
The MAL Interactors Animator:
Supporting model validation through animation

José C. Campos
Departamento de Informática/Universidade do Minho &

HASLab/INESC TEC
Braga, Portugal

jose.campos@di.uminho.pt

Nuno Sousa
CCG – Centro de Computação Grá�ca

Guimarães, Portugal
nuno.sousa@ccg.pt

ABSTRACT
The IVY workbench is a model checking based tool for the
analysis of interactive system designs. Experience shows that
there is a need to complement the analytic power of model
checking with support for model validation and analysis of
veri�cation results. Animation of the model provides this
support by allowing iterative exploration of its behaviour.
This paper introduces a new model animation plugin for
the IVY workbench. The plugin (AniMAL) complements the
modelling and veri�cation capabilities of IVY by providing
users with the possibility to interact directly with the model.

CCS CONCEPTS
•Human-centered computing→Human computer in-
teraction (HCI); Interaction design; • Software and its en-
gineering → Software veri�cation and validation;

KEYWORDS
formal veri�cation, model checking, model animation

ACM Reference Format:
José C. Campos and Nuno Sousa. 2018. The MAL Interactors An-
imator: Supporting model validation through animation. In EICS
’18: ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, June 19–22, 2018, Paris, France. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3220134.3220142

1 INTRODUCTION
The value of using modelling and automated reasoning tools
to formally verify the design of systems is becoming clear.
On the one hand, increasing complexity of the systems being

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
EICS ’18, June 19–22, 2018, Paris, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5897-2/18/06. . . $15.00
https://doi.org/10.1145/3220134.3220142

developed makes it harder for designers and developers to
maintain a complete and clear mental model of the design.
On the other hand, systems are being developed to operate
in more and more situations where failure has unacceptable
consequences, creating the need for analysis techniques that
provide as much assurance as possible. Interactive systems
pose an additional challenge related to the need to factor in
the human element during the analysis. However, the same
style of approach has also been successfully applied.
Recent examples of using formal reasoning tools to anal-

yse system designs include the use of model checking to
support the safety analysis of the control logic for a neonatal
haemodialysis machine [9], the user interfaces of compo-
nents of a satellite launch system [1], clinical infusion de-
vices [8] as well as the use of theorem proving in similar
contexts, for example [10].

Using models to perform the analysis typically involves a
number of steps:
(1) modelling the system — the model can be developed

during design or reverse engineered from the imple-
mented system;

(2) validating the model against the intended target sys-
tem/design – modelling will typically be an iterative
process of re�ning the intended or reverse engineered
design, during this phase the model must be assessed
against the intended design, both to prevent modelling
errors and to perform a �rst validation of the design;

(3) specifying relevant requirements over the design (as
properties of the model) — properties can be derived
from system requirements, from applicable standards,
or, in the case of interactive systems, from relevant
usability guidelines;

(4) verifying that the model satis�es the properties — this
will ideally be done with tools support; in the speci�c
case of model checking, the analysis is fully automated
and counter examples are provided when the property
cannot be veri�ed;

(5) analysing the veri�cation results — when a property
fails, a potential problem has been found and the re-
sults of the analysis must then be analysed; problems
might relate to the system’s design, to the model (e.g.

Paper published as: J.C. Campos and N. Sousa (2018) The MAL Interactors Animator: Supporting model validation through animation. In Proceedings of the
ACM SIGCHI Symposium on Engineering Interactive Computing Systems, pages 11:1-11:7. ACM.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/344899803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EICS ’18, June 19–22, 2018, Paris, France José C. Campos and Nuno Sousa

due to the abstractions being used), or it might be
found that other measures are in place that make the
potential problem irrelevant.

Steps 2 and 5 both imply building an understanding (a
mental model) of the system model. Model validation (step
2) can be achieved by exploring the system model. This can
be done by challenging the model with properties that are
known to be false of the design. The goal here is to establish
that the model does not have undesirable behaviours, on
the one hand, and to obtain valid behaviours that illustrate
the system’s function on the other hand. This however can
be a cumbersome process. It is not easy to control which
behaviours are generated by the analysis and it is not an
approach that is easy to use with stakeholders. A more useful
approach in this context is to animate the model. This makes
it possible to control which behaviours to explore, which can
ease the discovery of issues.
In the case of analysing veri�cation results (step 5), the

counter example produced by the model checker provides
an example of a speci�c behaviour that falsi�es the property.
While this proves that a problem exists, it is not always the
case that it supports an understanding of what the problem is,
or why it happens. Again, the possibility of model animation
is useful to support the exploration of the model around the
highlighted problem.

