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Abstract. This paper presents a dynamic simulation model 
of a wind generator, that allow to predict the quantity of 
removable energy in a specific place, using as initial condition 
wind measurements register in that place. The model is 
composed of four modules.The frist one is used to model de 
wind behaviour. The second is orientend to the aerodynamics 
model. The third is focused on the mechanical connection 
between the hub and the electrical machine. Finally, the fourth 
is dedicated to the electrical machine. 
 
The first model dedicated to the wind behaviour, includes an 
stochastic model. The aerodynamics conversion is base on the 
Strip Theory. The connection between the hub and the electrical 
machine used the mechanical differential equations. Finally, the 
electrical machine is modelled using the Power System 
Blockset  including in Matlab Simulink. 
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1. Introduction 
 
The success of wind power as an alternate source of 
energy is a direct function of the economics of designing 
and manufacturing the wind machine. One of the most 
important aspects of the design is the development of 
performance prediction methods. It is the purpose of this 
study to present analytical procedure for evaluating the 
energy extracted of a horizontal-axis wind turbines.  
 
The whole model comprises a wind speed model and 
wind turbine models, as follows: 
 
• The wind speed model outputs the wind speeds for the 

wind turbine, taking into account the tower shadow of 
the 3-bladed turbine. 

 
• The individual wind turbine model includes electrical, 

mechanical and aerodynamic submodels: 
- the aerodynamic submodel is a standard Cp 

based model, extended with dynamicstall 
effects. 

 
- the mechanical submodel describes the dynamics of 

the drive train. 
 

- the electrical submodel consists of an induction 
generator, a soft-starter, a capacitor bank for 
reactive power compensation and a step-up 
transformer. 

 
2.  Model description 
 
The proposed structure of the wind generator consists of 
a wind turbine and squirrel cage induction generator and 
three-phase R–L network connected as shown in Fig.1. 

 
A. The wind speed model 
 
The wind speed model used in this work has a structure 
that is similar to that proposed in [1]. It is assumed that  
the wind speed consists of the sum of two components, 
namely: 
 
- U  average value of the wind speed  
- v(t) wind speed turbulence. 

 
This model is of course independent of the characteristics 
of the wind turbine itself and can therefore be applied in 
combination with all wind turbine models.The wind 
speed V(t)  is thus given by the following equation: 
 

 
where the initial average value of the wind speed U is a 
constant value and  v(t)  is time dependent. 

 
The second component of the wind speed model 
represents the wind speed turbulence.Turbulence is 
described by a power spectral density. In this paper, the 
following spectral density is used  

 

V t U v t( ) ( )= +  (1) 
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Fig. 1. General structure of constant speed wind turbine model 
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where Sv(n) is the spectral density, n is frequency [Hz], z 
is the height at which the wind speed signal is occurs, 
which is equal to the wind turbine hub height [m],  fm = 
0,06 is a constant value and  σ is the turbulence intensity 
give by the equation 
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where Iv(z) is the turbulence intensity and z0 is the 
roughness length. In Fig. 2 shown a tridimensional power 
spectral density given by (2) 
 
The parameter z0  is used to characterise the landscape 
type around the turbine, as it reflects the impact of the 
structure of the wind turbine surroundings on the 
turbulence intensity.  
 
TABLE I.- Roughness length z0 for various landscape types 
 

Landscape type Roughness  
length z0 [m] 

Opend sea,  Sand 1e-4  - 1e-3 
Snow surface 1e-3  - 5e-3 
Mown grass, Steppe 1e-3  - 1e-2 
Long grass, Rocky ground 0,004 – 0,1 
Forest, Cities, Hilly areas 1 - 5 

 

A method to generate a time series from a given power 
spectral density is necessary to this end. Here, the method 
described in [1] is used, which is also applied in [2]. This 
method is based on the summation of a great number of 
sine functions with different frequencies, of which the 

amplitude is determined by the given power spectral 
density, from which the time series is to be derived. 
 
A power spectral density only contains information on 
the amplitude of the various frequency components of the 
signal, but no information on the phase angle. In the time 
domain, however, both the amplitude and the phase angle 
of the sine components of a signal must be known. 
Therefore, to derive a time series from a given power 
spectral density, the phase angle of each of the frequency 
components must be established. In the applied method, 
this is done by randomizing the initial phase angle of 
each of the frequency components that are included in the 
time series in the interval from 0 to 2π. Thus, an infinite 
amount of random time series corresponds to a single 
power spectral density. 
 
