in accordance with a specification given by a set
of assume and assert commands included in it, together with
a precondition and a pair of postconditions (corresponding to
normal and exceptional termination). The properties that are
expected of a tool for checking correctness are soundness (ev-
ery property violation should be identified) and completeness
(no false positives should be found – a property that can only
be established in a relative sense). In bounded verification it is
not possible to have both properties simultaneously – the user
must choose to unfold loops in a way that allows for either
soundness or completeness.

Basing our formalization on the axiomatic semantics of the
programming language allows us to express these properties
rigorously. As far as we know, this is the first formalization of
a bounded model checking of software technique, including
soundness and completeness proofs. We also give, for a
deductive verification technique based on the use of SA form

and loop encoding using assume/assert (as used in practice by
major verification tools), the first completeness proof as well
as the first soundness proof based on program logic.

The paper is organized as follows: the next section gives
necessary background and introduces the source language that
will be used throughout the paper. In Section III we define
the intermediate SA language, as well as a Hoare logic for
it. Section IV characterizes the two components of the DV
workflow, (a translation into SA form and a verification con-
dition generator – VCGen – for SA programs) and proves its
soundness and completeness. Section V is devoted to the BMC
workflow, building on the previously defined notion of SA
translation, and adding loop unwinding functions. Soundness
or completeness of the workflow are established, depending on
how the unwinding is carried out. Finally, Section VI discusses
related work and Section VII concludes the paper.

II. ITERATING PROGRAMS WITH EXCEPTIONS AND
ASSUME/ASSERT COMMANDS

1) Syntax: Throughout this paper a While language with
exceptions and also assume and assert commands (as normally
found in the guarded commands language introduced by
Dijkstra [11]) will be considered as source language:

Comm 3 C ::= skip | throw | x := e | assume θ | assert θ

| C ; C | tryC catchC hc

| if b then C else C fi | while b do C od

The programs are constructed over a set of variables x ∈ Var
and a language of program expressions e ∈ Exp and Boolean
expressions b ∈ Expbool that will not be fixed here (a
standard instantiation is for Exp to be a language of integer
expressions, with Expbool constructed from comparison op-
erators over Exp and Boolean operators). In addition, we re-
quire program assertions θ ∈ Assert, obtained as a first-order
expansion of Expbool, to express properties about states. We
use the following notation: the sets of variables occurring and
assigned in the program C are written Vars(C) and Asgn(C)
respectively; Vars(e) and Vars(b) are, respectively, the sets of

{φ}C0 {ψ, ε}

(i) annotation

��
{φ}C {ψ, ε}

(ii) SA translation

��
{φ′}C′ {ψ′, ε′}

(iii) VCGen

��
Γ

(a) DV workflow
Program C contains loops
annotated with invariants

{φ}C0 {ψ, ε}

(i) unfold loops

��
{φ}C {ψ, ε}

(ii) SA translation

��
{φ′}C′ {ψ′, ε′}

(iii) VCGen

��
Γ

(b) BMC workflow
Program C does not contain
loops

Fig. 2: Verification Workflows. C0 is an iterating program,
φ its precondition, and ψ, ε are its normal and exceptional
postconditions; C ′ is a single-assignment program; Γ is a set
of first-order formulas (verification conditions)

variables occurring in expressions e and b; and FV(θ) denotes
the set of free variables in the assertion θ (all are defined as
expected, noting that Vars(C) includes the free variables of
the assertions contained in C).

Specifications are tuples (φ, ψ, ε), with φ, ψ, ε ∈ Assert:
φ is the precondition (assumed to hold when the program is
executed), whereas ψ and ε are the postconditions (required to
hold when program execution stops normally or exceptionally,
respectively). A Hoare triple [18], written as {φ}C {ψ, ε},
expresses the fact that the program C conforms to the spec-
ification (φ, ψ, ε). It should be noted that assume and assert
commands are not mandatory at source level (although they
will allow to express additional specification constraints). On
the other hand, in the intermediate-language they play an
essential role in the encoding (both bounded and unbounded)
of iterating constructs.

2) Semantics: For the vocabulary describing the concrete
syntax of program expressions, we will consider an inter-
pretation structure M = (D, I). This structure provides an
interpretation domain D as well as a concrete interpretation
of constants and operators, given by I . The interpretation of
expressions depends on a state, which is a function that maps
each variable into a value. We will write Σ = Var → D for
the set of states. For s ∈ Σ, s[x 7→ a] will denote the state
that maps x to a and any other variable y to s(y).

The interpretation of e ∈ Exp (resp. b ∈ Expbool) in M
will be given by a function [[e]]M : Σ → D (resp. [[b]]M :
Σ → {⊥,>}), thus every expression has a value at every
state, and expression evaluation does not modify the state.
For assertions we take the usual interpretation of first-order
formulas, noting that since assertions build on the language of
program expressions their interpretation also depends on M.
The interpretation of the assertion φ ∈ Assert, using states
from Σ as variable assignments, is then given by [[φ]]M :
Σ → {⊥,>}, and we will write s |= φ as shorthand for

1) 〈skip, s〉 ⇒ n(s).
2) 〈throw, s〉 ⇒ e(s).
3) 〈x := e, s〉 ⇒ n(s[x 7→ [[e]](s)]).
4) If s |= θ, then 〈assume θ, s〉 ⇒ n(s).
5) If s |= θ, then 〈assert θ, s〉 ⇒ n(s).
6) If s 6|= θ, then 〈assert θ, s〉 ⇒ •.
7) If 〈C1, s〉 ⇒ •, then 〈C1 ; C2, s〉 ⇒ •.
8) If 〈C1, s〉 ⇒ e(s′), then 〈C1 ; C2, s〉 ⇒ e(s′).
9) If 〈C1, s〉 ⇒ n(s′), then 〈C1 ; C2, s〉 ⇒ 〈C2, s

′〉.
10) If 〈C1, s〉 ⇒ 〈C′1, s′〉, then 〈C1 ; C2, s〉 ⇒ 〈C′1 ; C2, s

′〉.
11) If 〈C1, s〉 ⇒ •, then 〈tryC1 catchC2 hc, s〉 ⇒ •.
12) If 〈C1, s〉 ⇒ e(s′), then 〈tryC1 catchC2 hc, s〉 ⇒
〈C2, s

′〉.
13) If〈C1, s〉⇒n(s′), then〈tryC1 catchC2 hc, s〉⇒n(s′).
14) If 〈C1, s〉 ⇒ 〈C′1, s′〉, then 〈tryC1 catchC2 hc, s〉 ⇒
〈tryC′1 catchC2 hc, s′〉.