IVY is a model based tool for the analysis of interactive sys-
tems. The tool has been used in the automotive domain [2],
for space systems [1] and for medical devices [9]. IVY adopts
a plugin based architecture to support experimentation with
di�erent functionalities and features. The base set of plugins
includes: a model editor, a properties speci�cation tool and a
traces analyser. These plugins support steps 1, 3 and 4 above,
but not steps 2 and 5.
The contribution of this paper is the description of the

design and initial development of a animator plugin for the
IVY workbench.

2 IVY WORKBENCH
The tool
Specifying a model in IVY is done textually using MAL in-
teractors, a modal action logic based language [12]. Models
adopt a production rules style, which has been found easy to
understand by engineerings [6]. A textual editor plugin (the
Models Editor – see Figure 1) is responsible for supporting
model editing. Over the years, other alternatives have been
experimented with, such as a graphical editor based on class
diagrams or a tabular editor, but the textual editor remains
the preferred alternative.

Veri�cation is done through model checking, mapping the
MAL interactors model to NuSMV [4]. Properties for veri�-
cation are expressed in CTL (Computational Tree Logic) [5],

Figure 1: The IVY editor showing the example model

which supports expressing properties of the future behaviour
of the system in a branching time model. A plugin (the Prop-
erties Editor) supports the de�nition of properties for veri�ca-
tion. It uses the notion of property speci�cation patterns [7]
to facilitate the process of producing meaningful properties
for veri�cation. Once the model and the properties are trans-
lated to the NuSMV input language, veri�cation is carried
out by the model checker and results fed back to IVY.
Analysis of the veri�cation results is supported by the

Trace Analyser. When a property fails to check, a counter
example (in the form of a trace – a behaviour of the model)
is produced. The Trace analyser provides di�erent represen-
tations of the trace (tabular, state based and activity based)
as well as a mechanism to highlight states related to the
conditions de�ned by the user of the tool.

An example model
The model of an automated gate will be used to illustrate the
following discussion. The model, presented in Figure 1, is
simple to bring clarity to the argument and to �t within the
page limits of the paper. It is not representative of the com-
plexity that can be addressed by the tool. More information
about the IVY workbench, in general, can be found in [3].

The model consists of a single interactor (main) with two
attributes: the status of the gate (one of opening, closing,
opened, closed or stopped), and a memory of the system’s
previous status. The user can perceive the status of the
gate, but not of the memory (hence the [vis] annotation

The MAL Interactors Animator: Supporting model validation through animation EICS ’18, June 19–22, 2018, Paris, France

in the former). Five actions are possible. Pressing the but-
ton on the remote control (remoteBtn) and crossing the
gate (crossingSns) are the only two actions available to
the user. Two sensors detect when the door if fully open
or closed (openDoorSns and closedDorrSns, respectively).
Finally, the door will be closed automatically after a delay in
the open state (timeOut).

The axioms de�ne the initial state of the system (the gate
is initially closed – line 14 in the model), the e�ect of the
di�erent actions under relevant conditions (if the door is
closed, pressing the remote will cause it to start opening –
line 15), and when actions are allowed (the triggering of the
open door sensor is only possible if the door is opening –
line 20).

The validation problem
As initially stated, once a model has been written, it must be
validated. This step helps ensure that no obvious modelling
errors have been committed and that the model captures
the intended design. The goal is to determine if the model
exhibits the expected behaviour, and thus gain con�dence in
its correctness with respect to the intended design (it must
be noted that the model will be further challenged during the
veri�cation phase). This is typically achieved by attempting
to prove that reaching desired goal states is not possible. If
the model is correct, and reaching the goal state is possible,
then a counter example, illustrating the correct behaviour of
the system, is produced.

