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Abstract. The utilization of Clark’s transformation in the 
estimation of the power system frequency provides more 
robustness to the classical single-phase methods. One of the 
advantages of this technique is that extract the frequency 
information contained in the three-phase system. This is 
particularly important when asymmetric sag generates a zero 
voltage in one of the three phases.  
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1. Introduction 
 
Frequency measurement is already an important topic in 
power systems because it reflects the dynamic energy 
balance between the generation and the consumption. 
Distributed generation in weak coupling points of the 
distribution networks can be the origin of frequency 
deviation that should be carefully controlled. Some non-
linear loads, such as arc furnaces, ASD and other power 
electronics devices are sources of harmonics and high 
frequency noise. In addition, the frequency of a 
distribution network can vary extremely fast during 
transient events so it can be very difficult to track the 
frequency with enough accuracy.  
 
In spite of the fact that there are many digital algorithms 
used to estimate frequency, almost all of them are based 
on the measurement of a single phase of the system, so 
the algorithms exhibit poor behavior when the tracked 
phase suffers a dip or a transient. Some instrumentation 
manufacturers have solved the problem registering the 
frequency measured in each phase. The problem with this 
single phase approach is that standard regulations ask for 
the system frequency so the utilization of a single phase 
should be tagged in order to know what phase is being 
used. 

The proposed technique uses the information contained 
in the three phases in a simultaneous way. This approach 
increases the robustness of the measurement technique, 
which can track the frequency in case of lack of one 
arbitrary phase (dips, notches or small interruptions). 
 
The organization of this paper is as follows: we describe 
in detail the transformation technique in Sections 2 and 3. 
After that, Section 4 summarizes some tests run under 
sinusoidal and non-sinusoidal conditions, such as high 
frequency noise, harmonic distortion and transient during 
a short circuit. Finally, we give some conclusions in 
Section 5. 
 
2.  Frequency Algorithm Under Sinusoidal 

Condition 
 

The three-phase voltage has a digital representation 
that it is assumed to have the form: 

 
( ) ( )aaa TnXnx ϕω += cos  (1a) 
( ) ( )bbb TnXnx ϕω += cos  (1b) 
( ) ( )ccc TnXnx ϕω += cos  (1c) 
 
where T is the sampling period. 
 
Equations (1a), (1b) and (1c) can be put into the 

following matrix formulation, 
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where C is the well-known transformation introduced by 
Clark [1], which transforms the three-phase voltage 
variables into the zero-sequence and direct and 
quadrature-axis components. Both C and its inverse C-1 
are widely used in the generalized theory of electrical 
machines [2,3]. When it is necessary to use a power-
invariant form, the terms 2/3 and 1/2 are replaced by 

32  and 21  respectively. In our approach to the 
problem it doesn’t matter if the matrix transformation is 
power-invariant or not. From a graphical point of view, 

 and  are the rectangular coordinates of a 

point that is changing with time at a rate that it is 
proportional to the system frequency. Under sinusoidal 
conditions, equations (1a)-(1c) have the same amplitude, 

( )nxα ( )nxβ

 
XXXX cba ===  (3) 

 
In addition, the components are symmetrical so, 
 

3
2πϕϕ += ab  (4) 

3
2πϕϕ −= ac  (4a) 

 
Considering that  and substituting equations (1a)-
(1c) in (2) 

0=aϕ
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The point defined by the coordinates ( ) ( )( )nxnx βα ,  has a 

ratio equal to X and an angular velocity of ω , 
 

fπω 2=  (6) 
 
The angular velocity can be also computed graphically. If 
we consider two consecutives samples of the αβ-vector, 
xαβ(n) and xαβ (n-1) then, the angular difference ( )nθ∆  
between the two vectors can be approximated as, 
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Equation (7) considers that  is small enough. 

Finally, the frequency 

( )nθ∆

 of the input signal is 
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T
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π
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2
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where T is the time needed to reach xαβ(n) from xαβ(n-1). 
Figure 1 summarizes the proposed method. The smallest 
the sampling period T is, the smallest the estimated 
frequency error will be.  
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Static reference frame representation. 
 
 
3. Frequency Algorithm Under Non-
Sinusoidal Conditions 
 
Equation (8) provides good frequency estimations when 
the voltage exhibits small distortion levels. However, the 
computer frequency shows poor accuracy under sags and 
swells.  
One way to increase the performance of the procedure is 
to introduce a feedback for computing the frequency in a 
recursive fashion. 
The proposed method is based on a PID controller. The 
procedure starts from an arbitrary value, which is usually 
set to a frequency of 50 Hz. At each step the new 
frequency value is computed using the last value and an 
approximation that is computed considering an ideal 
trajectory of the vector defined by coordinates 

( ) ( )( )nxnx tt ,, , βα , where, 

 
xα,t(n) α component of an ideal sinusoidal voltage signal 

equal to the fundamental component of x(n). 
xβ,t(n) β component of an ideal sinusoidal voltage signal 

equal to the fundamental component of x(n). 
 
