
ScienceDirect

Available online at www.sciencedirect.com

Transportation Research Procedia 48 (2020) 1605–1614

2352-1465 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the World Conference on Transport Research – WCTR 2019
10.1016/j.trpro.2020.08.202

10.1016/j.trpro.2020.08.202 2352-1465

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the World Conference on Transport Research – WCTR 2019

Available online at www.sciencedirect.com

ScienceDirect
Transportation Research Procedia 00 (2019) 000–000 

www.elsevier.com/locate/procedia

2352-1465 © 2020 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)  
Peer-review under responsibility of the scientific committee of the World Conference on Transport Research – WCTR 2019

World Conference on Transport Research – WCTR 2019, Mumbai, 26-30 May 2019 

Testing for nonlinearity and chaos in liquid bulk shipping 
Pablo Coto-Millan1*,  Lucía Inglada-Pérez2

1 Department of Economics, Cantabria University, Av. de los Castros, s/n, 39005 Santander, Cantabria Spain 
2 Department of Economics, Carlos III University,  C/Madrid, 126. 28903 Getafe (Madrid) Spain    

Abstract 

Modelling and forecasting port traffic are of major importance for the shipping industry. Existence of chaos implies that while 
long term forecasting is vain, reliable short-term forecasting would be possible. The objective of this research is to uncover the 
nonlinear dynamics and chaotic behavior of the liquid bulk cargo shipping, using monthly data from January 1992 to March 2013 
for the Spanish seaports. For this purpose, in first instance we remove any linear dependence by means of the Box-Jenkins 
approach. Afterwards we analyzed the existence of nonlinearity and chaotic behavior by applying the BDS and the Lyapunov test 
respectively. Our findings suggest that although there has been found a dominant nonlinear structure underlying the dynamics of 
the liquid bulk traffic, determinism cannot be assumed and hence chaos cannot be inferred. These results are especially relevant 
for modeling and forecasting of maritime traffic, specifically for liquid bulk cargo, and for the design and evaluation of public 
policies related to the investment planning and management of port system. 
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1. Introduction 

According to International Maritime Organization (IMO), maritime transport emerges as a relevant key player in 
the world’s economy, as over 90% of all the world’s trade is carried by sea and it is the most cost-effective way to 
move masse goods and raw materials around the world. The tanker market is generally concerned with the 
transportation of crude oil and petroleum products which are mainly used to manufacture other goods (UNCTAD, 
2012). In 2012 the tanker sector represents around one third of the international seaborne trade by volume and 22 per 
cent per value (UNCTAD, 2012). In Spain, in 2013 it also accounted around of 33% of total shipping of goods.    
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In the last decades the interest in nonlinear models, and in particular in chaotic behavior defined as nonlinear 
deterministic processes that look random, has increased dramatically. A main feature of chaotic system in order to 
forecasting consists of its sensitive dependence on initial conditions (Brock et al., 1991). The major advantage of 
detecting chaos in the underlying process of a time series is that while long term forecasting is vain, reliable short 
term forecasting is possible (Brooks, 1998). In fact, when considering other types of transport, forecasts based on 
chaos theory have been shown to have greater predictive power than other methods (Frazier and Kockelman, 2004). 

Research on modelling maritime transport has traditionally assumed linear models but only a few studies have 
explored the nonlinear and chaos dynamics. Regarding the behavior and forecasting of shipping freight rates and 
container traffic, Goulielmos and Psifia (2007), Goulielmos and Psifia (2009), Thalassinos et al. (2009), Goulielmos 
and Kaselimim (2011) and Goulielmos et al. (2012) unveil the existence of nonlinearity and chaos. However, this 
research on chaos involves techniques derived from other sciences (e.g. physics) that do not account for the specific 
characteristics of financial time series like noise and the limited and low sample size. Thus, their findings might be 
biased (McKenzie 2001; BenSaïda and Litimi, 2013 and Su et al, 2014).  

Specifically, for the case of Spanish seaports, Inglada-Perez (2010) studies five different shipping series 
including liquid bulk, and in all the cases a nonlinear pattern was rejected. Thus, a chaotic behavior was rejected. 
Yet, the existence of chaos in demand for liquid cargo shipping rates remains as an open and relevant issue. Its 
importance lies in the fact that finding low-dimensional chaos would allow short-term reliable forecasting.   

To the best of our knowledge, our study is at the moment the only one in which the chaotic behavior dynamic of 
the underlying process of the liquid bulk shipping has been considered. Our main contribution is that unlike previous 
studies herein we take into account those years that correspond to the global economic worldwide crisis (January 
1992-March 2013) and that when testing for chaos we consider modern techniques that can deal with noisy time 
series.  