This approach, however, provides little �exibility in terms
of exploring the behaviour of the system. Indeed, the system
behaviour must be analysed indirectly, by causing the model
checker to produce possible behaviours. Instead of directly,
by interacting with the model. Additionally, the fact that
the model checker produced a valid behaviour, does not
necessarily mean that other, undesired, behaviours might
not be possible, and vice-versa.
To address this issue, as well as to ease interpretation of

veri�cation results, a new plugin is being developed: the
AniMAL (MAL models Animator) plugin. The role of the
plugin is to support model validation by enabling direct
interaction with the model. Additionally, it can be used to
explore counter examples. While the trace analyser provides
a static view of the produced trace, supporting querying, the
animator support a dynamic analysis of the model, enabling
the user to explore alternatives to the trace produced. The
animator also uses NuSMV.
This new plugin will be described below, after relevant

features of NuSMV have been brie�y described.

3 NUSMV TRANSLATION AND NUSMV FEATURES
As stated above, MAL models are translated into NuSMV
for veri�cation. The MAL interactor language introduces a

number of features that are not present in the target lan-
guage, and which make MAL models more compact than
the corresponding NuSMV model. The relevant ones in the
present context are:
• MAL introduces the notion of action (cf. lines 7-12 in
the model) – this is translated into a state attribute
(action) in NuSMV. However, because actions can be
parameterised, each action will involve as many values
for the state attribute as the possible combinations of
parameter values. However, all types must be �nite for
model checking with NuSMV to be feasible.
• MAL introduces the notion of action permission (cf.
line 20) – this enable speci�cation of when actions
are allowed to happen; by default (in the absence of
a permission axiom) actions are permitted. Permis-
sions are translated into further transition rules at the
NuSMV level, constraining the conditions under which
the action attribute can take the value representing
the action to those where the action is permitted.

Besides veri�cation functionalities, NuSMV provides sim-
ulation capabilities. The relevant feature of NuSMV that
enable the possibility of trace interactivity include [4]:
• the ability to choose one of the available initial states as
the current state – a model might have more than one
possible initial state and it possible to choose which
state to use as the starting point for the trace.
• the ability to generate a sequence of n steps from the
current state – the use of constraints supports the
de�nition of what the next action will be. Setting the
number of steps to one makes it possible to perform
a step by step animation, where at each step the user
will be able to choose the next action.
• the ability to navigate a trace – this supports backtrack-
ing a trace. This enables the exploration of alternative
behaviours of the model.

At the moment, a NuSMV API is not available so interac-
tion with the model checking tool is made possible by launch-
ing the NuSMV process and interacting with it through chan-
nels, simulating user input and then collecting output.

4 THE ANIMAL PLUGIN
This section describes the animator plugin (AniMAL). First
requirements are identi�ed.

Requirements
The accumulated experience of using IVY to analyse di�erent
systems has enabled us to identify a number of requirements
for an animation plugin.

The basic goal of the tool is two-fold: Support for freely ex-
ploring the model; and support for understanding a speci�c
behaviour of the model (a trace). The former is particularly

EICS ’18, June 19–22, 2018, Paris, France José C. Campos and Nuno Sousa

useful during model validation, while the latter during anal-
ysis of veri�cation results.

Requirement 1 Users should be able to observe the
current state of the system at each step in the ani-
mation – this is a basic requirement. A further re�ne-
ment of this requirement is that the state should be
presented in a manner consistent with other plugins
of the IVY tool.

Requirement 2 Users should be able to choose between
valid actions at each step in the process. The number
of actions can grow considerably and not all actions
are valid in every state, so only a valid action for the
current state should be o�ered.

Requirement 3 Users should be able to predict the ef-
fect of choosing an action. There are two facets to
this requirement. On the one hand, because the MAL
models can be non-deterministic, it can happen that a
single action might produce di�erent results. To better
support exploration of the model, the user should be
able to choose which result to use. On the other hand,
even if the model is deterministic, it is necessary to be
able to predict what the e�ect of an action will be to
support goal directed exploration of the model.

Requirement 4 User should be able to observe the ef-
fect of the chosen action in the model. While the
�rst requirement is that users should be able to ob-
serve the state of the model at any given moment, here
the goal is to support the analysis of how the model
evolved over time.

