
A FAST METHOD FOR SOLVING A BLOCK TRIDIAGONAL QUASI-TOEPLITZ

LINEAR SYSTEM

SKANDER BELHAJ∗, † , HCINI FAHD ∗, AND YULIN ZHANG‡

Abstract. This paper addresses the problem of solving block tridiagonal quasi-Toeplitz linear systems. Inspired by

[9], we propose a more generalized algorithm for such systems. The algorithm is based on a block decomposition for a block

tridiagonal quasi-Toeplitz matrix and the Sherman-Morrison-Woodbury inversion formula. We also compare the proposed

approach to the standard block LU decomposition method. A theoretical accuracy and error analysis is also considered.

All algorithms have been implemented in Matlab. Numerical experiments performed with a wide variety of test problems

show the effectiveness of our algorithm in terms of efficience, stability and robustness.

Key words. System of linear equations, Tridiagonal block quasi-Toeplitz matrix, Block LU decomposition, Sherman-
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1. Introduction. An n× n matrix A is said to be quasi Toeplitz if it is a small rank perturbation

of a Toeplitz matrix.

Quasi-Toeplitz matrices arise in many mathematical and engineering investigations. For instance,

the inverse of a Toeplitz matrix is quasi Toeplitz [13]. And, when we use cubic B-splines collocation

method for solving nonlinear parabolic differential equations, we find that the collocation matrices are

quasi-Toeplitz. Especially, when considering the Neumanns or Dirichlets type boundary conditions, the

collocation matrices are tridiagonal quasi-Toeplitz [21, 16, 22, 20]. Also, in curve or surface fitting,

which are encountered frequently in CAD/CAM, the collocation matrices resulted by cubic B-splines

basis are also tridiagonal quasi-Toeplitz type [15]. Block quasi Toeplitz matrices arise in the numerical

approximation of time-dependent partial differential equations (PDEs) by generalizations of implicit

multistep formulas used in boundary value form, see [3] and references therein. The block quasi-Toeplitz

matrices also appear in the solution of Quasi-Birth and Death stochastic processes [8, 6, 7]. In this case,

one of the main computational problems is solving linear systems whose input matrices are block quasi

Toeplitz matrices. In [9] the authors gave a fast algorithm for solving tridiagonal quasi-Toeplitz linear

systems. Inspired by [9], and other than [19, 17], in this paper, we will give a fast algorithm to the block

tridiagonal quasi-Toeplitz case.

2. Solving a block tridiagonal quasi-Toeplitz linear system. A block tridiagonal quasi-

Toeplitz matrix is defined to be a block tridiagonal Toeplitz matrix where there are a limited number of

block row changes constrained as follows: There are at most p altered block rows among the first p block

rows and at most q altered block rows among the last q block rows [?], then we consider the following
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n-by-n nonsingular block tridiagonal quasi-Toeplitz linear system

Nx = f (2.1)

where N is defined by

N =



A X

B∗ A B
.. .

. . .
. . .

. . .
. . .

. . .

B∗ A B

Y A


with A, X, Y are matrices of size m×m, B Hermitian matrice of size m×m, x is the nm unknown vector

and f is the nm right hand side. If B = X = Y ∗, the matrix N becomes a symmetric block tridiagonal

Toeplitz matrix [1, 2, 14, 24]. By exploiting the structure of such matrices, many algorithms have been

proposed for the solving the related linear systems [4, 5, 14, 19].

This paper addresses the problem of solving block tridiagonal quasi-Toeplitz linear systems (i.e.

B 6= X and B∗ 6= Y ). Inspired by Du et al. [9], we propose a more general algorithm for such systems.

If we define the block diagonal matrix D as

D =


BX−1

I
. . .

I

B∗Y −1

 ,

then

Ñ = DN =



Z B

B∗ A B
.. .

. . .
. . .

. . .
. . .

. . .

B∗ A B

B∗ V


,

where Z = BX−1A and V = B∗Y −1A. Therefore, the system (2.1) is equivalent to the block

tridiagonal quasi-Toeplitz linear system Ñx = f̃ , where f̃ = Df.