The points defined by vectors  and ( )nαβx ( )nt,αβx  are 

the same under sinusoidal conditions. If we consider a 
real signal ( )nabcx , the estimated ( )nt,0αβx  at any 

arbitrary time step n0, can be computed as, 
 

( ) ( )nn abcxCx .0 =αβ  (9) 

 
then, an ideal ( )nt,0αβx  is computed considering the 

actual position, 
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where n0 is the integer part of the right side of (10). The 
first estimation of  at n( )nt,0αβx 0 is then computed by, 
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where  is the estimated frequency. Its initial value 
can be 50 or 60 Hz. 

[ ]nf st

At n0+1 the estimated position will be ( )10,0 +ntαβx . If 

the real frequency is higher than 50 Hz then the point 
 lags behind ( 10,0 +ntαβx ) ( )10 +nαβx . The opposite is 

also true. 
The new estimated value ] can be obtained using 
an iterative approach that minimize the estimation error 
using a PID controller, where 

[ 1+nf st

 

 
[ ] [ ] [ ]nfnfnf ststst ∆+=+1  (12) 

 
and 
 
[ ] [ ] [ ]nnn tθθε −= (13) 

 
There are different approaches that can be followed in 
order to set the proportional (kp), integral (ki) and 
derivative (kd) constants. Table I summarizes typical 
values of the proportional, integral, and derivative 
feedback coefficients for PID-type controllers [4]. 
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Fig. 2. Static reference frame representation with non-
sinusoidal signals. 

 

Table I. Typical values of the proportional, integral and 
ivative feedback coefficients for PID-type controllers 

[4]. 
der

Controller kp ki kd

PID [0.1 0.5] 
kp,max

[0.1 10] 
kp,maxTosc

[0.05 1] 
kp,max Tosc

 
For 50 Hz systems, a good value of kpmax and Tosc can be 
0.005 and 0.3, respectively.  
 
Figure 2 shows ( )nt,0αβx  and  considering that ( )nαβ0x

( )nt,0αβx  lags behind . ( )nαβ0x

 
Finally, the estimated frequency signal is low-pass 

filtered in order to reduce high-frequency oscillations. 
 
 

4. Test Results 
 
In order to put the technique to the test under dynamic 

conditions close to those that can be found in real power 
systems, some cases has been analyzed using two 
different approaches [5-13]: i) experimental test using an 
arbitrary three-phase voltage generator and ii) 
computational test using synthesized signals.  

 
 
A. Experimental Test Facility 
 
The laboratory test facility consists of a three-phase 

power supply that can generate arbitrary waveforms [14]. 
Figure 3 shows a block diagram of the test system 
facility. 

 
 
 
 

PC 

 
 
 
 
 
 
 

Fig. 3. Test system facility. 
 
Figure 4 shows the estimation error of the algorithm 

with a 50 Hz signal disturbed with harmonic levels 
defined by table II. 

 
Table II. Magnitude levels defined by UNE-EN 

61000-4-13 for class 3 environments. 
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The percentages have been selected attending the 
standard UNE-EN 61000-4-13 [15] which defines the 
immunity tests to harmonics and interharmonics for 
industrial environment (class 3). 
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Fig. 4. Static test for a 50 Hz signal disturbed with class 3 
maximum harmonic distortions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Voltage and estimated frequency for a 50 Hz 
sinusoidal voltage disturbed with a (50%,1s) dip. 

 
 
 

Dynamic test has been done in order to test the 
behavior of the algorithm to sags and small interruptions. 
This is a particularly severe test because one or two 
phases can reach values equal or close to zero. 

 
Figure 5 shows the estimated frequency evolution 

under a (50%, 1s) voltage sag which depth and duration 
is defined according to the values established by the 
standard UNE-EN 61000-4-11 [16] which defines the 
immunity test to voltage dips, short interruptions and 
voltage variations. 
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B. Dynamic behavior with synthesized signals 
 
The performance of the algorithm under dynamic 

conditions using computational analysis has been done 
using synthesized signals. 

 
A signal with a linear time varying frequency has been 

synthesized using MATLAB [17] according the 
expression (15), which represents a signal with their 
frequency varying from 45 to 65 Hz in half a second. 

Time (s) 
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Figure 6 shows the relative error of the estimated 

frequency. 
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Fig. 6. Relative error for a signal with . ( ) ttf 4045 +=
 

 
5.  Conclusion 
 
The proposed algorithm uses all available information of 
the three-phase voltage to estimate the value of the power 
system frequency. The digital filters are very simple to 
implement, and, since they are non-recursive, have no 
stability problems. The method has been tested with 
different conditions and has a good response in steady 
state and dynamic conditions. One of the aspects that can 
be improved is the initialization time and the output 
ripple. 

Time (s) 
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