Requirement 5 Users should be able to explore all
possible behaviours of the model. Traces produced
by model checking represent speci�c behaviours of
the model. While they are helpful in illustrating how a
property is not met, one limitation that was identi�ed
is that, by being �xed, they do not always help un-
derstand why the property is not met. The simulation
component should bridge this gap by supporting the
user in exploring all possible behaviours of the model.

Requirement 6 The plugin should be able to replay
traces. This is a basic requirement to support the anal-
ysis of a particular trace, for example, a trace generated
by a model checking attempt. Support for understand-
ing a speci�c behaviour of the model (a trace) is re-
quired.

Features
To support the above requirements a number of features
were designed and implemented.

Basic features. The user interface consists of two main
areas (see Figure 2). The right hand side supports the analy-
sis of the current state and past behaviour of the model (cf.

Requirements 1 and 4). To comply with the requirement that
states should be presented in a manner consistent with other
plugins, trace representations provided by the Traces anal-
yser plugin were adopted (traces are essentially sequences
of states).

The plugin o�ers two trace representations: tabular, where
states are presented as columns in a table (each line showing
one attribute – see the table in Figure 2); and state based,
a graphical representation where states are represented by
boxes annotated with the state attributes (in this case each
interactor is represented in a separate state sequence – see
Figure 3). In both representations it is possible to see the
current state of the model (cf. Requirement 1), as well as all
states from the initial to the current one (cf. Requirement 4).
Additionally, a log of the communication between the plugin
and NuSMV is provided for development and maintenance
purposes.
In Figure 2 the animation run has gone through three

states (including the initial state), with the current state of
the gate being opened and the memory having the value
closed. The sequence of actions executed to reach this state
from the initial (closed) state of the gate was: remoteBtn
followed by openDoorSns.
The left hand side supports choosing the next action to

execute. The actions shown are those that are valid for the
current state of the model (cf. Requirement 2). Hence, in Fig-
ure 2 there are three possible actions from the current state:
crossingSns, remoteBtn and timeOut (the nil action repre-
sents a stuttering step - i.e. the state of the interactor does
not change; the action is relevant when the model contains
more than one interactor; it is also the value of the action
attribute in the initial state of the model).

To support Requirement 3, once an action is selected infor-
mation about the values of the state attributes that will result
from executing the action is provided. To support the user
in the presence of non-deterministic models, if an action
might have di�erent outcomes, it is listed multiple times,
one for each possible outcome of its execution. In the case
of the �gure, it can be seen that pressing the remote’s but-
ton (action remoteBtn) will lead to a state where status

and memory are closing and opened, respectively. No ac-
tion appears repeated in the list so, in this state, the model
is deterministic.
Support for Requirement 5 implies allowing the user to

backtrack on the trace. This takes the model to a previous
state where it is then possible to choose a di�erent execution
path by selecting a di�erent action or the same action with
a di�erent outcome (in case of non-deterministic models).
The feature set above provides the basic functionalities

to interact with a model. Below additional features are dis-
cussed that make this exploration more powerful.

The MAL Interactors Animator: Supporting model validation through animation EICS ’18, June 19–22, 2018, Paris, France

Figure 2: The plugin

Advanced features. When interacting with larger models
(in particular in the presence of non-determinism) a prob-
lem might arise. In order to present only valid actions to
the user, and to be able to present what the e�ect of those
actions will be, the plugin makes a lookahead step in which
it asks NuSMV to determine all possible next states. Using
this information it then calculates the relevant information
to present to the user. However, if the number of possible
next states is too large, NuSMV will not calculate the states.
In that case, constraints can be imposed in the simulation
to reduce the state set that is generated. This can be done
using the constraints dialogue (see bottom left of Figure 2).

Constraints consist of boolean expressions over the values
of the state attributes or the actions in the model. They can
be sent to NuSMV to constrain the next action execution.
Additionally, they can be used to �lter the current list of
actions to better support choosing the relevant action to use
next. In the latter case they a�ect only the display of the
previously calculated list of action/results.
Finally, support for Requirement 6 implies allowing the

user to load a trace and automatically run it. The user can
then explore the model using the available features. The
user will start by backtracking through the trace and then
alternative actions will be made available to try.