In the following, we first recall the block LU factorization of the matrix Ñ and then introduce an

efficient algorithm for solving block tridiagonal quasi-Toeplitz linear systems, which combines proper

matrix decomposition with the Sherman-Morrison-Woodbury formula.

2.1. Block LU decomposition. Assume that the matrix Ñ admits the following decomposition

Ñ = L̃Ũ , where
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L̃ =



A1

B1 A2

B2
. . .

. . .
. . .

. . .
. . .

Bn−1 An


, Ũ =



F1 G1

F2 G2

. . .
. . .

. . .
. . .

. . . Gn−1
Fn


,

and the matrices Ai, Bi, Fi, Gi satisfy the relations

A1F1 = Z, B1 = B∗F−11 , G1 = A−11 B,


AiFi = A−Bi−1Gi−1
Bi = B∗F−1i for i = 2, ..., n− 1.

Gi = A−1i B

(2.2)

AnFn = V −Bn−1Gn−1

The matrices Ai and Fi are lower and upper triangular matrices, respectively, and obtained by the LU

factorization. Then, solving the linear system (2.1) is equivalent to solving two triangular linear systems

L̃y = f̃ , y = {yi}i=1,...,n and Ũx = y, x = {xi}i=1,...,n.

Thus, we can give the fast algorithm to compute the block LU decomposition for solving (2.1) as follows:

Algorithm 1 Block LU decomposition for solving Nx = f

Input: N , f
Output: x

Compute Ai, Bi, Fi and Gi by using (2.2)
y1 = A−11 f1
for i = 2 to n do

yi = A−1i (fi −Bi−1yi−1)
end for

xn = F−1n yn
for i = n− 1 to 1 do

xi = F−1i (yi −Gixi+1)
end for

Remark 2.1. (Idea on the cost of Algorithm 1) If the matrices Ai and Bi are real, then Algorithm

1 requires O((17n/3)m3) flops and (3n+ 1)m2 + 2nm real numbers must be stored in the memory [19].

2.2. Our algorithm. Let L1, U1, Σ and Λ be matrices of size m×m and define L, D and U by
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L =



I

L1 I

L1
. . .

. . .
. . .

. . .
. . .

L1 I


,

D =



Σ

Σ
. . .

. . .

. . .

Σ

Λ


,

and U =



I U1

I U1

. . .
. . .

. . .
. . .

. . . U1

I


,

where I is the identity matrix of size m×m. Then,

LDU =



Σ ΣU1

L1Σ L1ΣU1 + Σ ΣU1

. . .
. . .

. . .

. . .
. . .

. . .

L1Σ L1ΣU1 + Σ ΣU1

L1Σ L1ΣU1 + Λ


,

which has same structure as the matrix Ñ with


L1Σ = B∗

ΣU1 = B

L1ΣU1 + Σ = A

L1ΣU1 + Λ = V

⇒


L1 = B∗Σ−1

U1 = Σ−1B

L1ΣU1 + Σ = A

Λ = V − L1ΣU1.

(2.3)
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Thus, solving (2.3) is equivalent to solving the Riccati equation [18]

B∗Σ−1B + Σ = A. (2.4)

Equation (2.4) can be solved by a direct solver, based on the following adaptation of the algorithm

presented in [18]. Then,

Ñ = LDU + E1M
T
1 , (2.5)

with E1 =
[
I 0 · · · 0

]T
and MT

1 =
[
Z − Σ 0 · · · 0

]
.

According to Sherman-Morrison-Woodbury formula [23, 12], we obtain

Ñ−1 = (LDU)−1 − (LDU)−1E1(I +MT
1 (LDU)−1E1)−1MT

1 (LDU)−1. (2.6)

Therefore, the solution x of (2.1) is obtained as follows:

x = Ñ−1f̃

= (LDU)−1f̃ − (LDU)−1E1(I +MT
1 (LDU)−1E1)−1MT

1 (LDU)−1f̃

= y − (LDU)−1E1(I + (Z − Σ)ET1 (LDU)−1E1)−1(Z − Σ)y1,

(2.7)

where y is a solution of y = (LDU)−1f̃ and y1 is the first block of the vector y, which can be efficiently

computed through Algorithm 2.