15) If s |= b, then 〈if b then C1 else C2 fi, s〉 ⇒ 〈C1, s〉.
16) If s 6|= b, then 〈if b then C1 else C2 fi, s〉 ⇒ 〈C2, s〉.
17) 〈while b do C1 od, s〉 ⇒ 〈if b then C1 ; while b

do C1 od else skip fi, s〉.

Fig. 3: Operational (small-step) semantics for Comm

[[φ]]M(s) = >. For the sake of readability, we will omit theM
subscript, leaving the interpretation structure implicit. When
s |= φ for all s ∈ Σ, φ is said to be valid, written |= φ. For a
set of assertions Γ, we write |= Γ if |= φ for every φ ∈ Γ.

Let us now focus on the interpretation of programs. Seman-
tically, the command assume θ is seen as blocking whenever
executed in a state in which θ is false, and assert θ is seen
as producing an error when θ is false. Moreover, as we have
exceptions, we have to distinguish states representing normal
termination from states representing exceptional termination.
We will let Σ• 3 σ ::= n(s) | e(s) | • be the set of possible
final states: with s ∈ Σ, n(s) is a normal termination state,
e(s) is an exceptional termination state (reached by executing
throw), and • is the error state (reached by executing
assert θ when θ does not hold). We consider the structural
operational semantics given by the deterministic transition
relation ⇒⊆ Comm × Σ × (Σ• + Comm × Σ) defined
in Figure 3 (which again depends on an implicit interpretation
of program expressions). A configuration can evolve into a
final state, progress into an intermediate configuration leaving
part of the program to be evaluated, or simply get stuck. We
will write γ ⇒n γ′ to indicate that there are n steps in the
execution from configuration γ to γ′, and write 〈C, s〉 6⇒ to
denote that the program C cannot evolve from state s, i.e.,
that 〈C, s〉 is a stuck configuration (〈assume θ, s〉 6⇒ when
s 6|= θ). As usual, γ ⇒∗ γ′ (resp. γ ⇒+ γ′) denotes that there
are zero or more (resp. one or more) steps in the execution
from γ to γ′.

Turning now to Hoare triples, we must adapt the notion of
validity to programs containing exceptions and assume/assert
commands. These are programs that already contain their
own built-in specification, conferred by the assume and assert
statements. Our interpretation of Hoare triples must handle this
‘internal’ specification in addition to the ‘external’ specifica-

tion given by the precondition φ and postconditions ψ, ε. With
these aspects in mind, expressing the validity of a Hoare triple
requires stating that executions that terminate (i.e., do not get
stuck) do not enter the • state (because of a failed assert), and
also satisfy the normal or exceptional postcondition, depending
on the termination.

Definition 1 (Validity of Hoare triples): A Hoare triple
{φ}C {ψ, ε} is said to be valid, denoted |= {φ}C {ψ, ε},
whenever for every s ∈ Σ and σ ∈ Σ•, if s |= φ and
〈C, s〉 ⇒∗ σ then:

1) σ 6= •;
2) if σ = n(s′) for some s′ ∈ Σ, then s′ |= ψ;
3) if σ = e(s′) for some s′ ∈ Σ, then s′ |= ε.
Note that this is a partial notion of correctness, since it does

not require termination. We will focus on this notion for the
sake of simplicity.

3) Hoare Calculus: The standard Hoare logic [18] infer-
ence system can be extended to Hoare triples with exceptions,
assumes and asserts. This system, which we call H, is shown
in Figure 4 (top) and contains the rule (conseq) that is guarded
by first-order side conditions, whose validity must be checked
when constructing derivations. We will consider that reasoning
in this system takes place in the context of the complete theory
Th(M) of the implicit structure M, therefore when con-
structing derivations in H one simply checks, when applying
the (conseq) rule, whether the side conditions are elements
of Th(M). As a result, we will write `H {φ}C {ψ, ε} as a
shorthand for Th(M) `H {φ}C {ψ, ε}, denoting the fact that
the triple is derivable in this system with Th(M).

System H admits multiple derivations for the same Hoare
triple, and does not force a particular strategy for constructing
them. However, the (assign) rule is based on a weakest
precondition calculation, and as such, derivations based on
backward propagation are in a sense more natural in this
system. The (assume) and (assert) rules follow the assignment
rule in this respect: they propagate the normal postcondition
ψ backward, according to the definition of the weakest pre-
condition predicate transformer for the guarded commands
language [11].

We will now show that the fundamental properties of
Hoare logic for the While language (without exceptions and
assume/assert) extend to system H. The system is sound wrt.
the semantics of Hoare triples; it is also complete in the
sense of Cook [7], i.e. as long as the assertion language is
sufficiently expressive. One way to ensure the expressiveness
of our language is to force the existence of both a normal
and an exceptional strongest postcondition for every command
and assertion. Let C ∈ Comm and φ ∈ Assert, and denote
respectively by postN(φ,C) and postE(φ,C) the sets of states
{s′ ∈ Σ | 〈C, s〉 ⇒∗ n(s′) for some s ∈ Σ such that s |= φ}
and {s′ ∈ Σ | 〈C, s〉 ⇒∗ e(s′) for some s ∈ Σ such that s |=
φ}. The assertion language Assert is said to be expres-
sive with respect to the command language Comm and
interpretation structure M, if for every φ ∈ Assert and
C ∈ Comm there exist ψ, ε ∈ Assert such that for any
s ∈ Σ, (i) s |= ψ iff s ∈ postN(φ,C) and (ii) s |= ε iff

s ∈ postE(φ,C). The properties of system H can now be
expressed as follows, and proved respectively by induction on
the structure of `H {φ}C {ψ, ε} and on the structure of C.
See [25] for full proofs in this setting with exceptions.

Proposition 1 (Soundness of system H): Let C ∈
Comm and φ, ψ, ε ∈ Assert. If `H {φ}C {ψ, ε}, then
|= {φ}C {ψ, ε}.

Proposition 2 (Completeness of system H in the sense of
Cook): Let C ∈ Comm, φ, ψ, ε ∈ Assert such that Assert
is expressive wrt. Comm and the implicit interpretation
structure. If |= {φ}C {ψ, ε}, then `H {φ}C {ψ, ε}.

4) A Goal-directed Inference System Guided by Loop-
invariant Annotations: We will also require a syntactic class
AComm of annotated programs, which differs from Comm
only in the case of the loop construct. The new construct
is annotated with a loop invariant θ and has the form
while b do {θ} C od. Annotations do not affect the
operational semantics. Note that for C ∈ AComm, Vars(C)
now includes the free variables of the annotations contained
in C. In what follows we will use the auxiliary function
b·c : AComm→ Comm that erases all annotations from a
program (defined in the obvious way).