5 DISCUSSION
The AniMAL plugin just presented enables IVY users to more
easily gain an understanding of the model. This is useful
when developing the model, to validate it against require-
ments, and particularly when analysing a model developed
by a third party.
Besides helping gain this general understanding of the

model, the animator has proven itself useful in a number
of speci�c situations related with validating and debugging
models. These have mainly to due with identifying aspects
of the model which are either not su�ciently de�ned or
constrained beyond what is needed.

A �rst case is identifying the incomplete initialisation
of the model. If the values of the attributes in the initial
state are not fully de�ned, then the model will have multiple
possible initial states. Having more than one possible initial
state for the model, while sometimes useful for veri�cation
purposes, can also create problems when interpreting veri�-
cation results. In particular if the multiple initial states were
not intended. The textual representation of the models does
not make it easy to detect this situation; nor is it something
that can be easily determined through veri�cation. Using the
animator it is straightforward to determine these situations

EICS ’18, June 19–22, 2018, Paris, France José C. Campos and Nuno Sousa

Figure 3: The state-based representation of the trace in Fig-
ure 2

as multiple initialisation steps (nil actions) are presented
when starting the animation. In fact, for the model in Fig-
ure 2, �ve possible initial states exist, as the axiom in line 14
initialises the status attribute, but not the memory attribute.
A related case is identifying incomplete action de�ni-

tions. If the axioms de�ning the e�ect of an action leave
some of the state attributes unde�ned, then the model will
have alternative behaviours, covering all the possible val-
ues allowed for those attributes. Using veri�cation, these
behaviours have to be spotted one by one. Using the ani-
mator these situations are more easily detected as the non-
deterministic nature of actions becomes immediately evident
by the fact that alternative outcomes for the action are of-
fered. For example, if the axiom in line 30 was not present,
the timeout action in the state depicted in Figure 2 would
have �ve possible outcomes. One for each possible value of
memory (while status would always be closing due to the
axiom in line 25).
Conversely, identifying stricter than intended action

de�nitions. The plugin supports identifying when the ax-
ioms de�ning an action do not allow a wanted behaviour.
In that case, the desired result for the action will not be of-
fered. The user can then investigate the axioms relevant to
the action to identify the cause. The advantage is that the

animator can be guided to relevant states, thus helping iden-
tify the conditions to use when analysing the axioms. Using
the model checker it is not always the case that the trace
highlights the problem state. One is left with a trace where
the relevant action does not happen, or no trace at all, but
no clear indication as of why.
Similarly, identifying too strict permission axioms. If

the permission condition is stricter than needed, then the
action will not be available in all situations it should. De-
termining the cause for this type of problem is particularly
challenging using the model checker as the only information
it provides is that the action cannot occur. No information
about the reasons why is provided. These can be more eas-
ily identi�ed using the animator as the action will not be
o�ered when expected. As above, once a problematic state is
identi�ed, the user can then inspect the axioms to determine
why.

Finally, identifying too loose permissions is also possi-
ble. If the permission condition is not strict enough, then the
action will be possible when it should not be. Problematic
states can be identi�ed using the animator as the action will
be o�ered when not expected.
While the animator by no means provides an exhaustive

analysis of the model. Its goal is to support an initial vali-
dation, allowing more obvious problems to be quickly iden-
ti�ed, and support the identi�cation of the root causes of
problems identi�ed through veri�cation. This makes it a
valuable addition to the IVY workbench plugin set.

6 CONCLUSIONS
Formal veri�cation is a powerful tool when designing com-
plex systems. This is also true of interactive systems design.
Model checking, in particular, supports a mostly automated
analysis approach. Veri�cation, however, does not always
provide the �exibility needed to perform an initial validation
of the model. It is also the case that analysis of the veri�ca-
tion results could bene�t from a iterative exploration of the
model.
In this paper we have presented a new model animation

plugin for the IVY workbench. The plugin (AniMAL) com-
plements the modelling and veri�cation capabilities of IVY
by providing the possibility for its users to interact directly
with the model. AniMAL is currently under development.
All features are implemented except for the trace loading and
the backtracking functionalities which are at the prototyping
stage.
Future development includes using the plugin to run a

prototype of the user interface. This will raise the abstraction
level of the analysis and better support validating the model
with stakeholders in the style of [11]. An initial version of
this prototyping plugin is currently being developed.