Algorithm 2 Solving LDUx = y

Input: L1, U1, Σ and Λ are matrices of sizes m×m
Output: x

1. z1 = y1, zi = yi − L1zi−1, i = 2 to n % solving Lz = y
2. zn = Λ−1zn, yi = Σ−1zi, i = 1 to n− 1 % solving Dy = z
3. xn = yn, xi = yi − U1xi+1, i = n− 1 to 1 % solving Ux = y

Finally, our algorithm for solving block tridiagonal quasi-Toeplitz linear systems can be formulated

as follows:

Algorithm 3 : Algorithm for solving block tridiagonal quasi-Toeplitz linear system Nx = f

Input: A, B, X and Y matrix of size m×m.
Output: x.

1. Compute Z = BX−1A and V = B∗Y −1A.
2. Solve (2.4) by a direct solver presented in [18].
3. Compute L1, U1, Σ and Λ.
4. Solve linear system LDUy = f by Algorithm 2.
5. Compute x by (2.7).

Remark 2.2. (Idea on the cost of Algorithm 2) For two real matrices A and B, Algorithm 2 requires

(n + k)m3 + O(nm2) flops and the storage of 8m2 + (n+ 1)m real numbers, where k is the number of

iterations for solving the matrix equation (2.4).
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2.3. Error stability. Definition 2.3. Let us denote T = LDU for convenience and let A and

B are the blocks of the matrix T . A quadratic matrix polynomials λ2B∗ + λA + B is called Hermitian

positive definite on the unit circle if A = A∗, B = B∗ and

% = minθ∈Rγmin(B∗eiθ +A+Be−iθ) > 0

where γmin(C) denotes the minimum eigenvalue of a matrix C with real eigenvalues and the eigenvalues

of C are sorted in the ascending order:

γmin(C) ≤ γ1 ≤ γ2 ≤ . . . .

Remark 2.4. Note that the parameter ρ is tiny when the matrix polynomial λ2B∗ + λA+B has an

eigenvalue near the unit circle.

Theorem 2.5. Assume that the computation of y = T−1f̃ is backward stable in the sense that it is

evaluated in the form ỹ = (T + δ1)−1f̃ , where the perturbation δ1 is bounded as ‖δ1‖ = O(εmachine)‖T‖
(see [23]). Then according to Definition 2.3, the exact solution x of the system (2.1) satisfies

‖x− x̃‖
‖x‖

≤ O(εmachine)‖N‖3/2%−3/2 (2.8)

where x̃ is the computed solution, and ‖.‖ denotes the 2-norm.

Proof. Let Q = I +MT
1 T
−1E1 and recall from (2.6) that

Ñ−1 = T−1 − T−1E1Q
−1MT

1 T
−1,

then the exact solution is

x = T−1f̃ − T−1E1Q
−1MT

1 T
−1f̃ . (2.9)

According to the hypothesis, we have

x̃ = (T + δ1)−1f̃ − (T + δ2)−1E1Q
−1MT

1 (T + δ1)−1f̃ , (2.10)

where ‖δi‖ = O(εmachine)‖T‖, i = 1, 2.

Neglecting quadratic perturbation terms, we obtain

(T + δi)
−1 = T−1 − T−1δiT−1, i = 1, 2.