In Figure 4 (bottom) we present system Hg, an inference
system for Hoare triples {φ}C {ψ, ε} where C ∈ AComm.
This system is intended for the mechanical construction of
derivations, which is essential to reason about the generation
of verification conditions, covered by our workflows. Loop
invariants are not invented at this point, but rather taken from
the annotations, and there is no ambiguity in the choice of
rule to apply, since a consequence rule is not present. The
different possible derivations for a given triple in Hg differ
only in the intermediate assertions that are used in the (seq)
and (try-catch) rules.

It is easy to see that the (conseq) rule is admissible in system
Hg, and that systems H and Hg are in fact equivalent.

Proposition 3 (Soundness of Hg): If `Hg {φ}C {ψ, ε}, then
`H {φ} bCc {ψ, ε}.
Proof. By induction on the derivation of `Hg {φ}C {ψ, ε}. �

Lemma 1: If `Hg {φ}C {ψ, ε}, |= φ′ → φ, |= ψ → ψ′,
and |= ε→ ε′, then `Hg {φ′}C {ψ′, ε′}.
Proof. By induction on the derivation of `Hg {φ}C {ψ, ε}. �

Proposition 4 (Completeness of Hg): If `H {φ}C {ψ, ε},
then there exists some C ′ ∈ AComm such that bC ′c = C
and `Hg {φ}C ′ {ψ, ε}.
Proof. If `H {φ}C {ψ, ε}, then there exists at least one
derivation D with conclusion `H {φ}C {ψ, ε}. Let C ′ be
the C program with the while instructions annotated with
the same invariants used in the derivation D. The proof
of `Hg {φ}C ′ {ψ, ε} follows by routine induction on `H
{φ}C {ψ, ε}, using Lemma 1 for the case where the last rule
applied is (conseq). �

III. SINGLE-ASSIGNMENT PROGRAMS

In this section we define the notions of SA program and
SA Hoare triple. An inference system for these triples is in-
troduced, and its soundness and completeness are established.

(skip) {φ} skip {φ,⊥} (throw) {φ} throw {⊥, φ} (assign) {ψ[e/x]}x := e {ψ,⊥}

(assert) {θ ∧ ψ}assert θ {ψ,⊥}

(assume) {θ → ψ}assume θ {ψ,⊥}

(seq)
{φ}C1 {θ, ε} {θ}C2 {ψ, ε}

{φ}C1 ; C2 {ψ, ε} (try-catch)
{φ}C1 {ψ, θ} {θ}C2 {ψ, ε}
{φ} tryC1 catchC2 hc {ψ, ε}

(if)
{φ ∧ b}C1 {ψ, ε} {φ ∧ ¬b}C2 {ψ, ε}
{φ} if b then C1 else C2 fi {ψ, ε} (while)

{θ ∧ b}C {θ, ε}
{θ}while b do C od {θ ∧ ¬b, ε}

(conseq)

{φ}C {ψ, ε}
{φ′}C {ψ′, ε′}

if φ′ → φ and
ψ → ψ′ and ε→ ε′

(skip) {φ} skip {ψ, ε}
if φ→ ψ

(throw) {φ} throw {ψ, ε}
if φ→ ε

(assign) {φ}x := e {ψ, ε}
if φ→ ψ[e/x]

(assert) {φ}assert θ {ψ, ε}
if φ→ θ ∧ ψ

(assume) {φ}assume θ {ψ, ε}
if φ ∧ θ → ψ

(seq)
{φ}C1 {θ, ε} {θ}C2 {ψ, ε}

{φ}C1 ; C2 {ψ, ε} (try-catch)
{φ}C1 {ψ, θ} {θ}C2 {ψ, ε}
{φ} tryC1 catchC2 hc {ψ, ε}

(while)
{θ ∧ b}C {θ, ε}

{φ}while b do {θ} C od {ψ, ε}
if φ→ θ and

θ ∧ ¬b→ ψ (if)
{φ ∧ b}C1 {ψ, ε} {φ ∧ ¬b}C2 {ψ, ε}
{φ} if b then C1 else C2 fi {ψ, ε}

Fig. 4: Systems H (top) and Hg (bottom)

Definition 2 (SA program): The set CommSA ⊂ Comm of
single-assignment programs is defined inductively as follows:
• skip,assert θ,assume θ, throw ∈ CommSA;
• x := e ∈ CommSA if x 6∈ Vars(e);
• C1 ; C2 ∈ CommSA if C1, C2 ∈ CommSA, and Vars(C1) ∩
Asgn(C2) = ∅;

• tryC1 catchC2 hc ∈CommSA if C1, C2 ∈ CommSA, and
Vars(C1) ∩ Asgn(C2)= ∅;

• if b thenC1 elseC2 fi ∈ CommSA if C1, C1 ∈ CommSA,
and Vars(b) ∩ (Asgn(C1) ∪ Asgn(C2)) = ∅.

This definition guarantees that variables are assigned at most
once in any execution, and never after they have been read.
We will extend this notion to Hoare triples. Let us write φ#C
to denote Asgn(C) ∩ FV(φ) = ∅. A triple {φ}C {ψ, ε} with
C ∈ CommSA is said to be single-assignment if φ#C, i.e. the
program is not allowed to assign variables occurring free in
the precondition (note that this does not restrict the power of
specifications, since these variables would be assigned without
their initial values ever being read).

Figure 5 contains the rules of the goal-directed system
Hsa, which is based on forward propagation of assertions
encoding executions of the program. It derives triples of
the form {φ}C {φ ∧ ψ, φ ∧ ε}, where the precondition φ
encodes logically a set of incoming executions and φ ∧ ψ,
φ ∧ ε are respectively the normal and exceptional strongest
postconditions of C with respect to φ, where the formulas
ψ and ε encode all normal and exceptional executions of C.
This system is sound wrt. system H. We start with two lemmas
concerning derivability in Hsa.

Lemma 2: If `Hsa {φ}C {φ∧ψ, φ∧ ε} and |=φ′→φ, thenconfirmar
se é
us-
ado

`Hsa {φ′}C {φ′ ∧ ψ, φ′ ∧ ε}.
Proof. By induction on `Hsa {φ}C {φ ∧ ψ, φ ∧ ε}. �

Lemma 3: Let C ∈ CommSA and φ, ψ, ψ′, ε, ε′ ∈ Assert
such that φ#C, and `Hsa {φ}C {ψ, ε}. Then:

1) FV(ψ) ∪ FV(ε) ⊆ FV(φ) ∪ Vars(C).
2) If `Hsa {φ}C {ψ′, ε′}, then ψ′ = ψ and ε′ = ε.

