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Abstract

Characterizing languages D that are maximal with the property that D∗ ⊆ S⊗ is

an important problem in formal language theory with applications to coding theory

and DNA codewords. Given a finite set of words of fixed length S, the constraint,

we consider its subword closure, S⊗, the set of words whose subwords of that fixed

length are all in the constraint. We investigate these maximal languages and present

characterizations for them. These characterizations use strongly connected compo-

nents of deterministic finite automata and lead to polynomial time algorithms for

generating such languages. We prove that the subword closure S⊗ is strictly locally

testable. Finally, we discuss applications to coding theory and encoding arbitrary

blocks of information on DNA strands. This leads to very important applications

in DNA codewords designed to obtain bond-free languages, which have been exper-

imentally confirmed.



Chapter 1

Introduction

Formal Language Theory, a branch of Theoretical Computer Science, is concerned

with the study of sets of finite strings of symbols, languages, where each symbol

is chosen from a given finite set, the alphabet. Our investigation is mainly based

on work from Konstantinidis and Santean, [18], on subword-closed languages. We

investigate languages that are maximal with the property that every word obtained

by a finite concatenations of words in the languages conforms to a given subword

constraint. We also investigate the subword closure itself. As it turns out, both the

maximal languages mentioned earlier and the subword closure are regular languages.

In addition, we prove that the subword closure belongs to a subclass of regular

languages called strictly locally testable languages.

Given a subword constraint, which is a set S of words of some fixed length k,

over a given alphabet Σ, the subword closure S⊗ of S is the set of words for which

all subwords of length k are in S. In 2008, Cui and Konstantinidis [4] considered the

problem of encoding arbitrary sequences of data blocks into the words of S⊗. That

is to say, if Σk is the set of all words of length k over some alphabet Σ, for some

k ≥ 1, Cui and Konstantinidis introduced a method for encoding Σk onto some set

of words D such that D∗ ⊆ S⊗. This method, however, does not give a complete

structural characterization of these languages D.

In [18], Konstantinidis and Santean consider the problem of characterizing both

nonempty and then nontrivial languages D whose words are of length at least k and

are maximal with the property D∗ ⊆ S⊗. The more general problem of computing
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maximal regular languages D such that D∗ ⊆ R, where R is any regular language,

was previously addressed by Kari and Seki in [15]. However, the method described

there leads to an algorithm that has an exponential number of steps. The method

we detail, introduced in [18], uses the structural characterization for S⊗ introduced

in [13], where a deterministic finite state automaton called a “trie”, that accepts

S⊗, is constructed. Strongly connected components of this trie are examined to

obtain the desired languages D. The characterization of nontrivial languages D has

the additional requirement that the strongly connected component must contain a

fork state.

Since it was possible to construct a finite state automaton that accepts S⊗,

S⊗ is a regular language. We prove that S⊗ also belongs to a subclass of regular

languages called strictly locally testable languages. Further, we connect this to

forbidding-enforcing systems, introduced by Ehrenfeucht and Rozenberg in [7], and

use the results in [9] to show that because S⊗ is strictly locally testable, there exists

a finite fe-system such that L(F,E) = S⊗, making S⊗ an fe-language defined by

a finite fe-system. Since there is an fe-system with empty enforcers, we provide a

finite set that defines the language S⊗, making S⊗ an f -language defined by a finite

set of forbidders. By [9], S⊗ is also locally testable, which also follows from the fact

that it is strictly locally testable.

After Adleman [1] realized the potential of DNA computing, the field DNA

coding became a very popular area of study. DNA computing relies on the notion

that one is able to encode input data into a collection of DNA molecules and then

perform a series of operations on them, resulting in a collection of modified DNA

molecules containing output data. In practice, these collections of DNA molecules

take the form of test tubes containing single-stranded DNA molecules suspended

in a non-reactive liquid. The operations can take the form of mixing these test

tubes; sometimes with other collections of encoded DNA molecules or sometimes

with enzymes that are designed to cause DNA strands to separate or bond at specific

junctions [10].

Regardless of the form they take, the success of a DNA computing operation is
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generally contingent on ones ability to control the bonds that are formed between

single-stranded DNA molecules. These bonds are formed thanks to the Watson-

Crick complementarity property of the four nucleotides that make up any given

DNA strand: Adenine, Thymine, Guanine, and Cytosine (often denoted by A,

T , G, and C, or a, c, t, and g respectively). Specifically, A is complementary to

T and G is complementary to C. Thus, a single strand of nucleotides can be

represented by a word over the DNA alphabet {A,C, T,G} and this automatically

implies the complement strand by Watson-Crick complementarity. Complicating

matters, DNA molecules also have an inherent orientation. This orientation is

accounted for by placing the symbols “5′−” and “−3′” on opposite ends of a sequence

of nucleotides. This can result in two ostensibly identical DNA molecules having

very different chemical properties. For instance, the molecules 5′ −GCTTAG− 3′

and 3′ −GCTTAG− 5′ are not the same, despite describing the same sequence of

nucleotides.

Methods for encoding DNA strands to avoid possible unintended bonds (or hy-

bridizations) were needed, and so notions from Formal Language Theory were em-

ployed and expanded upon to accomplish this. In 2004, Jonoska and Mahalingham

[11] introduced the concept of a θ-k code. Any language that is a θ-k code is assured

to have no words with k-length subwords that are Watson-Crick complements of k-

length subwords of other words in the language. Here, the involution mapping θ was

introduced to describe the Watson-Crick complementarity property of DNA codes.

In 2005 Kari, Konstantinidis, and Sosik [13] describe θ-k codes as maximal bond-free

languages and provide a structural characterization for these languages using the

subword closure operation. In this paper, we investigate the characterizations of

maximal languages that can be applied to θ-k codes.

This paper is organized as follows: Chapter 2 contains Formal Language Theory

and Automata Theory notions that will be used later on. In Chapter 3, we introduce

the concept of the subword closure, and detail a deterministic finite automaton that

accepts it. In Chapter 4, we demonstrate a method for finding maximal sets of

words D, such that D∗ ⊆ S⊗. In Chapter 5, we define and discuss many DNA codes
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including θ-k codes. Next, two subsets of regular languages, strictly locally testable

and locally testable languages, are discussed and defined in Chapter 6 and we discuss

the connection between subword closure and fe-systems. We also prove that the

subword closure is strictly locally testable. In Chapter 7, we discuss some real

world applications of the subword closure, as well as, the maximal languages that

were given a structural characterization. Finally, Chapter 8 gives some concluding

remarks and suggestions for future research.
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Chapter 2

Formal Languages and Automata

In this chapter, we recall relevant definitions and properties from Formal Language

Theory and Automata Theory to set the notation used throughout the paper. In

the first subsection, we define and give examples of language-theoretic terms used

including alphabets, words, and subwords, as well, as some special notation that is

used in papers that we reference heavily. The second subsection covers regular op-

erations and regular expressions. The final subsection defines finite state automata

and connects them to regular languages.

2.1 Formal Languages

An alphabet is a finite, nonempty set of symbols (letters), often denoted by Σ,

A, or ∆. Symbols are generally denoted by a, b, c, d, . . . . A word (string) is a

finite sequence (concatenation) of symbols from Σ. The word containing no letters

is called the empty word and is denoted by λ. Words are generally denoted by

s, t, u, v, w, x, y, z, . . .. If Σ is an alphabet, we define Σ∗ as the set of all words

over Σ, including λ, the empty word. Additionally, we define Σ+ as the set of all

nonempty words over Σ. Note that Σ∗ and Σ+ are infinite. A language is a subset

of Σ∗. Alternatively, languages can be defined as a set of words, either finite or

infinite. Languages are generally denoted using capitalized letters L,K,H, . . . .

Example 2.1.1 Given Σ = {a, b}, the set of all words over Σ is the set of all
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possible concatenations of a and b. Thus,

Σ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, aba, baa, abb, bab, bba, bbb, aaaa, aaab, . . . }. ♦

As we will see later, the ∗ and + operators can be extended to languages. To

that end, observe that each word is comprised of a certain number of symbols. This

gives rise to an inherent characteristic of words. We give a formal definition of this

characteristic below, along with an example.

Definition 2.1.2 Let w be a word over Σ. The length of w is the number of symbols

in it and is denoted by |w|. The length of the empty word, λ, is 0, i.e. |λ| = 0.

For example, If Σ = {a, b} and w = bbabba, then the length of w is 6, i.e.

|w| = 6. Note that the notation for the length of a word and the notation for the

cardinality of a set are identical. However, this should not cause any confusion as

context should be enough to differentiate between the two. We make use of this

new definition for length by defining a commonly used set.

Definition 2.1.3 Let Σ be an alphabet. We define Σk as the set of words over Σ

of length k, namely, Σk = {w ∈ Σ∗ : |w| = k}.

To illustrate the difference between cardinality and length consider the following

example.

Example 2.1.4 Let Σ = {a, b}. Then,

Σ3 = {aaa, aab, aba, abb, baa, bab, bba, bbb}

So, we have that |Σ3| = 8. Whereas, for every w ∈ Σ3, |w| = 3. This is because

|aaa| = |aab| = |aba| = |abb| = |baa| = |bab| = |bba| = |bbb| = 3. ♦

We now introduce an important operation on words and then define sets that

make use of this operation. Given two words u and v over Σ, the concatenation of
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u and v, denoted uv, is obtained by writing v after u. Consequently, uv is also a

word over Σ.

Example 2.1.5 Let Σ = {a, b}, let the words u = ab and v = bb.

Note that both u and v are words over Σ. We have that the concatenation of u and

v, is uv = abbb. ♦

A prefix of a word w ∈ Σ∗ is any word u ∈ Σ∗ such that w = ux, where x ∈ Σ∗.

The set of prefixes of w is denoted by Pref(w). A suffix of a word w ∈ Σ∗ is any

word u ∈ Σ∗ such that w = xu, where x ∈ Σ∗. The set of suffixes of w is denoted

by Suff(w). A subword of a word w ∈ Σ∗ is any word u ∈ Σ∗ such that w = xuy,

where x, y ∈ Σ∗. The set of subwords of w is denoted by Sub(w).

There is also the notion of proper prefixes, suffixes, and subwords. A proper

prefix of a word w ∈ Σ∗ is any word u ∈ Σ+ such that w = ux, where x ∈ Σ+. The

set of proper prefixes is denoted by PPref(w). A proper suffix of a word w ∈ Σ∗ is

any word u ∈ Σ+ such that w = xu, where x ∈ Σ+. The set of proper suffixes of w

is denoted by PSuff(w). A proper subword of a word w ∈ Σ∗ is any word u ∈ Σ+

such that w = xuy, where not both x, y ∈ Σ∗. The set of proper subwords of w is

denoted by PSub(w).

Example 2.1.6 If w = aaab, then

Pref(w) = {λ, a, aa, aaa, aaab},

PPref(w) = {a, aa, aaa},

Suff(w) = {λ, b, ab, aab, aaab}

PSuff(w) = {b, ab, aab},

Sub(w) = {λ, a, b, aa, ab, aaa, aab, aaab}, and

PSub(w) = {a, b, aa, ab, aaa, aab}. ♦

Languages are sets, thus the Boolean operations of union, intersection, and com-

plement follow naturally. A formalization of each is given below and these are all

from [20].
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Definition 2.1.7 Let L1 and L2 be two languages over Σ and L be any language

over Σ. Define the union, intersection, difference, and complement of languages as

follows:

L1 ∪ L2 = {w | w ∈ L1 or w ∈ L2}

L1 ∩ L2 = {w | w ∈ L1 and w ∈ L2}

L1 \ L2 = {w | w ∈ L1 and w /∈ L2}

Lc = {w | w /∈ L} = Σ∗ \ L

Both concatenation and the set of subwords can be extended to languages; how-

ever, since languages are sets, special consideration must be taken. The next defi-

nition formalizes the notion of concatenation of two languages.

Definition 2.1.8 Let L1 and L2 be two languages over Σ. The concatenation of

L1 and L2 is defined as follows.

L1L2 = {uv | u ∈ L1 and v ∈ L2}

Let L be a language over Σ. The powers of L are defined recursively as follows.

1. L0 = {λ}

2. Li+1 = LLi, for i ≥ 0.

In the next example, we illustrate how to concatenate two different languages

with each other, as well as, how to find a certain power of a language.

Example 2.1.9 Let L1 = {a, ab} and L2 = {b, bb}. Then,

L1L2 = {ab, abb, abbb} and

L3
1 = L1L

2
1 = L1{aa, aab, aba, abab}

= {aaa, abaa, aaab, abaab, aaba, ababa, aabab, ababab}. ♦

Note that concatenation of languages is not necessarily commutative. Consider

the following example.
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Example 2.1.10 Let L1 = {a, ab} and L2 = {b, bb}. Then,

L1L2 = {ab, abb, abbb}, whereas

L2L1 = {ba, bab, bba, bbab}. ♦

Using the concatenation of languages and the union of languages, we can extend

the notions of Σ+ and Σ∗ to languages, as well. Let Σ be an alphabet, and let L be

a language over Σ. The ∗-Kleene Closure, L∗, and +-Kleene Closure, L+, named

after Stephen Kleene, who first defined them, are given as follows.