In order to determine whether the monthly series of liquid bulk cargo exhibits a nonlinear stochastic or 
deterministic chaotic behavior for the period, we apply the following methodology. First all linear dependencies are 
removed from the data by applying autoregressive integrated moving average (ARIMA) filters based on the Box-
Jenkins methodology (Box and Jenkins 1970).  Next, we use BDS procedure to detect the existence of nonlinearity. 
If nonlinear dependence is detected, then it might be caused by the existence of a volatility cluster. This being the 
case, the appropriate generalized autoregressive conditional heteroskedasticity (GARCH) and exponential GARCH 
models (EGARCH) (Nelson, 1991) are applied. Afterwards, the existence of chaotic motion is explored by means of 
Lyapunov exponent procedure that is ideally suitable for noisy time series analysis, (BenSaïda and Litimi, 2013). 
Our findings suggest although there is a high evidence of nonlinearity, the series seems to have a stochastic rather 
than a deterministic nature. 

This study contributes to filling the gap in the existing international literature on the nonlinear and chaotic 
behavior of demand for liquid shipping. Its incremental contribution against related literature in modelling and 
forecasting of freight rates consists of being the first study that applies methods and techniques the that can address 
noise. Moreover, the novelty lies on the fact that to the best of our knowledge, this study constitutes the first time in 
which these techniques have been applied to that variable. The empirical findings obtained from analytical results 
suggest that nonlinearity is present in the underlying process of the liquid shipping traffic, although, we did not find 
any clear evidence of chaos. 

The remainder of the paper is organized as follows. In Section 2 we provide a description of the most relevant 
milestones of the employed methodology. In Section 3 we describe the database data used and investigate the 
univariate time series properties of the data for the period January 1992–March 2013. In Section 4 we describe the 
results obtained, discussing the evidence in favour of and against the existence nonlinearity and chaos. Section 5 
summarizes some conclusions. 

2. Methodology 

The methodological framework applied consists of several stages. The following are the most significant 
milestones of the methodology. Details can be checked elsewhere (Inglada-Pérez, 2016)First, all linear dependencies 
are removed from the data by applying autoregressive integrated moving average (ARIMA) filters based on the 
Box-Jenkins methodology (Box and Jenkins 1970).  Next, we use BDS procedure to detect the existence of 
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nonlinearity. If nonlinear dependence is detected, then it might be caused by the existence of a volatility cluster. 
This being the case, the appropriate generalized autoregressive conditional heteroskedasticity (GARCH) and 
exponential GARCH models (EGARCH) are applied. Afterwards, the existence of chaotic motion is explored by 
means of Lyapunov exponent procedure that is ideally suitable for noisy time series analysis (BenSaïda and Litimi, 
2013).  

The non-parametric BDS test (Broock, et al., 1997) analyzes the existence of dependence in a time series. The 
null hypothesis is that the series is independent and identically distributed (i.i.d.) against the alternative hypothesis 
that the data is not i.i.d. It is capable of detecting a variety of possible deviations from independence and has been 
shown to have high power in detecting various types of nonlinearity.  

Lyapunov exponent:  

Lyapunov exponents determine the sensitivity to initial conditions, a property of chaotic systems. They determine 
the rate of separation of nearby trajectories whose initial conditions only differ by a small infinitesimal difference. A 
positive largest Lyapunov exponent implies sensitive dependence, and therefore that we have evidence of chaos 
(Brook, 1998). In this research, we followed the algorithm proposed by Bensaida and Litimi (2013). Briefly it 
consists in the following steps:  

Consider a time series { }T
ttx 1= represented as:  

tMLtLtLtt xxxfx ε+= −−− ),...,,( 2                                                                                                                            (1) 

Where L, m, ε and f stand for the time delay, the embedding dimension, noise added to the series and an unknown 
chaotic map, respectively. The exponent (LE) is defined as  
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Because f is usually unknown, it is needed to approximate the Jacobean matrix. The authors employ a single-layer 
feed-forward neural network using nonlinear least squares for different values of   8,..,1=m  and later calculate the 
LE spectrum. Hence, the chaotic system is estimated by the following equation: 
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 (L, m q) are selected as the triplet that provides the highest value for λ , and are associated with the complexity of 
the system. The test for chaos is then constructed based on the asymptotic distribution of λ  (Shintani and Linton, 
2004).  
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3. Data 

We use monthly Spanish shipping sea transport service series on liquid bulk cargo, from 1992:1 to 2013:3 (255 
observations). The data is available online at http://www.fomento.es/. Summary statistics of the main series are 
presented in Table 1. Fig.1 shows the monthly temporal evolution. It is observed that the series maintains a general 
trend of growth throughout the period. Within this pattern, it is found a significant decrement that corresponds to the 
global economic crisis (i.e. the year 2008). 

