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Abstract  —  An investigation of the synchronization behavior 
of oscillators driven with multi-harmonic sources is presented. 
The occurrence of ultra-subharmonic synchronization is 
demonstrated, which gives rise to a multi-resonance behavior 
versus the fundamental input frequency. When this frequency 
decreases, instabilities arise in the low amplitude intervals of the 
multi-resonance curve, and both flip and Hopf bifurcation may 
delimit the stable synchronization intervals. The study provides a 
generalization of the theory of fundamentally locked oscillators 
to the case of oscillators driven with multi-harmonic signals. It is 
illustrated through application to an oscillator at 5.7 GHz.  

Keywords — Injection locking, switched oscillators, stability, 
bifurcation.

I. INTRODUCTION

Pulsed-injection locked oscillators can be used for fast 
frequency hopping and for the generation of ultrawideband 
signals in radar and communication applications [1-2]. The 
oscillation is turned on and off with a pulse signal and the 
circuit is designed so as to enable the injection-locking of the 
oscillation to a harmonic component of the pulse frequency. 
As shown in [1-2], the pulse-injection locked oscillator can 
have the advantage of short transient behavior and lower 
phase noise. The model presented for the prediction of the 
locking range is based on Adler’s equation and therefore on a 
linearization about the free-running steady-state oscillation. In 
[3], the nonlinear behavior of the whole circuit with respect to 
the input pulse is shown, which would prevent the use of 
linearized approaches. The work [3] presents a simplified 
mathematical model of the pulse-injection oscillator, which 
demonstrates the phase relationship between the oscillation 
and the input pulse. However, no in-depth study of the 
synchronized response versus the pulse frequency is carried 
out, which would be essential to understand the differences 
with respect to ordinary injection-locked oscillators at the 
fundamental frequency. Furthermore, no detailed analysis of 
the instability phenomena, delimiting the synchronization 
bands, has been carried out. 

The works [1-3] are examples of oscillator synchronization 
with input signals different from a sinusoid. The objective of 
this paper is to present a detailed analysis of the oscillator 
behavior when driven with a multi-harmonic signal. In 
particular, a square waveform of low duty cycle will be 

considered, able to turn the oscillation on and off. A multi-
resonance response is demonstrated, with theoretical insight 
into the possible instability phenomena when varying the 
fundamental frequency of the input source. The study 
provides a generalization of the theory of sinusoidal injection-
locked oscillators to the case of oscillators driven with multi-
harmonic sources. It will be illustrated with a bipolar-based 
pulse-injection oscillator at 5.7 GHz. 

II. MULTI-RESONANCE BEHAVIOR

For the analysis of injection locking with multi-harmonic 
sources, a Fourier-series representation of a square waveform 
will be considered pN jk t

kk Np(t) P e �
��

�� , with �p being the 
fundamental frequency, called here the pulse frequency. 
Initially the case of a cubic nonlinearity oscillator, with a 
parallel RLC resonator is studied. The voltage source p(t), in 
series between the nonlinearity and the resonator, turns the 
oscillation on and off. The free-running oscillation frequency 
�0 is 1.586 GHz and N = 14 harmonic terms are considered in 
p(t). Fig. 1 presents the solution curve versus �p. The 
maximum of the periodic waveform (obtained for a specific 
time value) is traced versus �p. The curve has been obtained 
with harmonic balance (HB) with a high number of harmonic 
terms. As shown in [3] in pulse-injection locked oscillators the 
synchronized solution does not generally coexist with any 
non-oscillatory (trivial) solution. This is different from the 
case of sinusoidally injection-locked oscillators with small 
injection power. Thus, there will be no need for 
complementary techniques, such as the one based on the use 
of auxiliary generators [4]. Though the HB analysis is 
computationally costly, it can have advantages for the 
understanding of the global behavior of the circuit.  

The pattern of the solution curve in Fig. 1 shows an ultra-
subharmonic synchronization phenomenon [5], with multiple 
resonances occurring about the frequencies where �p and �0

fulfill a rational relationship: r�p = m�0, for r,m �� . As �p

decreases, the resonances become narrower, due to the need of 
a much higher r to fulfill the rational relationship. The 
phenomenon can be related to the Arnold tongues in 
sinusoidally synchronized oscillators, described in [5]. 
However, there are essential differences. In a sinusoidal 
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oscillator only the major tongues at �0, �0/2, �0/3, 2�0, 3�o
are relevant, unless a specific design to favor a particular 
rational relationship is carried out. This is shown clearly in the 
analysis of Fig. 1b, which presents the oscillator response 
versus the input frequency for N = 1,2,3 and N = 14. As 
shown in the figure, in the sinusoidal case (N = 1) resonances 
are obtained about the frequencies �0/r with r = 1, r = 2 and 
r = 3. As the number of input harmonic terms increases, the 
subharmonic resonances become more pronounced and ultra-
subharmonic resonances arise in the system. This will enable 
the desired synchronization for high ratio between the 
oscillation frequency �0 and �p.
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Fig. 1 Multi-resonance behavior at the input frequencies fulfilling r�p = m�0.
(a) HB analysis for N = 14, with time-domain results superimposed. (b) HB 

analysis for different number of harmonic terms.