So (2.9) and (2.10) allow us to write

x− x̃ =T−1δ1T
−1f̃ − T−1E1Q

−1MT
1 T
−1δ1T

−1f̃ − T−1δ2T−1E1Q
−1MT

1 T
−1f̃

=(T−1 − T−1E1Q
−1MT

1 T
−1)δ1T

−1f̃ − T−1δ2(T−1E1Q
−1MT

1 T
−1f̃)

=Ñ−1δ1T
−1f̃ + T−1δ2(x− T−1f̃)

=(Ñ−1δ1 − T−1δ2)y + T−1δ2x. (2.11)
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As a result, the forward error satisfies the estimate

‖x− x̃‖
‖x‖

≤ ‖δ2‖‖T−1‖+
[
‖δ1‖‖Ñ−1‖+ ‖δ2‖‖T−1‖

] ‖y‖
‖x‖

. (2.12)

To derive (2.8) we observe that the perturbation matrices δ1 and δ2 in (2.11) possess a structure when

T−1f̃ is computed by means of the Cholesky factorization T = RRT , where R = D1U and D = DT
1 D1

is also a Cholesky factorization. We again assume that R is computed with high precision and contains

no rounding errors. Then, omitting quadratic perturbation terms, we can write

δi = RT δi1 + δi2R, ‖δij‖ = O(εmachine)‖R‖, i, j = 1, 2,

and

x− x̃ =
[
Ñ−1RT δ11T

−1 + Ñ−1δ12RT
−1 − T−1RT δ21T−1 − T−1δ22RT−1

]
f̃

+
[
T−1RT δ21Ñ

−1 + T−1δ22RÑ
−1
]
f̃ .

The inequality ‖T‖ ≤ ‖Ñ‖ ⇒ ‖RÑ−1/2‖ ≤ 1 and according to Theorem 2 in [17], we have that

‖x− x̃‖
‖x‖

≤O(εmachine)‖Ñ‖3/2%−3/2

≤O(εmachine)‖(DN)‖3/2%−3/2

≤O(εmachine)‖N‖3/2%−3/2, where ‖D‖ = O(εmachine).

Remark 2.6. If ‖y‖ = O(1)‖x‖, then

‖x− x̃‖
‖x‖

= O(εmachine)‖N‖/%.

Remark 2.7. If the number of blocks is large, the computation of R with the double or higher

precision is not expensive in comparison with the computation cost of T−1f.

3. Numerical results.

4. Numerical results. In this section, we present some numerical results to illustrate the effec-

tiveness of the proposed algorithm and we compare this algorithm with the block LU method and the

Gauss algorithm [10]. The algorithms were programmed in MATLAB 9.4.0.813654 (R2018a) and the

computations are done on a Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz Laptop with 8.00 GB of RAM

and 1.99GHz of processor. We fixed the exact solution x∗ = [1, 1 . . . , 1]T . The right-hand side vector was

set to be f = Nx∗.

Tables 4.1, 4.2, 4.3, 4.4 and 4.5 show the behaviour of the absolute accuracy ∆x of the block LU

method, the Gauss algorithm and our method for four different sequences of block tridiagonal quasi-

Toeplitz matrices where the matrices A, B, X, Y are defined as follows :
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A B X Y

Example 1 E F BT B

Example 2 E −F I + ε ∗ ones(3) B + ε ∗ ones(3)

Example 3 H K KT H

Example 4 I3 F F circ(20,−8, 1)

Example 5 M L LT L

where ones(N) is an N -by-N matrix of ones and circ(N) is an N -by-N circulant matrix,

E =

 1.20 −0.30 0.10

−0.30 2.10 0.20

0.10 0.20 0.65

 , F =

 0.37 0.13 0.12

−0.30 0.34 0.12

0.11 −0.17 0.29

 ,

H =

0.20 0.20 0.10

0.20 0.15 0.15

0.10 0.15 0.25

 ,

L =

[
2 1

3 4

]
, M =

[
6.0 5.0

5.0 6.8

]
,

and K = ki,j is an N -by-N symmetric matrix, defined from [19] by

1. Fix a real 0 6 ` 6 1/2.

2. For i = 1 . . . ,m

For j = 1 . . . ,m

ki,j = 2 ∗ i+ j

end j.

Compute σ1 =
∑i−1
j=1 ki,j , σ2 =

∑m
j=1 ki,j

For j = i . . . ,m

ki,j =
ki,j(1/2−`−σ1)

σ2
, kj,i = ki,j .

end j.

end i.

where E, F , G, H, L and M is taken from [11].