L∗ =
∞⋃
i=0

Li

L+ =
∞⋃
i=1

Li

.

Note that the difference between L∗ and L+ is that λ is always in L∗, but not

necessarily in L+. Since L0 = {λ} for any L, λ is always in L∗. However, λ is in

L+, only if λ ∈ L. If λ 6∈ L, λ is not in L+ and L+ = L∗ \ {λ} in that case. In the

case that λ ∈ L, then L∗ = L+. For clarification, consider the following example.

Example 2.1.11 Let Σ = {a, b} and let L = {aa, ab, bb} be a language over Σ. We

have that,

L+ = L ∪ L2 ∪ L3 ∪ ...

L+ = {aa, ab, bb} ∪ {aaaa, aaab, aabb, abaa, abab, abbb, bbaa, bbab, bbbb} ∪ . . . ,

whereas

L∗ = {λ} ∪ {aa, ab, bb}∪

{aaaa, aaab, aabb, abaa, abab, abbb, bbaa, bbab, bbbb} ∪ . . . . ♦

Each of Pref(w), Suff(w), and Sub(w) can also be extended to languages by

using the union of languages.

Definition 2.1.12 Let L be a language over the alphabet Σ then the set of sub-
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words of L, the set of prefixes of L, and the set of suffixes of L, denoted Sub(L),

Pref(L), and Suff(L), respectively, is defined by:

Sub(L) =
⋃
w∈L

Sub(w);

Suff(L) =
⋃
w∈L

Suff(w); and

Pref(L) =
⋃
w∈L

Pref(w).

Furthermore, we define Subk(L), Prefk(L), and Suffk(L) as the set of subwords

of L of length k, the set of prefixes of length k, and the set of suffixes of length

k, respectively. Note that the set of proper subwords is PSub(L) = Sub(L) \ L,

the proper prefixes are PPref(L) = Pref(L) \ L, and the proper suffixes are

PSuff(L) = Suff(L) \ L.

In the next example, we illustrate the set of subwords of a language and also

show how Subk(L) and Sub(L) differ.

Example 2.1.13 Let L = {abb, bbab} Then,

Sub(L) = Sub(abb) ∪ Sub(bbab) = {λ, a, b, ab, ba, bb, abb, bab, bba, bbab}.

Note that Sub(L) only has three words of length 3. Thus, we have that

Sub3(L) = {abb, bba, bab}. ♦

There is a special notation that is used by Konstantinidis and Santean in [18]

for the set of subwords that follow a certain prefix in L. In a future section we will

draw heavily from this paper. For that reason, we give the definition for “x−1L”

below and with this, we conclude this subsection.

Definition 2.1.14 Let x be a word and L be a language, then

x−1L , {z ∈ Σ∗ | xz ∈ L}

10



We give an example of x−1L below.

Example 2.1.15 Let L = {bbbab, abab, abaab, abababa} and x = aba.

Then, x−1L = {b, ab, baba}. ♦

In effect, x−1L gives all words in L that have a prefix of x, without the prefix x.

Note that if x is not a prefix of L, this set will be empty.

2.2 Regular Expressions

In the previous section, we defined the language operations union, concatenation,

and the Kleene closures. Each of these operations is called a regular operation. A

language L over Σ is called regular if it can be obtained from the empty language

Ø, λ, and a, where a is any symbol from the alphabet Σ, by applying regular

operations finitely many times. Applying union and concatenation, we can obtain

all finite languages. The star operation is needed to produce infinite languages.

In [16], Kleene introduced a way to generate regular languages. A regular ex-

pression e over an alphabet Σ and the language L(e) that it generates are defined

recursively as follows:

1. Ø is a regular expression denoting the language L(Ø) = Ø.

2. λ is a regular expression denoting the language L(λ) = {λ}.

3. For every a ∈ Σ, a is a regular expression and L(a) = {a}.

4. If p and q are regular expressions, then p+q, p·q, and p∗ are regular expressions

and L(p+ q) = L(p) ∪ L(q), L(p · q) = L(p)L(q), and L(p∗) = (L(p))∗.

Note that the language L(a∗) where a ∈ Σ is the language L(a∗) = {λ, a, aa, aaa, ...}.

Also, the operation ∗ has higher precedence than ·, which has higher precedence than

+, respectfully. By convention, the symbol · is usually omitted and pq is written

instead of p · q. We give a few examples of regular expressions and the languages

that they generate below.
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Example 2.2.1 Let Σ = {a, b}. Then,

(ab+ a)(bb+ λ) = {abbb, ab, abb, a}

(λ+ a)∗b = {b, ab, aab, aaab, aaaab, aaaaab, . . . }

aa(a+ b)∗ = {w ∈ Σ∗ | the first two letters of w are a}. ♦

2.3 Finite State Automata

Our goal for this section is to characterize regular languages using structures similar

to directed graphs, called automata. An automaton is an object that recognizes

words and determines whether or not an input word belongs to a language. It

accepts the words that belong to the language and rejects the words that don’t. A

finite state automaton (FSA) is a quintuple M = (Q,Σ, I, T,E), where Q is a finite

set of states, Σ is the input alphabet, I ⊆ Q is the set of initial states, T ⊆ Q is

the set of terminal states, and E ⊆ Q× (Σ∪ {λ})×Q is the set of transitions. The

alphabet can be omitted if it is understood to be the set of symbols that can be

seen on the labels. In this way, the FSA M can alternatively be denoted by the

quadruple (Q, I, T,E).

Example 2.3.1 Let

M = ({q0, q1, q2, q3}, {q0}, {q3}, {(q0, a, q1), (q1, a, q2), (q0, b, q2), (q2, b, q2), (q2, a, q3)}).

The FSA M is represented in Figure 2.1. ♦

If e is a non-empty transition in E, then e = (q, a, q′), where q, q′ ∈ Q and a ∈ Σ.

Further, q is the source of e and is denoted by s(e) = q; q′ is the target of e and

is denoted by t(e) = q′; and a is the label of e and is denoted by l(e) = a. The

transition (q, λ, q′) is called the empty transition.

A path or transition sequence in M is a sequence of transitions p = e1e2e3. . .en =

(q0, a1, q1)(q1, a2, q2). . .(qn−1, an, qn) such that s(ek+1) = t(ek) for k = 1, 2, . . ., n− 1.

Note that a path is a word in E∗. We denote the set of paths of M with P. For a

12



Figure 2.1: The graph of the FSA M from Example 2.3.1.

path p = e1e2. . .en, the source of p is s(p) = s(e1), the target of p is t(p) = t(en),

and the label of p is l(p) = l(e1)l(e2). . .l(en).

A word w ∈ Σ∗ is accepted by M if there is a path p such that s(p) ∈ I, t(p) ∈ T ,

and l(p) = w. The language recognized by M is L(M) = {w | w is accepted byM}.

We introduce the concept of a strongly connected component (or SCC) with respect

to an FSA M . A SCC is a set of states Q that is maximal with the property

that there is a path in M between any pair of states in Q. An SCC Q is called

nontrivial if there is at least one transition between some states in Q. In Figure

2.2, we illustrate the difference between components of a graph that are strongly

connected and components that aren’t.

Example 2.3.2 Consider Figure 2.2. The sets of states Q1 = {q0, q1, q2} and

Q2 = {q3, q4} are SCCs; however, Q3 = {q1, q3, q4} is not an SCC. This is because

there is no path from state q3 to state q1. ♦

A state in an automaton is called a fork state if there are at least two transitions

going out of that state. In other words, if q is fork state, then there are at least

two transitions that begin in q and end in a state other than q. In Figure 2.3, every

state in the FSA is a fork state except for state q3. This is because q3 does not have

at least two transitions going out of it. A cycle is a path in an FSA in which the

first and last states of the path are equal. We call the special cycle (p) where p is

any state the trivial cycle.

13



Figure 2.2: An automaton with two SCC.

Figure 2.3: The states q0, q1, and q2 are all fork-states, while q3 is not.

14



Remark 2.3.3 A language L is regular if and only if there exists an FSA M such

that L = L(M).

By Remark 2.3.3, for every regular language there exists an FSA that recognizes

it. The proof of Remark 2.3.3 can be found in [17]. We would like to show that

regular languages are also recognized by a certain subtype of FSAs. Theorem 2.3.6,

originally introduced in [16], accomplishes this. The proof of Theorem 2.3.6 requires

two other results.

Theorem 2.3.4 Every FSA is equivalent to an FSA which does not have any empty

transitions.

Proof. Let M = (Q, I, T,E) be an FSA and P be the set of all paths in M .

Construct M ′ = (Q, I ′, T ′,E′) as follows.

I ′ = I ∪ {q ∈ Q | ∃p ∈ P, s(p) ∈ I, t(p) = q, l(p) = λ}

T ′ = T ∪ {q ∈ Q | ∃p ∈ P, s(p) = q, t(p) ∈ T, l(p) = λ}

E′ = {(q, a, q′) | ∃p ∈ P, s(p) = q, t(p) = q′, l(p) = a, a ∈ Σ}

\ {(q, λ, q′) ∈ E | q, q′ ∈ Q}

We need to show that L(M) = L(M ′) by first showing that L(M) ⊆ L(M ′).

Let p = e1e2e3...ek be a path in M with s(p) ∈ I, t(p) ∈ T , and l(p) = a1a2a3...as

in L(M). (If l(p) = λ, then t(ek) ∈ I ′ ∩ T and λ ∈ L(M ′)). We need to show

that p is a path in M ′ from an initial state to a terminal state. Let ej1ej2 ...ejs be

a “subpath” of p such that l(eji) = ai and let s(eji) = pji . Then by construction

pj1 ∈ I ′, t(ejs) ∈ T ′, and e′ji = (pji , ai, pji+1
) ∈ E′ for all i = {1, ..., s − 1} and

ejs ∈ E′. Hence, the path p′ = e′j1e
′
j2
...e′js−1

ejs is a path in M ′ from an initial state

in M ′ to a terminal state in M ′ with label l(p′) = l(p). Thus, L(M) ⊆ L(M ′).

Conversely, assume that w ∈ L(M ′). Then, there is a path p = e1e2e3...ek in M ′

from an initial state in M ′ to a terminal state in M ′ with label l(p) = w. Every

edge ei ∈ p is a transition of the kind (q, a, q′) where a ∈ Σ and q, q′ ∈ Q. By the
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construction of M ′, every such transition can be substituted by a path with label a

from q to q′ in M . Thus, there is a path with label w in M and it can be chosen

from initial to a terminal state by concatenating a prefix path and a suffix path

both with label λ, if necessary.

We have established that it is possible to take an FSA and transform it into an

equivalent FSA that has no empty transitions. We use this result to show that any

FSA is equivalent to an FSA with no empty transitions and only a single initial

state.

Theorem 2.3.5 Every FSA is equivalent to an FSA with no empty transition and

only one initial state.

Proof. By Theorem 2.3.4, we can assume that the given M = (Q, I, T,E) has no

empty transitions and it is possible to show that it is equivalent to an automaton

with only one initial state and no empty transitions. We do this by letting M ′ =

(Q′, I0, T
′,E′) where Q′ = Q ∪ {q0}, I0 = {q0}, such that q0 /∈ Q and E′ = E ∪

{(q0, a, q) | ∃qI ∈ I, (qI , a, q) ∈ E}. The terminal states T ′ = T if λ /∈ L(M) and

T ′ = T ∪ {q0} if λ ∈ L(M). We need to show that L(M) = L(M ′). First we show

that L(M) ⊆ L(M ′).

Assume w ∈ L(M). Say w = λ, if this is the case then w ∈ L(M ′) as well,

because M ′ has only one initial state q0 and q0 ∈ T ′. Now say that w 6= λ. Then,

there is a path p = e1e2e3...ek in M with s(p) ∈ I, t(p) ∈ T , and l(p) = w =

a1a2a3 . . . ak in L(M). We need to show that p is a path in M ′ from an initial state

to a terminal state. Let p1 = e2e3e4...ek be the “subpath” of p without the transition

e1. Thus, we have that t(p1) ∈ T and l(p1) = a2a3a4 . . . ak. Consider e1 and e2, By

assumption e1 = (qI , a1, q1) and e2 = (q1, a2, q2) where qI ∈ I and q1, q2 ∈ Q. Allow

e′1 = (q0, a1, q1). By construction, e′1 ∈ E′. Then, p′ = e′1p1 is a path in M ′ with

s(p′) ∈ I0 = {qo}, t(p′) ∈ T ′. Therefore, p′ is a path in M ′ that starts in an initial

state and ends in a terminal state with l(p) = l(p′) = w. So L(M) ⊆ L(M ′).
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Conversely, let w ∈ L(M ′). Then, there is a path p′ = e′1e2e3 . . . ek with s(p′) ∈

I0, t(p
′) ∈ T ′, and l(p′) = w = a1a2a3 . . . ak. We have that e′1 = (q0, a1, q1) and

e2 = (q1, a2, q2). By construction, there exists qI ∈ I and (qI , a1, q1) ∈ E. Allow

p = e1e2e3 . . . ek. We have that p is a path in M that begins in an initial state

and ends in a terminal state with l(p) = l(p′) = w. So L(M) ⊇ L(M ′). Thus,

L(M) = L(M ′).