Proof. 1 follows by induction on `Hsa {φ}C {ψ, ε} and 2 by
induction on C. �

Proposition 5 (Soundness of Hsa): Let C ∈ CommSA and
φ, ψ, ε ∈ Assert such that φ#C. If `Hsa {φ}C {ψ, ε}, then
`H {φ}C {ψ, ε}.
Proof. By induction on `Hsa {φ}C {ψ, ε}, using Lemma 3. �

The completeness of Hsa on the other hand will be estab-
lished with respect to the goal-directed system Hg. Observe
that the Hsa system is not capable of deriving every valid
triple, and the completeness result takes this into account.

Proposition 6 (Completeness of Hsa): Let C ∈ CommSA

and φ, ψ, ε ∈ Assert such that φ#C and `Hg {φ}C {ψ, ε}.
Then `Hsa {φ}C {φ ∧ ψ′, φ ∧ ε′} for some ψ′, ε′ ∈ Assert
such that |= φ ∧ ψ′ → ψ and |= φ ∧ ε′ → ε.
Proof. By induction on C, using Lemmas 1 and 3. �

This inference system will be used in the next sections as a
reference for the definition of verification condition generators.

IV. SINGLE-ASSIGNMENT DEDUCTIVE VERIFICATION

We will now establish the soundness and relative complete-
ness of a workflow for the deductive verification of While
programs. This consists in, after first annotating loops with

(skip) {φ} skip {φ ∧ >, φ ∧ ⊥} (throw) {φ} throw {φ ∧ ⊥, φ ∧ >} (assign) {φ}x := e {φ ∧ x = e, φ ∧ ⊥}

(assert) {φ}assert θ {φ ∧ θ, φ ∧ ⊥}
if φ→ θ

(assume) {φ}assume θ {φ ∧ θ, φ ∧ ⊥}

(seq)
{φ}C1 {φ ∧ ψ1, φ ∧ ε1} {φ ∧ ψ1}C2 {φ ∧ ψ1 ∧ ψ2, φ ∧ ψ1 ∧ ε2}

{φ}C1 ; C2 {φ ∧ (ψ1 ∧ ψ2), φ ∧ (ε1 ∨ (ψ1 ∧ ε2))}

(try-catch)
{φ}C1 {φ ∧ ψ1, φ ∧ ε1} {φ ∧ ε1}C2 {φ ∧ ε1 ∧ ψ2, φ ∧ ε1 ∧ ε2}
{φ} tryC1 catchC2 hc {φ ∧ (ψ1 ∨ (ε1 ∧ ψ2)), φ ∧ (ε1 ∧ ε2)}

(if)
{φ ∧ b}C1 {φ ∧ b ∧ ψ1, φ ∧ b ∧ ε1} {φ ∧ ¬b}C2 {φ ∧ ¬b ∧ ψ2, φ ∧ ¬b ∧ ε2}

{φ} if b then C1 else C2 fi {φ ∧ ((b ∧ ψ1) ∨ (¬b ∧ ψ2)), φ ∧ ((b ∧ ε1) ∨ (¬b ∧ ε2))}

Fig. 5: System Hsa

invariants, translating programs to SA form and subsequently
generating compact verification conditions.

The deductive workflow relies on two components. The
first is a translation of annotated programs into SA form.
The translation will in fact operate at the level of Hoare
triples, rather than of isolated programs. Such a translation
must comply with the syntactic restrictions of CommSA, with
additional requirements of a semantic nature. In particular, the
translation must be sound (it will not translate invalid triples
into valid ones). Moreover, SA programs will be annotated
with loop invariants (obtained from those contained in the
original programs), and Hg-derivability guided by these anno-
tations must be preserved. The following definition formalizes
these requirements.

Definition 3 (SA translation): Let C ∈ AComm, φ, ψ, ε ∈
Assert, and T : Assert×AComm×Assert×Assert ↪→
Assert × CommSA × Assert × Assert. The function T
is said to be an SA translation if when T(φ,C, ψ, ε) =
(φ′, C ′, ψ′, ε′), we have that φ′#C ′, and the following hold:

1) If |= {φ′}C ′ {ψ′, ε′}, then |= {φ} bCc {ψ, ε}.
2) If `Hg {φ}C {ψ, ε}, then `Hg {φ′}C ′ {ψ′, ε′}.
In [25] we define a concrete SA translation, and prove

that it complies with the above definition. The translation
creates a non-iterating program that checks the initialization
and preservation of all loops. It takes advantage of the SA
features to achieve isolation between parts of the program that
encode different axiomatic aspects of the initial program.

As an example of application of a concrete translation, recall
the Fact program of Section I, and let FactSA be the program
shown in Figure 1d. The latter is the result of translating Fact
using a translation conforming to Definition 3. Note that in
FactSA the variables f1, i1 correspond to the values of f and
i after their initialization in the original program; at this point
the invariant must be checked (assert f1 = (i1 − 1)! ∧ i1 ≤
n0 +1) to ensure that it has been properly initialized. Next we
consider the execution of an arbitrary execution of the loop.
The invariant is assumed with the fresh variables f2, i2, which
ensures isolation from the previous commands. The value of
the variables at the end of the iteration is captured by f3, i3,
and the command assert f3 = (i3− 1)!∧ i3 ≤ n0 + 1 checks

that the invariant is preserved by this arbitrary iteration, which
is encoded as the then-branch of a conditional that includes
the loop condition in the context. The else-branch ensures that
the assumed invariant holds for the loop exit variables f3, i3
when the loop terminates.

Finally, a possible SA translation for {n ≥ 0}Fact {f =
n!,⊥} is now the SA triple {n0 ≥ 0}FactSA {f3 = n0!,⊥}.

The second component of the deductive workflow is a
Verification Conditions Generator (VCGen). This is a function
that takes as input an SA Hoare triple, and outputs a set Γ of
formulas, such that the formulas in Γ are all valid if and only
if the triple can be obtained with system Hsa. The following
definition states this in precise terms, and concrete algorithms
are presented in [23], [25].

Definition 4 (VCGen for SA triples): A VCGen for SA
triples is a function VCG : Assert×CommSA ×Assert×
Assert→ P(Assert) such that, when Γ = VCG(φ,C, ψ, ε)
with {φ}C {ψ, ε} an SA Hoare triple, |= Γ iff `Hsa
{φ}C {φ ∧ ψ′, φ ∧ ε′} for some ψ′, ε′ ∈ Assert such that
|= φ ∧ ψ′ → ψ and |= φ ∧ ε′ → ε.

The workflow, shown in Figure 6 (left) can now be for-
malized by the following two properties. The soundness result
states that if the verification conditions (VCs) generated after
translating to SA form some annotated version of a Hoare
triple are valid, then so is the original triple.