In order to understand the behavior in Fig. 1a, a simple 
mathematical model will be considered. Using a state form 
representation of the system, the circuit equations can be 
written: 

�
�x � f (x,p) � 0  (1) 

Where p(t) is the multi-harmonic input signal. The nonlinear 
function f (x,p)  can be expanded in power series as: 

f (x,p) � f (x,0)� Ci(x)p(t)i

i�1

M

� , Ci(x) � 1
i!
�i f (x,0)
�pi

   (2) 

Expanding each term p(t)i  using the Fourier series and 
rearranging the terms associated to the same frequencies: 

p r

p r

MN
j(r t )

r r
r MN

MN
j(r t )

r r r r
r MN

f (x,p) f (x,0) g (x, P)U (P)e

  f (x,0) g (x, P)u (t),  u (t) U (P)e

� �	

��

� �	

��

� � �

� � �

�

�
(3)

where MN is the order of the nonlinearity and P  is the vector 
of harmonic components in p(t). The nonlinear function 
expands the spectrum of p(t) and introduces in the circuit 
2MN + 1 single-tone equivalent sources ur(t). Each source 
ur(t) contains the frequency r�p and is modulated by the vector 
transfer function rg (x, P) . In the case of small amplitude 
sources, the superposition principle can be applied. Then, for 
each source ur(t) we analyze the system: 

�x � f (x,0)� gr (x,P)ur (t) � 0  (4) 

If there exists an integer value m > 0 such that 
p 0r m
� �� � �  is small enough, then the oscillator gets 

synchronized to the source ur(t). The oscillation frequency 
moves from �0 to the value �0 ' � �0 � 
� / m . In that case, 
using the frequency 0 '�  as fundamental, the system (4) can 
be translated to the frequency domain as: 

r
0

jm
0 0 r rH V V, , / m G U e 0	� 
� �� 
 
 
 � � 
� � �� �        (5) 

where H  is the vector function which translates the function 
h(x, x) x f (x,0)� �� �  in (4), 0V , 0
  are the vectors containing 
the amplitude and phase of the harmonic components of x
and m

rG  is the column of the Toeplitz matrix of the harmonic 
components of gr (x,P)  associated to the mth frequency 
component. For low ru (t) , system (5) can be expanded in a 
first-order Taylor series as: 

rjm
V p 0 r rH V H H r m( ) G U e 0	


 �
 � 

 � � � � ��  (6) 

where VH , H
  and H�  are respectively the derivatives of 

the vector function H  with respect to the amplitudes, phases 
and fundamental frequency. Varying the phase 	r, a closed 
curve would be obtained in the ik p( V , )
 �  space, centered 

about �p = m �0/r and providing the synchronized solution 
about this frequency. As the amplitude of the components in 
P increases, the approximated expression (4) becomes invalid. 
However, taking into account the evolution of the solution 
curves in sinusoidally injection-locked oscillators [6], one can 
expect the closed curves to evolve into open resonance curves. 
Considering the joint effect of all the sources ur(t), there will 
be resonance curves in the ik p( V , )
 �  space centered around 

all the �p values fulfilling r�p = m�0.
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The above theoretical analysis explains the behavior 
observed in Fig. 1a. The resonance curves are centered about 
�p = m�0/r. On the right-hand side of Fig. 1a, for m = 1 and 
when decreasing �p, the positive integer r increases in one at 
each resonance, starting from r = 42 at the first resonance. 
Therefore, the distance between the maxima decreases as 
�0/[(r+1)r]. For high �p, open synchronization curves are 
obtained, which become narrower when reducing �p. For low 
�p, the curves start to exhibit turning points and finally break 
into a closed- and an open curve of lower amplitude. This is 
why the lower frequency resonances are incomplete in Fig. 1a. 

The results of time-domain integration have been 
superimposed with dots in Fig. 1a. For high �p, the curves 
obtained with HB and time-domain analysis are fully 
overlapped. For lower �p there is disagreement near the 
minima. This is due to the instability of the injection-locked 
solution. In fact, when decreasing �p, frequency divisions by 
two and other phenomena are observed.   

The stability of the periodic steady-state regime at �p, has 
been analyzed applying pole-zero identification along the 
solution curve in Fig. 1a. This technique is based on the 
calculation of a closed-loop transfer function associated to the 
circuit linearization about the periodic regime at �p,
performed with the conversion-matrix approach [6]. The 
variation of the real part of the poles in three different 
intervals is shown in Fig. 2. For fp > 29.2 MHz, the analysis 
shows that the real part of the dominant poles approach zero at 
the minima of the curve in Fig. 1 but does not become 
positive, so the circuit is always stable. In fact the frequency 
of the poles with the largest real part agrees with �p/2, that is, 
they have the form pj / 2�� � . About the minima, there is a 

second pair of poles p' j / 2� � � . When either decreasing or 

increasing �p, the two pairs of poles at �p/2 merge into two 
complex conjugate poles aj�� � , such that a�  equals �p/2 at 
the merging point. From the merging point, a�  becomes 
(continuously) incommensurable with �p and there is only one 
curve in the representation of Fig. 2, since the two poles 

aj�� � have the same real part. The described transformation 
preserves the system dimension, since, according to Floquet 
theory [7], each pair of poles pj / 2�� �  corresponds to a 
single real Floquet multiplier and the complex-conjugate poles 
at an incommensurate frequency correspond to a pair of 
complex-conjugate multipliers.  