By Theorems 2.3.4 and 2.3.5, we can assume that given an FSA M , it has only

one initial state and no empty transitions. An FSA for which the next state is always

uniquely determined is called a deterministic finite state automaton (DFA). Also, an

FSA is called complete if for all a ∈ Σ and for all q ∈ Q the set {q′ | (q, a, q′) ∈ E} is

either singleton or empty. Theorem 2.3.6 establishes a connection between regular

languages and DFAs.

Theorem 2.3.6 A language L is regular if and only if it is recognized by a DFA.

Proof. It is clear that if a language is recognized by a DFA, then (since a DFA is

an FSA) it is regular. We only need to show that if L is a regular language, then

there is a DFA that recognizes it. Since we know that if L is regular, then there

exists an FSA that recognizes it, we only need to show that for every FSA, there is

an equivalent DFA.

Let M = (Q,Σ, I, T,E) be an FSA. By Theorem 2.3.5, we can assume that

M has only one initial state, i.e. I = {q0} and no empty transitions. Construct

M ′ = (M ′,Σ, I ′, T ′,E′) as follows. The new set of states Q′ = P(Q) is the power

set of Q. The initial set of states I ′ = {I} = {{q0}} consist only of one initial state,

namely the unique initial state of M . The terminal states T ′ are all subsets of Q

that contain a terminal state in M , i.e., S ⊂ Q is terminal in M ′ if S ∩T 6= Ø. The

set of transition functions is defined as follows:

(S, a, S ′) ∈ E′ if and only if S ′ = {q′ | ∃q ∈ S, (q, a, q′) ∈ E}

= {t(e) | s(e) ∈ S, l(e) = a, e ∈ E}.
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Since S and a uniquely determine S ′, M ′ is deterministic. Hence each transaction

in E′ can be expressed by a transition function δ. We now have to show that every

word accepted by M is accepted by M ′ and vice versa.

Let w = a1a2a3...ak be a word accepted by M . Then, there is a path

(q0, a1, q1)(q1, a2, q2) . . . (qk−1, ak, qk) with qk ∈ T and by the definition of M ′,

q1 ∈ δ({q0}, a1) = S1 , q2 ∈ δ({S1}, a2) = S2, . . . , qk ∈ δ({Sk−1}, ak) = Sk, and

Sk ∈ T ′. Therefore, L(M) ⊆ L(M ′).

Conversely, let w ∈ L(M ′). Then there is a path p = e1e2...ek in M ′ with

l(p) = w from state {q0} to a terminal state Sk ∈ T ′. Let Si be the terminal states

t(ei) of ei. The result is a state qk ∈ Sk ∩ T and a transition (qk−1, ak, qk) ∈ E

with qk−1 ∈ Sk−1 = {t(ek−1) | t is a terminal state of ek−1}. By induction, for each

i = {0, 1, ..., k − 1} there is a transition (qi, ai+1, qi+1) ∈ E such that qi ∈ Si and

qi+1 ∈ Si+1. Therefore, w ∈ L(M).
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Chapter 3

Subword Closure

In this chapter we define the concept of the subword closure and discuss a method

for generating automata that accept the subword closure. We provide examples of

such automata and briefly consider the implications of such a method. The rest of

the chapter describes a method for finding languages D that are maximal with the

property that the ∗-Kleene Closure, D∗, of that language D is contained within the

subword closure, S ′⊗, of some given subword constraint S. This method makes use

of the automaton that accepts the subword closure of S. We provide theorems that

prove that the method discussed ensures that such a language D can be made to

be nonempty or nontrivial.

3.1 Subword Closure and Trie

Any nonempty finite set of words S of length k > 0 over Σ is called a subword

constraint, and is used to define S⊗, the subword closure of S. The subword closure

of S is the set of words for which all subwords of length k are in S. We give a

concise definition using set notation below:

S⊗ = {w ∈ Σ∗ | if u is a subword of w and |u| = k then u ∈ S}

It is trivial to see that S ′ ⊆ S if and only if S ′⊗ ⊆ S⊗. We have that if S ′ 6= S, then

S ′⊗ 6= S⊗.
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Example 3.1.1 Let S = {aa, ba, ab}, then

S⊗ = {w ∈ Σ∗ | w does not have consecutive b’s }. ♦

The subword closure has two properties that we should consider.

Remark 3.1.2 Let S be a subword constraint where each word in S is of length k.

We have that:

– If w ∈ S, then every subword of w is also in S⊗.

– If xu, vy ∈ S⊗ and |u| = |v| = k, then we have that xuvt ∈ S⊗ if and only if

uv ∈ S⊗.

We demonstrate a method that, given a subword constraint S, will construct a

DFA accepting S⊗. We first define a special type of DFA, a trie.

Definition 3.1.3 A trie, T , is a DFA with the following structure:

T = ({[p] | p ∈ Pref(L)},Σ, [λ], {[x] | x ∈ L},E)

where L is a finite language, Pref(L) is the set of all prefixes of L and the set

of transitions E is given by:

E = {[p]a→ [pa] | p ∈ Pref(L), a ∈ Σ, pa ∈ Pref(L)}.

For clarity, we adopt the convention that “u” refers to the word u and “[u]”

refers to the state with label u. We can extend this convention to sets of states.

Thus, if L is a language, [L] = {[x] | x ∈ L}. Observe that each state [p] represents

the prefix p of the input word that has been read so far by the automaton. Also

observe that there is a path from [λ] to [x] for each x ∈ L and each such [x] is a

terminal state. This implies that the trie accepts L.
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3.2 Subword Closure as an Automaton

Let Trie(S) be the trie recognizing the language S, where S is a subword constraint

with the length of each word being some fixed k. Trie(S) is the complete DFA with

Trie(S) = (Q, I, T,E) where each component is defined in the way outlined in

Definition 3.1.3. For clarity, we represent E as a function δ such that δ([u], σ) = [uσ],

whenever uσ is a prefix of S of length at most k and with all other values of δ being

[sink]. We now prove that there is a DFA that accepts S⊗. The following lemma is

taken from [13].

Lemma 3.2.1 Let T be a trie accepting only words of the same length. There is a

DFA T⊗ accepting the language L(T )⊗.

Proof. For a word w of the form aw1, with a ∈ Σ, we denote by ẇ the word w1. The

states T⊗ are exactly those of T and the initial and terminal states of T⊗ are exactly

those of T as well. The DFA T⊗ contains all the transitions of T with the addition

of: For each terminal state [w] of T and for each a ∈ Σ, then δ⊗([w], a) = [ẇa] if

and only if [ẇa] is a terminal state of T. We show that L(T )⊗ ⊆ L(T⊗). The proof

of the converse is trivial to see.

First note that every word w ∈ L(T )⊗ is of the form ua1 . . . am with |u| = k,

m ≥ 0, and each ai ∈ Σ. Let u0 = u and ui = u̇i−1ai for all i = 1, . . . ,m. Then, for

each index i, the word ui is in Subk(w), which implies that ui is in L(T ). Thus, on

input w the DFA T⊗ will behave as follows: the prefix u of w will take T⊗ to the

terminal state [u] and, in general, if ua1 . . . ai−1 takes T⊗ to the terminal state [ui−1],

then, as u̇i−1a ∈ L(T ), the prefix ua1 . . . ai of w would take T⊗ to the terminal state

[ui]. Thus, w will be accepted by T⊗ and, therefore, w ∈ L(T⊗).

By [3], we have that Trie(S)⊗ is a complete DFA. For an example of Trie(S),

consider the following.

Example 3.2.2 Let S = {aaaa, aaab, aaba, abaa, abbb, baaa, baba, babb, bbab, bbbb}.

Trie(S) is the complete DFA with Trie(S) = (Q, I, T,E) where Q = [Pref(S)],
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Figure 3.1: Graph of Trie(S).

I = [λ], T = [S], and E is represented by the transition function δ where δ([u], σ) =

[uσ], whenever uσ is a prefix of S of length at most k and with all other values of

δ being [sink]. The complete DFA Trie(S) is represented in Figure 3.1. ♦

We demonstrate how E is populated. Consider ([aba], a, [abaa]) ∈ E. Allowing

u = aba and σ = a, we can see that δ([aba], a) = [abaa]. This is because abaa, or

uσ, is a prefix of S of length four. Consider ([aab], b, [sink]) ∈ E. Allowing u = aab

and σ = b. We can see that uσ = aabb is not a prefix of S of length at most four.

For this reaseon, we create a transition from [aab] to [sink] and give it the label b.

Following the construction outlined in Lemma 3.2.1 the DFA Trie(S)⊗ accepting

S⊗ is obtained from Trie(S) like so: the set of states, Q, is the same; the initial state,

I, is the same; the set of terminal states, T , now includes all states except for [sink];

the transition function δ⊗ of Trie(S)⊗ is the same as δ except for the following: For

each u ∈ S and σ ∈ Σ, if u ∈ Σu1 and u1σ ∈ S, then δ⊗([u], σ) = [u1σ]. In effect,

this change to δ ensures that the last k symbols read drive the automaton to a state

in [S]. The example below demonstrates the DFA Trie(S)⊗ obtained from Trie(S)

given in Example 3.2.2.
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Figure 3.2: Graph of Trie(S)⊗

Example 3.2.3 Let S = {aaaa, aaab, aaba, abaa, abbb, baaa, baba, babb, bbab, bbbb}.

Trie(S)⊗ is the complete DFA with Trie(S)⊗ = (Q, I, T ′,E′) where Q is the same

as in Example 3.2.2, I = [λ], T ′ = Q \ {[sink]}, and the transition function δ⊗ of

Trie(S)⊗ is represented by the edges of the DFA given in Figure 3.2. ♦

We demonstrate how E′ is obtained from E. Consider the transition

([aaba], a, [abaa]) ∈ E′. Allowing u = aaba, σ = a, and u1 = aba we can see that

aaba ∈ Σaba and abaa ∈ S, therefore, δ⊗([aaba], a) = [abaa]. We are effectively

concatenating u and σ, obtaining a new word u1σ by dropping all but the last

k symbols (four in this case), and then creating a transition between [u] and the

resulting [u1σ] with label σ.

Remark 3.2.4 We give a few useful properties of Trie(S)⊗ below.

– If ([u], σ1, p1, . . . , σk, pk) is a path in Trie(S)⊗ and pk 6= [sink] then the state

pk must be [σ1 . . . σk].
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– If w ∈ S⊗ and |w| ≥ k, then δ⊗([λ], w) = δ⊗([x], w1) = [y], where x is the

prefix of w of length k and y is the suffix of w of length k.

– The DFA Trie(S)⊗ can be computed in linear time with respect to the size of

S, this size is the sum of the lengths of all words in that set.

– Any nontrivial SCC [Q] of Trie(S)⊗ is such that Q ⊆ S.

We use Trie(S)⊗ to characterize structurally the languages D that are maximal

with the property that D∗ ⊆ S⊗. We will refer to the properties discussed in

Remark 3.2.4 to accomplish this.
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Chapter 4

Maximal D’s With D∗ ⊆ S⊗

In this chapter we discuss both a method for structurally characterizing a nonempty

language D and a method for structurally characterizing a nontrivial language D′,

both of whose words are of length at least k and are maximal with the property

with D∗ ⊆ S⊗ (and D′∗ ⊆ S⊗). Each method was introduced by Konstantinidis

and Santean in [18]. Recall that a strongly connected component with respect to a

DFA M , is a set of states Q that is maximal with the property that there is a path

in M between any pair of states in Q.

4.1 Preliminaries

Definition 4.1.1 Let Q be a nonempty subset of S such that [Q] is a nontrivial

strongly connected component of Trie(S)⊗. For any nonempty subset X ⊆ Q, we

define

Q>
X , {v ∈ Q | ∀x ∈ X : δ⊗([v], x) = [x]} = {v ∈ Q | ∀x ∈ X : vx ∈ S⊗}.

By Definition 4.1.1, it can be understood that if X ⊆ Y ⊆ Q, then Q>
X ⊇ Q>

Y .