Table1. Descriptive statistics 

 Original Series Difference series ARMA(2,1)MA(1)12 GARCH(1,0) EGARCH(0,1) 

Mean 1114xE4 0.0002 -0.0045 -0.0467 -0.0471

Std. Dv. 1366xE4 0.0990  0.0613  0.8596  1.0042

Median 1120xE4 0.0033 -0.0037 -0.1045 -0.0820

Minimum 803xE4 -0.2565 -0.1550 -2.0781 -2.5581

Maximum 1451xE4 0.3024  0.1645  2.4882  2.2030

Skewness  0.0934 0.0683  0.2556  0.4340  0.2246

Kurtosis  2.2548 2.9582  2.9070 3.1920  2.6520

Jarque Bera  6.2703* 0.2057  2.6992*  7.9017* 3.2291

N  255 242 240  240 240
Notes: Statistics for the time series considered in this study; original series, difference series, and residuals of ARMA, GARCH, and EGARCH 
models. Skewness and Kurtosis Coefficient correspond to the Fisher asymmetry coefficient and the kurtosis coefficient, respectively. * The 
asterisk reflects that the result is significant at the 95% confidence level. 
Source: Own elaboration.

Fig.1 Evolution of the Liquid Bulk Cargo.  
Jan stands for January. 
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4. Empirical Results  

4.1. Linear Modeling 

In the first instance we eliminate the trend and seasonal cycle from the original series and obtain a new stationary 
series. Hence, in this first stage, we transform the original series by taking logarithms and a seasonal and a regular 
difference (from now on referred as difference series).  

The difference series appears to be stationary without the existence of any trend (fig.2). In order to verify that the 
time series adheres to the stationarity hypothesis, we performed several procedures (MacKinnon, 1996). We 
examine the stationary property by the Augmented Dickey-Fuller test (Dickey and Fuller, 1979), the Phillips-Perron 
test (Philips and Perron, 1988) and the Kwiatkowski-Phillips-Schmidt-Shin stationary contrast (Kwiatkowski et al., 
1992) for both a constant term and a constant and a trend. According to their results, the series is stationary and the 
original series is defined as I(1) (see Table 2).  

Fig.2 Evolution of the Difference Series. 
Feb stands for February month. 

Next, we filter the difference series with a linear ARMA model (Box and Jenkins 1970, 1975), According to the 
algorithm described by Barkoulas et al. (2012), the best model corresponds to the ARMA(2,1)MA(1)12 . The 
residuals obtained constitute the input of the following steps of the methodological process. The principal statistics 
for the residuals are displayed in Table 1 (ARMA(2,1)MA(1)12 series). The latter residuals, present means values 
close to zero, are negative skewed and leptokurtic and they do not seem to follow a normal distribution (Jarque-Bera 
statistic ≤ 0,005). 

Table 2. Stationarity analysis 

Original Series Difference Series 
Augmented Dickey-FullerTest (ADF)   

Constant -0.641 (0.857) -6.888 (0.000) 
Constant and Trend -10.6489 (0.0000) -6.885 (0.000) 

Phillips-Perron Test (PP)   
Constant -6.405 (0.000) -46.469 (0.000) 

Constant and Trend -11.459 (0.000) -46.566 (0.000) 
Kwiatkowski-Phillips-Schmidt-Shin Test (KPSS)   

Constant 1.923 0.046 
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Constant and Trend  0.161 0.043 
Notes: Augmented Dickey-Fuller p-values correspond to one-sided p-values. For the Phillips-Perron test, lags 
were based on the bandwidth Newey-West using Bartlett kernel. Critical values for the Kwiatkowski-Phillips-
Schmidt -Shin test are 0.463 and 0.146 respectively for the constant and linear plus linear tendency model. 
Significant values at the 95% confidence level are in bold. 

Subsequently, we checked for the presence of a nonlinear component in the residuals of the SARIMA model, 
through the application of the BDS test. Likewise, the BDS test is used following the methodology suggested by 
Brock et al. (1996). Once all linear dependence has been removed from the data, this test becomes an indirect 
mechanism for analyzing the existence of nonlinear dependence (Barnet et al., 1997).  

Results in Table 3 support the existence remaining dependence in the data as the BDS test strongly rejected the 
null i.i.d. hypothesis in all but one case. Thus, some kind of dependence, such as nonlinearity, must remain in the 
data.  