Table 4.1 Numerical results of Example 1

Algorithm n = 210 n = 211 n = 212 n = 213 n = 214 n = 215

‖x− x∗‖ Gauss 1.23e-12 9.40e-13 1.29e-12 1.73e-12 fails fails

Block LU 1.20e-12 2.02e-12 3.06e-12 4.46e-12 6.40e-12 9.12e-12

Our algorithm 1.40e-12 6.52e-12 1.11e-11 1.69e-11 2.47e-11 3.55e-11

CPU Gauss 0.48 2.56 18.37 100.12 fails fails

Block LU 0.19 0.32 1.07 3.31 11.12 38.73

Our algorithm 0.13 0.25 0.84 1.76 6.85 20.35
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Table 4.2 Numerical results of Example 2 (ε = 4× 10−3)

Algorithm n = 210 n = 211 n = 212 n = 213 n = 214 n = 215

‖x− x∗‖ Gauss 4.05e-12 4.40e-12 5.01e-12 6.12e-12 fails fails

Block LU 4.92e-12 6.96e-12 9.86e-12 1.39e-11 1.97e-11 2.79e-11

Our algorithm 2.24e-12 6.84e-12 1.16e-11 1.76e-11 2.57e-11 3.70e-11

CPU Gauss 0.58 3.37 18.68 99.9 fails fails

Block LU 0.18 0.43 1.04 3.67 12.40 45.72

Our algorithm 0.15 0.31 0.82 2.07 8.47 21.12

Table 4.3 Numerical results of Example 3 (σ = 0.4 ,m = 3)

Algorithm n = 210 n = 211 n = 212 n = 213 n = 214 n = 215

‖x− x∗‖ Gauss 5.87e-14 8.30e-14 1.17e-13 1.66e-13 fails fails

Block LU 3.19e-14 4.33e-14 5.99e-14 8.38e-14 1.17e-13 1.66e-13

Our algorithm 1.53e-14 1.73e-14 2.06e-14 2.60e-14 3.43e-14 4.68e-14

CPU Gauss 1.24 4.21 24.05 117.13 fails fails

Block LU 0.23 0.55 1.06 3.58 10.69 32.02

Our algorithm 0.13 0.25 0.47 1.02 2.39 3.42

Table 4.4 Numerical results of Example 4

Algorithm n = 210 n = 211 n = 212 n = 213 n = 214 n = 215

‖x− x∗‖ Gauss 2.44e-13 3.52e-13 6.29e-13 6.38e-13 fails fails

Block LU 3.85e-14 4.36e-14 5.22e-14 5.22e-14 8.79e-14 1.19e-13

Our algorithm 2.38e-13 3.66e-13 5.37e-13 7.73e-13 1.10e-12 1.56e-12

CPU Gauss 0.56 2.36 13.54 116.63 fails fails

Block LU 0.11 0.29 0.72 2.16 8.20 28.45

Our algorithm 0.097 0.25 0.50 1.30 4.30 15.12

Table 4.5 Numerical results of Example 5

Algorithm n = 210 n = 211 n = 212 n = 213 n = 214 n = 215

‖x− x∗‖ Gauss 1.74e-13 2.49e-13 3.53e-13 5.01e-13 fails fails

Block LU 1.23e-13 1.75e-13 2.48e-13 3.51e-13 4.96e-13 7.02e-13

Our algorithm 2.63e-14 3.07e-14 3.81e-14 4.97e-14 6.72e-14 9.27e-14

CPU Gauss 0.29 1.14 6.96 56.25 fails fails

Block LU 0.08 0.17 0.45 1.56 5.40 20.24

Our algorithm 0.07 0.12 0.26 0.62 1.88 6.17
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5. Conclusion. In this paper, we proposed a generalized method for solving systems of linear

equations with block tridiagonal quasi-Toeplitz matrices. Numerical examples show that the proposed

algorithm is one of the good alternatives in terms of efficiency and computational time, especially when

the matrix of the linear system is very large.

Acknowledgement. The third author was partially financed by Portuguese Funds through FCT

within the Project UID/MAT/00013/2013.
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