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(Top) Bulk La,_Sr MnO, Phase diagram. (Bottom) As expected La, ;Sr; ;MnO; when grown as a random alloy
[Hemberger et al, PRB 66, 094410 (2002).] where La and Sr atoms randomly occupy the A-site of the perovskite

(Bottom) Mechanism for double exchange interaction. structure, has a conducting (and ferromagnetic) ground state. (Top)

Replacing half of the La atoms with Y atoms, La, ;Y 351, sMnO;,
leads to an insulating ground state. While both La and Y are in a 3+
configuration, the 1onic size effects that leads to octahedral distortions
play a key role in modifying the electronic properties. (Middle)
Growing this in the form of a superlattice, LaMnO;-YMnO;-SrMnOQO;,

* La, Sr MnO;, has been extensively documented in bulk crystals
with respect to temperature and strontium concentration.

* Undoped LaMnO; is a Mott insulator that 1s paramagnetic at high
T and antiferromagnetic at low 7.

* Around x = 0.4, La, Sr MnO; is a paramagnetic insulator at LaMnO;, YMnO;, STMnO, random alloy the ordered interfaces influence the electronic transport leading to
higher temperatures but at lower temperatures 1t transitions to a Reflection High Energy Electron Diffraction (RHEED) images taken in situ during the growth conducting tendencies and associated magnetic order to appear around
ferromagnetic conductor. of the films indicate epitaxial layer-by-layer growth. RHEED 1mages during the growth of a 100 K.

o This ferromagnetic-conducting state is kinetically favorable supercell: (left) end of LaMnO; monolayer, (left center) end of YMnO; monolayer, (right
around x = 0.4 at lower temperatures because the double center) end of SrMnQO; monolayer. Surface reconstructions observed in RHEED patterns Acknowledgements
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