Table 3. BDS results 
Epsilon/M 0.5*σ 1*σ 1.5*σ 2*σ
ARMA(2,1)MA(1)12

2 
0.0042 0.0110 0.0119 0.0093 
0.0609 0.0470 0.0239 0.0147 

3 
0.0041 0.0195 0.0280 0.0240 
0.0115 0.0051 0.0019 0.0012 

4 
0.0018 0.0203 0.0364 0.0360 
0.0372 0.0028 0.0016 0.0008 

5 
0.0003 0.0151 0.0359 0.0411 
0.4406 0.0097 0.0055 0.0027 

GARCH(1,0) 

2 
-0.0016 -0.0036 -0.0010 -0.0002 
0.5203 0.5070 0.8529 0.9515 

3 
0.0012 0.0003 0.0067 0.0030 
0.5043 0.9626 0.4696 0.6961 

4 
0.0007 0.0030 0.0132 0.0045 
0.4652 0.6703 0.2588 0.6807 

5 
-0.0001 3E-05 0.0102 2.2E-05 
0.9029 0.9959 0.4290 0.9987 

EGARCH(0,1) 

2 
-0.0007 0.0014 0.0002 0.0011 
0.6343 0.7257 0.9709 0.7384 

3 
0.0008 0.0026 0.0008 0.0020 
0.4111 0.5945 0.9219 0.7577 

4 
0.0004 0.0044 0.0062 0.0073 
0.4384 0.3287 0.4980 0.4094 

5 
3.3E-05 0.0033 0.0063 0.0083 
0.8777 0.3591 0.5220 0.4533 

The first line corresponds to the statistic value and the second one to the associated p-value. Significant values are in bold. M corresponds to the 
embedding dimension. 

 4.2. Volatility clustering 

Nonlinearity, seasonality patterns and cluster volatility are some of the characteristics that can be founded in the 
shipping markets (Abouarghoub, 2013). Herein, we have empirically verified the existence of a nonlinear 
component. Next we analyze if it is originated from the presence of conditional volatility (heteroskedasticity). We 
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applied ARCH(q) family models. Interestingly these models have been previously applied to other transport series 
(Guo et al., 2008). We considered the best GARCH and EGARCH models (Bollerslev, 1986) to address the 
heteroscedasticity present in the data.  

EGARCH models in contrast with GARCH models estimate the conditional variance considering the sign of the 
innovation in the previous period taking into account that volatility can react asymmetrically to good news and bad 
news. They successfully capture asymmetric response in the conditional variance and hence they are suitable 
candidates to model financial processes. According to the criteria described above, we fitted both GARCH(1,0)  and 
EGARCH(0,1) models. Then the residuals were standardized, as previously described (Barkoulas et al. 2012). The 
standardized residuals of all the series, are less leptokurtic (with an average value of 4) that those from the ARMA 
models (Table 1).  

To compare both models and decide which reflects best the temporal variation of the variance, we used the 
following criteria: (i) lowest residual sum of squares: (ii) lowest Schwarz criterion (Schwarz, 1978); and (iii) greater 
value of the log-likelihood function. As shown in Table 4, the best model according to all the criteria, is the 
EGARCH(0,1) model.  

Table 4 Model Comparison Criterion 
Criterion GARCH(1,0) EGARCH(0,1)

Sum squared residuals 1.030039 0.908340 
Schwarz criterion   -2.409744 -2.618035 

Log-likelihood 308.3515 336.0868 

4.3. Chaos Analysis 

The existence of nonlinearity is important, since it is a necessary, but not a sufficient condition for chaos. We 
tested nonlinearity presence by means of the BDS results on the standardized residuals of the GARCH and 
EGARCH models. No significant results were found at a 5% of the level of confidence suggesting that there is no 
clear evidence of nonlinearity in neither of the models. Thus, it does not seem to be any evidence of a chaotic 
component. 

Testing for Chaos: Lyapunov Test 

In this research we have employed the algorithm described by Benshaida and Litimi (2013) and Wolf et al, 
(1985) because this method, unlike the most common method, is capable of addressing the noise, that is frequently 
present in economic time series. The results are shown in Table 5. As expected, we obtained negative significant 
Lyapunov exponents in all cases. Therefore, no chaotic component evidence is reported. 

Table 5. Lyapunov Test Results

Series (L,m,q) Lambda P-value Hypothesis

Difference Series (2,6,5) -0.0930 4.98E-07 H1

ARMA(2,1)MA(1)12 (5,6,5) -0.2952 2.98E-11 H1

GARCH (1,0) (4,6,4) -0.1532 0.0281 H1

EGARCH(0,1) (3,4,4) -0.0022 0.5082 NA 

The null hypothesis of chaos is rejected when the p-value is higher 
than 0.05 and the Lambda exponent is positive. NA stands for not 
significant p-values. 
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Significant values at the 95% confidence level are in bold. 
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standardized residuals of all the series, are less leptokurtic (with an average value of 4) that those from the ARMA 
models (Table 1).  