Theorem 1 (Soundness of DV Workflow): Let C0 ∈ Comm,
C ∈ AComm, and φ, ψ, ε ∈ Assert, such that bCc = C0

and |= VCG(T(φ,C, ψ, ε)), with T and VCG functions satis-
fying respectively Definitions 3 and 4. Then |= {φ}C0 {ψ, ε}.
Proof. Follows the scheme depicted in Figure 6 (center). �

Completeness, on the other hand, states that for any valid
triple, there exists some annotated version of it from which a
set of valid VCs is generated, after conversion to SA form.

Theorem 2 (Completeness of DV Workflow): Let C0 ∈
Comm and φ, ψ, ε ∈ Assert with Assert expressive
wrt. Comm and the implicit interpretation structure. If |=
{φ}C0 {ψ, ε}, then there exists some C ∈ AComm such that
bCc=C0 and |=VCG(T(φ,C, ψ, ε)) for any T,VCG satisfying
Definitions 3 and 4.
Proof. Follows the scheme depicted in Figure 6 (right). �

Workflow Soundness Completeness

{φ}C0 {ψ, ε}

Annotation

��

|=H |=H
Prop. 2

// `H

Prop. 4

��
{φ}C {ψ, ε}

SA translation

��

`Hg

Def.3(2)

��
{φ′}C′ {ψ′, ε′}

VCGen

��

`Hsa
Prop. 5

// `H
Prop. 2

// |=H

Def.3(1)

OO

`Hg
Prop. 6

// `Hsa

Def. 4

��
Γ |=

Def. 4

OO

|=

Fig. 6: Soundness and completeness of the DV workflow

V. BOUNDED MODEL CHECKING

Bounded model checking of software basically consists
in unwinding loops a certain number of times (k), prior
to property checking. In order to ensure the soundness or
completeness of this approach, an unwinding assertion or
unwinding assumption must be inserted immediately after the
loop unwinding. Unwinding assertions are used to check if
there exist executions requiring more than k iterations – if
not, this means that the initial program only has bounded
executions of length ≤ k, and the approach is thus sound.
If the program has unbounded executions, or if it is not
practical to check bounded executions because of their length,
the technique can still be applied but it will not be sound. In
this case it is necessary for the sake of completeness to add
negated loop conditions (known as unwinding assumptions)
after loop expansions, which will exclude executions requiring
more than k iterations from being considered for verification.

In this section we formalize the two workflows that result
from expanding loops including unwinding assertions and
unwinding assumptions. We start by defining a translation
of iterating programs into non-iterating programs, using a
loop unrolling strategy. The translation is carried out by the
mutually recursive generic functions B and U defined below.

Definition 5: The functionals B and U map every pair
(α, n) ∈ {•,�} × N to functions Bα

n : Comm → Comm
and Uαn : N×Comm ↪→ Comm as follows:

Bα
n(C) = C , when C is skip,assume θ,assert θ, or x := e

Bα
n(C1 ; C2) = Bα

n(C1) ; Bα
n(C2)

Bα
n(if b then C1 else C2 fi) =

if b then Bα
n(C1) else Bα

n(C2) fi

Bα
n(while b do C od) = Uαn(n,while b do C od)

Uαn(0,while b do C od) =

{
assert¬b , if α = •
assume¬b , if α = �

Uαn(k,while b do C od) = if b then Bα
n(C) ;

Uαn(k−1,while b do C od) else skip fi

In this definition, the first function takes a parameter α
that determines whether an unwinding assertion (α = •) or
unwinding assumption (α = �) is to be used; a bound n; and a
program C. The function is then applied recursively, and in the

case of the while construct the function Uα is invoked with an
additional parameter containing the number of times that the
current loop must be unwound (initially fixed at n). Thus, the
function Uα will unwind the loop and mutually invoke Bα to
unroll inner loops. An unwinding assertion (resp. assumption)
is inserted when the current loop is fully unwound (n = 0).

1) Unwinding Assertions Workflow: We will show that the
translation using unwinding assertions, B•

n, is sound wrt.
Hoare logic. In particular, if the result of expanding loops
with unwinding assertions is a valid triple, |= {φ}C {ψ, ε}
holds whenever |= {φ}B•

n(C) {ψ, ε} for some n ∈ N.
Before going into this proof some lemmas must be consid-

ered. The first one states that it is possible to expand loops
further while preserving the final state, when the unwound
program does not terminate in the error state.

Lemma 4: Let n, k1, k2, r1 ∈ N, such that k1 ≤ k2 ≤ n.

1) If 〈U•
n(k1, C), s〉⇒r1σ and σ 6=•, then 〈U•

n(k2, C), s〉⇒r2

σ for some r2≤r1 + 1.

2) If 〈U•
n(k1, C), s〉 6⇒r1 , then 〈U•

n(k2, C), s〉 6⇒r2 for
some r2 ≤ r1 + 1.

Proof. Both by induction on k1. �
It is now possible to relate executions of the bounded

program and the original program: the original will always
terminate in the same state as the bounded program, whenever
the latter does not terminate in the error state (Lemma 5).
Reversely, if the original terminates in a non-error state, then
the bounded program terminates in the same state or in the
error state; if the original program terminates in the error
state, then the bounded one will also terminate in the error
state (Lemma 6). The soundness result can then be proved.
In the rest of the paper]C will denote the size (number of
constructs) of program C.

Lemma 5: For every n, r ∈ N the following both hold:

1) If 〈B•
n(C), s〉 ⇒r σ and σ 6= •, then 〈C, s〉 ⇒∗ σ.

2) If 〈B•
n(C), s〉 6⇒r , then 〈C, s〉 6⇒∗ .

Proof. Both by induction on (r,]C) using Lemma 4. The
proof of 2 also uses 1. �

Lemma 6: For all n, r ∈ N, the following hold:

1) If 〈C, s〉 ⇒r σ and σ 6= •, then 〈B•
n(C), s〉 ⇒∗ σ or

〈B•
n(C), s〉 ⇒∗ •.

2) If 〈C, s〉 ⇒r •, then 〈B•
n(C), s〉 ⇒∗ •.

Proof. Both by induction on (r,]C). The proof of 2 uses 1. �
Proposition 7 (Soundness of B•

n): If |= {φ}B•
n(C) {ψ, ε}

for some n ∈ N, then |= {φ}C {ψ, ε}.
Proof. Assume |= {φ}B•

n(C) {ψ, ε}, and s |= φ for some
s ∈ Σ. 〈C, s〉⇒∗• cannot hold because, by Lemma 6 (2), it
contradicts the hypotesis. Therefore, |= {φ}C {ψ, ε} follows
from the hypotesis, using Lemma 5. �

Completeness of B•
n does not hold: the validity of

{φ}C {ψ, ε} does not imply that {φ}B•
n(C) {ψ, ε} is valid

for some n ∈ N, because executions in states satisfying φ may
not terminate, and even if all executions terminate, there may
exist infinitely many states satisfying φ, in which case it may

Workflow Soundness Completeness
(for unwd. assertions) (for unwd. assumptions)

{φ}C0 {ψ, ε}

Loop expansion

��

|=H |=H

Prop.8

��
{φ}C {ψ, ε}

SA transl.