The set Q>
X can be thought of as the set of states in [Q] for which any input word

x ∈ X drives the automaton Trie(S)⊗ to the state [x]. We can simplify Figure 3.2

by eliminating all states [x] such that [x] /∈ [S], except for [sink]. Although this

means that the resulting graph is no longer a DFA, because we eliminate the initial

state, this process can be reversed with no major effect. The graph obtained by
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Figure 4.1: Simplified graph obtained by eliminating all states that are not in S (except
for the sink) from Figure 3.2.

eliminating these states can be seen in Figure 4.1.

Example 4.1.2 Consider the simplified graph given in Figure 4.1. Let

Q = {aaaa, aaab, aaba, abaa, baaa}. We determine Q>
{abaa} by considering each state

in [Q] individually.

– [aaaa]: Since δ⊗([aaaa], abaa) = [abaa] and abaa ∈ {abaa}, we have that

aaaa ∈ Q>
{abaa}.

– [aaab]: Since δ⊗([aaab], abaa) = [sink] and sink /∈ {abaa}, we have that

aaab /∈ Q>
{abaa}.

– [aaba]: Since δ⊗([aaba], abaa) = [sink] and sink /∈ {abaa}, we have that

aaba /∈ Q>
{abaa}.

– [abaa]: Since δ⊗([abaa], abaa) = [abaa] and abaa ∈ {abaa}, we have that

abaa ∈ Q>
{abaa}.
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– [baaa]: Since δ⊗([baaa], abaa) = [abaa] and abaa ∈ {abaa}, we have that

baaa ∈ Q>
{abaa}.

Thus, we have that Q>
{abaa} = {abaa, baaa, aaaa}. ♦

Example 4.1.2 considered only when X is a singleton set. The following example

considers when X is more complex.

Example 4.1.3 Consider the simplified graph M given in Figure 4.1, let

Q = {aaaa, aaab, aaba, abaa, baaa} and X = {baaa, abaa}. We determine Q>
X by

considering each state in [Q] individually.

– [aaaa]: δ⊗([aaaa], baaa) = [baaa], and δ⊗([aaaa], abaa) = [abaa].

Since baaa, abaa ∈ X, we have that aaaa ∈ Q>
X .

– [aaab]: δ⊗([aaab], baaa) = [sink], and δ⊗([aaab], abaa) = [sink].

Since sink /∈ X, we have that aaab /∈ Q>
X .

– [aaba]: δ⊗([aaba, baaa) = [sink], and δ⊗([aaba], abaa) = [sink].

Since sink /∈ X, we have that aaba /∈ Q>
X .

– [abaa]: δ⊗([abaa], baaa) = [sink], and δ⊗([abaa], abaa) = [abaa].

Since sink /∈ X, we have that abaa /∈ Q>
X .

– [baaa]: δ⊗([baaa], baaa) = [baaa], and δ⊗([baaa], abaa) = [abaa].

Since baaa, abaa ∈ X, we have that baaa ∈ Q>
X .

Thus, we have that Q>
X = {baaa, abaa}. ♦

The maximal languagesD that we desire can be obtained fromQ>
X . In particular,

we are interested in the words that drive the automaton to a state in Q>
X .

Definition 4.1.4 Let [Q] be a strongly connected component of Trie(S)⊗, with

Q ⊆ S and X ⊆ Q, then

〈Q,X〉x , {w ∈ Σ∗ | δ⊗([x], w) ∈ [Q>
X ]}

for all x ∈ X.
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In effect, 〈Q,X〉x is the set of words w ∈ Σ∗ that, starting in state [x] drive the

automaton to a state in [Q>
X ], for all x ∈ X. The set 〈Q,X〉x is generally written

as a regular expression, we give an example of this below.

Example 4.1.5 Consider the simplified graph M given in Figure 4.1, let Q =

{aaaa, aaab, aaba, abaa, baaa} and X = {baaa, abaa}. Recall from Example 4.1.3,

that Q>
X = {baaa, aaaa}. We have that

〈Q,X〉{baaa} = (λ+ aa∗)(baaa(λ+ aa∗))∗

〈Q,X〉{abaa} = a(λ+ aa∗)(baaa(λ+ aa∗))∗. ♦

We define a language that, as we will see later, is a major structural characteri-

zation of languages D that are maximal with the property D∗ ⊆ S⊗.

Definition 4.1.6 Let [Q] be a strongly connected component of Trie(S)⊗, with

Q ⊆ S and X ⊆ Q, then

〈Q,X〉 ,
⋃
x∈X

x〈Q,X〉x

for all x ∈ X.

Building on Examples 4.1.3 and 4.1.5, we can obtain an example of a language

〈Q,X〉.

Example 4.1.7 Consider the simplified graph M given in Figure 4.1, let Q =

{aaaa, aaab, aaba, abaa, baaa} and X = {baaa, aaaa}. Recall from Example 4.1.5

that

〈Q,X〉{baaa} = (λ+ aa∗)(baaa(λ+ aa∗))∗

and

〈Q,X〉{abaa} = a(λ+ aa∗)(baaa(λ+ aa∗))∗.

We have that

〈Q,X〉 = baaa(λ+ aa∗)(baaa(λ+ aa∗))∗ + abaaa(λ+ aa∗)(baaa(λ+ aa∗))∗. ♦
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4.2 Obtaining maximal D’s with D ⊆ S⊗

In this section, we present two theorems that prove that if D = 〈Q,X〉, then D is

maximal with D∗ ⊆ S⊗. The first theorem considers when D is nonempty and the

second considers when D is nontrivial. These theorems also show that each word

in D has a prefix in X and a suffix in Q>
X . Both theorems were originally presented

by Konstantinidis and Santean in [18]. We state the theorems first and leave the

proofs of each for later on.

Theorem 4.2.1 Let S be any subword constraint of some length k, and let D be any

nonempty language whose words are of length k. Then D is maximal with D∗ ⊆ S⊗

if and only if there are nonempty subsets X, Y,Q of S such that

D = 〈Q,X〉 = S⊗ ∩XΣ∗ ∩ Σ∗Y,

and X, Y ⊂ Q, and [Q] is a nontrivial strongly connected component of Trie(S)⊗,

Y = Q>
X .

Theorem 4.2.2 accounts for D being nontrivial by requiring that Q contain a

fork state. Recall from earlier, that a state in an automaton is called a fork state if

there are at least two transitions going out of that state.

Theorem 4.2.2 Let S be any subword constraint of some length k, and let D be

any nontrivial language whose words are of length k. Then, D is maximal with

D∗ ⊆ S⊗ if and only if there are nonempty subsets X, Y,Q of S such that

D = 〈Q,X〉 = S⊗ ∩XΣ∗ ∩ Σ∗Y

and X, Y ⊆ Q, [Q] is a nontrivial strongly connected component of Trie(S)⊗ con-

taining a [Q]-fork state, Y = Q>
X , and X is maximal with ”X ⊆ Q and Q>

X = Y ”.

Note that ’X is maximal with “X ⊆ Q and Q>
X = Y ” can be rephrased as “for

any z ∈ Q − X,Q>
X 6= Q>

X∪{z}.” The proofs of Theorems 4.2.1 and 4.2.2 can be
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obtained from a few technical lemmata. Lemma 4.2.3 gives an impression of what

D∗ ⊆ S⊗ means without requiring that D is maximal with that property. The

lemma provides two conditions for D∗ ⊆ S⊗, one is a necessary condition and the

other is a sufficient condition. For this lemma, recall Definition 2.1.14, the special

notation that we defined earlier, x−1L = {z ∈ Σ∗ | xz ∈ L}.

Lemma 4.2.3 Let D be a nonempty language whose words are of length at least k.

1. If D∗ ⊆ S⊗, then D =
⋃
x∈X

x(x−1D) and x(x−1D)y ⊆ S⊗, for all x, y ∈ X

where X is the set of all prefixes of D of length k.

2. If there is a subset X of S and languages Dx, for all x ∈ X such that

D =
⋃
x∈X(xDx) and xDxy ⊆ S⊗ for all x, y ∈ X, then D∗ ⊆ S⊗.

Proof. For the first statement, consider
⋃
x∈X

x(x−1D). By definition of x−1D,⋃
x∈X

x(x−1D) =
⋃
x∈X

xz, where z ∈ Σ∗ and xz ∈ D. In other words, it is equal to

the union of all of the words in D that have a word x ∈ X as a prefix. Since X is

the set of all prefixes of D, this is simply the set D. Assume D∗ ⊆ S⊗, and take

any arbitrary x, y ∈ X and u ∈ x−1D. Then, xu ∈ D by definition. Similarly, there

exists a word of the form yv ∈ D, with v ∈ y−1D. Since xuyv ∈ D2 ⊆ D∗ ⊆ S⊗,

we have that xuyv ∈ S⊗. Hence, by Remark 3.1.2, xuy ∈ S⊗, as required.

For the second statement, we show D∗ ⊆ S⊗ by proving Dn ⊆ S⊗ for all n ≥ 0,

using induction on n. First, assume there is a set X ⊆ S, and languages Dx, for

all x ∈ X such that D =
⋃
x∈X(xDx) and xDxy ⊆ S⊗ for all x, y ∈ X. Obviously,

D0 ⊆ S⊗, as D0 = {λ}. For any n ≥ 1, assume that Dn−1 ⊆ S⊗. Consider any word

w ∈ Dn, w can be written as xuv ∈ S⊗, with x ∈ X, u ∈ Dx, and v ∈ Dn−1. This

is because xu ∈ D, by assumption. Note here that, as xuy ∈ S⊗ for all x, y ∈ X

and u ∈ Dx, replacing y by x gives us xux ∈ S⊗. It follows that xu ∈ S⊗. If

n = 1 then v is empty and, in this case, w = xu ∈ S⊗, as required. If n > 1,

then v = yv1 for some y ∈ X and v1 ∈ Σ∗, by assumption. Note that yv1 ∈ S⊗ by

inductive hypothesis. Recall also that xu, xuy ∈ S⊗. It follows from Remark 3.1.2

that w = xuyv1 ∈ S⊗, as required.
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The following lemma provides a few properties of 〈Q,X〉, the first shows that

its ∗-Kleene closure is contained within the subword closure. The second statement

shows that each word in 〈Q,X〉 is in the subword closure, has a prefix in X, and a

suffix in Q>
X . The third and final statement dictates that if Q>

X is nonempty, then

for all x ∈ X, 〈Q,X〉x is nonempty as well.

Lemma 4.2.4 Let X,Q be nonempty subsets of S such that X ⊆ Q and [Q] is a

nontrivial strongly connected component of Trie(S)⊗.

1 〈Q,X〉∗ ⊆ S⊗

2 〈Q,X〉 = S⊗ ∩XΣ∗ ∩ Σ∗Q>
X

3 If Q>
X 6= Ø then, for all x ∈ X, we have that 〈Q,X〉x 6= Ø.

Proof. For the first statement, it is sufficient to show that x〈Q,X〉xy ⊆ S⊗, for

all x, y ∈ X. This is shown to be a sufficient condition for “〈Q,X〉∗ ⊆ S⊗” in the

second statement of Lemma 4.2.3. Let w ∈ 〈Q,X〉x. Then, δ⊗([x], w) ∈ [Q>
X ] and,

therefore, δ⊗([λ], xw) = [v] for some v ∈ Q>
X . This is due to one of the properties

of Trie(S)⊗ detailed in Remark 3.2.4. As y ∈ X, we also have δ⊗([v], y) 6= [sink].

This is because [sink] /∈ X, because X ⊆ Q, Q is a SCC of Trie(S)⊗, and it is

not possible for [sink] to be a part of any SCC. Hence, δ⊗([λ], xwy) 6= [sink] and,

therefore, xwy ∈ S⊗, as required.

For the second statement, let D = S⊗ ∩XΣ∗ ∩ Σ∗Q>
X . For the direction

D ⊆ 〈Q,X〉, note that every word w ∈ D is of the form xw1 = w2y, with x ∈ X

and y ∈ Q>
X . Then, as w2y ∈ S⊗, we have δ⊗([λ], w2y) = [y]. Replacing yw2 with

xw1, we have δ⊗([λ], xw1) ∈ [Q>
X ]. Which implies w1 ∈ 〈Q,X〉x, by definition. Since

w = xw1 and w1 ∈ 〈Q,X〉x, we have w ∈ 〈Q,X〉, as required. Conversely, consider

any word w ∈ 〈Q,X〉. This direction is proven if we show that w ∈ S⊗, w ∈ XΣ∗,

and w ∈ Σ∗Q>
X . Since w ∈ 〈Q,X〉 ⊆ 〈Q,X〉∗, by the first statement of this lemma,

w ∈ S⊗. Also, w = xw1 for some x ∈ X and w1 ∈ 〈Q,X〉x, by definition of 〈Q,X〉.