To compare both models and decide which reflects best the temporal variation of the variance, we used the 
following criteria: (i) lowest residual sum of squares: (ii) lowest Schwarz criterion (Schwarz, 1978); and (iii) greater 
value of the log-likelihood function. As shown in Table 4, the best model according to all the criteria, is the 
EGARCH(0,1) model.  
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The existence of nonlinearity is important, since it is a necessary, but not a sufficient condition for chaos. We 
tested nonlinearity presence by means of the BDS results on the standardized residuals of the GARCH and 
EGARCH models. No significant results were found at a 5% of the level of confidence suggesting that there is no 
clear evidence of nonlinearity in neither of the models. Thus, it does not seem to be any evidence of a chaotic 
component. 

Testing for Chaos: Lyapunov Test 

In this research we have employed the algorithm described by Benshaida and Litimi (2013) and Wolf et al, 
(1985) because this method, unlike the most common method, is capable of addressing the noise, that is frequently 
present in economic time series. The results are shown in Table 5. As expected, we obtained negative significant 
Lyapunov exponents in all cases. Therefore, no chaotic component evidence is reported. 
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Difference Series (2,6,5) -0.0930 4.98E-07 H1
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significant p-values. 
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4.4. Results discussion 

In summary, the following findings can be highlighted. The BDS statistics reject the null of non nonlinearity (iid) 
in the residuals of ARMA model for the liquid bulk shipping series (table 3). This reveals that it may be possible to 
remain nonlinearity in the residuals, assuming that all linearity from the data has been eliminated appropriately 
applying ARMA filter. We investigate whether this nonlinearity is due to nonlinear deterministic chaotic 
dynamics or due to nonlinear stochastic dynamics. The results of the BDS test applied to the standardized residuals 
of the GARCH-type model indicate that the null hypothesis of iid is accepted. Hence, it can be concluded that the 
GARCH or EGARCH type models are adequate to capture all potential nonlinear dependence in the data. This was 
confirmed by a new test for the presence of chaos, based on the behavior of the estimated Lyapunov exponents. 
Negative significant Lyapunov exponents were obtained for this series. Thus, no chaotic component evidence is 
reported. In summary, our findings provide strong support for the presence of nonlinearity in the liquid bulk cargo 
series.  However, we find evidence that the series behavior may be inconsistent with chaotic structure. On the other 
hand, the BDS test suggests that the dynamics of this series is non-linear stochastic. Using various criteria, we 
identify EGARCH (0,1) process as the model that best explains the nonlinearities. 

5. Concluding remarks 

In this research, we have analyzed the existence of nonlinearity and chaos in the monthly series of liquid bulk 
cargo in the Spanish ports. To this end, we conducted a complete study of the possible existence of a nonlinear and 
chaotic regime. Moreover, we have used recently developed procedures for testing nonlinearity and chaos. 

In the first instance, the data were rendered stationary and appropriately filtered, to remove any linear 
dependence. Then we applied GARCH and EGARCH models to deal out with the presence of heterocedasticity. 
Finally, the residuals or standardized residuals, respectively, are tested for nonlinearity and chaos. We applied one of 
the most novel methods for detecting chaos. In contrast with previous methodology, this test can deal with noise.  

The outcomes of our investigation using the BDS procedure provide strong support for the presence of non-
linearity in the liquid bulk cargo series.  However, we find evidence that the series behavior may be inconsistent 
with chaotic structure. The cause of nonlinearity appears to be conditional heteroskedasticity. Likewise, the BDS 
procedure results indicate that both the GARCH and EGARCH type models are adequate to capture all potential 
nonlinear dependence in the data. Using several accuracy criteria, we identify EGARCH process as the model that 
best explains the nonlinearities in the liquid bulk cargo. 

Regarding previous research in this matter, Inglada-Perez (2010) studies the existence of non-linear dynamics 
and chaos in the Spanish maritime transport services for the period January 1992–December 2007.  Using monthly 
time series data, in contrast with our results the study found that liquid bulk cargo did not show significant nonlinear 
dependence. This work updates and extends its findings by widening time span (1992-2013) and including economic 
crash in 2008. Discrepancies between the results of Inglada-Perez (2010) and this research could be due to the fact 
that a data set which includes recession period is used in this research. In this sense, asymmetric phenomena may 
arise in some economic series, which tend to behave differently when economy moves into recession rather coming 
out of it.  