��

|=H

Prop.7

OO

|=H
Prop.2

// `H
Prop.4

// `Hg

Def.3(2)

��
{φ′}C′ {ψ′, ε′}

VCGen

��

`Hsa
Prop.5

// `H
Prop.2

// |=H

Def.3(1)

OO

`Hg
Prop.6

// `Hsa

Def.4

��
Γ |=

Def.4

OO

|=

Fig. 7: Soundness and completeness of the BMC workflow

not be possible to find a sufficient value n to mimic the behav-
ior of C in all executions – as an example, consider the valid
triple {x > 0}while x > 0 do x := x− 1 od {x = 0,⊥}.

The soundness of the BMC workflow, which is shown in
Figure 7 (left), means that the validity of the VCs generated
after translating to SA form the result of expanding the loops
in a program, implies that the program is correct.

Theorem 3 (Soundness of BMC Workflow): Let C0 ∈
Comm, φ, ψ, ε ∈ Assert, and n ∈ N such that |=
VCG(T(φ,B•

n(C0), ψ, ε)), with T and VCG functions satis-
fying Definitions 3 and 4. Then |= {φ}C0 {ψ, ε}.
Proof. Follows the scheme depicted in Figure 7 (center). �

In fact the above result could be formulated in a stronger
way since execution of C0 in states satisfying φ is guaranteed
to terminate. This corresponds to the notion of total correct-
ness, which is not captured by the triple {φ}C0 {ψ, ε}.

2) Unwinding Assumptions Workflow: We will first show
that the translation B�

n is complete in the sense that, for every
n ∈ N, |= {φ}B�

n (C) {ψ, ε} holds whenever |= {φ}C {ψ, ε}.
In order to prove completeness we need to consider the
following lemmas, which state that when a bounded program
terminates (i.e. the execution does not diverge or block) for
a certain bound k, then the bound can be increased without
changing the final state (Lemma 7), and that the termination
of a bounded program implies the termination of the original
program from which it was obtained, when executed from the
same initial state (Lemma 8).

Lemma 7: Let n, k1, k2, r1 ∈ N, such that k1 ≤ k2 ≤ n. If
〈U�
n (k1, C), s〉 ⇒r1 σ, then 〈U�

n (k2, C), s〉 ⇒r2 σ for some
r2 ≤ r1 + 1.
Proof. By induction on k1. �

Lemma 8: For all n, r ∈ N, if 〈B�
n (C), s〉 ⇒r σ, then

〈C, s〉 ⇒∗ σ.
Proof. By induction on the pair (r,]C), using Lemma 7. �

Proposition 8 (Completeness of B�
n): If |= {φ}C {ψ, ε},

then for all n ∈ N |= {φ}B�
n (C) {ψ, ε}.

Proof. Assume |= {φ}C {ψ, ε}. Let s ∈ Σ such that s |=
φ. It is clear that the execution of B�

n (C) does not diverge
since it does not contain loops. If it blocks then we are done,
otherwise 〈B�

n (C), s〉 ⇒∗ σ for some σ. Clearly σ 6= •, or

else from Lemma 8 we would have that 〈C, s〉 ⇒∗ • which
contradicts our assumption. If σ = n(s′) (resp. σ = e(s′))
for some s′ ∈ Σ, then from Lemma 8 〈C, s〉 ⇒∗ n(s′) (resp.
〈C, s〉 ⇒∗ e(s′)) and thus s′ |= ψ (resp. s′ |= ε). �

This workflow is complete: the formulas obtained by un-
rolling loops, translating to SA form, and generating VCs from
this form, are necessarily valid.

Theorem 4 (Completeness of BMC Workflow): Let C0 ∈
Comm, n ∈ N, and φ, ψ, ε ∈ Assert with Assert expres-
sive wrt. Comm and the implicit interpretation structure. If
|= {φ}C0 {ψ, ε}, then |= VCG(T(φ,B�

n (C0), ψ, ε)) for any
T, VCG satisfying Definitions 3 and 4.
Proof. Follows the scheme depicted in Figure 7 (right). �

A soundness result (of theoretical interest) can also be stated
for this translation. If every bounded expansion of a program
C is correct, then C is surely correct. In other words, if C
violates its specification, then there exists a bound n such that
B�
n (C) violates that same specification. Lemmas 9 and 10

below are used in the proof of this soundness property.
Lemma 9: Let n, k1, k2, n1, n2, r ∈ N, such that k1 ≤ k2,

n1 ≤ n2, k1 ≤ n1, and k2 ≤ n2. The following hold:
1) If 〈U�

n1
(k1, C), s〉 ⇒r σ, then 〈U�

n2
(k2, C), s〉 ⇒∗ σ.

2) If 〈B�
n1

(C), s〉 ⇒r σ, then 〈B�
n2

(C), s〉 ⇒∗ σ.
Proof. By simultaneous induction on the pair (r,]C). �

Lemma 10: Let r ∈ N. If 〈C, s〉 ⇒r σ, then
〈B�

n (C), s〉 ⇒∗ σ for some n ∈ N.
Proof. By induction on the pair (r,]C), using Lemma 9. �

Proposition 9 (Soundness of B�
n): If |= {φ}B�

n (C) {ψ, ε}
for every n ∈ N, then |= {φ}C {ψ, ε}.
Proof. Assume |= {φ}B�

n (C) {ψ, ε}. Let s ∈ Σ such that
s |= φ. If 〈C, s〉 6⇒∗ or 〈C, s〉 diverges, we are done.
Otherwise it must be the case that 〈C, s〉 ⇒∗ σ, and from
Lemma 10 we have σ 6= •; if σ = n(s′) for some s′ ∈ Σ then
s′ |= ψ; if σ = e(s′) for some s′ ∈ Σ then s′ |= ε. �

VI. RELATED WORK

1) Deductive Verification: A major trend in deductive ver-
ification is to use general-purpose tools that provide VC
generation for their specific programming languages. The fore-
most examples of such tools are Boogie [2] and Why3 [12],
whose languages are called BoogiePL and WhyML. Many
verification tools rely on one of these, for instance: Spec# [3]
(for C# programs) and Havoc [5] (for C programs) use Boogie,
and GNATprove [17] (for SPARK/Ada) relies on Why3.
Dafny [21] is a language and program verifier toolset that
also employs Boogie as VCGen. Both tools use internally the
two transformations of programs that we study in this paper.
The programming language used here is significantly simpler
than BoogiePL or WhyML, but still our deductive workflow
can be seen as a model of the Boogie and Why3 workflows.