The following equation applies to the turbulence 
component of the wind speed sequence 
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where nk  is the kth frequency component, ∆n is the 
frecuency spacing and βk  is the random phase, uniformly 

distibuted in (0, 2π ). In Fig. 3 shown wind under 
turbulent conditions according (4). 
 
B. Aerodynamic model 
 
In this section, the purpose is to model the velocity field 
immediately behind a wind turbine rotor. This is 
achieved by combining diferent basic aerodynamic 
theories applied to wind turbines. First momentum theory 
together with blade element theory are used to derive 
expressions for the forces on a ideal rotor, divided into 
consecutive annulus. Later the obtained expressions are 
adjusted to include tip losses and cases when the turbine 
is heavily loaded. Finally, these equations are modified in 
order to work for wind turbines operating at an angle to 
the wind, yaw. 
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Fig. 2.  Tridimensional power spectral density of Ernst-Cathor.( z=50 m, z0 =0.02 m) 

 

Fig. 3. Wind under turbulent conditions 
 (U =15 m/s, z = 50 m, Iv = 0,18). 

 
By equating the force and torque expressions derived 
from momentum theory and blade element theory, the 
following expressions can be derived, which have to be 
solved iteratively. 
 

( )
2

2 2 2(1 ) cos sin
4 ( )

r

R

L D
r aR

NcR W dra f af C C
RR R U

φ φ
π

− = +
− ∫

 

(5) 

( )
3 2

4 4 2' (1 ) cos sin
2 ( )

r

R
a

L D
r aR

UNcR W r dra f af C C
R R RR R U

φ φ
π

− = −
Ω− ∫

 
(6) 

 
where a is the induction factor and a’ the tangential 
interference factor. The resulting velocity acting with an 

angle φ to the plane of rotation at the blade is denoted W. 
Ω is the angular velocity of the blade with cord c (see 
Figs. 4 and 5). CD and CL is the drag and lift coefficient, 
respectively. R is the radius of the blade and r is the 
actual radial distance. N is number of blades. Since a and 
a’ are defined as the values when the blade has passed a 
given point of the disk, the averaged induction factors at 
that point, over the course of one revolution will be af 
and a’f, respectively, where f is called the tip loss factor. 
In the analysis used in deriving the above expressions the 
values of a and a’ were assumed to be constant at each 
radial distance. This is only true if the pitch and chord 
vary along the blade in a special way. This is not the case 
for the airfoil used, but the approach described above can 
still be used, if we apply the momentum theory to 
separated annular rings (Fig. 4). Each ring of the disk has  
a thickness dr and radius r. The momentum theory is 
applied for each ring separately. 
 
The value of f  can be determined has to be determined 
using an approximate solution derived by Prandtl, or a 
more complex solution by Goldstein. Both methods, 
however, gives similar results. Since the Prandtl method  
is simple closed, but the Goldstein solution is represented 
by an infinite series of modified Bessel functions, the 
Prandtl solution is used here. 
 

/2( ) arccos e s df r π

π
− =  

 
(7) 

 
where s is the distance from the tip, and d is the pitch 
between the disks, which is taken as being the distance 
normal to successive helical sheets. 
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Fig. 4. Blade element swepps out and annulae ring. 
 
 

 
Fig. 5. Velocities and forces acting on a blade element. 

 
 
C. Drive train model 
 
The aerodynamic torque, in a wind turbine, varies all the 
time due to wind turbulence. The variations however are 
not directly transferred to the electrical power output 
because of the dynamic mechanical transmission system.  
The electrical generators run in a relatively high speed 
compared to the aerodynamic rotor. The drive train 
connects high speed in the electrical generator side and 
slow speed in the aerodynamic rotor using a gearbox. The 
drive train includes a gearbox; shafts and disc brakes that 
can be positioned in the low or in the high-speed shaft 
depending on the size of the wind turbine. On small wind 
turbines the brakes are positioned in the low speed shaft 
that reduces the stresses on the gear box during shut 
down of wind turbines, on large wind turbines, however, 
the torques in low speed shaft are very high hence the 
disc brakes are located in the high speed shaft. Figure 6 
illustrates the drive train of a  wind turbine.  
 
Fig. 7 presents a simplified dynamic drive train model 
where the gearbox is considered ideal. Taerodyn is the 

aerodynamic torque computed from the aerodynamic 
module, ωrotor is the rotational speed of the aerodynamic 
rotor, ωgenerator is the rotational speed of the induction 
generator, Telectromechanical is the electromechanical torque 
in the induction generator, Jrotor is the inertia of the 
aerodynamic rotor, Jgenerator is the inertia of the induction 
generator, K is the equivalent stiffness of the shaft, D is 
the equivalent damping coefficient. 