Our findings have many interesting practical implications because this study on existence of nonlinearity and 
chaos in liquid bulk time series will help to improve the quality and accuracy of forecasts on liquid bulk shipping.  
Specifically, the presence of stochastic nonlinearity in the data suggests that liquid bulk shipping models and 
forecasting models should account for the existing nonlinearities in the data, otherwise their results may be biased 
and highly misleading. For example, given the high costs as well as long-term and sunk character of investments in 
port infrastructure, policy makers and port managers need accuracy forecasts of liquid bulk cargo to decide on 
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infrastructure projects. Regarding demand forecasting, GARCH and EGARCH type models appear as an optimum 
alternative to traditional linear forecasting methods such as the ARMA-methodology which are not able to handle 
and capture the volatility and nonlinearity that are present in the liquid bulk cargo series.  

The conclusions derived from this research represent a breakthrough in the field of modeling and forecasting 
liquid bulk traffic in the Spanish ports and are particularly relevant for ports management and planning. Overall, our 
findings are of special interest for all the players involved in the shipping industry, including ship-owners, 
charterers, stevedores, brokers, policy makers, and regulators. Specifically, likewise. our forecasting results can help 
planners and policy-makers to take decisions on issues related to port infrastructure development and investment -
such as construction of new terminals-, port operation, and freight rate (Sahu and Patil, 2017). In the context of 
planning process, because traffic forecasting is a critical part of every transportation planning for port investments. 
our findings should be of major interest in drawing up investment plans and infrastructure programs for the port 
system and for evaluating the recoverability of the investment. Specifically, given the large sunk costs as well as 
long-term and character of investments in port infrastructure, policy makers and port managers need accuracy 
forecasts of liquid bulk cargo to decide on infrastructure projects. In this line, Flyvbjerg et al. (2005) highlighted the 
relevance of demand forecasting citing the following causes: (a) estimates of the financial viability of projects are 
heavily dependent on the accuracy of traffic forecasting; (b) demand forecasts are the basis for socioeconomic and 
environmental appraisal of transportation infrastructure projects; (c) There is evidence that demand forecasting is a 
major source of uncertainty and risk in the appraisal of transportation infrastructure projects; (d) the forecasting 
results feed directly into impact appraisals such as cost–benefit analyses and environmental impact assessments; and 
(e) demand forecasts play a crucial role in the preparation of decision support to policy-makers in the field of 
transport planning. 

Future research on the nature of liquid bulk shipping and forecasting of this remains an important issue, given 
that a scarce number of studies can be found. Further research is needed to examine other types of nonlinear models 
e.g. threshold ARCH model:  ARCH integrated model and fractionally integrated model. As well the relationship 
between this variable and other relevant commodities and economic variables, such as oil price, might be considered 
through a multivariate GARCH mode (MGARCH) instead of working with separate univariate model.  
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4.4. Results discussion 

In summary, the following findings can be highlighted. The BDS statistics reject the null of non nonlinearity (iid) 
in the residuals of ARMA model for the liquid bulk shipping series (table 3). This reveals that it may be possible to 
remain nonlinearity in the residuals, assuming that all linearity from the data has been eliminated appropriately 
applying ARMA filter. We investigate whether this nonlinearity is due to nonlinear deterministic chaotic 
dynamics or due to nonlinear stochastic dynamics. The results of the BDS test applied to the standardized residuals 
of the GARCH-type model indicate that the null hypothesis of iid is accepted. Hence, it can be concluded that the 
GARCH or EGARCH type models are adequate to capture all potential nonlinear dependence in the data. This was 
confirmed by a new test for the presence of chaos, based on the behavior of the estimated Lyapunov exponents. 
Negative significant Lyapunov exponents were obtained for this series. Thus, no chaotic component evidence is 
reported. In summary, our findings provide strong support for the presence of nonlinearity in the liquid bulk cargo 
series.  However, we find evidence that the series behavior may be inconsistent with chaotic structure. On the other 
hand, the BDS test suggests that the dynamics of this series is non-linear stochastic. Using various criteria, we 
identify EGARCH (0,1) process as the model that best explains the nonlinearities. 

5. Concluding remarks 

In this research, we have analyzed the existence of nonlinearity and chaos in the monthly series of liquid bulk 
cargo in the Spanish ports. To this end, we conducted a complete study of the possible existence of a nonlinear and 
chaotic regime. Moreover, we have used recently developed procedures for testing nonlinearity and chaos. 

In the first instance, the data were rendered stationary and appropriately filtered, to remove any linear 
dependence. Then we applied GARCH and EGARCH models to deal out with the presence of heterocedasticity. 
Finally, the residuals or standardized residuals, respectively, are tested for nonlinearity and chaos. We applied one of 
the most novel methods for detecting chaos. In contrast with previous methodology, this test can deal with noise.  