Hence, w ∈ XΣ∗. Moreover, δ⊗([x], w1) = [y] for some y ∈ Q>
X . This implies that
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xw1 must end with the word y. Hence, w ∈ Σ∗Q>
X .

For the third statement, take any x ∈ X. As Q>
X 6= Ø, we can pick any v ∈ Q>

X .

As both x, v ∈ Q, there is a path from [x] to [v] having some label w ∈ Σ∗. This

implies that w ∈ 〈Q,X〉x.

The next lemma establishes that any nonempty D with D∗ ⊆ S⊗ must be a

subset of some language of the form 〈Q,X〉.

Lemma 4.2.5 If D is a nonempty language whose words are of length at least k

and D∗ ⊆ S⊗, then

D ⊆ 〈Q,X〉

for some nonempty subsets Q,X of S with X ⊆ Q and [Q] a nontrivial strongly

connected component of Trie(S)⊗.

Proof. First note that by the first statement of Lemma 4.2.3, we can write

D =
⋃
x∈X

x(x−1D), such that X is the nonempty set of prefixes of length k of D and

x(x−1D)y ⊆ S⊗, for all x, y ∈ X. The rest of the proof consists of two parts, that

when combined establish the truth of the lemma. In the first part, we show that

X ⊆ Q such that [Q] is a nontrivial strongly connected component of Trie(S)⊗,

and in the second part we show that x−1D ⊆ 〈Q,X〉x, for all x ∈ X.

For the first part, consider any (possibly equal) x, y ∈ X. By Lemma 4.2.3, since

x(x−1D)y ⊆ S⊗ and y(y−1D)x ⊆ S⊗, there are words u1 ∈ x−1D and u2 ∈ y−1D

such that xu1y ∈ S⊗ and yu2x ∈ S⊗. We need to show that there are nonempty

paths from [x] to [y], and from [y] to [x]. This, however, follows easily from the

definition of Trie(S)⊗ and the fact that there are paths in this automaton with

nonempty labels xu1y and yu2x.

For the second part, consider any word w ∈ x−1D. Then, xw ∈ D. We need to

show that δ⊗([x], w) ∈ [Q>
X ]. It is sufficient to show that δ⊗([x], w) = [v] for some

v ∈ Q such that δ⊗([v], y) = [y] for all y ∈ X. Indeed, as xw ∈ S⊗, δ⊗([λ], xw) = [v]

for some v ∈ S, so δ⊗([x], w) = [v] and, therefore, is a path from [x] to [v]. Now,
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as xwx ∈ S⊗, we have that δ⊗([v], x) = [x] and, therefore, v ∈ Q. Now take any

y ∈ X. As xwy ∈ S⊗, we have that δ⊗([λ], xwy) 6= [sink], which implies that

δ⊗([v], y) = [y], as required.

Lemma 4.2.6 is the final technical lemma needed to be introduced before the

proof of Theorem 4.2.1 and describes the conditions under which Q>
X contains P>

Z ,

and vise versa.

Lemma 4.2.6 Let X,Z,Q, and P be nonempty subsets of S such that X ⊆ Q,

Z ⊆ P , where [Q] and [P ] are nontrivial strongly connected components of Trie(S)⊗,

and Q>
X 6= Ø. Then

1. If 〈Q,X〉 ⊆ 〈P,Z〉, then X ⊆ Z.

2. If Z ⊆ Q and 〈Q,X〉 = 〈Q,Z〉, then X = Z.

Proof. For the first statement, take any x ∈ X. As Q>
X 6= Ø, there is a word

w ∈ 〈Q,X〉x, refer to Lemma 4.2.4. So xw ∈ 〈Q,X〉 and, therefore, xw ∈ 〈P,Z〉.

Then, xw ∈ z〈Q,X〉x, for some z ∈ Z, which implies that z = x. Hence, x ∈ Z.

The second statement follows directly by applying the finite statement twice.

Having proved all of the necessary lemmata, we proceed with the proof of

Theorem 4.2.1.

Proof of Theorem 4.2.1. =⇒: Suppose that D is maximal with D∗ ⊆ S⊗. Then,

D ⊆ 〈Q,X〉 according to Lemma 4.2.5. At the same time, Lemma 4.2.4 states that

〈Q,X〉∗ ⊆ S⊗. As D is maximal, we have that, in fact, D = 〈Q,X〉. Let Y = Q>
X .

By Lemma 4.2.4, we have D = S⊗ ∩XΣ∗ ∩Σ∗Y , as required. Note also, that as D

is nonempty, we have that Y is nonempty as well, as required.

It remains to be shown that X is maximal with ”X ⊆ Q and Q>
X = Y ”. Suppose

that X ⊆ Z ⊆ Q and Q>
Z = Y . Then we need to show that Z = X. Because of the

second statement of Lemma 4.2.6, it suffices to show that 〈Q,X〉 = 〈Q,Z〉. This is
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because if this were the case, then D = S⊗ ∩ZΣ∗ ∩Σ∗Y = S⊗ ∩XΣ∗ ∩Σ∗Y , which

implies that every z ∈ Z is also in X. In turn, 〈Q,X〉 = 〈Q,Z〉 would follow by the

maximality of D if we show that D ⊆ 〈Q,X〉. Take any w ∈ D = 〈Q,X〉. Then

w = xw1 for some x ∈ X and w1 ∈ 〈Q,X〉x, which implies δ⊗([x], w1) ∈ [Q>
X ] =

[Q>
Z ]. Also, as x ∈ Z we have that w1 ∈ 〈Q,X〉x and, therefore, xw1 ∈ 〈Q,X〉, as

required.

⇐=: By the first statement of Lemma 4.2.4, we have that D∗ ⊆ S⊗. To show

that D is maximal, we assume D ⊆ B and B∗ ⊆ S⊗, for some language B, and

we deduce that B = D. By Lemma 4.2.5, we have that B ⊆ 〈P,Z〉, where Z and

P are nonempty subsets of S, Z ⊆ P , and [P ] is a nontrivial strongly connected

component of Trie(S)⊗. This implies that 〈Q,X〉 ⊆ 〈P,Z〉. It suffices to show that

P = Q and X = Z. By the first statement of Lemma 4.2.6, we get X ⊆ Z, so there

is a state belonging to both [Q] and [P ]. This implies P = Q as [P ] and [Q] are

strongly connected components. Also, obviously Q>
Z = P>

Z . As X is maximal with

“X ⊆ Q and Q>
X = Y ” and X ⊆ Z ⊆ Q, to show X = Z, it suffices to show that

Q>
X = Q>

Z .

First, by definition of Q>
X , X ⊆ Z implies Q>

Z ⊆ Q>
X . For the converse inclusion,

take any v ∈ Q>
X . Also, take any x ∈ X. As x, v ∈ Q, there is a path from [x] to

[v] having some label w. This implies w ∈ 〈Q,X〉x. As δ⊗([λ], xw) = [v], there is a

word w′ such that xw = w′v. So w′v ∈ 〈Q,X〉 and, therefore, w′v ∈ 〈Q,Z〉. Then,

by the second statement of Lemma 4.2.4, we have w′v ∈ Σ∗Q>
Z . Thus, v ∈ Q>

Z as

required.

The following two lemmata are necessary for the proof of Theorem 4.2.2, which

is similar to Theorem 4.2.1 except that it involves a fork state in the strongly

connected component [Q]. Recall from earlier that a state in an automaton is called

a fork state if there are at least two transitions going out of that state.
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Lemma 4.2.7 If [Q] is a nontrivial strongly connected component of Trie(S)⊗ then,

for every v ∈ Q and n ≥ 1, there is u ∈ Q and a path of length n from [u] to [v].

Proof. As [Q] is nontrivial, there exists a path of some length ` ≥ 1 from [v] to [v].

Obviously this path can be iterated arbitrarily many times to obtain a long path

of length at least n from [v] to [v]. Thus, there has to be some state [u] in that

sufficiently long path as required.

The following lemma describes properties that result from requiring that [Q]

contains a fork state. Since Theorem 4.2.2 involves a fork state in the SCC [Q], it

will be useful in the proof of the theorem.

Lemma 4.2.8 Let [Q] be a nontrivial strongly connected component of Trie(S)⊗

with Q ⊆ S

1 If [v] is a [Q]-fork state having transitions to some distinct states [x1], [x2] ∈

[Q], then 〈Q,X〉 is a nontrivial language, where X = {x1, x2}.

2 There is a subset X of Q such that 〈Q,X〉 is nontrivial if and only if a [Q]-fork

state exists.

Proof. For the first statement, the premise implies that there are distinct symbols

σ1, σ2 ∈ Σ such that δ⊗([v], σ1) = [x1] and δ⊗([v], σ2) = [x2]. Also, by Lemma 4.2.7,

there is a state [u] in [Q] and a word x of length k − 1 such that δ⊗([u], x) = [v].

This implies that x1 = xσ1 and x2 = xσ2, and, therefore, u ∈ Q>
X . Then, the sets

〈Q,X〉x1 and 〈Q,X〉x2 are nonempty, which implies that there are words w1, w2 such

that x1w1, x2, w2 ∈ 〈Q,X〉. Finally, as xqw1x2w2 6= x2w2x1w1, the language 〈Q,X〉

is nontrivial.

For the second statement, we consider both directions separately.

⇐=: Consider a [Q]-fork state [v]. Then, [v] has two outgoing transitions to some

states [x1], [x2] ∈ [Q]. By the definition of Trie(S)⊗, these two states are different.

By the first statement of this lemma, we have that 〈Q,X〉 is a nontrivial language,
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where X = {x1, x2}.

=⇒: Note that as 〈Q,X〉 is nontrivial, the set Q>
X is nonempty. So let v ∈ Q>

X .

If X has at least two distinct elements x1, x2 then, as there are paths from [v] to [x1]

and [x2], it follows that a [Q]-fork state must exist in these paths, as required. Now

suppose X = {x}, but assume to the contrary that no fork-state exists. Then the

component [Q] is a single cycle and, therefore, Q>
X consists of exactly one element,

which is v. Now there is one shortest path from [x] to [v] having some label w

and exactly one shortest path from [v] to [x] having some label u. Then it is

easy to see that all paths from [x] to [v] have labels in w(uw)∗ which implies that

〈Q,X〉 = xw(uw)∗, contradicting the premise that 〈Q,X〉 is nontrivial.

With all of the necessary lemmata proven, we can now proceed with the proof

of Theorem 4.2.2.

Proof of Theorem 4.2.2. =⇒: Apply Theorem 4.2.1: there are nonempty subsets

X, Y,Q of S such that D = 〈Q,X〉 = S⊗ ∩ XΣ∗ ∩ Σ∗Y and X, Y ⊆ Q, [Q] is a

nontrivial strongly connected component of Trie(S)⊗, Y = Q>
X and X is maximal

with “X ⊆ Q and Q>
X = Y .” It remains to show that [Q] contains a fork-state, but

this follows directly from the second statement of Lemma 4.2.8.

⇐=: This statement is a weaker statement than the one in Theorem 4.2.1. The

proof is identical.

4.3 Algorithms that obtain maximal D’s with D∗ ⊆ S⊗

We now consider algorithms that solve the following two problems. Each algorithm

from this section is taken from [18].

(P1) Given a subword constraint S, compute a nonempty language D that is

maximal with D∗ ⊆ S⊗.

(P2) Given a subword constraint S, compute a nontrivial language D that is

maximal with D∗ ⊆ S⊗.
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We solve these problems by considering the following subproblems.

(SP1) Given a nonempty subset X of Q, compute the set Q>
X .

(SP2) Given nonempty subsets Z, Y of Q such that Q>
Z = Y , compute X such

that Z ⊆ X and X is maximal with “X ⊆ Q and Q>
X = Y ”.

(SP3) Given nonempty subsets X, Y of Q compute a deterministic automaton

accepting S⊗ ∩XΣ∗ ∩ Σ∗Y .

For the remainder of this section, we abbreviate Trie(S)⊗ as T . We also establish

a bijective encoding from the words in Q onto the set Q̄ = {0, 1, . . . , |Q| − 1}, such

that for v ∈ Q, v̄ is the code of v ∈ Q̄. Hashing texhniques can be used in the

encoding and decoding functions, and can therefore be done in time O(1). Now we

describe the algorithm ASP1(T,X,Q) that solves (SP1).

ASP1(T,Q,X):

Take any pair v ∈ Q and x ∈ X, and test whether δ⊗([v], x) 6= [sink]. If, for the

current v, the test is true for all x ∈ X, then v is added in Q>
X . It can be seen that

this algorithm can be completed in O(|Q||X|k) time.