 
Fig. 6. Drive-train components. 

 
The equations of motion in to the dynamic drive train in 
Figure 7 can be expressed according to:  
 

( )rotor
rotor aerodyn rotor

d
J T T

dt
ω

= −
 (8) 

( )
( )

( )

mec
mec mec mec generator

mec generator generator

d
J T K
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D T

ω
δ δ

ω ω

= − − −

− − −  

(9) 

( )generator
generator generator electromechanical

d
J T T
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ω
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(10) 
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Fig. 7. Dynamic representation of the drive train model.  
 
 
D. Squirrel cage induction generator model 
 
The following equations describe a squirrel cage 
induction generator in the d-q reference frame [3]. The 
generator convention is applied, which means that rotor 
and stator currents are positive when they are outputs 
 

1Sd S Sd Sd Sq
du R i
dt
ψ ωψ= − + −  (11) 

10 ( )Rd R Rd Rd Rq
du R i
dt
ψ ω ω ψ= = − + − −  (12) 

1Sq S Sq Sq Sd
du R i
dt
ψ ωψ= − + +  (13) 

10 ( )Rq R Rq Rq Rd
du R i
dt
ψ ω ω ψ= = − + + −  (14) 

 
with u the voltage, R the resistance, i the current, ω1 the 
stator electrical frequency, ψ the flux linkage and s the 
rotor slip. The indices d and q indicate the direct and 
quadrature axis components and s and r indicate stator 
and rotor quantities. 
 
The d-q reference frame is rotating at the synchronous 
speed with the q-axis leading the d-axis by 90°. The 
position of the d-axis coincides with the maximum of the 
stator flux, which means that vqs equals the terminal 
voltage et and vds equals zero. The flux linkages in can 
be calculated using the following set of equations: 
 

Sd S Sd m RdL i L iψ = − −  (15) 

Sq S Sq m RqL i L iψ = − −  (16) 

Rd R Rd m SdL i L iψ = − −  (17) 

Rq R Rq m SqL i L iψ = − −  (18) 

 
The equations for the electromechanical torque 
Telectromechanical and  active power P generated or consumed 
by a squirrel cage induction generator are the following: 
 

3 ( )
2e Sd Sq Sq SdT i iψ ψ= −  (19) 

3 ( )
2e Sd Sd Sq SqP u i u i= +  (20) 

 
 
3.  Simulation result 
 
In this section, the responses of the models to a particular 
wind speed sequence is investigated. The simulation 
results presented here were obtained with MATLAB®. 
 
In Figs. 8-10, are depicted wind speed sequence, the 
simulated rotor speed and the output power, respectively, 
for the wind turbine simulated. The characteristics of the 
wind turbine are given in table II. The generator 
parameters of the induction generator used in the constant 
speed wind turbine are given in table III. 
 

TABLE II.- Characteristics of simulated wind turbine. 
 

 
 

TABLE III.- Induction generator parameters 
 

GENERATOR CHARACTERISTIC VALUE 
Number of poles  4 
Voltaje 690 V 

Generator speed   1517 RPM 
Mutual inductance Lm  3,0 p.u. 
Stator leakage inductance LS  0,10 p.u. 
Rotor leakage inductance LR 0,08 p.u. 
Stator resistance Rs  0,01 p.u. 
Rotor resistance Rr  0,01 p.u. 
Compensating capacitor  0,5 p.u. 
Inertia constant 0,15 s 

 

WIND TURBINE CHARACTERISTIC VALUE 
Rotor speed   25,5 RPM 
Rotor diameter  46 m 
Rotor swept area  1662 m2 
Number of blades 3 
Nominal power  660 KW 
Nominal wind speed  15 m/s 
Gear box ratio   1:59,5 
Inertia 550.103 kgm2 
Inertia constant  2,82 s 
Shaft stiffness   0,3 p.u./el. rad. 
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Fig. 8. Wind speed simulated 

(U =12 m/s,  Iv = 0,2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Rotor speed (rpm) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10. Active power (W) 
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4.  Conclusions 
 
A simulation model for a type of wind generator based on 
an asynchronous generator interconnected to the electric 
network has been developed.  A wind speed time serie is 
used as input to a numerical model of the turbine; thus 
we determined  a wind power time serie. 
 
This model is expected to give realistic and correct 
results when used for different system performance 
studies. It is expected that as experience and additional 
hard test data is obtained, this model will continue to 
evolve, in terms of parameter values and structure. 
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