In deductive verification tools, loops annotated with invari-
ants are commonly encoded as non-iterating programs using
assume and assert. This technique has been used at least since
the development of the ESC tools [10], [22], [13], where
this was called a “conservative desugaring” (by opposition to

a bounded encoding). In Boogie this has been generalized
to non-structured forms of iteration (not considered in our
model), using the goto command of the BoogiePL language.
Back edges are eliminated prior to VC generation by intro-
ducing further assume/assert statements, resulting in acyclic
control-flow that can be readily passified (i.e. transformed
into SA form). Developers of verifiers for high-level lan-
guages can translate loops as BoogiePL loops (desugared into
havoc/assume/assert in the internal intermediate forms), or
else use their own encoding (the BoogiePL havoc command
is crucial for this purpose, since the language is not SA).

Soundness results have been given for translations of spe-
cific languages into BoogiePL: Lehner and Müller [20] give
a translation of a subset of Java bytecode (including loop
elimination using havoc/assume/assert), and prove that the
weakest precondition of the translated program is stronger than
that of the original program (completeness is not discussed). In
a paper focusing on the encoding of multiple methods and their
specifications, where all proofs are machine-checked, Vogels,
Jacobs, and Piessens [28] define a translation of a toy object-
oriented language into a BoogiePL-like intermediate language,
and prove soundness directly at the level of operational seman-
tics: if some execution of a method is not in accordance with
its specification, then at least one execution of the translated
program will fail. This approach, motivated by the fact that
in BoogiePL “the VC generation is considered an axiomatic
definition of the semantics of the language”, is close to what
we do for our intermediate language, with the differences
that: their language is not SA; the VCGen is defined directly,
whereas we introduce a Hoare logic for the SA language; and
we additionally study completeness.

Passive form has been famously proposed by Flanagan and
Saxe [14] as a way to generate VCs of worst-case quadratic
size, even when the program has an exponential number of
execution paths (as long as exceptions are not used). Passive
programs are (dynamic) SA programs where assignments are
replaced by assume commands; the statement x := x + 1
would be written as assumex2 = x1 + 1. The soundness of
the translation into passive form is proved for iteration-free
programs in [14] by showing that it preserves the weakest
precondition. We remark that Flanagan and Saxe’s work, as
well as the theoretical foundations of Boogie, are based on a
guarded commands language, whose semantics are given by a
defined predicate transformer – in other words, the verification
conditions are the interpretation of a program. In our work in
this paper there is a clear distinction between operational and
axiomatic semantics, which allows us to consider separately
the soundness of program annotation, loop encoding, transla-
tion into SA form, and VC generation, as well as appropriate
notions of completeness for each of these.

Boogie uses passive form explicitly as an intermediate
form; moreover, although loop elimination and conversion to
passive form are separate steps, the tool takes advantage of
passive form to eliminate havoc commands, which become
unnecessary. In our approach, elimination of annotated loops

and conversion into SA form are performed in a single step,
dispensing entirely the use of a havoc command. In Why3
programs are not explicitly translated into SA, but unique
symbols are implicitly created and merged during the VC
generation, in a similar way to SA variables.

In previous work [24] we have proposed an iterating single-
assignment language with annotated loops (and without ex-
ceptions), in which the strict dynamic SA constraints can be
relaxed in a controlled way, by executing special ‘update’
code after loop iterations. A logic and VCGen (generating
compact VCs) was given for this language, as well as a
translation of annotated programs into iterating SA programs.
We remark that, unlike the present paper, our previous work
did not capture the internal functioning of existing tools, which
employ a standard SA form where iteration is not allowed.

The VC generation algorithms used by deductive tools are
mostly based on weakest precondition calculations. Our work
in this paper is independent of the choice of a particular
VCGen. Different tools use different algorithms and in a
previous work we have investigated different VCGens [23]
and proved their equivalence [25].

2) Bounded Model Checking of Software: Bounded verifi-
cation techniques for software, of which it has been said that
they are “a good example of the wonderful liberation we get
by dropping the shackles of soundness” [10], have originated
in the model checking community [4]. Prominent tools include
CBMC [6], LLBMC [26], and ESBMC [15].

Static single-assignment (SSA) form, in which variables
cannot occur syntactically more than once as L-values, is
commonly used in bounded model checking of software.
Programs are translated into SSA form after iteration has
been eliminated and function calls have been inlined in a
bounded way. A further step is then performed to transform
programs into conditional normal form, where programs are
single-assignment sequences of atomic commands guarded by
path conditions. VC generation is immediate from this form,
since the guarded atomic command if (b) C can be
read logically as an implication. Interestingly, this method for
generating VCs avoids exponential explosion in a completely
different way from the passive form of Flanagan and Saxe.

To the best of our knowledge, bounded verification tech-
niques for software have not been studied from a program
semantics perspective, and no semantics-based formalizations
of this workflow can be found in the BMC literature. We have
established before [23], [25] that the generation of VCs based
on the use of conditional normal form is equivalent to the
use of predicate transformers. In the present paper we prove
soundness and completeness of the remaining parts of the
workflow, using a dynamic, rather than static, notion of SA
form. This is more efficient regarding the use of variables, but
prevents an optimization used by CBMC in VC generation
(see [23] for details). Also, our work has the limitation that
only structured iteration (combined with try-catch exceptions)
is considered, whereas tools like CBMC are able to handle
programs containing arbitrary jumps.

VII. FINAL REMARKS

Our results in this paper show that the properties of
Hoare logic extend to a verification workflow that includes
either a conservative loop encoding based on invariants or
bounded loop expansion (in which case either soundness or
completeness will be absent), and translation into SA form.
We believe these are important contributions with impact on
the underlying theory and practical use of tools like Boogie,
Why3, and CBMC, based on variations of this technique.

The formalization given here extends to a setting where
programs consist of sets of mutually recursive procedures (or
alternatively, to classes with a given set of methods). In this
setting, in the annotation step of the deductive workflow each
procedure/method will be assigned a contract (essentially an
intended precondition and postcondition). Like loop invariant
annotations, contracts play no role in the semantics, or in
system H derivations. System H is extended to handle mutual
recursion with a rule that will essentially reason about the
procedures’ bodies by assuming in the context a specification
for each procedure, introduced during the construction of
derivations in the same way as loop invariants. In system
Hg (as well as in Hsa and in VC generation), derivations
will make use of the annotated contracts: deriving a triple
{φ} call p {ψ, ε} will require side conditions relating the
formulas φ, ψ, ε with the contract given for procedure p.
The use of auxiliary variables can be dispensed with in
contracts – a special operator is used in the postcondition to
refer to the initial value of variables, which will be mapped
to the appropriate variables in the SA intermediate form.
This is a good thing, since the use of auxiliary variables
is known to break completness in the presence of recursive
procedures [19]. In the BMC workflow, recursive procedure
calls are treated by inlining the procedure’s body a fixed
number of times, similarly to loop unwinding.