As it turns out, it is necessary for (SP1) solved multiple times to solve either

(P1) or (P2), as we require that our solution be maximal. We require a a prepro-

cessing step to compute a |Q| × |Q| Boolean array BQ such that BQ[v̄, v̄′] is true

if and only if δ⊗([v], v′) 6= [sink]. This array can be computed in time O(|Q|2), as

it involves |Q|2 steps and, in each step, we run the DFA T on an input word of

length k. Thus, the algorithm works as described earlier, except that now the test

δ⊗([v], x) 6= [sink] is reduced to whether BQ[v̄, x̄] is true. Therefore, assuming that

BQ is available, the algorithm runs in time O(|Q||X|).

To solve (SP2), we assume that Q>
Z = Y , and we compute X by initializing it to

Z, and then by repeatedly adding into X a new element from V = Q \X, provided

that the condition Q>
X = Y remains true. The algorithm that solves (SP2) is given

below.
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ASP2(T,Q, Z, Y ):

1. X = Z; V = Q \X

2. while (V 6= Ø)

3. do

4. Pick v ∈ V ;

5. Use ASP1(T,Q,X ∪ {v}) to compute Y ′ = Q>
X∪{v};

6. if (Y ′ = Y )X = X ∪ {v};

7. V = V \ {v}

8. return X;

Remark 4.3.1 Given a subset Z of Q, the above algorithm computes in time

O(|Q|2(|Q| − |Z|)) a subset X of Q such that Z ⊆ X and X is maximal with

“X ⊆ Q and Q>
X = Y ”.

We now describe the algorithm that solves (SP3), ASP3(T,Q,X, Y ).

ASP3(T,Q,X, Y ):

Assuming that T,Q,X, Y are all given. The required deterministic automaton T ′

that recognizes S⊗ ∩XΣ∗ ∩ Σ∗Y can be constructed by changing T in linear time

in terms of the sizes of the given structures.

– The states of T ′ are [sink], all states in [Q] and all [z] with a z as a prefix of

X.

– The initial state is [λ], and the set of terminal states in [Y ].

– The transition of T ′ are all of the transitions of T involving only the above

states.
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It is easy to see that the automaton T ′ accepts precisely those words in S⊗, that

have a prefix in X and a suffix in Q>
X . We are now ready to consider (P1) once

more, consider below A1, the algorithm that solves (P1). Note that A1 runs in

polynomial time.

A1(S):

1. Compute T = Trie(S⊗);

2. Compute the strongly connected components of T ;

3. Pick a nontrivial component [Q], exit if none exist.

4. Compute the Boolean array BQ.

5. Compute two nonempty subsets Z, Y of Q such that Q>
Z = Y ;

6. Use ASP2(T,Q, Z, Y ) to compute a maximal X with Q>
X = Y ;

7. Use ASP3(T,Q,X, Y ) to compute and return the automaton for

S⊗ ∩XΣ∗ ∩ Σ∗Y .

The algorithm that solves (P2) is similar to the one used for (P1). Note that

the only differences are found in steps 3 and 5 where we require a fork state to be

found. Similar to A1, A2 also can be completed in polynomial time.

A2(S):

1. Compute T = Trie(S⊗);

2. Compute the strongly connected components of T ;

3. Pick a SCC [Q] containing a [Q]-fork state, exit if none exist;

4. Compute the Boolean array BQ.

5. Compute two nonempty subsets Z, Y of Q such that |Z| ≥ 2 Q>
Z = Y ;

6. Use ASP2(T,Q, Z, Y ) to compute a maximal X with Q>
X = Y ;
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7. Use ASP3(T,Q,X, Y ) to compute and return the automaton for

S⊗ ∩XΣ∗ ∩ Σ∗Y .
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Chapter 5

DNA Code Words

In this chapter, we discuss and define the concept of a code, then we define and give

examples of different types of codes. We then introduce the concept of involution

mappings and combine this with codes to create involution codes. We conclude by

defining different types of involution codes and consider how each code is useful in

the field of DNA computing.

5.1 Codes

We introduce the concept of a code, which is a language such that every word in

the +-Kleene Closure of the language has a unique factorization. Put differently, a

language X is a code if every word in X+ can be written as a unique factorization of

words from X. We give a formalization of this concept below. Each of the following

definitions are taken from [2].

Definition 5.1.1 Let X ⊆ Σ+ be a language. Then X is a code if, for every word

w ∈ X+, there is exactly one factorization of words in X whose concatenation is

equal to w.

To illustrate the difference between languages that are codes and languages that

aren’t, we consider the following example.

Example 5.1.2 Let Σ = {a, b}.

Let X = {aa, ab, bb}.
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Also, let Y = {ab, b, bb}.

The language X is a code, as every word in X+ can be written as a unique factor-

ization of words inX. For instance, aabbabaa ∈ X+ and aabbabaa = (aa)(bb)(ab)(aa).

However, the language Y is not a code as abbb ∈ Y +, but abbb = (ab)(bb) =

(ab)(b)(b). This word has two distinct factorizations over Y +, disqualifying Y from

being a code. ♦

Observe that if a language contains the empty word, λ, then that language

cannot be a code. This is because for any word w ∈ L, w = wλ = λw. Moreover,

codes are not closed under complement. This is because for any code X, λ /∈ X.

Since λ /∈ X we have that λ ∈ Xc. Which makes Xc not a code.

Definition 5.1.3 Let X ⊆ Σ+ be a code. Then we call X:

A prefix code if and only if X ∩XΣ+ = Ø;

A suffix code if and only if X ∩ Σ+X = Ø;

An infix code if and only if X ∩ (Σ∗XΣ+ ∪ Σ+XΣ∗) = Ø; and

A comma-free code if and only if X2 ∩ Σ+XΣ+ = Ø.

Next, we present examples of codes that do not belong to each type of code

mentioned in Definition 5.1.3, as well as justifications for why.

Example 5.1.4 Let X1 = {a, b, aa, ab}, X2 = {a, b, aa, ba}, X3 = {a, b, ab}, X4 =

{aa, bb}. Then:

X1 is not a prefix code, as a ∈ X is a proper prefix of both aa, ab ∈ X;

X2 is not a suffix code, as a ∈ X is a proper suffix of both aa, ba ∈ X;

X3 is not an infix code, as a ∈ X is a proper prefix of both ab ∈ X and b ∈ X

is a proper suffix of ab ∈ X; and

X4 is not a comma-free code, as aa, bb ∈ X are proper subwords of

aaaa, bbbb ∈ X2. ♦

Next, we present examples of codes that do belong to each type of code mentioned

in Definition 5.1.3, as well as justifications for why.

42



Example 5.1.5 Let Y1 = {a, ba, bb}, Y2 = {a, ab, bb}, Y3 = {aa, ab, bb}, Y4 =

{bba, abaa}. Then:

Y1 is a prefix code, as no code word in Y1 is a proper prefix of the other code

words;

Y2 is a suffix code, as no code word in Y2 is a proper suffix of the other code

words;

Y3 is an infix code, as no code word in Y3 is a proper prefix or a proper suffix of

the other code words; and

Y4 is a comma-free code, as no code word in Y4 is a proper subword of the

other words in Y 2
4 = {bbabba, bbaabaa, abaabba, abaaabaa}. For every w ∈ Y4,

pwp /∈ Y 2
4 for all p, q ∈ Σ+. ♦

5.2 Involution Mappings

Because of how single-stranded DNA molecules attach together (or hybridize) by

forming bonds between complementary strands, any map of DNA hybridization

must account for these complementary bonds. We introduce the concept of an

involution which is a mapping that is equivalent to the identity mapping when

composed with itself. A formal definition of an involution is given below. We also

define two different subtypes of involution mappings.

Definition 5.2.1 A mapping θ : Σ→ Σ is called an involution mapping if

θ2(a) = θ(θ(a)) = a,∀a ∈ Σ.

An involution mapping is called morphic if θ : Σ∗ → Σ∗ such that

θ(uv) = θ(u)θ(v) for every u, v ∈ Σ∗.

An involution mapping is called antimorphic if θ : Σ∗ → Σ∗ such that

θ(uv) = θ(v)θ(u) for every u, v ∈ Σ∗.

Example 5.2.2 Let θ be a morphic involution mapping with θ(a) = b and
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θ(b) = a. Then,

θ(bbab) = θ(b)θ(b)θ(a)θ(b) = aaba

Now let θ be an antimorphic involution mapping with θ(a) = b and θ(b) = a.

Then,

θ(bbab) = θ(b)θ(a)θ(b)θ(b) = abaa ♦

Just as Σ+ and Σ∗ can be extended to languages, we can extend involution

mappings to languages as well by mapping them word by word.

Definition 5.2.3 Let w ∈ L be a word in some language over an alphabet Σ, and

let θ be an involution mapping. Then,

θ(L) =
⋃
w∈L

θ(w).

We give an example of the involution mapping of a language L below.

Example 5.2.4 Say L = {abb, bbbab}, and Σ = {a, b}. If θ is a morphic involution

mapping with with θ(a) = b and θ(b), then θ(L) = {θ(abb)} ∪ {θ(bbbab)}

= {θ(a)θ(b)θ(b)} ∪ {θ(b)θ(b)θ(b)θ(a)θ(b)} = {baa, aaaba}.

Whereas, if θ is an antimorphic involution mapping, then θ(L) = {θ(abb)} ∪

{θ(bbbab)} = {θ(b)θ(b)θ(a)} ∪ {θ(b)θ(a)θ(b)θ(b)θ(b)} = {aab, abaaa}. ♦

As mentioned earlier, the map of DNA hybridization, ν, is an involution. It

is defined by ν(A) = T , ν(T ) = A, ν(G) = C, and ν(G) = C over the DNA al-

phabet ∆ = {A, T,G,C}. We can verify that ∆ is an involution mapping. Note

that ν(ν(A)) = ν(T ) = A, ν(ν(T )) = ν(A) = T , ν(ν(G)) = ν(C) = G, and

ν(ν(C)) = ν(G) = C.

Watson-Crick complementarity dictates that different bonded DNA strands have

a reverse orientation; that is to say, the 5′ end of one strand attaches to the 3′

end of the other. We account for this reversing by defining another involution

ρ : ∆∗ −→ ∆∗ inductively. For every x ∈ ∆, ρ(x) = x, and for every u ∈ ∆∗,

ρ(xu) = ρ(u)ρ(x). In general, for u, v ∈ ∆∗, ρ(uv) = ρ(v)ρ(u).
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Figure 5.1: DNA molecule from Example 5.2.5.

Watson-Crick complementary is represented by the composition of the involu-

tions ν and ρ, with ν◦ρ = ρ◦ν. For a given DNA strand, we define the Watson-Crick

complement as the antimorphic involution θ̂ : ∆∗ −→ ∆∗ such that θ̂ = ρ◦ν = ν ◦ρ.

The next example applies θ̂ to a DNA strand, and demonstrates the fact that θ̂ is

an involution. Figure 5.1 provides a visual representation of what is happening on

a molecular level.

Example 5.2.5 The single strand 5′ − TCAGTTCAAAC − 3′ would map to

5′ −GTTTGAACTGA− 3′.

θ̂(TCAGTTCAAAC) = θ̂(C)θ̂(A)θ̂(A)θ̂(A)θ̂(C)θ̂(T )θ̂(T )θ̂(G)θ̂(A)θ̂(C)θ̂(T )

= GTTTGAACTGA

The fact that θ̂ is an antimorphic involution is demonstrated below.

θ̂(θ̂(TCAGTTCAAAC)) = θ̂(θ̂(C)θ̂(A)θ̂(A)θ̂(A)θ̂(C)θ̂(T )θ̂(T )θ̂(G)θ̂(A)θ̂(C)θ̂(T ))

= θ̂(GTTTGAACTGA)

= θ̂(A)θ̂(G)θ̂(T )θ̂(C)θ̂(A)θ̂(A)θ̂(G)θ̂(T )θ̂(T )θ̂(T )θ̂(G)

= TCAGTTCAAAC ♦
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5.3 Involution Codes

In this section, we combine involutions and codes to define and study codes that are

generalizations of the involution map of DNA. Each of these definitions are taken

from [12]. In each example, θ is either a morphic or antimorphic involution with

θ : {a, b} −→ {a, b}, where θ(a) = b and θ(b) = a. Each involution code is designed

to prevent a certain kind of unwanted hybridization. After defining each involution

code, we give an example of that code and describe the unwanted hybridization that

that code prevents.

Definition 5.3.1 The code X ⊆ Σ+ is θ-infix if and only if

Σ∗θ(X)Σ+ ∩X = Ø and Σ+θ(X)Σ∗ ∩X = Ø.

Alternatively, a code is θ-infix if no word in θ(X) is a proper subword of any

word in X.

Example 5.3.2 Let θ be a morphic involution.

The code X = {bb, bab, abbb, bbabbab} is θ-infix as θ(X) = {aa, aba, baaa, aabaaba}

and no code word in θ(X) is a proper subword of any code word in X. The code

Y = {aaab, bbbaa} is not a θ-infix code because θ(Y ) = {bbba, aaabb} and

bbba ∈ θ(Y ) is a proper subword of bbbaa ∈ Y . ♦

The unwanted hybridization that θ-infix codes prevent is the one where one

strand is a complementary subword of another. A visual representation of the

unwanted hybridization on the molecular level is given in Figure 5.2.