For fp < 29.2 MHz, the poles cross to the right hand side of 
the complex plane in the low amplitude sections of the curve 
in Fig. 1a. In the interval 23.8 MHz < fp < 29.2 MHz, the poles 
that cross to the RHP have the subharmonic frequency �p/2,
because the merging into complex-conjugate poles takes place 
on the left-hand side of the complex plane. For fp < 23.8 MHz, 
the frequency of the poles that cross to the RHP is 
incommensurable with �p. This is because the merging of the 
subharmonic poles takes place on the RHP. Therefore, there 
are two different types of bifurcation [4-5,7] delimiting the 

stable synchronization ranges. In the interval 
23.8 MHz < fp < 29.2 MHz, the ranges will be delimited by 
flip bifurcations, at which a division by two of the input 
frequency �p takes place. For fp < 23.8 MHz, the stable 
synchronization ranges will be delimited by Hopf bifurcations, 
from which the solution will have two fundamental 
frequencies: �p and an incommensurable frequency �a. It 
should be noted that the stable regions decrease substantially 
when reducing �p.
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Fig. 2 Stability analysis performed along the solution curve in Fig. 1a. 
The real part of the poles has been represented versus �p. (a) 28 � 35 MHz. 

(b) 22 � 25 MHz. (c) 17 � 19 MHz. 

The behavior is analogous to that obtained in an oscillator 
synchronized at the fundamental frequency. For sufficiently 
large input power, the solution curve is open [4], with 
instability occurring in the lower amplitude ranges, due to the 
increase of the negative resistance. In the upper-frequency 
range of Fig.1, the influence of the multi-harmonic input 
signal pushes the imaginary part of the poles to �p/2 and 
divisions by two are observed. For low input frequencies, the 
synchronization regions become negligible and the circuit will 
generally behave in quasi-periodic regime. Another essential 
difference with respect to the behavior of sinusoidally 
injection-locked oscillators is the possibility to pass from one 
resonance to another without loss of stability. This is observed 
in Fig. 2 for fp > 29.2 MHz.  

III. APPLICATION TO A BIPOLAR-BASED OSCILLATOR

The generality of the synchronized behavior and stability 
properties studied in the previous subsection has been verified 
through application to other oscillators, based on bipolar 
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transistors. Here the results obtained with the circuit in Fig. 3, 
based on the transistor BFP405, will be presented. In the 
absence of an input signal, the circuit oscillates at the free-
running frequency fo = 5.7 GHz. Fig. 4 shows the 
synchronization curve obtained for N = 14 harmonics in p(t). 
The curve has been obtained tracing the maxima of the steady 
state waveform versus the pulse frequency, using time-domain 
integration. In some frequency intervals, two or more discrete 
points are represented, which is due to the fact that the 
waveform exhibits two or more maxima. This is because the 
solution is no longer periodic at the input frequency �p. In the 
case of a period doubling, two points are obtained, whereas in 
the case of a quasi-periodic solution, a distribution of points is 
obtained. This result is in agreement with the stability analysis 
of Fig. 2, which shows that instability occurs about the 
minima of the solution curve. Fig. 5 shows the waveforms 
obtained for two different values of the pulse frequency 
fp = 78.6 MHz (regular behavior) and fp = 78.8 MHz 
(frequency division by two). The spectra measured for fp = 35 
MHz (frequency-division by 2) and fp = 31 MHz are shown in 
Fig. 6.
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Fig. 3 Schematic of the bipolar-based oscillator. 
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Fig. 4 Multi-resonance behavior of the oscillator in Fig. 3, with free-
running frequency f0= 5.7 GHz. 

IV. CONCLUSION

The occurrence of ultra-subharmonic synchronization in 
oscillators driven with multi-harmonic signals has been 
demonstrated. The multi-resonance behavior versus the input 
frequency has been analyzed in depth, studying the bifurcation 
phenomena that delimit the stable synchronization bands. The 
analysis has been illustrated through application to an 
oscillator at 5.7 GHz.
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Fig. 5 Steady-state waveforms of the oscillator in Fig. 3 for two different 
values of �p.
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Fig. 6 Measured spectra of the oscillator in Fig. 3 in the unstable behavior 
regions. (a) Frequency division by 2 for fp=35 MHz. (b) Quasi-periodic 

behavior for fp=31 MHz. 
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