The MAL Interactors Animator: Supporting model validation through animation EICS ’18, June 19–22, 2018, Paris, France

ACKNOWLEDGMENTS
The authors wish to thank Michael D. Harrison for com-
ments on an earlier version of this paper. José C. Campos
acknowledges support from project NanoSTIMA (reference
NORTE-01-0145-FEDER-000016) �nanced by the North Por-
tugal Regional Operational Programme (NORTE 2020), under
the PORTUGAL 2020 Partnership Agreement, and through
the European Regional Development Fund (ERDF).

REFERENCES
[1] J.C. Campos, M. Sousa, M. Alves, and M.D. Harrison. 2016. Formal

Veri�cation of a Space System’s User Interface with the IVYworkbench.
IEEE Transactions on Human-Machine Systems 46, 2 (2016), 303–316.
https://doi.org/10.1109/THMS.2015.2421511

[2] J. C. Campos and M. D. Harrison. 2008. Systematic analysis of control
panel interfaces using formal tools. In Interactive Systems: Design, Spec-
i�cation and Veri�cation (Lecture Notes in Computer Science), Vol. 5136.
Springer-Verlag, 72–85. https://doi.org/10.1007/978-3-540-70569-7_6

[3] J. C. Campos and M. D. Harrison. 2009. Interaction engineering using
the IVY tool. In ACM Symposium on Engineering Interactive Computing
Systems (EICS 2009). ACM, New York, NY, USA, 35–44. https://doi.
org/10.1145/1570433.1570442

[4] R. Cavada, A. Cimatti, C.A. Jochim, G. Keighren, E. Olivetti, M. Pistore,
M. Roveri, and A. Tchaltsev. 2010. NuSMV 2.5 User Manual. FBK-irst.

[5] E. M. Clarke, E. A. Emerson, and A. P. Sistla. 1986. Automatic Ver-
i�cation of Finite-State Concurrent Systems Using Temporal Logic
Speci�cations. ACM Transactions on Programming Languages and
Systems 8, 2 (April 1986), 244–263. https://doi.org/10.1145/5397.5399

[6] Martin B. Curry and Andrew F. Monk. 1995. Dialogue modelling
of graphical user interfaces with a production system. Behaviour &
Information Technology 14, 1 (1995), 41–55. https://doi.org/10.1080/
01449299508914624

[7] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. 1999. Patterns in Property
Speci�cations for Finite-state Veri�cation. In Proc. 21st International
Conference on Software Engineering (ICSE ’99). ACM, 411–420. https:
//doi.org/10.1145/302405.302672

[8] M.D. Harrison, J.C. Campos, and P. Masci. 2015. Reusing models and
properties in the analysis of similar interactive devices. Innovations
in Systems and Software Engineering 11, 2 (June 2015), 95–111. https:
//doi.org/10.1007/s11334-013-0201-3

[9] M.D. Harrison, M. Drinnan, J.C. Campos, P. Masci, L. Freitas, C. di
Maria, and M. Whitaker. 2017. Safety analysis of software components
of a dialysis machine using model checking. In Formal Aspects of
Component Software (Lecture Notes in Computer Science), Vol. 10487.
Springer, 137–154. https://doi.org/10.1007/978-3-319-68034-7_8

[10] M.D. Harrison, P. Masci, and J.C. Campos. accepted. Veri�cation
Templates for the Analysis of User Interface Software Design. IEEE
Transactions on Software Engineering (accepted). https://doi.org/10.
1109/TSE.2018.2804939

[11] P. Masci, P. Oladimeji, Y. Zhang, P. Jones, P. Curzon, and H. Thimbleby.
2015. PVSio-web 2.0: Joining PVS to HCI. In Computer Aided Veri�ca-
tion (Lecture Notes in Computer Science), Vol. 9206. Springer, 470–478.
https://doi.org/10.1007/978-3-319-21690-4_30

[12] M. Ryan, J. Fiadeiro, and T. Maibaum. 1991. Sharing Actions and
Attributes in Modal Action Logic. In Theoretical Aspects of Computer
Software. Lecture Notes in Computer Science, Vol. 526. Springer-Verlag,
569–593. https://doi.org/10.1007/3-540-54415-1_65