Definition 5.3.3 We call X ⊆ Σ+ a θ-subworb-k code if and only if for all u ∈ Σk,

Σ∗uΣiθ(u)Σ∗ ∩X = Ø

for i ≥ 1.

Put differently, a θ-subworb-k code does not contain complemetary k-length

subwords seperated by one or more letters.
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Figure 5.2: Type of hybridization that is prevented by θ-infix codes.

Figure 5.3: Type of hybridization that is prevented by θ-subword-k codes.

Example 5.3.4 Let θ be an antimorphic involution. The code

X = {abbababa, bbbabbab} is θ-subword-k for k > 3, whereas the code

Y = {baababbab, aabaaba} is not because baa ∈ Σ3, θ(baa) = θ(a)θ(a)θ(b) = bba,

and (baa)ba(bba)b ∈ Y . Note however, that Y is θ-subword-k for k > 4. ♦

The unwanted hybridization that θ-subword-k codes prevent is the one where

one strand wraps onto itself and forms a hairpin. A visual representation of the

unwanted hybridization on the molecular level is given in Figure 5.3.

Definition 5.3.5 The code X ⊆ Σ+ is a θ-k code if and only if

Subk(X) ∩ Subk(θ(X)) = Ø

for k > 0.

In other words, a θ-k code has no k-length subwords that are Watson-Crick

complements of k-length subwords of other code words.
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Figure 5.4: Type of hybridizations that are prevented by θ-k codes.

Notice how closely related θ-k codes seem to be to the subword closure. Indeed,

the subword closure was originally introduced by Kari et al. in [14], as a character-

ization for maximal bond-free languages, which themselves were introduced earlier

by Jonoska and Mahalingam in [11] as θ-k codes.

Example 5.3.6 Let θ be a morphic involution. If X = {abba, babba}, it follows

that θ(X) = {baab, abaab}. The code X is not θ-2, as Sub2(X) = {ab, ba, bb} and

Sub2(θ(X)) = {aa, ab, ba}. So Sub2(X) ∩ Sub2(θ(X)) = {ab, ba} 6= Ø. Note that

X is θ -3 however. As Sub3(X) = {abb, bab, bba} and Sub3(θ(X)) = {aab, aba, baa},

meaning Sub3(X) ∩ Sub3(θ(X)) = Ø. ♦

The unwanted hybridizations that θ-k codes prevent are many, and are depicted

in Figure 5.4. Notice in Example 5.3.6, X is a θ-4 code. When k = 4, Sub4(X) =

{abba, babb} and Sub4(θ(X)) = {baab, abaa}. The intersection of these two sets is

empty, i.e. Sub4(X) ∩ Sub4(θ(X)) = Ø. Similarly, for k = 5, Sub5(X) = {babba}

Sub5(θ(X)) = {abaab}. The intersection of these two sets are also empty, and

48



therefore X is θ-5. This observation can be generalized for k > 3, as per Proposition

5.3.7.

Proposition 5.3.7 Let X ⊆ Σ+ be a θ-k code. Then X is a θ-k′ code for all k′ > k.

Proof. Assume that X is a θ-k code. In other words, Subk(X) ∩ Subk(θ(X)) =

Ø. Let k < k′. Suppose that X is not a θ-k′. This implies that Subk′(X) ∩

Subk′(θ(X)) 6= Ø. It follows that there exists a w ∈ Σk′ , x ∈ X,y ∈ θ(X), and

u1, u2, v1, v2 ∈ Σ∗ such that x = u1wv1 and y = u1wv2. The word w can be

factored into individual symbols from Σ, i.e. wi ∈ Σ, x = u1w1w2...wkwk+1...wk′v1

and y = u2w1w2...wkwk+1...wk′v2. Notice that wk+1...wk′v1, wk+1...wk′v2 ∈ Σ∗ where

wi ∈ Σ. This implies that Subk(X) ∩ Subk(θ(X)) 6= Ø, which is a contradiction

with the assumption that X is a θ-k code. Therefore, X is a θ-k′ code for all

k′ > k.

These θ-k codes are extremely desirable. This is because the definition of θ-k

codes implies that both X and θ(X) are θ-infix and θ-subword-k as well. For this

reason, θ-k codes also prevent all unwanted hybridizations that we have discussed

thus far.

Proposition 5.3.8 Let X ⊆ Σ+, if X is a θ-k code, then X and θ(X) are both

θ-infix and θ-subword-k.

Proof. θ-infix: Suppose that x is a θ-k code but it is not a θ-infix code. Then there

exists x, y ∈ X and u, v ∈ Σ∗ (where u and v cannot both be the empty word λ),

such that x = uθ(y)v. It follows that θ(y) ∈ Sub(x) ⊆ Sub(X). This means that

there exists a k < |x| such that Subk(X) ∩ Subk(θ(X)) 6= Ø. This contradicts X

being a θ-k code. Therefore, X is a θ-infix code.

Similarly, if X is a θ-k, then θ(X) is a θ-infix code.

θ-subword-k: Suppose that X is a θ-k code but is not a θ-subword-k code. Let

θ be a morphic involution. This means that there exists u ∈ Σk, such that
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Σ∗uΣiθ(u)Σ∗ ∩X 6= Ø for some i > 1. In other words, there exists a, b ∈ Σ∗, c ∈ Σi

and x ∈ X such that aucθ(u)b = x. This equality implies θ(u) ∈ Sub|θ(u)|(θ(x)).

Apply θ to x, since θ is morphic we obtain θ(a)θ(u)θ(c)uθ(b) = θ(x). This implies

that θ(u) ∈ Sub|θ(u)|(θ(x)). Since θ(u) ∈ Sub|θ(u)|(x) ∩ Sub|θ(u)|(θ(x)), this contra-

dicts that X is a θ-k code. Therefore, X is a θ-subword-k code.

Similarly, if X is a θ-k code, then θ(X) is a θ-subword-k code.
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Chapter 6

Strictly Locally Testable Languages and FE Systems

In this chapter we define and discuss the two subclasses of regular languages known

as strictly locally testable languages and locally testable languages. We then demon-

strate that the subword closure is SLT. Next we define and discuss the concept of

forbidders and enforcers, forbidding and enforcing sets, and the languages that for-

bidding and enforcing sets create (f -languages and e-languages, respectively). We

then discuss the languages that result from combining forbidding and enforcing

languages (fe-languages) and provide examples of each type of language that we

discuss. We then make a connection between fe-languages and locally testable lan-

guages. We conclude by demonstrating that the subword closure is an fe-language.

6.1 SLT and LT Languages

Originally studied by Mcnaughton and Papert in [21], locally testable languages (or

LT languages) are a family of regular languages whose membership is determined

by the triple (Prefk(w), Suffk(w), Intk(w)). For k ≥ 0 and w ∈ Σ∗ such that

|w| ≥ k (or w ∈ Σ≥k), let Intk(w) (interior subwords) denote the set of subwords of

w of length k that occur at other than prefix and suffix positions. We can extend

Intk to languages. Let L be a language, then Intk(L) =
⋃
w∈L Intk(w). We give

a formalized definition of locally testable languages, as well as k-testable languages

in the definition below.
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Definition 6.1.1 A language L ⊆ Σ is called k-testable if and only if for any

words x, y ∈ Σ∗, the conditions Prefk(x) = Prefk(y), Suffk(x) = Suffk(y), and

Intk(x) = Intk(y) imply that x ∈ L if and only if y ∈ L. A language is called locally

testable if it is k-testable for some integer k ≥ 1.

A language is strictly locally testable (or SLT) when we can specify sets P , S,

and I of “allowed” prefixes, suffixes and internal subwords such that a word is in the

language if and only if its subwords are within these sets. A formalized definition

of strictly locally testable languages, as well as strictly k-testable languages is given

below.

Definition 6.1.2 A language L ⊆ Σ∗ is called strictly k-testable if there exist finite

sets P, S, I ⊆ Σ∗ such that for all w ∈ Σ≥k, we have w ∈ L if and only if

Prefk(w) ⊆ P , Suffk(w) ⊆ S, and Intk(w) ⊆ I. A language is called strictly

locally testable if it is strictly k-testable for some integer k ≥ 1.

By the definition of SLT languages, it can be seen that LT languages are the

boolean closure of SLT languages. In fact, SLT ⊆ LT . As such, there are languages

that are LT, but not SLT. We give an example of such a language below.

Example 6.1.3 Let Σ = {a, b}. The language L = aaΣ∗aa ∪ bbΣ∗bb is 2-testable

and hence, locally testable. A word w belongs to L if and only if Int2(w) 6= Ø and

Pref2(w) = Suff2(w) = {aa} or Pref2(w) = Suff2(w) = {bb}. The language L,

however, is not SLT. As both aauaa and bbvbb belong to L for any u, v ∈ Σ∗, any

triple (P, S, I) defining L must allow both aa and bb as a prefix, as well as a suffix.

Thus, P = S = {aa, bb}. Also, I = Σ2 since any u, v ∈ Σ∗ are allowed. Thus, aazbb

will be allowed for any z ∈ Σ∗, contradicting the definition of L. This shows that L

is not strictly 2-testable and, therefore, not strictly k-testable for all k ≥ 2. ♦

6.2 Subword Closure as an SLT Language

Recall from Section 3.2 the subword closure of a nonempty, finite set of words

(subword constraint) S. Also recall from Theorem 2.3.6 that a language is regular
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if it is accepted by a DFA. In [14], S⊗ is shown to be regular by the DFA Trie(S)⊗.

In this section we determine that the subword closure belongs to the strictly locally

testable subclass of regular languages.

Proposition 6.2.1 Let X be a subword constraint, a nonempty, finite set of words

of length k. The subword closure of X, X⊗, is strictly locally testable with P = X,

S = X, and I = X.

Proof. Suppose w ∈ X⊗, |w| ≥ k.

By definition of subword closure, we have that Prefk(w) ⊆ X, Suffk(w) ⊆ X,

and Intk(w) ⊆ X.

Conversely, suppose w ∈ Σ∗, with |w| ≥ k and with Prefk(w) ⊆ X,

Suffk(w) ⊆ X, and Intk(w) ⊆ X. Since Prefk(w) ∪ Suffk(w) ∪ Intk(w) =

Subk(w), we have that Subk(w) ⊆ X. Therefore, w ∈ X⊗.

Thus, X⊗ is strictly locally testable with P = X, S = X, and I = X.

By Proposition 6.2.1 we can see that the subword closure is indeed in the family

of strictly locally testable languages. Note that Proposition 6.2.1 does not imply

that the maximal languages D we characterized in Chapter 4 are SLT. We conjecture

that this is the case but proving it requires further research.

6.3 Fe-systems

When they were originally defined in [5], [6], and [7] a forbidding-enforcing system

(fe-system) was used to define a family of languages. We instead consider the fe-

systems model introduced in [8] in which an fe-system defines a single language.

A forbidding set F is a family of finite nonempty subsets of Σ+, each element of

which is called a forbidder. We say a word w is consistent with a forbidder F , if

F * Sub(w). A word w is consistent with a forbidding set F if w is consistent with

all F ∈ F. We denote the set of all words consistent with F, L(F). Such a language

is called a forbidding language or f -language. Note that L(F) = Σ∗ if and only if
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F = ∅ and that λ ∈ L(F) for every F. An example of a forbidding set can be found

below.

Example 6.3.1 Let Σ = {a, b} and F = {{ambn}, {bman} | m = n}.Then, L(F)

contains words such that any consecutive string of a’s and b’s must be of different

lengths. ♦

We call any pair (x, Y ) an enforcer if x ∈ Σ∗ and Y is a finite nonempty subset

of Σ+ such that x is a proper subword of each y ∈ Y . If x ∈ Σ+, a word w satisfies

an enforcer (x, Y ) if every occurrence of x in w is embedded in some word from Y .

In other words, if w = uxv for some u, v ∈ Σ∗ then there exists y ∈ Y and

u1, u2, v1, v2 ∈ Σ∗ such that u = u1u2, v = v2v1, and y = u2xv2.

If x /∈ Sub(w) then w satisfies the enforcer (x, Y ) trivially. When x = λ, the

enforcer (λ, Y ) is called brute. In this case, a word w satisfies the enforcer if there

exists a word y ∈ Y such that y is a subword of w.

We call a set of enforcers E an enforcing set. We say w satisfies E if and only if

w satisfies every enforcer in E. The language of all words that satisfy E is denoted

by L(E) and is called an enforcing language or e-language. Note that L(E) = Σ∗ if

and only if E = ∅.