Acknowledgments: This work was partially supported by the
Norte Portugal Regional Operational Programme (NORTE 2020)
under the Portugal 2020 Partnership Agreement, through the Eu-
ropean Regional Development Fund (ERDF) and also by national
funds through FCT/MCTES (Portuguese Foundation for Science
and Technology), within project NORTE-01-0145-FEDER-028550
(REASSURE). The first author is supported by the French National
Research Organization (project VOCAL ANR-15-CE25-008).

REFERENCES

[1] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Deme-
trescu, and Irene Finocchi. A survey of symbolic execution techniques.
ACM Comput. Surv., 51(3):50:1–50:39, 2018.

[2] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs,
and K. Rustan M. Leino. Boogie: A modular reusable verifier for
object-oriented programs. In FMCO, volume 4111 of Lecture Notes
in Computer Science, pages 364–387. Springer, 2005.

[3] Mike Barnett, Manuel Fähndrich, K. Rustan M. Leino, Peter Müller,
Wolfram Schulte, and Herman Venter. Specification and verification:
the Spec# experience. Commun. ACM, 54(6):81–91, 2011.

[4] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman,
and Yunshan Zhu. Bounded model checking. Advances in Computers,
58:117–148, 2003.

[5] Shaunak Chatterjee, Shuvendu K. Lahiri, Shaz Qadeer, and Zvonimir
Rakamaric. A reachability predicate for analyzing low-level software.
In TACAS, volume 4424 of Lecture Notes in Computer Science, pages
19–33. Springer, 2007.

[6] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for
checking ANSI-C programs. In TACAS, volume 2988 of Lecture Notes
in Computer Science, pages 168–176. Springer, 2004.

[7] Stephen A. Cook. Soundness and completeness of an axiom system for
program verification. SIAM J. Comput., 7(1):70–90, 1978.

[8] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Trans. Program. Lang. Syst.,
13(4):451–490, 1991.

[9] Stijn de Gouw and Jurriaan Rot. Effectively eliminating auxiliaries. In
Theory and Practice of Formal Methods, volume 9660 of Lecture Notes
in Computer Science, pages 226–241. Springer, 2016.

[10] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B.
Saxe. Extended static checking. Research report 159, Compaq Systems
Research Center, 1998.

[11] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall,
Englewood Cliffs, New Jersey, 1976.

[12] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 - where programs
meet provers. In ESOP, volume 7792 of Lecture Notes in Computer
Science, pages 125–128. Springer, 2013.

[13] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. Extended static checking for Java.
In PLDI, pages 234–245. ACM, 2002.

[14] Cormac Flanagan and James B. Saxe. Avoiding exponential explosion:
generating compact verification conditions. In POPL, pages 193–205.
ACM, 2001.

[15] Mikhail Y. R. Gadelha, Felipe R. Monteiro, Jeremy Morse, Lucas C.
Cordeiro, Bernd Fischer, and Denis A. Nicole. ESBMC 5.0: an
industrial-strength C model checker. In ASE, pages 888–891. ACM,
2018.

[16] Paolo Herms, Claude Marché, and Benjamin Monate. A certified multi-
prover verification condition generator. In VSTTE, volume 7152 of
Lecture Notes in Computer Science, pages 2–17. Springer, 2012.

[17] Duc Hoang, Yannick Moy, Angela Wallenburg, and Roderick Chapman.
SPARK 2014 and GNATprove - A competition report from builders of
an industrial-strength verifying compiler. STTT, 17(6):695–707, 2015.

[18] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969.

[19] Thomas Kleymann. Hoare logic and auxiliary variables. Formal Asp.
Comput., 11(5):541–566, 1999.

[20] Hermann Lehner and Peter Müller. Formal translation of bytecode into
BoogiePL. Electr. Notes Theor. Comput. Sci., 190(1):35–50, 2007.

[21] K. Rustan M. Leino. Dafny: An automatic program verifier for
functional correctness. In LPAR (Dakar), volume 6355 of Lecture Notes
in Computer Science, pages 348–370. Springer, 2010.

[22] K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Checking Java
programs via guarded commands. In ECOOP Workshops, volume 1743
of Lecture Notes in Computer Science, pages 110–111. Springer, 1999.

[23] Cláudio Belo Lourenço, Maria João Frade, Shin Nakajima, and
Jorge Sousa Pinto. A generalized approach to verification condition
generation. In COMPSAC (1), pages 194–203. IEEE Computer Society,
2018.

[24] Cláudio Belo Lourenço, Maria João Frade, and Jorge Sousa Pinto.
Formalizing single-assignment program verification: An adaptation-
complete approach. In ESOP, volume 9632 of Lecture Notes in
Computer Science, pages 41–67. Springer, 2016.

[25] Cláudio Belo Lourenço. Single-assignment programs verification. PhD
thesis, University of Minho, 2018. Available at http://hdl.handle.net/
1822/56332.

[26] Florian Merz, Stephan Falke, and Carsten Sinz. LLBMC: bounded
model checking of C and C++ programs using a compiler IR. In VSTTE,
volume 7152 of Lecture Notes in Computer Science, pages 146–161.
Springer, 2012.

[27] Peter Vanbroekhoven, Gerda Janssens, Maurice Bruynooghe, and
Francky Catthoor. A practical dynamic single assignment transforma-
tion. ACM Trans. Design Autom. Electr. Syst., 12(4):40, 2007.

[28] Frédéric Vogels, Bart Jacobs, and Frank Piessens. A machine checked
soundness proof for an intermediate verification language. In SOFSEM,
volume 5404 of Lecture Notes in Computer Science, pages 570–581.
Springer, 2009.

http://hdl.handle.net/1822/56332
http://hdl.handle.net/1822/56332

	Introduction
	Single-assignment Form for Checking Programs
	Checking Iterating Code
	Contributions

	Iterating Programs with Exceptions and Assume/Assert Commands
	Syntax
	Semantics
	Hoare Calculus
	A Goal-directed Inference System Guided by Loop-invariant Annotations

	Single-assignment Programs
	Single-assignment Deductive Verification
	Bounded Model Checking
	Unwinding Assertions Workflow
	Unwinding Assumptions Workflow

	Related Work
	Deductive Verification
	Bounded Model Checking of Software

	Final Remarks
	References