The outcomes of our investigation using the BDS procedure provide strong support for the presence of non-
linearity in the liquid bulk cargo series.  However, we find evidence that the series behavior may be inconsistent 
with chaotic structure. The cause of nonlinearity appears to be conditional heteroskedasticity. Likewise, the BDS 
procedure results indicate that both the GARCH and EGARCH type models are adequate to capture all potential 
nonlinear dependence in the data. Using several accuracy criteria, we identify EGARCH process as the model that 
best explains the nonlinearities in the liquid bulk cargo. 

Regarding previous research in this matter, Inglada-Perez (2010) studies the existence of non-linear dynamics 
and chaos in the Spanish maritime transport services for the period January 1992–December 2007.  Using monthly 
time series data, in contrast with our results the study found that liquid bulk cargo did not show significant nonlinear 
dependence. This work updates and extends its findings by widening time span (1992-2013) and including economic 
crash in 2008. Discrepancies between the results of Inglada-Perez (2010) and this research could be due to the fact 
that a data set which includes recession period is used in this research. In this sense, asymmetric phenomena may 
arise in some economic series, which tend to behave differently when economy moves into recession rather coming 
out of it.  

Our findings have many interesting practical implications because this study on existence of nonlinearity and 
chaos in liquid bulk time series will help to improve the quality and accuracy of forecasts on liquid bulk shipping.  
Specifically, the presence of stochastic nonlinearity in the data suggests that liquid bulk shipping models and 
forecasting models should account for the existing nonlinearities in the data, otherwise their results may be biased 
and highly misleading. For example, given the high costs as well as long-term and sunk character of investments in 
port infrastructure, policy makers and port managers need accuracy forecasts of liquid bulk cargo to decide on 
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infrastructure projects. Regarding demand forecasting, GARCH and EGARCH type models appear as an optimum 
alternative to traditional linear forecasting methods such as the ARMA-methodology which are not able to handle 
and capture the volatility and nonlinearity that are present in the liquid bulk cargo series.  

The conclusions derived from this research represent a breakthrough in the field of modeling and forecasting 
liquid bulk traffic in the Spanish ports and are particularly relevant for ports management and planning. Overall, our 
findings are of special interest for all the players involved in the shipping industry, including ship-owners, 
charterers, stevedores, brokers, policy makers, and regulators. Specifically, likewise. our forecasting results can help 
planners and policy-makers to take decisions on issues related to port infrastructure development and investment -
such as construction of new terminals-, port operation, and freight rate (Sahu and Patil, 2017). In the context of 
planning process, because traffic forecasting is a critical part of every transportation planning for port investments. 
our findings should be of major interest in drawing up investment plans and infrastructure programs for the port 
system and for evaluating the recoverability of the investment. Specifically, given the large sunk costs as well as 
long-term and character of investments in port infrastructure, policy makers and port managers need accuracy 
forecasts of liquid bulk cargo to decide on infrastructure projects. In this line, Flyvbjerg et al. (2005) highlighted the 
relevance of demand forecasting citing the following causes: (a) estimates of the financial viability of projects are 
heavily dependent on the accuracy of traffic forecasting; (b) demand forecasts are the basis for socioeconomic and 
environmental appraisal of transportation infrastructure projects; (c) There is evidence that demand forecasting is a 
major source of uncertainty and risk in the appraisal of transportation infrastructure projects; (d) the forecasting 
results feed directly into impact appraisals such as cost–benefit analyses and environmental impact assessments; and 
(e) demand forecasts play a crucial role in the preparation of decision support to policy-makers in the field of 
transport planning. 

Future research on the nature of liquid bulk shipping and forecasting of this remains an important issue, given 
that a scarce number of studies can be found. Further research is needed to examine other types of nonlinear models 
e.g. threshold ARCH model:  ARCH integrated model and fractionally integrated model. As well the relationship 
between this variable and other relevant commodities and economic variables, such as oil price, might be considered 
through a multivariate GARCH mode (MGARCH) instead of working with separate univariate model.  

References 

Abouarghoub, W., 2013. Implementing the new science of risk management to tanker freight markets. PhD, University of the West of England. 
Available from: http://eprints.uwe.ac.uk/20836. 

Barkoulas J.T., Chakraborty A., Ouandlous A., 2012. A metric and topological analysis of determinism in the crude oil spot market. Energy 
Economics 34(2), 584-591. 

Barnett, W. A., Gallant, A. R., Hinich, M. J., Jungeilges, J. A., Kaplan, D. T., Jensen, M. J., 1997. A single blind controlled competition among 
tests for nonlinearity and chaos. Journal of Econometrics 82(1), 57-192. 