Example 6.3.2 Let Σ = {a} and L = {a2n | n ≥ 0}. Then, the enforcing set

E = {(λ, {a, aa} ∪ {(a2i+1, {a2i+1}) | i ≥ 1} defines L, i.e. L = L(E). ♦

We combine both forbidding sets and enforcing sets into a single system. A

forbidding-enforcing system is an ordered pair (F,E) such that F is a forbidding set

and E is an enforcing set. The language L(F,E) consists of all words that are both

consistent with F and satisfy E, i.e. L(F,E) = L(F) ∩ L(E). Such a language L is

called a forbidding-enforcing language or an fe-language.

Example 6.3.3 Consider the following fe-languages, L1 and L2.

1. Let F = {{ba}} and E1 = {(λ, {a})} ∪ {(ai, {ai+1, aibi}) | i ≥ 1}. Then,

L1 = L(F,E1) = {anbm | n ≤ m and n,m ≥ 1}.
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2. Let F = {{ba}} and E2 = {(λ, {b})} ∪ {(bi, {bi+1, aibi}) | i ≥ 1}. Then,

L2 = L(F,E2) = {anbm | n ≥ m and n,m ≥ 1}. ♦

The following remark gives some useful properties of forbidding and enforcing

sets and the languages that they define.

Remark 6.3.4 Let F and F′ be forbidding sets, E and E′ be enforcing sets, and u

and v be words.

1. If u ∈ Sub(w) and w is consistent with F, then u is consistent with F.

2. If F′ ⊆ F, then L(F) ⊆ L(F′).

3. If E′ ⊆ E, then L(E) ⊆ L(E′).

4. If F′ ⊆ F and E′ ⊆ E, then L(F,E) ⊆ L(F′,E′).

5. L(F ∪ F′) = L(F) ∩ L(F′)

6. L(E ∪ E′) = L(E) ∩ L(E′)

7. L(F ∪ F′,E ∪ E′) = L(F,E) ∩ L(F′,E′)

Consider F, E1, and E2 from Example 6.3.3. By property 7 of Remark 6.3.4, we

have that L = L1 ∩ L2 = {anbn | n ≥ 1} = L(F,E ∪ E2).

6.4 Finite Language FE-Systems and SLT

As it turns out, the languages that are defined by finite forbidding sets are reg-

ular languages. In fact, it can be shown that the languages that are defined by

finite forbidding sets are locally testable languages, a subclass of regular languages.

Consider the following theorem taken from [9].

Theorem 6.4.1 Let F be a finite forbidding set. Then L(F) is a locally testable

language.
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Proof. Let F be a finite forbidding set. If F = Ø, then L(F) = Σ∗. The language

Σ∗ is strictly locally testable, and hence, locally testable. Suppose F = {{u}}, i.e.

F has only one forbidder F = {u} which is a singleton. Then, L(F) = Σ∗ \ Σ∗uΣ∗.

Let |u| = k and P = S = I = Σk \ {u}. Since every word w ∈ L(F) with |w| ≥ k

has a k-length prefix and a k-length suffix that are not u and none of its interior

subwords are u, it follows that L(F) is strictly locally testable. Consider a nonempty

finite F with not necessarily singleton forbidders. Each forbidder F ∈ F prohibits

the combined presence of all its elements as subwords, so it defines the regular

language L(F ) =
⋃
F∈F Σ∗ \ Σ∗uΣ∗, a union of local languages. Then, by Remark

6.3.4, L(F) =
⋂
F∈F L(F ), i.e., L(F) is a finite intersection of finite unions of strictly

locally testable languages and is therefore locally testable.

Similar to finite forbidding sets, the languages that are defined by finite enforcing

sets are also locally testable languages.

Theorem 6.4.2 Let E be a finite enforcing set. Then L(E) is locally testable.

Proof. Assume that E is finite. If E = Ø, then L(E) = Σ∗, which is strictly locally

testable, and hence, locally testable. Otherwise, E contains at least one enforcer

(x, Y ). Let k be twice the length of the longest string in any enforcer E. Thus,

k = 2·max{|y| | y ∈ Y for some (x, Y ) ∈ E}. As E is finite and nonempty, k is

well-defined.

Consider w ∈ A≥k. We show that the sets Prefk(w), Suffk(w), and Intk(w)

determine whether w ∈ L(E), and therefore, we show that L(E) is locally testable.

First, we consider enforcing sets without brute enforcers. For every (x, Y ) ∈ E

we have to make sure that every occurrence of x in a word is embedded in some

y ∈ Y . We prove that L(E) is strictly locally testable by specifiying the sets P, S,

and I. The set I consists of all words of length k which either don’t have x in the

middle or every occurrence of x in the middle is enclosed by some y ∈ Y . The set P

consists of all words that either don’t contain x in the first half or every occurrence

of x in the first half is in some y ∈ Y . S can be defined similarly.
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In the case that E contains brute enforcers, for every enforcer (λ, Y ), we deter-

mine membership of w by considering the sets Prefk(w), Suffk(w), and Intk(w)

and checking whether there is a word in any of these sets that has some y ∈ Y as a

subword. Such a language is locally testable.

Following directly from Theorem 6.4.1, Theorem 6.4.2, and Remark 6.3.4, we can

conclude that the languages that are defined by fe-systems are regular languages,

and further, they are locally testable languages, as locally testable languages are

closed under intersection.

6.5 Subword Closure Defined by a Finite FE-System

Recall from Chapter 3 the subword closure of a subword constraint S,

S⊗ = {w ∈ Σ∗ | if u is a subword of w and |u| = k, then u ∈ S}.

In this section we attempt to determine whether or not S⊗ is an fe-language.

Consider the following theorem from [9]:

Theorem 6.5.1 Let L be a strictly locally testable language, then there exists a

finite fe-system (F,E) such that L = L(F,E).

Proof. Assume that L is strictly locally testable. Then there exists k ≥ 1 and

sets P, S, I ⊆ Σk such that Prefk(L) ⊆ P , Suffk(L) ⊆ S, and Intk(L) ⊆ I. We

construct a finite fe-system (F,E) and show that L = L(F,E). The construction

below considers the various intersections and unions among the three sets. If any

k-letter subword is not in any of the three sets, it must be a forbidden subword

(F1). The forbidders F2 ensure that if a k-letter subword is a prefix-only and not a

suffix or an interior subword, then it appears at the beginning of the word only, and

hence, any extension to the left is forbidden. Similarly, F3 forbids any extension to

the right of subwords which are suffixes only. If a k-letter subword is not an interior
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subword, but it is both a prefix and a suffix, then simultaneous extension on both

sides is forbidden by F4. Construct:

F1 = {{u} | u ∈ Σk \ (P ∪ S ∪ I)};

F2 = {{au} | u ∈ P \ (S ∪ I) and a ∈ Σ};

F3 = {{ub} | u ∈ S \ (P ∪ I) and b ∈ Σ}; and

F4 = {{aub} | u ∈ (P ∩ S) \ I and a, b ∈ Σ}.

We construct enforcing sets to ensure that interior subwords which are not pre-

fixes or suffixes are indeed interior and are being extended on both sides (E1). Sim-

ilarly, suffixes that are not prefixes must be extended to the left (E2) and prefixes

that are not suffixes must be extended to the right (E3). So that:

E1 = {(x, {axb | a, b ∈ Σ}) | x ∈ I \ (P ∪ S)};

E2 = {(x, {ax | a ∈ Σ}) | x ∈ S \ P}; and

E3 = {(x, {xb | b ∈ Σ}) | x ∈ P \ S}.

Then, let F =
⋃4
i=1 Fi, and let E =

⋃3
i=1 Ei. By the above construction,

L = L(F,E).

Recall from Proposition 6.2.1, that the subword closure is SLT. Therefore, by

Theorem 6.5.1, there exists an fe-system (F,E) such that S⊗ = L(F,E). As it

turns out, S⊗ isn’t only an fe-language, it is an f -language. We provide a finite

forbidding system that defines a language equal to S⊗.

Proposition 6.5.2 Let S be a subword constraint, a nonempty set of k-length

words. The subword closure of S, S⊗, is an f -language.

Proof. Follows almost directly from Theorem 6.5.1. After considering each forb-

bider and enforcer in the construction, we are left with only one forbbider that is

nonempty, and no enforcers that are nonempty. Thus, if F = {{w} | w ∈ Σk \ S},

then L(F) = S⊗.

Note that this proof of Proposition 6.5.2 requires the fact S⊗ is SLT. It is possible

to show that S⊗ is an f -language without this fact. It can be done by showing that
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L(F) = S⊗. Note also that by Theorem 6.4.1, we have that S⊗ is LT. This is

consistent with what we found earlier, as SLT languages are contained within LT

languages.
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Chapter 7

Applications

In this chapter we discuss some real-world applications of subword closed languages.

We also discuss applications for the maximal languages D that we have given a com-

plete structural characterization. We give specific examples of these applications.

7.1 Applications of Subword Closed Languages

The subword closure was originally introduced by Kari et al. in [14] as a character-

ization for maximal bond-free languages, which themselves were introduced earlier

by Jonoska and Mahalingam in [11] as θ-k codes. In Section 5.3 we briefly discussed

why θ-k codes are so desirable, as they prevent all of the unwanted hybridizations

that θ-infix codes and θ-subword-k codes prevent, as well as some that they do not.

This property of the subword closure disallowing unwanted hybridizations has been

tested extensively in [19].

DNA coding, or sequence design, became popular after researchers became aware

of the possibility of DNA computing [1]. This area of study has produced many

different methods for solving complex problems. These include, but are not limited

to; k-colorability problems and satisfiabiliy problems.

The subword closure in particular can be used for other, non-computational

purposes. For example, in DNA databases, data is generally encoded as single-

stranded DNA molecules and then stored in DNA test tubes, see Figure 7.1. In

this use, it is preferable that no DNA molecules in the test tubes contain two short
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Figure 7.1: Each arrow represents a DNA strand with 5’ to 3’ orientation.

chains of k-length pairwise complementary nucleotides, as this would allow for a

bond to form between these molecules, possibly causing corruption, and, therefore,

a potential loss of data. Refer to Section 5.3 for examples of such a bonds.

The subword closure is also able to preserve properties in it’s subwords that the

subword constraint had. Consider the subword constraint

S = {TCT,GTC,AAC,GAA, TTA,AGG,CGA}.

In this example, the symbols A, G, C, and T represent the nitrogenous bases ade-

nine, guanine, cytosine and thymine, respectively. S is constructed in such a way

that no two words in S are complementary. For example, AGA is not found in S

because it is the complement of TCT . As a result, the subword closure S⊗ contains

arbitrarily long words that contain no two subwords of length at least 3 that are

complementary. For example, the word TCT (GAA)n ∈ S⊗, for all positive integers

n.

Another example is provided by Zhang in [22]. Let S be a set of words with a

certain continuity constraint; that is, words of length k in which no more than a

certain number of consecutive a/t, or g/t nucleotides occur. Then, S⊗ will contain

only words whose k-length subwords contain no more than a certain number of of

consecutive a/t, or g/t nucleotides.
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7.2 Applications of maximal D’s with D∗ ⊆ S⊗

These languages D, that are maximal with the property that D∗ ⊆ S⊗, are useful

when encoding data onto strands of DNA molecules.

Because the maximal languages D are represented as finite automata, it is easy

to compute for any given `, the set D(`) of all words in D of length `. If we need to

encode sequences of n different objects, we can choose an ` such that D(`) contains

at least n words w1, . . . , wn of length `. Then, any data sequence encoded into a

DNA strand of the form wi1wi2 . . . which is in D(l)∗, is also in S⊗.

Consider the following example taken from [18]. Say that we want to store an

8-bit color image of size 1024 × 512 pixels into S⊗. One way would be to choose

a subset of appropriate size D1 of S⊗, and to define 1024 single DNA strands

w0, w1, . . . , w1023, with each one corresponding to one pixel row of the image. We

have that each wi is of the form

wi = wi,0wi,1wi,2 . . . wi,512

such that each wij is in D1(l), the word wi,0 encodes the row number, and each wi,j

with j ≥ 1 encodes the color of the pixel (i, j − 1). It is conceivable that data of

any form can be encoded onto single stranded DNA molecules. Storing data in this

way has advantages over traditional methods, as data stored this way requires less

space and less power.
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Chapter 8

Concluding Remarks

We have discussed the problem of characterizing certain maximal languages within

the subword closure of a given subword constraint. The characterization presented

is a complete structural characterization. However, there might be several such

maximal languages within the subword closure. Thus, the problem of computing

“good” languages according to a preferred criteria, for example, that there are a

large number of words in the maximal language of a given length, requires additional

research. Also, the maximal language is not required to be a code. Thus, the

problem of finding such maximal languages within the subword closure that are

also codes requires further research. We have also shown that the subword closure

is SLT. The relationship between the maximal languagesD or their *-Kleene closures

D∗ and SLT is not known. This is a topic of our future research.
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