BenSaïda, A., Litimi H., 2013. High level chaos in the exchange and index markets. Chaos, Solitons & Fractals 54, 90-95. 
Bollerslev, T., 1986. Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics 31, 307-327. 
Box, G.E.P., Jenkins, G.M., 1970. Time series analysis, forecasting and control. Holden Day, San Francisco, U.S.A. 
Brock, W. A., Hsieh, D. A., LeBaron, B. D., 1991. Nonlinear dynamics, chaos, and instability: statistical theory and economic evidence. MIT 

press,  
Broock, W. A., Scheinkman, J. A., Dechert, W. D., LeBaron, B, 1996. A test for independence based on the correlation dimension. Econometric 

reviews 15(3), 197-235. 
Brooks, C., 1998. Chaos in Foreign Exchange Markets: A Sceptical View. Computational Economics 11, 265–281. 
Dickey, D., Fuller, W., 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical 

Association 74, 426-431. 
Flyvbjerg, B., Skamris Holm, M. K., and Buhl, S. L. 2005. How (in) accurate are demand forecasts in public works projects? The case of 

transportation. Journal of the American Planning Association, 71(2): 131-146. 
Frazier, C., Kockelman, K. 2004. Chaos theory and transportation systems: instructive example. Transportation Research Record: 1897, 9-17. 
Goulielmos, A.M., Psifia, M., 2007. A study of trip and time charter freight rate indices: 1968-2003. Maritime Policy & Management: The 

flagship journal of international shipping and port research 34 (1), 55-67. 
Goulielmos, A.M. Psifia, M. E., 2009. Forecasting weekly freight rates for one year time charter 65000 dwt bulk carrier, 1989-2008, using 

nonlinear methods. Maritime Policy & Management: The flagship journal of international shipping and port research 36 (5), 411-436.  



1614 Pablo Coto-Millan  et al. / Transportation Research Procedia 48 (2020) 1605–1614
10 Author name / Transportation Research Procedia 00 (2019) 000–000

Goulielmos, A. M., Kaselimim E., 2011. A non-linear forecasting of container traffic: the case-study of the Port of Piraeus, 1973-2008. 
International Journal of Shipping and Transport Logistics 3 (1), 72-99. 

Goulielmos, A.M., Giziakis, C., Georgantzi, A., 2012. An application of non-linear methods to the prediction of future freight rates, 2006-2008. 
International Journal of Shipping and Transport Logistics 4 (1), 78-106. 

Guo, J., Williams, B., Smith, B., 2008. Data collection time intervals for stochastic short-term traffic flow forecasting. Transportation Research 
Record 2024, 18-26. 

IMO (International Maritime Organization). https://business.un.org/en/entities/13  Accessed Feb. 5, 2018 
Inglada-Pérez, L. 2010.The demand for maritime transport: a nonlinearity and chaos study.  In Essays on port economics, 73-92. Coto-Millán, P., 

Pesquera M.A.; Castanedo J. (Eds). Springer Verlag, Heidelberg. 
Inglada-Pérez, L. 2016. Uncovering nonlinear dynamics in air transport demand. International Journal of Transport Economic, 43,(1-2). 
Kwiatkowski D., Phillips P. C. B., Schmidt P., Shin Y., 1992. Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root. 

Journal of Econometrics .54, 159-178. 
McKenzie, M.D., 2001. Chaotic behavior in national stock market indices: new evidence from the close return test. Global Finance Journal 12 (1), 

35-53. 
MacKinnon, J. G., 1996. Numerical distribution functions for unit root and cointegration tests, Journal of Applied Econometrics, 11, 601-18. 
Nelson, D. B., 1991. Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59, 347-370. 
Phillips P. C. B., Perron P., 1988. Testing for Unit Roots in Time Series Regression. Biometrika 75, 335-346. 
Sahu, P. K., and Patil, G. R .2017. Simultaneous dynamic demand estimation models for major seaports in India, Transportation Letters, 9 (3), 

141-151. 
Schwarz, G., 1978. Estimating the dimension of a model. The Annals of Statistics 6(2), 461-464. 
Shintani, M., Linton, O., 2004. Nonparametric neural network estimation of Lyapunov exponents and a direct test for chaos. Journal of 

Econometrics 120, 1-33.   
Su, X., Wang, Y., Duan, S., Ma, J., 2014. Detecting Chaos from Agricultural Product Price Time Series. Entropy 16 (12), 6415-6433. 
Thalassinos, E.I., Hanias, M.P., Curtis P.G., Thalassinos, Y.E., 2009. Chaos theory: forecasting the freight rate of an oil tanker. International 

Journal of Computational Economics and Econometrics 1(1), 76-88. 
UNCTAD, 2012. Review of maritime transport. United Nations. New York and Geneva, 2012. 
Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A., 1985. Determining Lyapunov exponents from a time series. Physica 16D, 285-317. 


